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0.1 Preface

Multivariable Calculus refers to Calculus involving functions of more than one variable,

i.e., multivariable functions. Not surprisingly, it is important that the reader have a

good command of one-variable Calculus, both differential and integral Calculus, before

diving into multivariable Calculus.

Several aspects of multivariable Calculus are quite simple. Partial derivatives are just

one-variable derivatives, in which you treat all other independent variables as constants.

Iterated integrals are the analogous concept for integration; the integrals involved are

“partial integrals” (though no one calls them that).

However, the complexity comes in when you consider the different directions in

which you can ask for the rates of change of a multivariable function. For a one-variable

function, f(x), you are interested in the instantaneous rate of change in f as x moves

to the right (i.e., increases) or as x moves to the left (i.e., decreases). For a function

of even two variables, f(x, y), there are an infinite number of directions in which (x, y)

can move and in which you would want the corresponding rate of change of f .

The fact that you want to look at rates of change in an infinite number of directions

means that the derivative, at a given point, of a multivariable function is itself a function

of the direction in which the point moves. Once the derivative has to be a function, it is

nicest to let the derivative incorporate not only the direction of movement of the point,

but also the speed. This leads us to consider the derivative, at a point, as a function

that can be applied to arbitrary vectors, for vectors are things which have both direction

and magnitude.

This point of view of the derivative as a vector function is extremely beautiful,

and a large part of its beauty stems from the fact that the derivative is then a linear

transformation, the fundamental type of function considered in linear algebra. For this

reason, many statements and results in multivariable Calculus look nicest when given

in the language of linear algebra.

Directions and vectors also arise in the most complicated aspects of multivariable

integration problems, in which you want, for various reasons, to integrate a vector field.

The theorems and applications involving integration of vector fields are certainly the

most difficult parts of multivariable Calculus.

And so, the question arises of how to best present both the easy and the difficult as-

pects of multivariable Calculus. To give the rigorous, technical definitions or hypotheses

would make even reasonably simple results look difficult, and make the difficult results

look nightmarish. The proofs would also complicate the presentation. Finally, there is

the dilemma of whether or not to include serious linear algebra in the discussion.

We deal with these issues in a variety of ways.

• First, most sections are divided into subsections, two of which are labeled Basics
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and More Depth, so that the “easier” material is separated from the “more difficult”

material. Each subsection of Basics has an associated video lecture, which can be

viewed online by clicking the play button in the margin below the Basics box.

• Material in a given section that can be presented nicely in terms of linear transforma-

tions and matrices is found in a third subsection, which is labeled + Linear Algebra.

These subsections can be easily omitted from a course syllabus.

If the + Linear Algebra subsections are included in the syllabus, it should be noted

that, while vectors are discussed in the body of the textbook, linear transformations

and matrices are not. We assume that either the reader already knows linear algebra,

or is willing to learn it along the way.

To aid the student in the latter case, rather than include an appendix on this ma-

terial, we have taken the more modern, but somewhat worrisome, approach of putting

in links, in green, to the relevant Wikipedia articles. We say that this is “somewhat

worrisome” since Wikipedia articles are open for anyone to edit and, typically, are not

a good rigorous reference for deep mathematics. However, we have vetted the linear

algebra articles, and they seem to be very good and free from errors. Nonetheless,

the Wikipedia articles should be used as an introduction or a refresher, but not as a

substitute for a serious linear algebra textbook.

• In those sections which are divided into subsections, the exercises are also divided

into Basics, More Depth, and + Linear Algebra for ease in assigning appropriate

problems.

• Proofs, other than short ones, which illuminate the material, are not contained in

this textbook. Instead, the reader is pointed to the appropriate external references. In

particular, we refer as often as possible to the excellent, free, pdf textbook of Trench,

[8], and provide a link to that pdf. This use of external references, with links, should

increase the readability of this textbook, and shorten the book for possible printing,

while at the same time providing fully rigorous mathematics. We believe that external

links to technical proofs is the future of high school and undergraduate mathematics

textbooks.

The background required to read this book is a good understanding of single-variable

Calculus, and we assume that you have had courses in differential and integral Calculus.

Ideally, you would also be familiar with infinite series, but that material rarely comes

up in multivariable Calculus.

Basic references for technical results, and results beyond the scope of this textbook,

are Rudin, [7], and Trench, [8].

David B. Massey

February 2011

http://www.centerofmath.org/trench.pdf
http://www.centerofmath.org/trench.pdf


Chapter 1

Multivariable Spaces and
Functions

This chapter is an introduction to Euclidean space, of arbitrarily high dimension, with

emphasis on the 2-dimensional case of the xy-plane, R2, and the 3-dimensional case of

xyz-space, R3.

