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CHARACTERISTIC CLASSES OF HOMOGENEOUS ESSENTIAL ISOLATED

DETERMINANTAL VARIETIES

XIPING ZHANG

Abstract. A (homogeneous) Essentially Isolated Determinantal Variety is the natural gen-

eralization of a generic determinantal variety, and is a fundamental example to study non-

isolated singularities. In this paper we study the characteristic classes on these varieties. We
give explicit formulas for their Chern-Schwartz-MacPherson classes and Chern-Mather classes

via standard Schubert calculus. As corollaries we obtain formulas for their (generic) sectional

Euler characteristics, characteristic cycles, and polar classes.

1. Introduction

The study of characteristic classes and geometric invariants on singular spaces has been a
major task in singularity theory and algebraic geometry, and has been intensely studied for the
last few decades. In the smooth setting, the Euler characteristic of a space is the degree of its
total Chern class via the Poincaré-Hopf theorem. For singular varieties the existence of such
singular Chern classes was conjectured by Deligne-Grothendieck, and was proved by MacPherson
in [16] over C. Another definition of singular Chern classes was due to M.-H. Schwartz, who
used obstruction theory and radial frames to construct such classes [21] [20] [6]. In [6] it was
shown that these classes correspond, by the Alexander isomorphism, to the classes defined by
MacPherson. This cohomology class is called the Chern-Schwartz-MacPherson class, denoted
by cXsm for any variety X. The integration of cXsm equals the Euler characteristic of X.

The two important ingredients MacPherson used to define the Chern-Schwartz-MacPherson
class are the local Euler obstruction and the Chern-Mather class, denoted by EuX and cXM respec-
tively. They were originally defined on C via a topological method, and later in [12] González-
Sprinberg proved an equivalent algebraic intersection formula. His formula extends the defini-
tions to arbitrary algebraically closed base fields. Based on such an algebraic formula, later in [15]
G. Kennedy generalized the theory of the Chern-Schwartz-MacPherson class to arbitrary alge-
braically closed fields of characteristic 0, using Sabbah’s Lagrangian intersections and Chow
groups. Thus in this paper we will work algebraically with an algebraically closed field of char-
acteristic 0, and we will view cXsm as a class in the Chow group.

The goal of this paper is to explicitly compute the aforementioned characteristic classes of
homogeneous essentially isolated determinantal varieties. These varieties are natural general-
izations of the generic determinantal varieties, and are fundamental examples of non-isolated
singularities.

Let K be an algebraically closed field of characteristic 0. Let Mn, M
S
n and M∧

n be the spaces
of n × n ordinary, symmetric and skew-symmetric matrices respectively. We will denote them
by M∗

n, for ∗ denotes ∅, S and ∧ respectively. They have natural stratifications M∗
n = ∪iΣ

∗
n,i,

where the strata are matrices of fixed corank i. We consider transverse maps

F : V = KN → M∗
n,

where transverse means the image of F intersects the non-zero strata Σ∗
n,i transversely. By

homogeneous we mean that F is a K∗-equivariant map, where K∗ acts on V and M∗
n by scalar
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multiplication. Then the pull back orbits of Σ∗
n,i are necessarily cones, and we call their projec-

tivizations homogeneous Essentially Isolated Determinantal Varieties. We will denote them by
EIDV in short. For details we refer to [14].

In §2 we review the theory of characteristic classes for (quasi) projective varieties. We briefly
recall the definitions and basic properties of the Chern-Schwartz-MacPherson class and the
Chern-Mather class. For projective varieties these are polynomials with variable H = c1(O(1)).
Then we recall the involution proposed by Aluffi in [2]. This involution J translate the infor-
mation of Chern-Schwartz-MacPherson class of a projective variety X to the information of the
Euler characteristics of X∩Lk for generic codimension k linear subspaces. This reduces the com-
putation of sectional Euler characteristics to the computation of Chern-Schwartz-MacPherson
classes.

The main formulas for the Chern classes of EIDV are presented in §3. First we show that,
via transversal pull-back of Segre-MacPherson classes proved in [17], it’s enough to compute
the Chern classes of generic determinantal varieties. For such varieties we use their canonical
resolutions: the Tjurina transforms. We define the q polynomials to be the pushforward of
the Chern-Schwartz-MacPherson classes of the Tjurina transforms, and show that the Chern-
Schwartz-MacPherson classes and the Chern-Mather classes of determinantal varieties are linear
combinations of the q polynomials.

Our first formula is Theorem 3.2, which interprets the coefficients of the q polynomials by
integrations of tautological classes over Grassmannians. Here by tautological we mean the Chern
classes of the universal sub and quotient bundles. Thus our formula is purely combinatorial and
can be easily computed by Macaulay2. We present some computed examples in Appendix §6.

Based on the fact that the function values at integers uniquely determine a polynomial, we
also propose another equivalent formula (Theorem 3.3). For each type (ordinary, symmetric,
or skew-symmetric) of matrix we define the determinantal Chow (cohomology) classes Qn,r,
QSn, r and Q∧

n,r. These are Chow(cohomology) classes expressed in terms of the tautological
(sub or quotient) bundles on Grassmannians. Then we show that the q polynomials equal the
integrations of these determinantal classes with the total Chern classes over the Grassmannians.

Theorem. Let S and Q be the universal sub and quotient bundles over the Grassmannian
G(r, n). We define the ordinary, skew-symmetric, and symmetric determinantal classes as fol-
lows.

Qn,r(d) :=

n(n−r)∑
k=0

(1 + d)n(n−r)−kck(Q
∨n)

( nr∑
k=0

dnr−kck(S
∨n)

)
;

Q∧
n,r(d) :=(n−r

2 )∑
k=0

(1 + d)(
n−r
2 )−kck(∧2Q∨)


 (r2)∑

k=0

d(
r
2)−kck(∧2S∨)


r(n−r)∑

k=0

dr(n−r)−kck(S
∨ ⊗Q∨)

 ;

QS
n,r(d) :=(n−r+1

2 )∑
k=0

(1 + d)(
n−r+1

2 )−kck(Sym
2Q∨)


(r+1

2 )∑
k=0

d(
r+1
2 )−kck(Sym

2S∨)


r(n−r)∑

k=0

dr(n−r)−kck(S
∨ ⊗Q∨)

 .
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We have the following integration formulas :

qn,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·Qn,r(d) ∩ [G(r, n)]− dn
2

(
n

r

)
;

q∧n,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·Q∧
n,r(d) ∩ [G(r, n)]− d(

n
2)

(
n

r

)
;

qSn,r(d);=

∫
G(r,n)

c(S∨ ⊗Q) ·QS
n,r(d) ∩ [G(r, n)]− d(

n+1
2 )

(
n

r

)
.

