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Some properties and applications of Brieskorn lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Claude Sabbah

On the structure of Brieskorn lattices, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Morihiko Saito



A residual duality over Gorenstein rings with application to logarithmic
differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Mathias Schulze and Laura Tozzo

PART II: TOPOLOGY AND REAL SINGULARITIES

A zoo of geometric homology theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300
Matthias Kreck

Morsifications of real plane curve singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Peter Leviant and Eugenii Shustin

Smooth mixed projective curves and a conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Mutsuo Oka

Lacunas and local algebraicity of volume functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
V. A. Vassiliev

PART III: ALGEBRAIC METHODS AND ALGEBRAIC GEOMETRY

Schubert Decomposition for Milnor Fibers of the Varieties of
Singular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
James Damon

A McKay correspondence for the Poincaré series of some finite
subgroups of SL3(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Wolfgang Ebeling

Accuracy of noisy Spike-Train Reconstruction: a Singularity Theory
point of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Gil Goldman, Yehonatan Salman, and Yosef Yomdin

Noncommutative Deformations of Thick Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Olav Arnfinn Laudal

Strata of discriminantal arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Anatoly Libgober and Simona Settepanella

On a discriminant knot group problem of Brieskorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Michael Lönne

Linear subspace arrangements associated with normal surface singularities . . . . . . 464
Andás Némethi

Kulikov singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Jan Stevens

Remarks on the Gaudin model modulo p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
Alexander Varchenko



Preface

The proposal to prepare a special volume in the Journal of Singularities
with contributions to the memory of Egbert Brieskorn was made by Andrew
Ranicki in autumn 2017, after reading the article by Greuel - Purkert. The
editors gladly accepted this proposal and contacted a number of students and
colleagues who had worked with Brieskorn or were influenced by his work.
Many of them agreed to contribute and the result is the present volume col-
lecting the refereed papers that were submitted.

We are most grateful to the authors for their positive response and by their
scientific contribution to the volume. Thanks also to the many referees for
their readiness, their careful and sometimes very laborious work, and their
keen judgments. We also like to thank David Massey and the Journal of
Singularities for accepting our proposal for a special volume in honor of
Brieskorn.

An essential feature of singularity theory is that it combines methods from
di↵erent branches of mathematics, from algebraic topology over complex
analysis to algebra, algebraic geometry, and Lie theory. We tried to group
the papers according to related subjects. This is of course not perfect, as
some papers would also fit in at least one other category, but we hope that
the grouping corresponds to the main area to which each paper is ascribed.

0. The first three papers are of historical nature.
The articles by Brieskorn and Hirzebruch are reproduced reports from their
talks given at the workshop “Singularitäten” in 1996 at the Mathemati-
sches Forschungsinstitut Oberwolfach (MFO), and which never appeared
elsewhere. The editors would like to thank Heidrun Brieskorn, the Hirze-
bruch family, and the MFO for permission to reproduce their reports in this
volume.
The article by Greuel - Purkert describes Brieskorn’s mathematical and
evocative work and his life from a personal point of view.

I. Complex analytic methods lie at the heart of singularity theory. A fun-
damental contribution was the analytic description of the monodromy by
Brieskorn. Brasselet - Sebastiani give a sketch of Brieskorn’s fundamental
manuscripta paper from 1970, explaining some central ideas in the style of
that time.
Brieskorn introduced in that paper certain important concepts like the Gauß-
Manin connection, a connection on a certain vector bundle, in the local sit-
uation.
Hamm - Lê look at connections in general and realize that line bundles with
connection allow a much more complete theory than vector bundles with
connection.
By definition connections involve di↵erential forms. These form the subject of
di↵erent papers: Barlet studies meromorphic di↵erential forms with a good



pull-back property, Dimca - Greuel look a di↵erential 1-forms on curves,
connecting them with several geometric invariants (and o↵er an interesting
conjecture relating the Milnor and the Tjurina number), while Schulze -
Tozzo look at a generalization of K. Saito’s free divisors, passing from divi-
sors to complete intersections.
There is a bridge from di↵erential forms to foliations and Campillo - Olivares
look at the relation between foliations on a surface and their singular set.
A new central subject in Brieskorn’s paper is the so-called Brieskorn lattice,
the importance of which has only been realized much later. Sabbah looks at
it in the global context for a tame function and M. Saito treats the unique-
ness of sections of the Brieskorn module. In a long and fundamental paper
Gauss - Hertling use the Brieskorn lattice and other invariants to determine
an isolated hypersurface singularity up to right equivalence.
The Gauß-Manin connection allows also to study the eigenvalues of the mon-
odromy. These are related to the Bernstein-Sato polynomial, too, which is
studied by Artal - Cassou-Noguès - Luengo - Melle Hernandez in their paper.

II. There is a group of papers which deal with topology or real algebraic
objects.
Classical homology theory is a basic tool, in the presence of singularities
modifications of it are useful (e.g. intersection homology). Kreck generalizes
in a di↵erent direction, comparing singular homology with bordism theory.
Traditionally singularity theory deals with complex singularities but it is
natural to consider real ones, too. Leviant - Shustin study morsifications of
these in the case of real plane curve singularities with some of their branches
complex conjugate. Oka has discovered that several results which hold for
complex polynomials hold also for “mixed” polynomials, in the present paper
he focuses on the fundamental group. A classical question which refers to
certain semi-algebraic objects has been taken up by Vassiliev, considering
the following question: when does the volume of a space obtained by cut-
ting a bounded domain with a half-space depend locally algebraically on the
defining inequality of the latter?

III. Finally there are some papers which belong to the algebraic resp. algebro-
geometric context, in quite di↵erent respects.
Recall that singularity theory started with isolated singularities of a holo-
morphic function, that is with the local case.
There are di↵erent analogues in the global case: Damon studies the global
Milnor fibre in case of matrices (also matrices which are symmetric or skew-
symmetric). Libgober - Settepanella look at a certain type of hyperplane
arrangements.
Brieskorn was fascinated by the appearance of finite subgroups of Sl2(C) in
singularity theory; Ebeling studies the MacKay correspondence for certain
finite subgroups of Sl3(C).
Apart from singular homology the fundamental group has been from the be-
ginning an object of study in singularity theory, especially the fundamental
group of the complement of a discriminant. Lönne deals with a conjecture,



which was already formulated by Brieskorn in this context in 1972.
When discussing singularities one can expect more precise results by restrict-
ing to more special situations, for instance surfaces: Némethi looks at a class
of normal surface singularities which look quite special but allow more com-
prehensive results, Stevens considers Kulikov singularities - these arise from
families of curves.
A surprise is the title of the paper by Goldman - Salman - Yomdin: it refers
to neuroscience. It turns out that questions from algebraic geometry are
basic here, the paper deals with Prony systems of polynomials which are
important in this context.
Varchenko treats a question from Lie theory: how to find common eigenvec-
tors of Gaudin operators. In fact he passes from C to Fp !
Deformation theory is an important branch of singularity theory; Laudal
studies deformations of thick points - in fact non-commutative deformations.

The articles in this special volume confirm that singularity theory is nowa-
days a widely branched and still active subject. But it is worth while to keep
common roots in mind, and Brieskorn’s work plays a fundamental role here.

The three editors knew Egbert Brieskorn from the very beginning of their
scientific career and profited a lot from his ideas, stimulation and encour-
agement. Brieskorn has been the teacher of two of us (Greuel and Hamm)
and he influenced also the career of Lê, in particular by initiating the long-
lasting collaboration with Hamm. It is our great pleasure to express with
this special volume our gratitude for his many years of support, for his great
contributions to singularity theory and his visionary leadership in the field
that has influenced a generation of mathematicians.