We define higher-dimensional analogs of concepts that you are familiar with in the

real line, R; we generalize such notions as: intervals, open intervals, closed bounded

intervals, directions, absolute value/magnitude, functions, continuity, graphs, etc.

We discuss vectors, angles, lines, and planes. This leads us to define two special

product operations: the dot product and the cross product.

Finally, this chapter contains a small amount of Calculus. We present the relatively

easy, but important, case of derivatives of a function of a single variable, which takes

values in a higher-dimensional Euclidean space.
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1.1 Euclidean Space

Multivariable Calculus, as the name implies, deals with the Calculus of functions of more

than one variable. In this section, we define and discuss basic notions and terminology

concerning n-dimensional Euclidean space, where n could be any natural number. We

focus on the cases of R2, the xy-plane, and R3, xyz-space.

Basics:

The set of real numbers R, or (−∞,∞), is frequently referred to, and pictured as,

the real line.

We assume that you are familiar with the notions of open intervals, (a, b), closed

intervals, [a, b], and intervals, in general, in the real line.

Also, if a and b are real numbers, you should know that the distance between a and

b is the absolute value of the difference, i.e.,

dist(a, b) = |b− a| =
√
(b− a)2,

where we have written this last complicated form for the absolute value because it gen-

eralizes nicely. The set R, together with its distance function, is known as 1-dimensional

a

|b-a|

b

Figure 1.1.1: The dis-
tance between points in
the real line.

Euclidean space.

You are also familiar with the xy-plane, in which points are described by pairs of

real numbers (x, y). The set of pairs of real numbers is denoted by R2. Distance in

the xy-plane is computed via the Pythagorean Theorem; the distance between points

(x1, y1) and (x2, y2) is given by

dist
(
(x1, y1), (x2, y2)

)
=

√
(x2 − x1)2 + (y2 − y1)2.

(x , y )1 1 (x , y )2 1

(x , y )2 2

Figure 1.1.2: The dis-
tance between points in
R2.

You may already be familiar with R3, 3-dimensional Euclidean space, also known as

xyz-space. As a set, this consists of ordered triples of real numbers (x, y, z). This is

frequently thought of as representing the space we live in. You could imagine that the

floor is the xy-plane, and we have a third axis, the z-axis, which is perpendicular to the

floor, i.e., perpendicular to the xy-plane, with the positive z-axis being above the floor,

and the negative z-axis being below the floor. Then, z would measure height above the

floor, so that a negative z value would indicate that you’re below the floor.

In Figure 1.1.3, we’ve drawn a typical sketch of the x-, y-, and z-axes (in perspective),

with the arrows pointing in the positive directions. Sometimes, to get a better view of

x y

z

Figure 1.1.3: The x-, y-,
and z-axes.

some of our later graphs in R3, it will be convenient to rotate the axes, such as in

Figure 1.1.4. Note, however, that, even though it’s convenient to rotate the axes, we

http://www.youtube.com/watch?v=Dm_d_nUTfmU
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will always use right-handed axes; this means that, if you take your right hand, and point

your index finger in the direction of the positive x-axis, while pointing your middle finger

in the direction of the positive y-axis, then your thumb will point in the direction of the

positive z-axis. See Figure 1.1.5. Of course, the other choice of axes is left-handed, as

x

y

z

Figure 1.1.4: Rotated x-,
y-, and z-axes.

x

y

z

Figure 1.1.5: Right-
handed axes.

in Figure 1.1.6; we won’t use left-handed axes in this book.

x

z

y

Figure 1.1.6: Left-
handed axes.

In the xy-plane, you have four quadrants, corresponding to the four choices of posi-

tive/negative for the x- and y-coordinates. In R3, there are eight octants, corresponding

to the eight choices of positive/negative for the x-, y-, and z-coordinates. However, only

one of these octants is given a name; the 1st octant consists of those points where x, y,

and z are ≥ 0.

In three dimensions, by dropping a perpendicular line to the xy-plane, and using

the Pythagorean Theorem twice, we can determine the distance between two points

(x1, y1, z1) and (x2, y2, z2); see Figure 1.1.7. We find that

dist
(
(x1, y1, z1), (x2, y2, z2)

)
=

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Figure 1.1.7: The
Pythagorean Theorem
in 3d.

Okay, that’s R2 and R3, but how do we define Rn, n-dimensional Euclidean space,

where n could be any natural number?