Notice that the (affine cones of) generic skew-symmetric and symmetric determinantal vari-
eties are orbits of the GLn(C) representations. When the base field is C, in [8] [19] the authors
used the method of axiomatic interpolation to compute the GLn(C) equivariant Chern-Schwartz-
MacPherson classes for the degeneracy loci. The equivariant Chern-Schwartz-MacPherson classes
can be expressed as polynomials in the weights of the action, or polynomials in the symmetric
functions in formal Chern roots. The coefficients are not only numbers given by complicated
integrals, but some standard symmetric functions. Since the actions contain C∗ scalar multipli-
cation, one can specialize the GLn(C) equivariant Chern-Schwartz-MacPherson classes to the C∗

equivariant Chern-Schwartz-MacPherson classes by identifying all the Chern roots to t. It was
shown in [22] that, for any projective variety X ⊂ P(V ), the C∗ equivariant Chern-Schwartz-
MacPherson class of the affine cone Σ ⊂ V equals the ordinary Chern-Schwartz-MacPherson
class of X, by changing t to H. Thus despite the very different lookings, all the formulas
in [8] and [19] evaluate to the ones in this paper. It should be interesting to explain this fact
combinatorically.

For complex projective varieties the theory of Chern-Schwartz-MacPherson classes are the
pushdown of the theory of (Lagrangian) characteristic and conormal cycles. In §4 we briefly
review the story and apply our results to obtain formulas for the characteristic cycle classes of
EIDV, as Chow classes of PN ×PN (Proposition 4.1). For generic determinantal varieties, bases
on the local Euler obstruction formula proved in [19] and [25] we also compute their conormal
cycle classes. Since the coefficients of the conormal cycle class are the degrees of the polar
classes, we also obtain explicit formulas for the polar degrees of generic determinantal varieties
(Equation 7). For EIDV the conormal cycles depend on the local Euler obstruction information,
thus combining with §3 we obtain an algorithm to compute the polar degrees of EIDV. We finish
this section by proving an interesting observation: the characteristic cycles of the closed orbits
of all singular matrices are symmetric (Proposition 4.3). Such symmetry deserves a geometric
explanation.

The Appendix §6 is devoted to explicit examples. The computations in the examples are
based on our formulas and are carried out with the software Macaulay2 [13]. We highlight the
patterns proved in the previous sections by the examples. We observe that all the nonzero
coefficients appearing in the Chern classes are positive. Moreover, all the polynomials and
sequences presented in the examples are log concave. These facts call for a conceptual, geometric
explanation. Thus we close this paper with the non-negative conjecture and the log concave
conjecture (Cf §5). The situation appears to have similarities with the case of Schubert varieties
in flag manifolds, which was recently proved in [4].
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2. Preliminary

2.1. Chern-Schwartz-MacPherson Class. Let X ⊂ PN be a projective variety. The group of
constructible function is defined as the abelian group generated by indicator functions 1V for all
irreducible subvarieties V ⊂ X. We define the pushforward for a proper morphism f : X → Y as
follows. For any closed subvariety V ⊂ X, the pushforward F (f)(1V )(y) evaluates χ(f

−1(y)∩V )
for any y ∈ Y . This makes F a functor from projective complex varieties to the abelian group
category.

The group F (X) has {1V |V is a closed subvariety of X} as a natural base. In 1974 MacPher-
son defined a local measurement for singularities and names it the local Euler obstruction. He
proved that the local Euler obstruction functions {EuV |V is a subvariety of X} also form a base
for F (X). Based on this property he defined a natural transformation c∗ : F (X) → H∗(X) that
sends the local Euler obstruction function EuV to Mather’s Chern class cVM . He then proved the
following theorem

Theorem 2.1 ( [16]). The natural transformation c∗ is the unique natural transformation from
F to the homology functor H∗ satisfying the following normalization property:

c∗(1X) = c(TX) ∩ [X] when X is smooth.

In 1990 Kennedy modified Sabbah’s Lagrangian intersections and proved the following gen-
eralization.

Theorem 2.2 ( [15]). Replace the homology functor by the Chow functor, MacPherson’s natural
transform extends to arbitrary algebraically closed field of characteristic 0.

Recall that the Chow group(ring) of PN is Z[H]/HN+1, where H here is the hyperplane class
c1(O(1)) ∩ [PN ]. We make the following definitions

Definition. Let X ⊂ PN be a projective subvariety. The Chern-Schwartz-MacPherson class and
the Chern-Mather class of X, denoted by cXsm(H) and cXM (H), are defined as the pushforward
of c∗(1X) and c∗(EuX) in A∗(PN ).

Notice that when X is smooth, the Chern-Mather class and the Chern-Schwartz-MacPherson
class all equal the total Chern class i∗(c(TX) ∩ [X]).

Remark 1. Let X ⊂ PN be a projective variety with constant map k : X → {p}. Then for any
subvariety Y ⊂ X, the covariance property of c∗ shows that∫

X

cYsm =

∫
{p}

Afc∗(1Y ) =

∫
{p}

c∗Ff(1Y )

=

∫
{p}

χ(Y )c∗(1{p}) = χ(Y ).

This observation gives a generalization of the classical Poincaré-Hopf Theorem to possibly sin-
gular varieties.

The theory of characteristic classes can also be generalized to motivic settings. For definitions,
properties and examples we refer to [7]. In [9] the authors propose an axiomatic approach for
such classes; recently in [3] the authors applied such theory on pointed Brill-Noether problems.
In this paper we only consider ordinary characteristic classes.
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2.2. Chern Classes and Sectional Euler Characteristics. In this subsection we introduce
involutions defined by Aluffi in [2] that connects the Chern-Schwartz-MacPherson class and
sectional Euler characteristics. Let f(x) ∈ Z[x] be a polynomial. We define J : Z[x] → Z[x] by
setting

J : f(x) 7→ xf(−1− x)− f(0)

1 + x
.

Proposition 2.3. One can observe the following properties for J by direct computations:

(1) For any polynomial f with no constant term, J (J (f)) = f . Thus J is an involution on
the set of polynomials with no constant term.

(2) The involutions J is linear, i.e., J (af + bg) = aJ (f) + bJ (g).

Let X ⊂ P(V ) be a projective variety of dimension n. For any r ≥ 0 we define

Xr = X ∩H1 ∩ · · · ∩Hr

to be the intersection of X with r generic hyperplanes. Let χ(Xr) =
∫
Xr

csm(Xr) be its Euler

characteristic, we define χX(t) =
∑

i χ(Xr) · (−t)r to be the corresponding sectional Euler char-
acteristic polynomial. On the other hand, write cXsm =

∑
i≥0 γN−iH

i we define the γ polynomial

γX(t) :=
∑

i γit
i by switching the variable from Hi to [Pi]. The polynomials χX(t) and γX(t)

are polynomials of degree ≤ n.

Theorem 2.4 ( [2]). The involution J interchanges γX(t) and χX(t):

J (γX(t)) = χX(t); J (χX(t)) = γX(t).

This theorem shows that, the coefficients appeared in the Chern-Schwartz-MacPherson class
of X ⊂ P(V ) are equivalent to the sectional Euler characteristics χ(X ∩ Lr). Thus we can use
the Chern-Schwartz-MacPherson class to study the linear sections.