Gert-Martin Greuel
Helmut A. Hamm
Lê Dũng Tráng
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LIFE AND WORK OF EGBERT BRIESKORN (1936 – 2013)
1

GERT-MARTIN GREUEL AND WALTER PURKERT

Brieskorn 2007

Egbert Brieskorn died on July 11, 2013, a few days after his 77th birthday. He was an im-
pressive personality who left a lasting impression on anyone who knew him, be it in or out of
mathematics. Brieskorn was a great mathematician, but his interests, knowledge, and activities
went far beyond mathematics. In the following article, which is strongly influenced by the au-
thors’ many years of personal ties with Brieskorn, we try to give a deeper insight into the life
and work of Brieskorn. In doing so, we highlight both his personal commitment to peace and
the environment as well as his long–standing exploration of the life and work of Felix Hausdorff
and the publication of Hausdorff ’s Collected Works. The focus of the article, however, is on the
presentation of his remarkable and influential mathematical work.

The first author (GMG) has spent significant parts of his scientific career as a graduate and
doctoral student with Brieskorn in Göttingen and later as his assistant in Bonn. He describes in
the first two parts, partly from the memory of personal cooperation, aspects of Brieskorn’s life and
of his political and social commitment. In addition, in the section on Brieskorn’s mathematical
work, he explains in detail the main scientific results of his publications. The second author
(WP) worked together with Brieskorn for many years, mainly in connection with the Hausdorff
project; the corresponding section on the Hausdorff project was written by him.

We thank Wolfgang and Bettina Ebeling, Helmut Hamm, Thomas Peternell, Anna Pratous-
sevitch and Wolfgang Soergel for useful information and especially Brieskorn’s wife Heidrun
Brieskorn for the release of material from Brieskorn’s estate. We also thank Andrew Ranicki for
encouraging us to translate the article into English and special thanks to him and Ida Thompson
for checking the translation.

2010 Mathematics Subject Classification. 01A61, 14B05, 14B07, 14D05, 14F45, 14H20, 14J17, 14J70, 17B22,
32S05, 32S25, 32S40, 32S55, 57R55.

1 Translation of the German article “Leben und Werk von Egbert Brieskorn (1936 – 2013)”, Jahresber. Dtsch.
Math.–Ver. 118, No. 3, 143-178 (2016).

http://dx.doi.org/10.5427/jsing.2018.18a
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Stations of his life

Brieskorn was born on July 7, 1936 in Rostock, Germany, the son of a mill–construction
engineer, and grew up with his sister and his mother in Siegerland. Little is known about his
youth and the source of his enthusiasm for mathematics. But from the chapter Childhood and
Education from the Simons Foundation film about Brieskorn [27] we know that his mother
supported his childlike curiosity and that his father promoted his technical interest. He also had
a good maths teacher in grammar school, who provided him with mathematical literature beyond
the subject matter of the curriculum. He was particularly interested in geometric constructions
(and less, for example, in a work by Gauss).

Even though his technical interest initially prevailed, his interest in mathematics was already
strong before his studies. At the examination for admission to the Evangelische Studienwerk
Villigst, the funding organization of the Protestant Church for gifted students, the examiner
said to him: ‘Mr Brieskorn, your talent and your enthusiasm for mathematics are extraordinary
but do not forget that there are other things besides mathematics in life.’ Egbert Brieskorn
told this episode to the first–named author of these lines with a slightly ironic undertone much
later, when in fact other things than mathematics determined his life and work. The head of the
Evangelische Studienwerk recognized that his original desire to study electrical engineering was
not right for his nature and convinced him to study something theoretical.

Brieskorn therefore began to study mathematics and physics in Munich in October 1956.
After five semesters he followed the advice of Karl Stein and moved to Bonn for the summer
semester of 1959, in order to understand the theorem of Hirzebruch-Riemann-Roch, which he
described as ‘my first love in mathematics’ [25]. Friedrich Hirzebruch, who himself had only come
to Bonn in 1956, deeply impressed the young student Brieskorn with his friendly, open perso-
nality and his clear style of presentation. Brieskorn became Hirzebruch’s student and received
his doctorate in 1963 with the thesis ”Differentialtopologische und analytische Klassifizierung
gewisser algebraischer Mannigfaltigkeiten” (Differential topological and analytical classification
of certain algebraic manifolds). Hirzebruch later described Brieskorn as his most talented student
and Brieskorn highly revered his teacher Hirzebruch as a mathematician and human being all
his life.

Brieskorn (3. from r.) and his students (from l.) Claus Hertling, Kyoji Saito,
Gert-Martin Greuel, Helmut Hamm, Wolfgang Ebeling, 2004
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In 1968, Brieskorn habilitated in Bonn with the thesis Singularitäten komplexer Räume (Sin-
gularities of complex spaces) and was appointed full professor in Göttingen in 1969, where he
remained until 1973. Because of his wife Heidrun, whom he married in 1973 and who got a job
as a violist at the Cologne Radio Symphony Orchestra (today the WDR Symphony Orchestra
Cologne), he moved in 1973 to Bonn, first to the Sonderforschungsbereich Theoretische Mathe-
matik and from 1975 to a position as a full professor, where he worked until his retirement in
2001.

Mathematics and political–social engagement

Although Brieskorn has always been socially engaged, e.g. by working in a steel rolling mill of
the “Dortmunder Hörder Hüttenunion” in the context of a work semester of the Evangelischen
Studienwerk, for him, during his studies and many years as a professor, mathematics was the
most important thing in his life, as he writes himself (curriculum vitae work semester). He was
completely excited by the fascinating beauty and clarity and the high standards of mathematics.
But he saw mathematical phenomena everywhere, also in small things, and was fascinated by
them. This enthusiasm for mathematics and his own field of research, the theory of singularities,
was passed on to the students.

The following sections show the development of the relation of mathematics and political–
social engagement of Brieskorn from the perspective and memory of the first-named author. In
the late summer of 1969 he had invited me to tea in his apartment in Göttingen to discuss a
topic for my diploma thesis. Before he started, he discovered a refractory caustic in his teacup,
which he classified as a “simple singularity”, and then interpreted the spiral chocolate trail in
the biscuits as a dynamical system. He enthusiastically explained to me exotic spheres and how
they can be described by real-analytic equations as the boundaries of certain isolated hyper-
surface singularities. I was infected, and when he then suggested that I generalize the results
of his unpublished work, Die Monodromie der isolierten Singularitäten von Hyperflächen (The
monodromy of isolated singularities of hypersurfaces) [12], to isolated singularities of complete
intersections, I immediately accepted.

I became a student of Brieskorn on the recommendation of Hans Grauert, whose beginner
course “Differential and integral calculus” I had attended in Göttingen in 1966/67. After returning
from a one–year study visit at ETH Zurich, I received a telephone call from Brieskorn asking
if I would be interested in writing a thesis with him. Grauert recommended me because we
were in the same “fraternity” (i.e. the Evangelische Studienwerk). So it happened that I became
Brieskorn’s first graduate student.