It’s simple, really. The set Rn, n-dimensional Euclidean space, consists of points

which are n real numbers in order; we call such a point an ordered n-tuple. Thus,

examples of points in R4 are the ordered 4-tuples (2,−1, 0, 3) and (π,
√
2, 7,−e). Of

course, in place of 2-tuple and 3-tuple, we say pair and triple, respectively. The numbers

in the different positions in the n-tuple are called the components or coordinates of the

point. We frequently write a point in Rn by x = (x1, x2, . . . , xn), where the boldface is

used to indicate that x is a point with more than one component.

How do you picture R4, or Rn for n > 4? You don’t. You picture R2 and R3, and

hope that gives you some intuition for higher-dimensional Rn. In fact, the context of

dealing with Rn might mean that it’s completely unreasonable to think of the different

coordinates as specifying position. For instance, a company might produce four different

types of liquid cleaning products, and keep track of how much of each product they have

in stock simply by listing the number of thousands of liters of each, in order, e.g.,

(102.7, 34.1, 86.0, 385.4).

In this context, it wouldn’t be reasonable to think of this point in R4 as specifying a

position; it’s just four real numbers in order. Note that we say that this point in R4 has

units of thousands of liters only if every coordinate has the same units of thousands of

liters.

We referred to Rn as Euclidean space, but, technically, Euclidean space refers to Rn

with a specific notion of distance.
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Definition 1.1.1. Euclidean n-space, or n-dimensional Euclidean space,
is the set Rn of ordered n-tuples of real numbers, together with the notion of the
distance between two points a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) given by

dist(a,b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · · (an − bn)2.

The origin in Rn is the ordered n-tuple of all zeroes; we usually write 0 for the
origin (regardless of what dimension we are using).

Note that when n = 1 , 2, or 3, the notion of distance in Euclidean space is exactly

what we already discussed.Technically, there is a differ-
ence between an ordered set
with a single real number in
one component and the real
number itself. We shall not
worry about this distinction.

We need to discuss how to generalize standard notions from the real line to higher

dimensions; we need some generalizations/replacements for intervals, open intervals,

closed and bounded intervals, etc.

First, we need some even more basic terminology and notation. We sometimes use

braces, curly brackets, {· · · }, to enclose the elements of a set. We use a vertical line, | ,
as shorthand for the phrase “such that”, when describing sets. So, for instance, the set

of real numbers greater than 4 is written

{x ∈ R | x > 4},

which you read as “the set of those x in R such that x > 4”. Of course, this is a subset

of R, and is the same as the interval (4,∞).

A subset E of Rn is a collection of some (including, possibly, all or none) of the

points in Rn. We write E ⊆ Rn to indicate that E is a subset of Rn, and we write

p ∈ E to indicate that p is a point in, or element of, E. If A and B are both subsets

of Rn (or, are sets, in general), then A is a subset of B, written A ⊆ B, if and only if

every element of A is also in B.

Now, we can define the most basic generalizations of open and closed intervals in R:

open and closed balls in Rn.

Definition 1.1.2. Suppose that r is a positive real number, and that p is a point
in Rn. Then, the n-dimensional open (respectively, closed) ball, Bnr (p)
(respectively, Bnr (p)), centered at p, of radius r is the set of points in Rn
whose distance from the center is less than (respectively, less than or equal to) r.
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Thus, the open ball is given, in set notation, by

Bn
r (p) = {x ∈ Rn | dist(x,p) < r},

while the closed ball is given by

Bn
r (p) = {x ∈ Rn | dist(x,p) ≤ r},

The (n− 1)-dimensional sphere, Sn−1
r (p), of radius r > 0, centered at p, is the

boundary of the n-dimensional ball. Thus,

Sn−1
r (p) = {x ∈ Rn | dist(x,p) = r}.

This means that, if p = (p1, . . . , pn), then Sn−1
r (p) is the set of points x =

(x1, . . . , xn) in Rn which satisfy the equation

(x1 − p1)
2 + (x2 − p2)

2 + · · ·+ (xn − pn)
2 = r2.

Note that a 2-dimensional sphere, which lies in R3, is what is usually referred to as
just “a sphere”.

You may have noticed that
this definition means that,
what we normally call a cir-
cle in R2, is also referred
to as a 1-dimensional sphere.
It’s also true that n can be
1, which means that a 0-
dimensional sphere in the real
line consists of two points.

Example 1.1.3. For r > 0, the set of points (x, y, z) such that

x2 + y2 + z2 = r2,

describes a sphere of radius r, centered at the origin.

x y

z

Figure 1.1.8: A sphere of radius r > 0, centered at the origin.
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