2.3. Essentially Isolated Determinantal Varieties. The Essentially Isolated Determinantal
Singularities (EIDS) was introduced in [14], as a generalization of determinantal type singular-
ities. Let K be a characteristic 0 algebraically closed field. Let Mn, MS

n and M∧
n be the

space of n × n ordinary, symmetric and skew-symmetric matrices over K respectively. When
the matrix type is not specified, we use ∗ to denote the upper-script. We consider maps
F = (fi,j)n×n : K

N+1 → M∗
n that intersect transversely along all the non-zero rank strata

Σ∗◦
n,k of M∗

n. Here Σ∗◦
n,k denotes the stratum consisting matrices of rank n− i. The map F may

not be transversal to the origin in M∗. However, in this paper we always assume that F is homo-
geneous, i.e., fi,j ’s are homogeneous polynomials of degree d. We consider the projectivization
map F : P(KN+1) → P(M∗

n). Let τ
∗◦
n,i be the projectivization of Σ∗◦

n,k, and let τ∗n,i be its closure.

We define X∗
n,i := F−1(τ∗n,i) ⊂ PN as the preimage of τ∗n,i. We call these varieties the Essentially

Isolated Determinantal varieties, and throughout this paper we will use EIDV in short. We call
the varieties τ∗n,i generic determinantal varieties.

Proposition 2.5. The following properties follow naturally from affine to projective setting.

(1) The map F intersect transversely to the strata τ◦n,i.
(2) Let X∗◦

n,i be the preimage of τ∗◦n,i for i ≥ k, then they form a stratification of X∗
n,k.

(3) X∗
n,k is smooth on the open stratum X∗◦

n,k. The singularities of the closure X∗
n,k are

contained in X∗
n,k+1.

(4) The tautological line bundle of P(M∗
n) pulls back to the d-tensor tautological line bundle

of PN , i.e., F ∗(OP(M∗
n)
(1)) = OPN (d).

For detailed definitions and more properties we refer to [14] [11].
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Example 1. The following two maps

F : C4 → M2,3;

x1

· · ·
x4

 7→
[
x3 x2 + x4 x1

x4 x1 x2

]
;G : C4 → M2,3 :

x1

· · ·
x4

 7→
[
x1 x2 x3

x2 x3 x4

]
are both EIDS of degree 1. The following map

P : C5 → M2,3;

x1

· · ·
x5

 7→
[
x2
1 + x2

2 x2x1 x2
3 + x2

4

x4x3 x2
3 + x2

4 x2
5

]
is an EIDS of degree 2.

3. Characteristic Class of EIDV

In this section we compute the Chern-Scwartz-MacPherson classes of the EIDV. First we show
that it’s enough to compute the Chern classes for generic determinantal varieties.

Theorem 3.1 (Reduction to Generic Rank Loci). For ∗ substituted by ∅, ∧, and S, which
correspond to ordinary, skew-symmetric, and symmetric cases, we have the following formulas:

c
X∗

n,k
sm (H) =

(1 + dH)dimM∗
n

(1 +H)N+1
· cτ

∗
n,k

sm (dH).

Proof. We consider the pullback of characteristic classes from determinantal varieties to EIDV.
As shown in [23], the Chern-Schwartz-MacPherson classes don’t behave very well under pull back,
i.e., Verdier-Riemann-Roch for Chern-Schwartz-MacPherson classes fails in general. However,
under our transversality assumption on F the Verdier-Riemann-Roch holds for our case. This
is due to the pullback property of the Segre-MacPherson class defined by T. Ohmoto in [17],
which we now recall. For any closed embedding X → M into smooth ambient space, the Segre-
MacPherson class of X is defined as

sSM (X,M) := Dual(c(TM)−1 ∩ c∗(X)) ∈ A∗(M).

Here Dual denotes the Poincare dual of the ambient space A∗(M) ∼ A∗(M). Let f : M → N
be a morphism of Whitney stratified smooth compact complex varieties, and let Y be a closed
subvariety of N . Assume that f intersects transversely with any strata of Y . Ohmoto in [17]
proved that

f∗(sSM (Y,N)) = sSM (f−1(Y ),M).

Since we require transversality in the definition of EIDV, we then have

c
X∗

n,k
sm ∈ A∗(PN ) =

c(F ∗OP(M∗
n)
(1))dimM∗

n

c(O(1))N
∩ F ∗c

τ∗
n,k

sm

=
(1 + dH)dimM∗

n

(1 +H)N
· cτ

∗
n,k

sm (dH)

□

This shows that the computation of the Chern classes of EIDV is equivalent to the computation
of Chern classes of determinantal varieties, for which we have the following.
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Theorem 3.2 (Main Formula I). Denote S and Q to be the universal sub and quotient bundle
over the Grassmanian G(k, n). For k ≥ 1, i, p = 0, 1 · · · e∗, we define the following Schubert
integrations:

Ai,p(n, k) :=

∫
G(k,n)

c(S∨ ⊗Q)ci(Q
∨n)cp−i(S

∨n) ∩ [G(k, n)]

AS
l,i,p(n, k) :=

∫
G(k,n)

c(S∨ ⊗Q)ci(Sym
2Q∨)s k(2n−k+1)

2 −l+p−i
(Sym2Q∨) ∩ [G(k, n)]

A∧
l,i,p(n, k) :=

∫
G(k,n)

c(S∨ ⊗Q)ci(∧2Q∨)s k(2n−k−1)
2 −l+p−i

(∧2Q∨) ∩ [G(k, n)];

and the following binomials:

Bi,p(n, k) :=

(
n(n− k)− p

i− p

)
; BS

i,p(n, k) :=

((n−k+1
2

)
− p

i− p

)
; B∧

i,p(n, k) :=

((n−k
2

)
− p

i− p

)
.

Here e = n(n− r), eS =
(
n−r+1

2

)
and e∧ =

(
n−r
2

)
correspond to the ranks of the vector bundles.

Let H be the hyperplane class in P(M∗
n), we define the following q polynomials for k ≥ 1:

qn,k :=

n2−1∑
l=0

n(n−r)∑
p=0

p∑
i=0

AS
l,i,p(n, k) ·BS

p,i(n, k)

H l;

qSn,k :=

(n+1
2 )−1∑
l=0

(n−k+1
2 )∑

p=0

p∑
i=0

AS
l,i,p(n, k) ·BS

p,i(n, k)

H l;

q∧n,k :=

(n2)−1∑
l=0

(n−k
2 )∑

p=0

p∑
i=0

A∧
l,i,p(n, k) ·B∧

p,i(n, k)

H l.

For ordinary rank loci, when k ≥ 1 we have:

(1) c
τn,k

M = qn,k; c
τ◦
n,k

sm =

n−1∑
r=k

(−1)r−k

(
r

k

)
· qn,r.

For symmetric rank loci, when k ≥ 1 we have

(2) c
τS◦
n,k

sm =

n−1∑
r=k

(−1)r−k

(
r

k

)
· qSn,r.

The Chern-Mather classes are given as follows. When A = 2k is even we have
(3)

c
τS
A,B

M =

⌊B−1
2 ⌋∑

r=k

(
r

k

)
·

(
B−1∑
i=2r

(−1)i−2r

(
i

2r

)
· qSB,i

)
+

⌊B−2
2 ⌋∑

r=k

(
r

k

)
·

(
B−1∑

i=2r+1

(−1)i−2r−1

(
i

2r + 1

)
· qSB,i

)
.