Brieskorn had come to Göttingen in the summer semester 1969, first as a substitute professor
and from July 1969 as a full professor. In the winter semester 1969/70 he was on leave for a
research stay at the IHES in Bures-sur-Yvette. I had missed his first lecture in the summer
of 1969 in Göttingen on 2-dimensional schemes and over winter I learned sheaf theory and
hypercohomology in the reading room of the Mathematical Institute in the Bunsenstrasse with
the help of Godement’s Topologie Algébrique et Théory des Faisceaux. Except for occasional
whispering and the unmistakable sound of the heavy breathing of Carl Ludwig Siegel, who
disappeared into the back of the reading room to consult the older works, one was undisturbed
and could discuss with fellow students in the adjoining discussion room.

After returning from France, Brieskorn gave the following lectures: “Differential Topology”,
then the beginner lecture “Calculus I and II”, then “Analysis on Manifolds”, “Qualitative Theory
of Dynamical Systems”, “Algebraic Topology II”, and before he moved to Bonn in the summer
semester 1973 “Simple Singularities”. Brieskorn’s lectures differed fundamentally from those of
Grauert. While Grauert only told what he wrote and proved on the blackboard, Brieskorn often
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presented larger connections and mentioned cross-connections without proving them. Obviously,
both approaches have their advantages, and the students in Göttingen greatly appreciated both
Brieskorn’s and Grauert’s lectures.

Brieskorn often made an extraordinary effort in the preparation of his lectures, to show ma-
thematical and historical backgrounds or side branches of the material he treated. This can be
clearly seen in his textbooks. It can be said that his quest for perfection, which even increased
over the years, was characteristic of him. He also expected perfection from his students, which
he greatly promoted, both mathematically, among others with weekly working meetings or with
recommendations, but also in the personal sphere. For example, he let his first doctoral student
Helmut Hamm live in his apartment during his stay in France free of charge.

The Göttingen period from 1969 to 1973 caused a remarkable change in Brieskorn’s views
and attitudes. In addition to mathematics, political and social issues gained importance for him.
It was the time shortly after the violent student protests of the ’68 generation, in which the
students of Göttingen, primarily the theologians, followed by the mathematicians, were very
active (for example in a left-wing action group “Basisgruppe Mathematik”). Brieskorn was very
positive about some of the demands of the students and rather critical of others. He objected
to scientifically unfounded hierarchical structures, was committed to greater co-determination
of research assistants and students, and he sympathized with ideas of the reform universities in
Bremen and Osnabrück. However, the scientific quality of the study always came first.

Even more important than student reform ideas for Brieskorn, however, were his commitment
against the Vietnam War and, in turn, his commitment to supporting oppressed peoples. From
[26] we know that during his stay at the Massachusetts Institute of Technology (MIT) he par-
ticipated in a major demonstration against the Vietnam War, together with Michael Artin and
other MIT colleagues in New York, at which Martin Luther King spoke.

From the beginning he was involved in Göttingen in the Committee for Scientific Cooperation
with Cuba (KoWiZuKu), which was founded in 1970 and whose first Secretary General was the
mathematician Klaus Krickeberg. The fact that he was always very precise in these activities
is shown by an episode when, together with me and my wife in Göttingen, he stuck up posters
announcing a lecture by the Cuban health minister at the university. Brieskorn meticulously
ensured that everything was correct, and no posters were glued to distribution boxes as this
could lead to heat problems.

Later in Bonn Brieskorn was involved from the outset in the peace movement, which was for-
med in protest against the 1979 “NATO double–track decision” and thus against the deployment
of medium-range missiles in the then FRG. Brieskorn was one of the initial signatories of the
“Mainzer Appell”, the final declaration of the congress “Responsibility for peace – scientists warn
against new nuclear armaments” in June 1983 in Mainz, in which the mathematician Stephen
Smale also participated (see [29]). Especially physicists, but also many mathematicians such
as Brieskorn, organized themselves in the “Scientist Initiative Responsibility for Peace” (today:
“Scientist Initiative for Peace and Sustainability”).

Brieskorn’s political views in the Bonn era can certainly be classified as left of social-
democratic ideas, but over the years they have evolved into radical ecological convictions, which
he supported together with his wife Heidrun. They have lived since 1982 in a house at an iso-
lated location on the edge of the forest in Eitorf an der Sieg where both, together with a small
group, have devoted themselves intensively to nature conservation and more specifically to the
conservation of species. The species in question were initially indigenous bats, for which they
controlled winter quarters in old mine tunnels and secured and built new winter quarters. In
order to distinguish the different species, Heidrun Brieskorn made many sound recordings, which
Egbert Brieskorn subjected to self-written programs using a Fourier analysis.
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Both devoted even more time and effort to protect and preserve the living conditions of a very
rare species of butterfly, the large blue (Latin: Maculinea). This went so far that Brieskorn and his
wife persuaded the community to change their development plans and they themselves bought up
grassland to maintain the habitat of these butterflies. They founded the Maculinea Foundation
NRW so that the work to preserve the butterfly species can continue on a permanent basis. For
their commitment they were jointly awarded in 2013 the decoration “Bundesverdienstkreuz am
Bande” (“Cross of the Order of Merit”) of the Federal Republic of Germany.

In addition to the volunteer work in nature conservation, the last 20 years of Brieskorn’s life
were determined by his collaboration in the edition project “Felix Hausdorff – Collected Works”
of the North Rhine-Westphalian Academy of Sciences and the Arts. Brieskorn himself wrote
shortly before his 75th birthday in June 2011, knowing that he might not live much longer, in a
letter to ‘my dear former students and my students’ how it came about and how much he was
concerned with the biography of Hausdorff: “One of the tasks developed from the fact that the
Mathematical Institute in Bonn in January 1992 wanted to celebrate the 50th anniversary of
the death of Felix Hausdorff. Since no colleague wanted to give a lecture about his life, I took
over this task at that time, not knowing what I had let myself in for. I have spent 20 years
searching for archives and sources of all kinds for traces of this extremely remarkable man and
mathematician. I learned a lot while sacrificing a lot of time. I made three attempts to write
his biography, and with the third version, I think, I am on the right track. About 262 pages are
written so far, but not even half of the path of his life is described. This biography is to appear
in the first volume of a total of nine-volume edition of Felix Hausdorff’s works. Six volumes are
printed, and at least one or perhaps two of the missing volumes will be printed this year. The
bad thing is that the first volume in which my biography of Hausdorff is to be released cannot
possibly be completed on time.”

The following section reports on Brieskorn’s extensive work and his research on this project,
which goes far beyond the usual.

The Hausdorff project

The work, which Egbert Brieskorn mentions in his letter, was a labour of love for him for more
than 20 years, in particular the research into the life and work of Felix Hausdorff (1868-1942)
and the publishing of Hausdorff’s collected works.

Felix Hausdorff founded general topology as a freestanding area of mathematics and, in ad-
dition, made fundamental contributions to general and descriptive set theory, measure theory
and analysis. His contributions to the theory of Lie algebras, probability theory and actuarial
mathematics were also important to subsequent developments. Hausdorff was also (for a mathe-
matician somewhat uniquely) a notable writer and philosophical author. From 1897 until 1913,
under the pseudonym of Paul Mongré, he published a volume of aphorisms, an epistemological
book, a volume of poetry, a play which has been performed more than 300 times in over 30
cities, as well as 17 essays in leading literary journals. In the twenties and early thirties, he
was internationally recognised and respected as the leading representative of the Mathematical
Institute of Bonn. As a Jew living under the dictatorship of the National Socialist Party, he and
his wife took their own lives on 26th January 1942, when deportation to a concentration camp
was imminent.