When A = 2k + 1 is odd, we have

(4) c
τS
A,B

M =

⌊B−2
2 ⌋∑

r=k

(
r

k

)
·

(
B−1∑

i=2r+1

(−1)i−2r−1

(
i

2r + 1

)
· qSB,i

)
.
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For skew-symmetric rank loci, we define Ei to be the Euler numbers appearing as the coefficients
of the Taylor expansion

1

cosh(x)
=

∞∑
n=0

En

n!
xn.

For k ≥ 1 we then have:

c
τ∧◦
A,B

sm =

{∑n−1
r=k

(
2r
2k

)
E2r−2k · q∧2n,2r A = 2n,B = 2k∑n−1

r=k

(
2r+1
2k+1

)
E2r−2k · q∧2n+1,2r+1 A = 2n+ 1, B = 2k + 1

(5)

c
τ∧
A,B

M =

{∑n−1
r=k

∑n−1
i=r

(
r
k

)(
2i
2r

)
E2i−2r · q∧2n,2i A = 2n,B = 2k∑n−1

r=k

∑n−1
i=r

(
r
k

)(
2i+1
2r+1

)
E2i−2r · q∧2n+1,2i+1 A = 2n+ 1, B = 2k + 1

(6)

Proof of the Theorem. Recall that for all three cases, set ∗ = ∅, ∗ = ∧ and ∗ = S, and set PN

by P(Mn), P(M∧
n ) and P(MS

n ) we have commutative diagrams of Tjurina transforms:

τ̂∗n,k G(k, n)× PN

G(k, n) τ∗n,k PN .

pq

The first projection p is a resolution of singularity, and is isomorphic over τ∗◦n,k. The second
projections q identifies the Tjurina transforms with projectivized bundles:

τ̂n,k ∼= P(Q∨n); τ̂∧n,k
∼= P(∧2Q∨); τ̂Sn,k

∼= P(Sym2Q∨).

First we show that q∗n,k polynomials are exactly the pushforward of the classes p∗(c
τ̂∗
n,k

sm ) in

the projective spaces P(M∗
n).

Write p∗(c
ˆτ∗
n,k

sm ) =
∑

l γ
∗
l H

l ∈ A∗(P(M∗
n)), and denote N∗ = dimP(M∗

n). The coefficients

γ∗
l thus can be computed as γ∗

l =
∫
P(M∗

n)
HN∗−l ∩ p∗(c

ˆτ∗
n,k

sm ). Notice that the pull back of the

hyperplane bundle OP(M∗
n)
(1) on P(M∗

n) to τ̂∗n,k agrees with the tautological line bundle Oτ̂∗
n,k

(1),

thus we denote O(1) for both of them. Since
∫
X
α =

∫
Y
f∗α for any class α and any proper

morphism f : X → Y , by the projection formula we have (omitting the obvious pullbacks):

γ∗
l =

∫
P(M∗

n)

HN∗−l ∩ p∗(c
τ̂∗
n,k

sm ) =

∫
τ̂∗
n,k

c1(O(1))N
∗−l ∩ c

τ̂∗
n,k

sm

=

∫
τ̂∗
n,k

c1(O(1))N
∗−lc(Tτ̂∗

n,k
) ∩ [τ̂∗n,k]

=

∫
τ̂∗
n,k

c(S∨ ⊗Q)c(E∗ ⊗O(1))c1(O(1))N
∗−l ∩ [τ̂∗n,k]

Here E∗ denotes the vector bundles Q∨n, Sym2Q∨ and ∧2Q∨ for three types of matrices re-
spectively. The last equation comes from the standard Euler sequence of projective bundle
π : P(E∗) → X:

0 → OP(E∗)(−1) → π∗(E∗) → TP(E∗) ⊗OP(E∗)(−1) → 0.
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Expand the tensor c(E∗ ⊗ O(1)) using [10, Example 3.2.2], and then combine the definition of
Segre classes we have

γ∗
l =

∫
τ̂∗
n,k

e∗∑
p=0

p∑
i=0

(
e∗ − i

p− i

)
c(S∨ ⊗Q)ci(E∗)c1(O(1))N

∗−l+p−i ∩ [τ̂∗
n,k]

=

e∗∑
p=0

p∑
i=0

(
e∗ − i

p− i

)∫
G(k,n)

c(S∨ ⊗Q)ci(E∗)sN∗−l+p−i+1−e∗(E∗) ∩ [G(k, n)]

Here e∗ = rkE∗ are the ranks of the corresponding vector bundles.
The rest computation of the Chern-Schwartz-MacPherson classes follows from [24] and The-

orems 4.5 and 4.7 of [19]. The computation of the Chern-Mather classes follows from the knowl-
edge of local Euler obstructions computed in [25, Theorem 6.2, 6.4 and 6.6]. □

Notice that to describe a polynomial function, instead of listing all the coefficients appeared,
one can also list all the function values at integers. Thus here we give another description for
the polynomials q∗n,k for ∗ being ∅, ∧ and S.

Theorem 3.3 (Equivalent formula II). Let S and Q be the universal sub and quotient bundles
over the Grassmannian G(r, n). We define Q∗

n,r(d) to be the following Chow (cohomology) classes
(we omit the obvious ∩[G(r, n)] here):

Qn,r(d) :=

n(n−r)∑
k=0

(1 + d)n(n−r)−kck(Q
∨n)

( nr∑
k=0

dnr−kck(S
∨n)

)
;

Q∧
n,r(d) :=
(
n−r
2

)∑
k=0

(1 + d)

(
n−r
2

)
−k

ck(∧2Q∨)




(
r
2

)∑
k=0

d

(
r
2

)
−k

ck(∧2S∨)


r(n−r)∑

k=0

dr(n−r)−kck(S
∨ ⊗Q∨)

 ;

QS
n,r(d) :=
(
n−r+1

2

)∑
k=0

(1 + d)

(
n−r+1

2

)
−k

ck(Sym
2Q∨)




(
r+1
2

)∑
k=0

d

(
r+1
2

)
−k

ck(Sym
2S∨)


r(n−r)∑

k=0

dr(n−r)−kck(S
∨ ⊗Q∨)

 .

We have the following integration formulas:

qn,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·Qn,r(d) ∩ [G(r, n)]− dn
2

(
n

r

)
;

q∧n,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·Q∧
n,r(d) ∩ [G(r, n)]− d(

n
2)
(
n

r

)
qSn,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·QS
n,r(d) ∩ [G(r, n)]− d(

n+1
2 )
(
n

r

)
.

Remark 2. The polynomials Q∗
n,r(d) can also be written in virtual forms. Let t be a ‘vir-

tual variable’ in the K theory of X, i.e., a variable that can be substituted by any operation
t : K(X) → K(X). For any vector bundle E of rank e on X, we consider the ‘virtual tensor’
E ⊗ t, whose Chern class is expressed as

c(E ⊗ t) :=

e∏
k=0

(1 + t)e−k · ck(E).
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The same notation is also used in [5], in their recursive formulas of motivic Chern classes. This
is equivalent to say that, the Chern roots of E ⊗ t are

{t+ α1, t+ α2, · · · , t+ αe},

providing that {α1, α2, · · · , αe} are the Chern roots of E. Then we can rewrite Q∗
n,r(t) as

Qn,r(t) := c(Q∨n ⊗ t)ctop(S
∨n);

Q∧
n,r(t) := c(∧2Q∨ ⊗ t)ctop(∧2S∨ ⊗ t)ctop(S

∨ ⊗Q∨ ⊗ t);

QS
n,r(t) := c(Sym2Q∨ ⊗ t)ctop(Sym

2S∨ ⊗ t)ctop(S
∨ ⊗Q∨ ⊗ t).