Egbert Brieskorn’s involvement began in 1979, when the suggestion came from the students of
the Mathematical Institute to honour Felix Hausdorff through a memorial plaque in the institute.
Brieskorn, who had already been involved in the peace movement for years and who had talked
in depth about questions concerning the social responsibility of scientists, supported the plan
from the very beginning, gave his own financial support and organised a collection of donations
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amongst the teaching staff. In 1980, on the anniversary of Hausdorff’s death on 26th January, the
marble plaque was unveiled at the old institute on Wegelerstrasse. It was there for over 30 years,
until it was recently transferred to the new institute building. On the occasion of the unveiling,
an article appeared about Hausdorff’s tragic fate penned by the historian Herbert Mehrtens.
Egbert Brieskorn wrote an introduction for the article, the closing sentences of which are quoted
here; he wrote: “No form of inhumanity and oppression must leave us indifferent, even when the
victims are distant und unfamiliar to us. The thought of a person like Hausdorff, whom we all
recognise for his great scientific achievements, can also help us to sharpen our conscience and
sense of responsibility. Without a growing feeling of responsibility, scientists will not be in the
position to make their contribution to a more humane society. For this task we also need to come
to terms with the past.”

In November 1980, Egbert Brieskorn was successful in procuring Hausdorff’s literary estate
for the university library in Bonn, consisting of some 26,000 pages in size and since 1964 in the
private ownership of Prof. Günther Bergmann in Münster. The proceeds benefited Hausdorff’s
daughter Lenore König, who lived in poor conditions in Bonn in a retirement home. As the
contract was signed, Egbert Brieskorn wrote to Günther Bergmann on 15th November: “The
arrangements, which are now being made, seem to me to be very good. It is true that I am
no historian, but I do have a particular interest in the history of mathematics and occasionally
oversee dissertations with historical aspects. I hope that one day there will be a mathematical
historian who will work on Hausdorff. Then the literary estate in our university library will
be very important.” Whilst writing these lines, he had surely not thought that it would be he
himself who would 10 years later tackle the project of writing Hausdorff’s biography.

26th January 1992 was the 50th anniversary of Hausdorff’s death. On this occasion, Egbert
Brieskorn organised a memorial colloquium of the Mathematical Institute of the University of
Bonn, the result of which was the volume Felix Hausdorff zum Gedächtnis – Aspekte seines
Werkes (In Memory of Felix Hausdorff – Aspects of His Work), edited by Brieskorn himself
and published by Vieweg-Verlag. Furthermore, he arranged an exhibition about the life and
work of Felix Hausdorff, which was met with a lively interest not just amongst the Mathematical
Institute, but also the university and the general public of Bonn. For the exhibition, he published
a comprehensive catalogue with an initial biographical sketch of Hausdorff. On 1st February
1992, there was an hour–long radio programme for the series “Mosaik” (Mosaic) on WDR, about
Hausdorff and the exhibition in Bonn under the title “Auf dünner Schneide tanzt mein Glück”
(My Happiness Dances on the Edge of a Knife), which is the first line of Hausdorff’s poem
“Wiederkunft” (Return) from the poetry volume “Ekstasen” (Ecstasy). Egbert Brieskorn and the
WDR culture editor Friedrich Riehl conceived the programme together, and made the exhibition
and its subject well known far beyond Bonn. Even the media coverage of the exhibition was
significant.

The preparation for all of these activities began in 1989 with numerous conversations, which
Egbert Brieskorn held with Hausdorff’s daughter, with contact with Hausdorff’s niece Else Pap-
penheim and with further contemporary witnesses, as well as with the collection of material
for the biography, in particular through researching in archives. During this research, he sho-
wed thoroughness and the mind of a detective, which any professional historian would hold in
high esteem. In his literary estate there are dozens of thick folders, documenting all of these
endeavours and in successful instances, though that was not always the case, recording their
results.

In this spirit and in the run-up to the memorial colloquium, the mathematicians from Bonn,
Egbert Brieskorn, Friedrich Hirzebruch and Stefan Hildebrandt, discussed the possibilities and
necessary steps for setting in motion an edition of the works of Hausdorff, under the consultation
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of external experts. Friedrich Hirzebruch suggested creating a Hausdorff Commission at the
North Rhine-Westphalian Academy of Science, which was already overseeing a number of edition
projects, to plan and then supervise a similar project. The academy agreed and the commission
took up its work under the leadership of academy member Reinhold Remmert in 1991. As the
first step, a careful indexing and cataloguing of the Hausdorff literary estate was envisaged.
This was carried out from October 1993 until the end of 1995. The result was an inventory of
550 pages with short descriptions of the content of each individual fascicle. After this vital step
towards the success of the edition project was completed, and with the inclusion of the literary
estate, the final project was within sight.

In order to create a diligently commented edition with the inclusion of selected parts from the
literary estate in the work, many things needed to be considered and done. One must establish
editorial principles, develop a volume structure, find suitable personnel and, crucially, applica-
tions must be made in order to finance the project. Egbert Brieskorn was the guiding spirit
throughout all of these discussions and activities. Particularly difficult was the winning over of
suitable philosophers and literary academics as editors of the volumes dedicated to that side of
Hausdorff’s creations. For this purpose, he took part in a philosophical conference about Jewish
Nietzscheanism in Greifswald, in order to come into contact with appropriate experts, and in
Bonn organised an interdisciplinary conference for academics in the humanities, with the support
of the MPI for Mathematics, about Hausdorff’s philosophical and literary work.

The application for the financing of the project, which he submitted to the DFG in 1996
together with Friedrich Hirzebruch and Erhard Scholz, was finally approved and in November
of 1996 the working team “the Hausdorff–Edition” at the Mathematical Institute took up work
under his leadership. In 2002, the North Rhine-Westphalian Academy of Sciences and Arts took
over the Hausdorff–Edition as one of their academy–projects. Some of the originally employed
editors were not able to work on the project due to various reasons, meaning that new employees
frequently needed to be found. In the end 14 mathematicians, four mathematical historians, two
literary academics, one philosopher and one astronomer from four countries collaborated on the
editing.

Egbert Brieskorn was particularly concerned during the editing with tracking the four no-
ticeable threads, not immediately obvious, which lead from Hausdorff the mathematician to
Mongré the writer and philosopher. For this reason he always emphasized the inter–disciplinary
character of the project, holding pioneering lectures at three large editorial conferences exactly
in this respect and organising a series of discussion circles, which involved mathematicians, phi-
losophers and literary academics. In order to obtain an impression of his intentions, we quote
here the beginning of his programmatic lecture at one of these conferences in February 2003 at
Schloss Rauischholzhausen: “ ‘It is not always determined that the concept must lie within the
lines or indeed only between the lines, perhaps it is somewhere else entirely, far, far away! Per-
haps the author sounds his bell, and somewhere a string with the same vibration and the same
tone colour answers – and it is not the actual bell, but the sound of the string that expresses the
original concept.‘ We should always keep in mind the sense of this aphorism from Paul Mongré
during our round-table discussion about this author, about the author Mongré and about the
mathematician Felix Hausdorff. Each one of us will hear something different from the variety of
motifs and the richness of tone colour. What someone hears is highly dependent on the hearing
experience, which one has made in the course of his or her life. If literary academics, philoso-
phers, historians and mathematicians also listen to each other, we can hope here and there to
hear an original concept.”