Here ctop denotes the Chern classes of the top degrees.

Proof of Theorem 3.3. Recall that q∗n,k(H) =
∑N∗

l=0 γ
∗
l H

l are defined as the pushforward p∗c
τ̂∗
n,k

sm .

Here N∗ = dimP(M∗
n) are the dimensions of the projective spaces. One then has

γ∗
l =

∫
τ̂∗
n,k

c
τ̂∗
n,k

sm HN∗−l.

This shows that

q∗n,k(
1

d
) =

N∗∑
l=0

γ∗
l d

−l =

N∗∑
l=0

∫
τ̂∗
n,k

c
τ̂∗
n,k

sm · d−lHN∗−l =

N∗∑
l=0

∫
τ̂∗
n,k

c
τ̂∗
n,k

sm · dl−N∗
H l

=d−N∗
·
N∗∑
l=0

∫
τ̂∗
n,k

c
τ̂∗
n,k

sm · dlH l = d−N∗
·
∫
τ̂∗
n,k

c
τ̂∗
n,k

sm

1− dH

=d−N∗
·
∫
P(E∗)

c(S∨ ⊗Q)c(E∗ ⊗ L)
1− dH

.

Here E∗ stands for Q∨n, ∧2Q∨ and Sym2Q∨ when ∗ = ∅, ∗ = ∧ and ∗ = S respectively. The
vector bundles S and Q denote the universal sub and quotient bundles over the Grassmannian
G(k, n). To compute above integration we will need the following Lemma.

Lemma 1. Let E be a rank e vector bundle over X, let p : P(E) → X be the projective bundle.
Let L = OP(E)(1) be the tautological bundle. We denote its Chern class c1(L) by H. Then for
any integer d we have:

d · p∗
(

c(E ⊗ L)
1− d · c1(L)

)
=

(
e∑

k=0

dk(1 + d)e−kck(E)

)( ∞∑
k=0

dksk(E)

)
− 1.

Proof.

c(E ⊗ L) =
e∑

k=0

(
k∑

i=0

(
e− i

k − i

)
ci(E) · c1(L)k−i

)

=

e∑
k=0

 e∑
j=k

(
e− j + k

k

)
cj−k(E)

Hk

=

e∑
k=0

e−k∑
j=0

(
e− j

k

)
cj(E)

Hk
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Thus for c(E⊗L)
1−d·c1(L) we have

c(E ⊗ L)
1− d · c1(L)

=

∞∑
l=0

c(E ⊗ L) · dlH l =

∞∑
l=0

e∑
k=0

e−k∑
j=0

(
e− j

k

)
cj(E)

 dlHk+l.

Since we are pushing forward the Chern classes to the base X, by the definition of Segre class
we only concern with H≥e−1 part. The coefficient for He−1 is

e−1∑
k=0

e−k∑
j=0

(
e− j

k

)
cj(E)

 de−1−k =
1

d

(
e∑

k=0

dk(1 + d)e−kck(E)− c0(E)

)
;

and the coefficient for He+l, l ≥ 0 is

e∑
k=0

e−k∑
j=0

(
e− j

k

)
cj(E)

 de+l−k =

e∑
k=0

dk+l(1 + d)e−kck(E)

Thus we have

d · p∗
(

c(E ⊗ L)
1− d · c1(L)

)
=

e∑
k=0

dk(1 + d)e−kck(E)s0(E)− c0(E)s0(E)

+
∑
l≥0

(
e∑

k=0

dk+l+1(1 + d)e−kck(E)sl+1(E)

)

=

(
e∑

k=0

dk(1 + d)e−kck(E)

)( ∞∑
k=0

dksk(E)

)
− 1

Notice that although in the expression we have
∑∞

k=0 d
ksk(E), this is actually a finite sum.

When the degree of the Segre class exceeds the dimension of X, it then equals 0. □

Back to our case: the base space X = G(r, n) is the Grassmannian. For the ordinary rank
loci ∗ = ∅, the vector bundle E∗ = Q∨n has rank n(n − r), and the ambient space P(Mn) has
dimension N = n2 − 1. Thus we have

dn
2

· qn,r(
1

d
) =d · dn

2−1 · qn,r(
1

d
) = d ·

∫
P(Q∨n)

c(S∨ ⊗Q)c(Q∨n ⊗ L)
1− d · c1(L)

=

∫
G(r,n)

c(S∨ ⊗Q)

n(n−r)∑
k=0

dk(1 + d)n(n−r)−kck(Q
∨n)

( ∞∑
k=0

dksk(Q
∨n)

)
−
(
n

r

)

=

∫
G(r,n)

c(S∨ ⊗Q)

n(n−r)∑
k=0

dk(1 + d)n(n−r)−kck(Q
∨n)

( nr∑
k=0

dkck(S
∨n)

)
−
(
n

r

)

Substitute d by d−1 we have

qn,r(d) =

∫
G(r,n)

c(S∨ ⊗Q)

n(n−r)∑
k=0

(1 + d)n(n−r)−kck(Q
∨n)

( nr∑
k=0

dnr−kck(S
∨n)

)
− dn

2

(
n

r

)
.
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For the skew-symmetric rank loci ∗ = ∧, the bundle E∗ = ∧2Q∨ is of rank
(
n−r
2

)
and we have

N∧ =
(
n
2

)
− 1. Thus one obtains

d(
n
2) · q∧n,r(

1

d
) =d · d(

n
2)−1q∧n,r(d) = d ·

∫
P(∧2Q∨)

c(S∨ ⊗Q)c(∧2Q∨ ⊗ L)
1− d · c1(L)

=

∫
G(r,n)

c(S∨ ⊗Q)

(n−r
2 )∑

k=0

dk(1 + d)(
n−r
2 )−kck(∧2Q∨)

( ∞∑
k=0

dksk(∧2Q∨)

)
−
(
n

r

)

Substitute d by d−1 we then have

q∧n,r(d) =

∫
G(r,n)

c(S∨ ⊗Q)

(n−r
2 )∑

k=0

(1 + d)(
n−r
2 )−kck(∧2Q∨)

( ∞∑
k=0

dAr−ksk(∧2Q∨)

)
− d(

n
2)
(
n

r

)
.

Here we take Ar =
(
n
2

)
−
(
n−r
2

)
=
(
r
2

)
+ r(n− r). Notice that we have

c(∧2Q∨)c(S∨ ⊗Q∨)c(∧2S∨)) = 1; A+ r =

(
r

2

)
+ r(n− r).

Define Q∧
n,r(d) to be the following Chow (cohomology) class(n−r

2 )∑
k=0

(1 + d)(
n−r
2 )−kck(∧2Q∨)


 (r2)∑

k=0

d(
r
2)−kck(∧2S∨)


r(n−r)∑

k=0

dr(n−r)−kck(S
∨ ⊗Q∨)

 ,

then the formula can be written as

q∧n,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·Q∧
n,r(d)− d(

n
2)
(
n

r

)
.

For the symmetric rank loci ∗ = S, E∗ = Sym2Q∨ is of rank
(
n−r+1

2

)
and NS =

(
n+1
2

)
− 1.

Thus we have

d(
n+1
2 ) · qSn,r(

1

d
) = d · d(

n+1
2 )−1qSn,r(d) = d ·

∫
P(Sym2Q∨)

c(S∨ ⊗Q)c(Sym2Q∨ ⊗ L)
1− d · c1(L)

=

∫
G(r,n)

c(S∨ ⊗Q)

(n−r+1
2 )∑

k=0

dk(1 + d)(
n−r+1

2 )−kck(Sym
2Q∨)

( ∞∑
k=0

dksk(Sym
2Q∨)

)
−
(
n

r

)
.

Substitute d by d−1 we then have

qSn,r(d) + d(
n+1
2 )
(
n

r

)

=

∫
G(r,n)

c(S∨ ⊗Q)

(n−r+1
2 )∑

k=0

(1 + d)(
n−r+1

2 )−kck(Sym
2Q∨)

( ∞∑
k=0

dBr−ksk(Sym
2Q∨)

)
.

Here we take Br =
(
n+1
2

)
−
(
n−r+1

2

)
. Notice that we have

c(Sym2Q∨)c(S∨ ⊗Q∨)c(Sym2S∨)) = 1; Br =

(
r + 1

2

)
+ r(n− r).
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Define QS
n,r(d) to be the following Chow (cohomology) class

(
n−r+1

2

)∑
k=0

(1 + d)

(
n−r+1

2

)
−k

ck(Sym
2Q∨)




(
r+1
2

)∑
k=0

d

(
r+1
2

)
−k

ck(Sym
2S∨)


r(n−r)∑

k=0

dr(n−r)−kck(S
∨ ⊗Q∨)

 ,

then the formula can be written as

qSn,r(d) =

∫
G(r,n)

c(S∨ ⊗Q) ·QS
n,r(d)− d(

n+1
2 )
(
n

r

)
.

This complete the proof of the Theorem. □

Recall that for a projective variety, Aluffi’s J involution interchanges the Chern-Schwartz-
MacPherson γ polynomial and the sectional Euler characteristics polynomial. Here the sectional
Euler characteristic polynomial χX(t) is defined as follows: χX(t) :=

∑
k≥0 χ(X ∩Lk) · (−t)k for

Lk being a generic codimension k linear subspace. For generic determinantal varieties We define
the Γ polynomials as follows.

d · Γn,r(d) =

∫
G(r,n)

c(S∨ ⊗Q)

n(n−r)∑
k=0

dk(1 + d)n(n−r)−kck(Q
∨n)

( ∞∑
k=0

dksk(Q
∨n)

)
−
(n
r

)

d · Γ∧
n,r(d) =

∫
G(r,n)

c(S∨ ⊗Q)


(
n−r
2

)∑
k=0

dk(1 + d)

(
n−r
2

)
−k

ck(∧2Q∨)


( ∞∑

k=0

dksk(∧2Q∨)

)
−
(n
r

)

d · ΓS
n,r(d) =

∫
G(r,n)

c(S∨ ⊗Q)


(
n−r+1

2

)∑
k=0

dk(1 + d)

(
n−r+1

2

)
−k

ck(Sym
2Q∨)


( ∞∑

k=0

dksk(Sym
2Q∨)

)
−
(n
r

)
.

The Γ polynomials are related to q polynomials by d 7→ d−1, since the Chern-Schwartz-
MacPherson γ polynomials are related to Chern-Schwartz-MacPherson classes by H → H−1.
We have the following result.

Corollary 1. For any integer d, following the proof in Formula II we have:

χτ◦
n,k

(d) =

n−1∑
r=k

(−1)r−k

(
r

k

)
· d · Γn,r(−1− d) + Γn,r(0)

1 + d

χτS◦
n,k

(d) =
n−1∑
r=k

(−1)r−k

(
r

k

)
·
d · ΓS

n,r(−1− d) + ΓS
n,r(0)

1 + d

χτ∧◦
A,B

(d) =

{∑n−1
r=k

(
2r
2k

)
E2r−2k · d·Γ2n,2r(−1−d)+Γ∧

2n,2r(0)

1+d A = 2n,B = 2k∑n−1
r=k

(
2r+1
2k+1

)
E2r−2k · d·Γ2n+1,2r+1(−1−d)+Γ∧

2n+1,2r+1(0)

1+d A = 2n+ 1, B = 2k + 1

Proof. The proof is a direct application of Aluffi’s involution formula. The evaluations here is

valid due to the fact that t·f(−1−t)+f(0)
1+t is actually a polynomial for any f(t), instead of the

truncation of the first N terms from an infinite power series. □

4. Characteristic Cycles and Polar Degrees

In this section we take K = C. In complex category, the theory of Chern classes can be
thought of the pushdown of the theory of characteristic cycles of constructible sheaves. Consider
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the embedding i : X ⊂ M of a d-dimensional variety into a m-dimensional complex manifold.
The conormal space of X is defined as the dimension m subvariety of T ∗M :

T ∗
XM := {(x, λ)|x ∈ Xsm;λ(TxX) = 0} ⊂ T ∗M

This is a conical Lagrangian subvariety of T ∗M . In fact, the conical Lagrangian subvarieties of
T ∗M supporting inside X are exactly the conormal spaces of closed subvarieties V ⊂ X. For a
proof we refer to [15, Lemma 3]. Let L(X) be the free abelian group generated by the conormal
spaces T ∗

V M for subvarieties V ⊂ X, and we call an element of L(M) a (conical) Lagrangian
cycle of X. We say a Lagrangian cycle is irreducible if it equals the conormal space of some
subvariety V .

The group L(X) is independent of the embedding: the group L(X) is isomorphic to the group
of constructible functions F (X) by the group morphism Eu that sends (−1)dimV T ∗

V M to EuV .
However, the fundamental classes [T ∗

XM ] depend on the Chow ring of the ambient space. When
the embedding M is specified, we call [T ∗

XM ] ∈ A∗(T
∗M) the Conormal cycle class of X in M .

We define the projectivized conormal cycle class of X to be Con(X) := [P(T ∗
XM)], which is a

m− 1-dimensional cycle in the total space P(T ∗M).
Composing the two operations we obtain a group homomorphism

Ch : F (X) → Am−1(P(T ∗M))

sending EuV to (−1)dimV Con(V ). The cycle class Ch(1X) is called the Characteristic Cycle
class of X, and denoted by Ch(X). The ‘casting the shadow ’ process discussed in [1] relates
the Ch(1X) with cXsm, and Ch(EuX) with cXM .

Proposition 4.1. Let X∗
n,k ⊂ PN be an EIDV of type ∗, for ∗ being ∅, S or ∧. Let

c
X∗

n,k

M =

N∑
l=0

βlH
N−l; c

X∗
n,k

sm =

N∑
l=0

γlH
N−l

be the Chern-Mather class and Chern-MacPherson-Schwartz class in A∗(PN ) respectively, as
computed in §3. Let d∗n,k be the dimension of X∗

n,k, then the projectivized conormal cycle

Con(X∗
n,k) equals:

Con(X∗
n,k) = (−1)d

∗
n,k

N−1∑
j=1

N−1∑
l=j−1

(−1)lβl

(
l + 1

j

)
hN+1−j
1 hj

2 ∩ [PN × PN ].