As leader of the working group, Egbert Brieskorn allowed a wide latitude to the co–ordinator
of the edition project and the editors and employees of the individual volumes. When problems
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arose, he helped with advice. He did however reject some of the submissions when they did
not satisfy his high demands. In these cases, decisive improvements could always be made.
In the meantime, eight of the ten planned volumes were released with Springer: volume IA
General Set Theory (2013), volume II Basics of Set Theory (2002), volume III Descriptive Set
Theory and Topology (2008), volume IV Analysis, Algebra and Number Theory (2001), volume
V Astronomy, Optics and Probability Theory (2006), volume VII Philosophical Works (2004),
volume VIII Literary Works (2010), and volume IX Correspondence (2012). Egbert Brieskorn’s
voice is perceptible in all of the volumes, even when he did not work explicitly on every volume
himself.

He did, however, take on the most difficult part of the project himself: volume IB, the bio-
graphy. Here, next to the mathematical work of Hausdorff, were also further fields of interest
and references to his life from very different areas: philosophy, in particular Kant, Schopenhau-
er, Nietzsche and Hausdorff’s relationship to the Nietzsche archive, epistemology, in particular
Hausdorff’s language criticism and his thoughts on literary figures like Dehmel, Hartleben and
Wedekind, music, particularly Hausdorff’s relationship to Wagner and his relationship to Reger,
and graphic art, particularly Hausdorff’s friendship with Max Klinger. In this volume were al-
so the family history in terms of the Jewish story and the history of anti–Semitism, up until
Hausdorff’s tragic end under the Nazi dictatorship.

In 2007 Egbert Brieskorn, Erhard Scholz and the co-author of this obituary had the opportu-
nity to present the Hausdorff edition project in the Séminaire d’Histoire des Mathématiques de
l’Institut Henri Poincaré in Paris. There Brieskorn gave the introductory speech, in which he said
the following about his own work retrospectively (he spoke French of course): ‘With regard to
my own portion of the project, I must confess now that I am no historian and that I am not led
predominately by a historical interest. On the contrary, my personal interest sprang originally
from two motives. One of the motives was shame about the terrible guilt that Germany, through
the persecution and murder of Jews in Europe, has brought upon itself. The other motive was
very personal: In the eighties I met Felix Hausdorff’s daughter Lenore König, who at that time
was living in a retirement home in Bonn. She gave me an initial introduction to the life and
personality of her father. Through this I later felt the personal obligation to better understand
the life of this unique person. When the university of Bonn prepared a memorial event for Haus-
dorff’s fiftieth anniversary of death, and later as the plan took shape for an edition of his works,
I saw the biography of Felix Hausdorff as my personal task. At the beginning, I underestimated
this task concerning the difficulties and also in respect to what this task meant to me personally.
This work has greatly changed my own life and way of thinking: I have – or at least I hope –
learnt something from Hausdorff.’

Egbert Brieskorn worked intensively on the transcript of the biography in his last years, also
during his severe illness. Three weeks before his death he sent the last sub–chapter that he had
still been able to complete to the working group in Bonn, it was a particularly difficult chapter
about the relationship between Hausdorff and the philosopher, mystic and anarchist Gustav
Landauer. To this day there are 546 pages of the biography written by Brieskorn and ready for
printing. When he sensed that he could not manage any more, he proposed a meeting, in order
to explain how he had imagined the rest of the biography. He suggested 12th July 2013 as the
date for the meeting. On the evening of 11th July he passed away. It is a duty for the working
group in Bonn to bring the volume to completion as well as we can. There are over 100 folders
with material for the biography, which he had collected over more than 20 years through often
painstakingly detailed work. They were given to us by Ms Brieskorn, and are of invaluable help.
Volume IB is now finished and will appear at Springer in spring 2018, in the year of Hausdorff’s
150th birthday.
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Brieskorn’s mathematical work

The mathematical work of Brieskorn is largely determined by the development of the “sin-
gularity theory” of complex hypersurfaces. In particular, his early work had a great influence
on the development of singularity theory and it is no exaggeration to call Brieskorn, along with
Vladimir Igorevich Arnold, John W. Milnor and René Thom, one of the fathers of singularity
theory. In his review lecture [18] Brieskorn writes:

“Singularities exist in all areas of mathematics and in many applications, and the pair of
opposites ’regular – singular’ is one of the most common in a whole series of such opposite pairs
in mathematics. What is meant by singularities is shown by the analysis of the many different
definitions of singular objects. Such an analysis leads to a few basic meanings: a singularity
within an entity is a place of uniqueness, peculiarity, degeneration, indefiniteness or infinity. All
these meanings are closely related.”

I use the term “singularity theory” here in the sense of exploring systems of finitely many
differentiable, analytic or algebraic functions near a point in which the Jacobian matrix of the
functions does not have maximum rank. This implies, according to the implicit function theorem,
that the zero set of the functions is not a differentiable, analytic or algebraic manifold at a singular
point. Here, singularities of vector fields or differential forms are included.

The term singularity theory was, to my knowledge, introduced by V.I. Arnold, although it
is not really a closed theory with more or less uniform methods. On the contrary, a charac-
teristic of this field is the variety of different methods used, and the relationships to many
other mathematical disciplines. These include algebraic geometry, complex analysis, commuta-
tive algebra, combinatorics, representational theory, Lie groups, topology, differential topology,
dynamical systems, symplectic geometry, and others. Brieskorn was particularly fascinated by
the complexity and the manifold interactions of singularity theory with other mathematical and
non-mathematical fields, such as geometric optics, and, as we shall see, he has contributed si-
gnificantly to the study of some of these interactions. However, he has never been able to make
friends with the term singularity “theory”.

Almost all of Brieskorn’s mathematical works either deal directly with singularities of complex
hypersurfaces, or they are motivated by the study of these singularities. His work shows, in
addition to originality and depth, a wide range of questions and methods, which are typical of
the entire area.

In the following review of Brieskorn’s work, I also try to highlight important results on which
Brieskorn’s works are based, as well as the developments that resulted from his work. A short
description of the scientific work of Brieskorn can be found in [37].

Dissertation

Singularities do not play any role in the first two publications of Brieskorn that are parts of
his dissertation [3], which he wrote in 1962 as a student of Friedrich Hirzebruch and which he
published in [4] and [5].

The question there is to what extent does the differentiable structure of a Kähler manifold
already determines its biholomorphic structure in the case of the complex quadric Qn or the
holomorphic Pn bundles over P1. This problem had been studied and solved by F. Hirzebruch
and K. Kodaira in 1957 for the complex projective space Pn.

The following main result of the first paper is an exact analogue of the mentioned theorem of
Hirzebruch and Kodaira. Brieskorn had already announced the result in 1961 in the Notices of
the AMS:

Let X be a n-dimensional Kähler manifold that is diffeomorphic to the n-dimensional complex
projective quadric Qn. Then:
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(i) If n is odd, then X is biholomorphic to Qn.
(ii) If n is even and n 6= 2, then the 1st Chern class c1 of X satisfies: c1 = ±ng, where g is

the positive generator of H2(X,Z) ⇠= Z; if c1 = +ng, then X is biholomorphic to Qn.
Brieskorn asks if the assumption that X is Kähler can be omitted and if there are any Kähler

manifolds with c1 = �ng that are diffeomorphic to Qn. Both problems seem to be open to this
day.

As a corollary Brieskorn proves statements about the deformation behavior of Qn. He considers
a family of complex manifolds Vt, t 2 C, |t| sufficiently small, and proves:

(i) If V0
⇠= Qn, then Vt

⇠= Qn for t 6= 0,
(ii) If V0 is Kähler and Vt

⇠= Qn for t 6= 0 and n � 3, then V0
⇠= Qn.