The characteristic cycle of X∗
n,k are given by

Ch(X∗
n,k) = (−1)d

∗
n,k

N−1∑
j=1

N−1∑
l=j−1

(−1)lγl

(
l + 1

j

)
hN+1−j
1 hj

2 ∩ [PN × PN ];

Proof. Firstly, note that when M = PN we have the following diagram

P = P(T ∗M) PN × PN

M = PN (PN )∨ = M∗

j

π pr1
pr2 .

Here P is embedded as the incidence variety. Let L1, L2 are the pull backs of the line bun-
dle OPN (1) of PN from projections pr1 and pr2. Then we have OP (1) = j∗(L1 ⊗ L2), and
j∗[P(T ∗M)] = c1(L1 ⊗ L2) ∩ [PN × PN ] is a divisor in PN × PN . Thus both the characteristic
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cycle and the conormal cycles can be realized as polynomials in h1 = c1(L1) and h2 = c1(L2),
as classes in A∗(PN × PN ).

For any constructible function φ ∈ F (X), we define the signed class c̆∗(φ) ∈ A∗(PN ) as
{c̆∗(φ)}r = (−1)r{c∗(φ)}r. Here for any class C ∈ A∗(M), Cr denotes the r-dimensional piece
of C. As proved in [1, Lemma 4.3], this class is exactly the shadow of the characteristic cycle
Ch(φ). For i = 1, 2, let hi = c1(Li) ∩ [PN × PN ] be the pull backs of hyperplane classes. Write

c∗(φ) =
∑N

l=0 γlH
N−l as a polynomial ofH, then by the structure theorem for projective bundles

we have inversely:

Ch(φ) =

N∑
j=1

N−1∑
k=j−1

(−1)kγk

(
k + 1

j

)
hN+1−j
1 hj

2

as a class in PN × PN . Set φ to be 1X and EuX one obtains the proposition. □

Proved in [18] [1, Remark 2.7], the multiplicities appeared in the expression of the projectivized

conormal cycle Con(X) are exactly the polar degrees of X. Write c
X∗

n,k

M =
∑N

l=0 βlH
N−l, then

we obtain a formula for the polar degrees of X∗
n,k:

(7) Pj = (−1)d
∗
n,k

N−1∑
l=j−1

(−1)lβl

(
l + 1

j

)
.

The sum of the polar degrees is also a very interesting invariant. It is called the generic Euclidean
distance degree of X, and denoted by gED(X). We refer to [3] for more details. The generic
Euclidean distance degree of X∗

n,k is given by

gED(X∗
n,k) =

d∗
n,k∑
l=0

l∑
i=0

(−1)i
(
d∗ + 1− i

d∗ + 1− l

)
βd∗−i.

We define the following ‘flip’ operation in An−1(PN ×PN ). For any class α =
∑n

i=0 δih
i
1h

n−i
2 ,

its flip α† is defined as α† :=
∑n

i=0 δih
n−i
1 hi

2. In other word, we just switch the powers of h1

to h2. This ‘flip’ process is compatible with addition: (α + β)† = α† + β†. Aluffi’s projective
duality involution shows that

Proposition 4.2. For any projective subvariety X ⊂ PN with dual variety X∨ we have
Con(X∨) = Con(X)†. Moreover, one can see that the l-th polar degree of X equals the
(dimX − l)-th polar degree of X∨, and hence gED(X) = gED(X∨).

In particular, for generic determinantal varieties we have the following symmetry proposition.

Proposition 4.3. The characteristic cycles of τSn,1, τ
∧
2n,2 and τ∧2n+1,3 are symmetric:

Ch(τSn,1) = Ch(τSn,1)
†; Ch(τ∧2n,2) = Ch(τ∧2n,2)

†; Ch(τ∧2n+1,3) = Ch(τ∧2n+1,3)
†.

Proof. First we prove for skew-symmetric case. Recall that Ch : F (X) → Am−1(P(T ∗M)) sends
EuV to (−1)dimV Con(V ). Thus from Theorem 3.2 have

Ch(τ∧2n,2) =

n−1∑
i=1

(−1)i+1 · (−1)2i(2n−2i)+(2n−2i
2 )−1Con(τ∧2n,2i) =

n−1∑
i=1

(−1)n−1Con(τ∧2n,2i).

We have shown that Con(τm,n,i) = Con(τm,n,n−i)
†; thus(

Con(τ∧2n,2i) + Con(τ∧2n,2n−2i)
)†

= Con(τ∧2n,2i)
† +Con(τ∧2n,2n−2i)

†

= Con(τm,n,n−i) + Con(τm,n,i).
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is symmetric. Thus we have

Ch(τ∧2n,2) =

n−1∑
i=1

(−1)n−1Con(τm,n,i)

=(−1)n−1 (Con(τm,n,1) + Con(τm,n,n−1) + Con(τm,n,2) + Con(τm,n,n−2) + · · · ) .

is a sum of symmetric terms, and hence is symmetric. The proof for Ch(τ∧2n+1,3) and Ch(τSn,1)
follows from the same argument, by computing the base change between indicator functions and
Euler obstruction functions using Equation (1)(2) and (5)(6) in Theorem 3.2. □

5. Conjecture

We close this paper with the following conjectures:

Conjecture 1 (Positivity). All the coefficients appeared in c
τ◦
n,k

sm , c
τ∧◦
n,k

sm and c
τS◦
n,k

sm are non-negative.

This was proved for Schubert cells in flag manifold in [4]. We don’t know a proof for the
determinantal varieties.

Conjecture 2 (Log Concave). For ∗ being ∅, ∧ and S, the coefficients appeared in c
τ∗◦
n,k

sm ,
Con(τ∗n,k) and Ch(τ∗n,k) are log concave.

6. Appendix: Examples of Chern Classes

6.1. Skew-Symmetric Matrix.

6.1.1. n = 6. The total space is P(M∧
6 ) = P14.

q∧6,2 =90H14 + 405H13 + 1290H12 + 2925H11 + 4878H10 + 6225H9 + 6318H8 + 5217H7

+ 3504H6 + 1863H5 + 744H4 + 207H3 + 36H2 + 3H

q∧6,4 =15H14 + 60H13 + 170H12 + 330H11 + 438H10 + 394H9 + 234H8 + 84H7 + 14H6

Thus

c
τ∧◦
6,0

sm =q∧6,2 − 6q∧6,4

=15H12 + 90H11 + 315H10 + 750H9 + 1287H8 + 1638H7 + 1571H6 + 1140H5 + 621H4

+ 248H3 + 69H2 + 12H + 1

c
τ∧◦
6,2

sm =45H13 + 270H12 + 945H11 + 2250H10 + 3861H9 + 4914H8 + 4713H7

+ 3420H6 + 1863H5 + 744H4 + 207H3 + 36H2 + 3H

c
τ∧
6,4

sm =15H14 + 60H13 + 170H12 + 330H11 + 438H10 + 394H9 + 234H8 + 84H7 + 14H6

One can observe that

3Hc
τ∧◦
6,0

sm = c
τ∧◦
6,2

sm .