Again, he asks if in (ii) the assumption that V0 Kähler can be omitted.
That this is indeed the case was proved by J.M. Hwang in 1995, after the same question of

“non-deformability” of Pn instead of Qn, had previously been answered positively by Y.-T. Siu.
For n = 2 the first statement does not hold, because on the differential manifold Q2 there are,

according to Hirzebruch, infinitely many different complex structures, the so-called Hirzebruch
⌃–surfaces ⌃2m.

The ⌃–surfaces are total spaces of holomorphic fiber bundles over P1 with fiber P1. In the
second part of his dissertation, Brieskorn examines holomorphic fiber bundles over P1 with
fiber Pn, which he calls ⌃–manifolds in accordance with the Hirzebruch ⌃–surfaces. Taking
advantage of Grothendieck’s splitting theorem for vector bundles over P1, Brieskorn classifies
the ⌃–manifolds up to biholomorphic and birational equivalence and up to diffeomorphism. As
a result, as in the case of ⌃–surfaces, there is an infinite number of different complex structures
on every differentiable ⌃–manifold. In addition, he proves that ⌃–manifolds deform into ⌃–
manifolds and that in a Kähler family of ⌃–surfaces, they specialize in a ⌃–surface (similar to
(ii) above).

The questions and the methods of proof in his dissertation come from algebraic and analytic
geometry, as well as from algebraic topology. These methods, including sheaf theory, which came
from France, were quite new at that time and began to slowly gain acceptance in Germany, espe-
cially in the generation of young mathematicians. In an exemplary way they were embodied by
Brieskorn’s teacher Friedrich Hirzebruch. In addition to Hirzebruch, Hans Grauert and Reinhold
Remmert also had great influence on the development of modern analytic and algebraic geometry
in Germany, in particular with the development of the theory of general complex spaces, whose
structure might contain nilpotent elements. Brieskorn also thanked Reinhold Remmert and An-
tonius van de Ven in his dissertation. He met both of them while working as a research assistant
and employee in Erlangen in 1962, showing that he had an extremely inspiring environment for
modern mathematics. He was decisively influenced by the spirit of optimism that prevailed in
Germany at that time, and especially by the support of his teacher Hirzebruch.

Deformation theory

Friedrich Hirzebruch’s book Neue topologische Methoden in der algebraischen Geometrie, pu-
blished as early as 1956 in the Springer series “Ergebnisse der Mathematik und ihrer Grenzge-
biete”, had just been published in the second, extended edition. The theorem of Hirzebruch–
Riemann–Roch, which was proved there, was one of the foundations of Brieskorn’s dissertation.
Another basis was the deformation theory of analytic structures developed by K. Kodaira and
D. C. Spencer.

The Hirzebruch–Riemann–Roch theorem was a great generalization of Riemann–Roch’s clas-
sical theorem to complex vector bundles on arbitrary complex projective manifolds, rather than
divisors on Riemann surfaces, using the methods of sheaf theory that were prevailing at the time.
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As Brieskorn writes in his CV, this theorem was the reason why he moved from Munich to Bonn
and Hirzebruch. In 1963, M. Atiyah and I. Singer generalized the Hirzebruch–Riemann–Roch
theorem to elliptic differential operators on a complex manifold. This covers significant theorems
of differential geometry and has important applications in theoretical physics, for which they
jointly received the Abel Prize in 2004. The theorem was further extended in a functorial way to
proper morphisms of quasi-projective schemes by Grothendieck in 1967. Modifications continue
to this day, e.g. with the “Quantum Riemann–Roch” in the Gromov–Witten theory.

The deformation theory of complex manifolds developed by Kodaira and Spencer in [45], in
particular the infinitesimal deformation theory, and Kuranishi’s theorem on the existence of a
semi–universal deformation, were later developed further and are now among the most important
methods in complex analysis as well as algebraic and arithmetic geometry. I would like to mention
only the existence of a semi–universal deformation for compact complex spaces, proven by Hans
Grauert and Adrien Douady.

Even more important for the theory of singularities and for Brieskorn’s later work was the
theorem by Grauert on the existence of a semi-universal deformation of isolated singularities of
complex spaces. Brieskorn himself was involved in the development of the proof by Grauert. And
that came as follows.

Brieskorn had started his professorship in Göttingen in July 1969, but had been on leave from
September 1969 to February 1970 for a research stay at the IHES in Bures-sur-Yvette. From
there he brought an interesting problem for the research seminar in Göttingen, jointly led by
Brieskorn and Grauert in the summer and winter semester 1970/71: to prove the existence of
a semi–universal deformation of isolated singularities of complex spaces. This was to be based
on the papers of M. Schlessinger Functors of Artin Rings and of G. N. Tyurina Locally semi
- universal flat deformations of isolated singularities of complex spaces. Tyurina’s work was
published in 1969 in Russian, but only in 1971 in English translation. The author of these lines,
who himself attended the seminar, believes that Brieskorn himself had brought along both these
papers. They were not yet known in Göttingen and, in particular, he had procured an English
translation of Tyurina’s work.

Schlessinger had specified in his work conditions for the existence of a formal semi–universal
deformation, the “Schlessinger conditions”, while Tyurina had proved the existence for normal
isolated singularities, with the additional condition that the second Ext group of the holomorphic
1–forms on the singularity vanishes. Tyurina did not seem to have known Schlessinger’s work,
and Brieskorn’s idea was that the combination of Schlessinger’s and Tyurina’s approaches should
provide evidence of a proof for any isolated singularity without Tyurina’s additional condition.
He had even more precise ideas on how both works should be brought together to a proof,
and he distributed the lectures accordingly to the participants of the seminary. The last lecture
was assigned to Grauert with Brieskorn’s comment ‘and you then prove the general proposition
without any assumption’. Grauert answered only ‘but I need the Christmas holidays’, which
caused general joy.

The participation in the seminar was quite demanding, especially for someone who had just
started working on his diploma thesis, but at the same time enormously stimulating and enri-
ching. All participants were aware that they were involved in the emergence of a significant result
and waited anxiously for Grauert’s lecture, which was to take place in early 1971. Grauert then
began his lecture with the remark that he unfortunately could not present the proof and he was
not sure whether one might need an assumption like that of Tyurina. However, he could recount
an interesting generalization of the Weierstrass theorem, the division with remainder by an ideal
(a result found independently by Hironaka in connection with the resolution of singularities).
This general division theorem then provided the crucial tool for demonstrating the existence
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of a semi-universal deformation of isolated singularities without any assumption that Grauert
completed in the summer of 1971 (published in [34]).

The episode shows Brieskorn’s infallible grasp of interesting and important mathematical
problems, which can be seen throughout his work and in the selection of topics for diploma and
doctoral theses.

Quotient singularities and simultaneous resolution

The years after graduation were among the most fertile in Brieskorn’s scientific life. At some
point in 1963, Hirzebruch suggested that Brieskorn study and generalize the work On analytic
surfaces with double points by Michael Atiyah [2]. In this work, Atiyah had shown, among other
things, that a family f :X ! S of compact complex surfaces over a smooth 1–dimensional
manifold S, whose general fiber is smooth and whose finitely many special fibers only have
singularities of the type A1, has a simultaneous resolution. Here, a simultaneous resolution of a
general holomorphic mapping f:X ! S is a commutative diagram of holomorphic maps

Y
 //

g

✏✏

X

f

✏✏
T

' // S ,

where ' is a branched covering and g is a non–singular, proper surjective mapping that induces
for all fibers Xs=f�1(s) of f a resolution  |Yt: Yt ! Xs, '(t) = s.

Because of the local monodromy around the singular fibers of f , the base change ' is necessary,
i.e. a simultaneous resolution of f over S itself is in general not possible. The local “geometric
monodromy” about a singular fiber Xs0 can be seen as follows: restrict f to a small closed path
� with start and end point s around s0 2 S, so that � does not go through a singular value of f
and simply circles around s0, you get a locally trivial fiber bundle over �, that is in general not
trivial. By means of a path lifting (for example by using an Ehresmann connection) one obtains a
nontrivial diffeomorphism of the fiber Xs, the “geometric monodromy”, which induces a nontrivial
isomorphism of the homology of Xs. The base change ' eliminates the local monodromy: since
all the fibers of g are non-singular, the monodromy of g over T is trivial.

Hirzebruch had proposed to Brieskorn to generalize the work of Atiyah to families of surfaces
with singularities of the types Ak, Dk, E6, E7, E8. It turned out to be a wonderful idea, and it
started a highly interesting story with many actors and great discoveries. In the end, not only the
simultaneous resolution of the families of surfaces with ADE singularities was achieved, but also
the discovery of exotic spheres as neighbourhood boundaries of singularities. Brieskorn writes in
[27] “I shall be grateful for it to my teacher until the day that I die”.

Since the problem is local, it suffices to investigate a map f from X = C3 to S = C (or small
neighborhoods of zeros) of the form s = f(x, y, z). Here f(x, y, z) = 0 is the equation of an ADE
singularity, i.e. f is a polynomial of the following list:

Ak : xk+1 + y2 + z2, k � 1
Dk : xk�1 + xy2 + z2, k � 4
E6 : x4 + y3 + z2

E7 : x3y + y3 + z2,
E8 : x5 + y3 + z2 .

These polynomials already appeared in the works of Hermann Amandus Schwarz and Felix
Klein in the 19th century (see [43]). Since Klein’s time, they have appeared in ever new, different
contexts (see [36] for an overview) and have fascinated mathematicians to this day. Depending
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on the context in which they appear, they are also called “simple surface singularities”, “rational
double points”, “Du–Val singularities” or “Kleinian singularities”.

The context in which the ADE singularities appear in Klein’s work is particularly interesting
to us. Klein classified the finite subgroups G from SL(2,C) up to conjugation and obtained the
following groups:

Ck+1 : the cyclic group of order k + 1
Dk�2 : the binary dihedral group of order 4(k � 2)
T : the binary tetrahedral group of order 24
O : the binary octahedral group of the order 48
I : the binary icosahedral group of the order 120

These groups are (complex) “reflection groups”, i.e. groups generated by complex reflections
(finite–order automorphisms that fix a hyperplane), and Klein proved that the ring C[z1, z2]G of
G–invariant polynomials in C[z1, z2] is generated by three invariant polynomials X,Y, Z, which
satisfy exactly one relation f(X,Y, Z) = 0. Klein determined the relations and found that these
are given for the groups Ck+1, Dk�2, T, O, I by the polynomials Ak, Dk, E6, E7, E8.

Because of this result, the ADE singularities are called “2–dimensional quotient singularities”.
More generally, let G ⇢ GL(2,C) be a finite subgroup acting on C2 by matrix multiplication from
the right and on C[z1, z2] by (gf)(z1, z2) = f((z1, z2)g)) for f 2 C[z1, z2] and g 2 G. The invariant
ring C[z1, z2]G is a finitely generated C–algebra, i.e. there are finitely many invariant polynomials
X1, . . . , Xn 2 C[z1, z2]G with Xi(0) = 0, and finitely many relations fj(X1, . . . , Xn) = 0 with
fj 2 C[x1, . . . , xn], j = 1, . . . , k, so that the canonical map

C[x1, . . . , xn]/hf1, . . . , fki ! C[z1, z2]G, xi 7! Xi,

is an isomorphism. The bijection

C2/G ! X := {x 2 Cn|f1(x) = · · · = fk(x) = 0},

makes the orbit space of G in a canonical way a normal analytic set in Cn. The space germ
(C2/G, 0) = (X, 0) is called “quotient singularity”. Naturally, Klein did not yet have this inter-
pretation of the ADE singularity as quotient singularity. It is mainly due to Du Val ([30]).

The fact that ADE singularities are quotient singularities and, of course, the explicit equati-
ons were essential for Brieskorn’s proof of the simultaneous resolution of these singularities. The
accomplishment of this proof was not straightforward, but was interrupted by other great dis-
coveries of Brieskorn. In particular, the case of the E8 singularity has caused greater difficulties,
which is also reflected in the fact that Brieskorn published the proof for the Ak, Dk, E6 and E7

singularities in 1966 in [6] but for E8 only in 1968 in [10].
To determine the base change for a simultaneous resolution, one has to analyze the local

monodromy. Since the ADE singularities have weighted homogeneous (or quasihomogeneous)
equations, the geometric monodromy is analytically computable, and it is of finite order. In
the case of the quotient singularities of the type Ak, Dk, Ek, the monodromy operation on the
middle homology of the fiber is a Coxeter element of the reflection group, i.e. the product of the
generators in a chamber of G. So it makes sense to consider a base change s = td, where d is the
order of the Coxeter element, the Coxeter number. The fiber product of X ! S and the base
change T ! S then has the equation

f(x, y, z)� td = 0,

where f(x, y, z) = 0 is the equation of an ADE singularity. In the A1 case of Atiyah, we have
the equation

x2 + y2 + z2 � t2 = 0,
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which after coordinate change has the form

z1z2 � z3z4 = 0.

This is the equation of a 3-dimensional singular quadric Q3 in C4, i.e. the cone over a non–
singular quadric in P3. By blowing up the vertex, one obtains a non–singular variety Y over
T , whose exceptional divisor is isomorphic to P1 ⇥ P1, which can be blown down in two ways
to P1. The resulting varieties Y1 and Y2 are two different simultaneous resolutions of the given
family. They are so–called “small resolutions” of the 3-dimensional quadric Q3; small, since the
exceptional set is a (rational) curve. The natural bijective equivalence between Y1 and Y2 is
called (Atiyah–) flop. Flops and flips play a fundamental role in the so–called minimal models
of an algebraic variety, flips in the construction itself, which is known only up to dimension 3,
while various minimal models are connected by a sequence of flops.

Since for Ak, E6, and E8 the equation f(x, y, z)� td = 0 is the form

xa + yb + zc + td = 0,

Brieskorn tried to construct small modifications for these singularities by attempting to map
them to other varieties for which a small resolution was already known. For the quadratic cone
Q3, this meant writing the equation f(x, y, z)� td in the form �1�2��3�4. Using such methods,
Brieskorn succeeded in constructing simultaneous resolutions of the Ak, Dk, E6, and E7 singu-
larities in 1964 (published in [6]). It also turned out that a simultaneous resolution of the map
from a 3–manifold to a 1–manifold is only possible for the ADE singularities. This left only the
case of the E8 singularity.

However, the E8 singularity proved to be extremely stubborn and Brieskorn failed to construct
a simultaneous resolution for them. The various attempts to do so led him to surprising results
about the topology and differential topology of singularities, which I will discuss in the next
section.