The characteristic cycles and conormal cycles are computed as:

Table h14
1 h2 h13

1 h2
2 h12

1 h3
2 h11

1 h4
2 h10

1 h5
2 h9

1h
6
2 h8

1h
7
2 h7

1h
8
2

Ch(τ∧6,2) -3 -6 -12 -24 -48 -82 -108 -108
Ch(τ∧6,4) = Con(τ∧6,4) 3 6 12 24 48 68 66 42

Con(τ∧6,2) 0 0 0 0 0 -14 -42 -66



472 XIPING ZHANG

Table h6
1h

9
2 h5

1h
10
2 h4

1h
11
2 h3

1h
12
2 h2

1h
13
2 h1h

14
2

Ch(τ∧6,2) -82 -48 -24 -12 -6 -3
Ch(τ∧6,4) = Con(τ∧6,4) 14 0 0 0 0 0

Con(τ∧6,2) -68 -48 -24 -12 -6 -3

One can observe the duality in Con(τ∧6,2) and Con(τ∧6,4), since they are projective dual to
each other. One can also observe the symmetry of Ch(τ∧6,2), as proved in Proposition 4.3.

6.1.2. n=7. The total space is P(M∧
7 ) = P20.

q∧7,3 =210H20 + 1155H19 + 4690H18 + 14175H17 + 32970H16 + 61299H15 + 94698H14

+125139H13 + 142898H12 + 139839H11 + 115038H10 + 77777H9 + 42238H8

+17965H7 + 5782H6 + 1330H5 + 196H4 + 14H3

q∧7,5 =21H20 + 105H19 + 385H18 + 1015H17 + 1939H16 + 2695H15 + 2719H14 + 1960H13

+966H12 + 294H11 + 42H10

Thus we have

c
τ∧◦
7,1

sm =105H18 + 945H17 + 4830H16 + 17220H15 + 46053H14 + 95991H13 + 159726H12

+215523H11 + 238056H10 + 216153H9 + 161252H8 + 98315H7 + 48482H6 + 19019H5

+5789H4 + 1327H3 + 210H2 + 21H + 1

c
τ∧◦
7,3

sm =q∧7,3 − 10q∧7,5

=105H19 + 840H18 + 4025H17 + 13580H16 + 34349H15 + 67508H14 + 105539H13

+133238H12 + 136899H11 + 114618H10 + 77777H9 + 42238H8 + 17965H7 + 5782H6

+1330H5 + 196H4 + 14H3

c
τ∧
7,5

sm =21H20 + 105H19 + 385H18 + 1015H17 + 1939H16 + 2695H15 + 2719H14 + 1960H13

+966H12 + 294H11 + 42H10

The characteristic cycles and conormal cycles are computed as:

Table h20
1 h2 h19

1 h2
2 h18

1 h3
2 h17

1 h4
2 h16

1 h5
2 h15

1 h6
2 h8

114h
7
2 h13

1 h8
2 h12

1 h9
2 h11

1 h10
2

Ch(τ∧
7,3) 0 0 -14 -56 -140 -266 -395 -434 -336 -210

Ch(τ∧
7,5) = Con(τ∧

7,5) 0 0 14 56 140 266 395 434 336 168

Con(τ∧
7,3) 0 0 0 0 0 0 0 0 0 -42

Table h8
1h

13
2 h7

1h
14
2 h6

1h
15
2 h5

1h
16
2 h4

1h
17
2 h3

1h
18
2 h2

1h
19
2 h1h

20
2 h10

1 h11
2 h9

1h
12
2

Ch(τ∧
6,2) -210 -336 -434 -395 -266 -140 -56 -14 0 0

Ch(τ∧
6,4) = Con(τ∧

6,4) 42 0 0 0 0 0 0 0 0 0

Con(τ∧
6,2) -168 -336 -434 -395 -266 -140 -56 -14 0 0

One can observe the duality in Con(τ∧7,3) and Con(τ∧7,5), since they are projective dual to each
other. One can also observe the symmetry of Ch(τ∧7,3) proved in Proposition 4.3.

6.2. Symmetric Matrices.

6.2.1. n = 3. The total space is P5.

qS3,1 =9H5 + 18H4 + 18H3 + 9H2 + 3H

qS3,2 =3H5 + 6H4 + 4H3
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Thus we have

c
τS◦
3,0

sm =3H4 + 6H3 + 6H2 + 3H + 1

c
τS◦
3,1

sm =qS3,1 − 2qS3,2

=3H5 + 6H4 + 10H3 + 9H2 + 3H

c
τS
3,2

sm =3H5 + 6H4 + 4H3

One can observe that

3H · cτ
S◦
3,0

sm = c
τS◦
3,1

sm + 2 · cτ
S◦
3,2

sm .

The characteristic cycles and conormal cycles are computed as:

Table h5
1h2 h4

1h
2
2 h3

1h
3
2 h2

1h
4
2 h1h

5
2

Ch(τS3,1) 3 6 8 6 3
Ch(τS3,2) = Con(τS3,2) 3 6 4 0 0

Con(τS3,1) 0 0 4 6 3

The symmetry of Ch(τS3,1) is proved in Proposition 4.3, and the duality of Con(τS3,1) and Con(τS3,2)
come from projective duality.

6.2.2. n = 4. The total space is P(MS
4 ) = P9.

qS4,1 =24H9 + 84H8 + 184H7 + 264H6 + 264H5 + 184H4 + 84H3 + 24H2 + 4H

qS4,2 =18H9 + 54H8 + 92H7 + 96H6 + 72H5 + 40H4 + 10H3

qS4,3 =4H9 + 12H8 + 16H7 + 8H6

Thus we have

c
τS◦
4,0

sm =3H8 + 12H7 + 34H6 + 60H5 + 66H4 + 46H3 + 21H2 + 6H + 1

c
τS◦
4,1

sm =qS4,1 − 2qS4,2 + 3qS4,3

=12H8 + 48H7 + 96H6 + 120H5 + 104H4 + 64H3 + 24H2 + 4H

c
τS◦
4,2

sm =qS4,2 − 3qS4,3

=6H9 + 18H8 + 44H7 + 72H6 + 72H5 + 40H4 + 10H3

c
τS
4,3

sm =4H9 + 12H8 + 16H7 + 8H6

One can observe that

4H · cτ
S◦
4,0

sm = c
τS◦
4,1

sm + 2 · cτ
S◦
4,2

sm .

The characteristic cycles and conormal cycles are computed as:

Table h9
1h2 h8

1h
2
2 h7

1h
3
2 h6

1h
4
2 h5

1h
5
2 h4

1h
6
2 h3

1h
7
2 h2

1h
8
2 h1h

9
2

Ch(τS4,1) 4 12 26 38 42 38 26 12 4
Ch(τS4,2) = Con(τS4,2) 0 0 10 30 42 30 10 0 0
Ch(τS4,3) = Con(τS4,3) -4 -12 -16 -8 0 0 0 0 0

Con(τS4,1) 0 0 0 0 0 8 16 12 4

In fact this gives another example that EuτS
4,2

(τS◦
4,3) = 1, but τS4,2 is singular at τS4,3.

Observation 1. All the sequences appearing above are log concave.
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