The simultaneous resolution of the “icosahedron singularity” E8 was found by Brieskorn in
September 1966 (published in [10]) using very classical algebraic geometry, as he writes himself.
For example, he used a paper by Max Noether from 1889 on rational dual planes and properties
of exceptional curves on rational surfaces, which arise from the blowing up 8 points on a plane
cubic. Brieskorn found that there are about 700 million simultaneous resolutions of E8, exactly
214 · 35 · 52 · 7, the order of the Weyl group of type E8. The divisor class group of the local ring
of the singularity

x2 + y3 + z5 + t30 = 0

has the structure of the lattice of weights of the root system of E8. Brieskorn constructed the small
resolutions of this singularity using curves with E8 as a dual graph and thus the simultaneous
resolutions of the surface singularity E8. The various simultaneous resolutions correspond to the
Weyl chambers, with the blow up of some ideal class in each chamber resulting in a simultaneous
resolution.

Investigations of the simultaneous resolution of the ADE singularities as quotient singulari-
ties of C2 by a finite subgroup of SL(2,C) led Brieskorn to examine general quotient singulari-
ties C2/G in [11], where G is any finite subgroup of GL(2,C). He classified these singularities
using results from Mumford, Hirzebruch and above all from Prill by listing all small subgroups
G ⇢ GL(2,C) (i.e. no element of G has 1 as eigenvalue with multiplicity 1). He determined
the resolution graph of C2/G, weighted by the intersection multiplicities of the exceptional
curves. Brieskorn showed that this resolution graph determines the singularity up to analytic
isomorphism, and from this fact he deduced the remarkable result about the uniqueness of the
2–dimensional icosahedron singularity:
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The ring C{x, y, z}/hx2 + y3 + z5i (and its completion) is the only non–regular factorial 2–
dimensional analytic local ring.

In dimension 3 there are infinitely many factorial as well as non–factorial local rings of isolated
hypersurface singularities (from dimension 4 on one has always factoriality).

Brieskorn’s work on simultaneous resolution and on quotient singularities played an important
role in the further development of the deformation theory of rational surface singularities. I
mention here only Oswald Riemenschneider, Jonathan Wahl and in connection with the program
of “minimal models” of Shigefumi Mori, János Kollár, Miles Reid and Vyacheslav Shokurov.

Topology of singularities and exotic spheres

In September 1965 Brieskorn took up a C.L.E. Moore Instructorship at MIT in Cam-
bridge/Massachusetts. The problem of the simultaneous resolution of E8 had not been solved at
that time and Brieskorn was looking for solutions in discussions with Heisuke Hironaka at the
1965 Arbeitstagung in Bonn and with Michael Artin and David Mumford at MIT. Brieskorn
tried to compute the divisor class group of

x2 + y3 + z5 + t30 = 0,

but Mumford suggested to examine first the simpler equation x2 + y3 + z5 + t2 = 0, that is,
the equation of the 3–dimensional E8 singularity. For practice, Brieskorn started with the 3–
dimensional A2 singularity

z30 + z21 + z22 + z23 = 0

and found that it is factorial. He then re-examined the 3–dimensional E8 singularity and, through
a rather tedious explicit resolution, he showed that it is also factorial and that the second
cohomology group of the singularity boundary vanishes. Since Brieskorn had expected a non-
trivial divisor class group, he turned back to A2 to better understand their topology.

Then, in September 1965, he made the unexpected discovery that the boundary of the 3–
dimensional A2–singularity is homeomorphic to the 5–dimensional sphere. The neighbourhood
boundary of a hypersurface singularity in Cn+1 is the intersection with a sufficiently small real
sphere in the R2n+2 = Cn+1 around the singular point. For an isolated singularity, this is a
compact (2n� 1)–dimensional real analytic manifold. The singularity itself, i.e. the set of zeros
of the defining equation is, according to Milnor, topologically the cone over the neighbourhood
boundary with the singular point as the vertex of the cone. It follows that the 3-dimensional
A2–singularity is topologically a manifold. This discovery came as a complete surprise, because
in [32], David Mumford had shown that isolated singularities of algebraic surfaces can never be
topologically trivial, unless the singularity is analytically non–singular. Brieskorn then published
in [7], that all odd k � 3 the singularities

z30 + z21 + · · ·+ z2k = 0,

are topological manifolds, so Mumford’s theorem is a special phenomenon in dimension two.
The developments in 1965/66, which then led to the discovery of the exotic spheres as neigh-

bourhood boundaries of singularities, are still fascinating in retrospect, above all because of the
interaction of the ideas of several participants, which came about through happy circumstances.
Hirzebruch reported this discovery in the seminar Bourbaki [41] and later at the 1996 singularity
conference in Oberwolfach on the occasion of Brieskorn’s 60th birthday; a short version can be
found in [42].

Hirzebruch reported on a conference in Rome on Brieskorn’s simultaneous resolution of the
singularities of types Ak, Dk, E6, and E7 when he received a letter from Brieskorn there on
28.09.1965, in which he wrote:
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“I have made the somewhat confusing discovery in recent days that there may be 3–dimensional
normal singularities that are topologically trivial. I discussed this example with Mumford this
afternoon, and he has not found a mistake until this evening; here it is: X = {x 2 C4|x2

1 + x2
2 +

x2
3 + x3

4 = 0}.”
This result of Brieskorn was quite exciting at that time and stimulated Hirzebruch, Milnor

and others to further study the topology of isolated singularities. Of course, there was no e-mail
at this time, but an extensive correspondence between Brieskorn, Hirzebruch, Jänich, Milnor and
Nash. Hirzebruch wrote to Brieskorn in March 1966 that he found a close connection between
the work of Klaus Jänich, who was also a student of Hirzebruch, on the classification of special
O(n)–manifolds and the neighbourhood boundary of singularities investigated by Brieskorn. Jä-
nich had studied the operation of a compact Lie group G on a differentiable manifold X without
boundary. For special operations, the orbit space X/G is a canonically differentiable manifold
with boundary. Motivated by Brieskorn’s work, Hirzebruch considered the neighbourhood boun-
dary ⌃ = ⌃(k+1, 2, . . . , 2) of the Ak–singularities in the Cn+1, which was given by the following
equations:

zk+1
0 + z21 + · · ·+ z2n = 0 ,
|z0|2 + |z1|2 + · · ·+ |zn|2 = 1 .

He proved that the orthogonal group O(n) operates on ⌃ in a special way in the sense of Jänich,
with orbit space the 2-dimensional disk D2, and that ⌃ is a homology sphere for even k .

Even more exciting was his discovery that ⌃ is an exotic 9–sphere for n = 5 and k = 2, i.e. ⌃ is
homeomorphic but not diffeomorphic to the standard sphere S9. The boundary ⌃(3, 2, 2, 2, 2, 2)
of the 5–dimensional A2–singularity turned out to be the 9–dimensional exotic Kervaire–sphere,
constructed by Michel Kervaire by the so-called “plumbing” of two copies of the tangential disk
bundle of the 5–sphere.

The letter from Hirzebruch to Brieskorn dated 24.03.1966, in which he describes his discovery,
was answered by Brieskorn on 29.03.1966 in the following words:

‘Klaus Jänich and I had not noticed anything about this connection of our work, and I was
delighted how you brought things together.’

While in Kervaire’s construction the exotic sphere bounds a parallelizable manifold, ⌃ is the
boundary of a singularity, and at first it remained mysterious where the parallelizable manifold
could be found in the singularity image. Exotic spheres were first discovered by John Milnor in
[48] and those of a fixed dimension form an abelian group ⇥n, with the connected sum as group
operation. The important subgroup bPn+1 consisting of those spheres that bound a parallelizable
manifold was introduced by Kervaire and Milnor in 1963. They proved that the group ⇥n is finite
for n � 5 and that bP4k+2 is either 0 or Z/2Z and that the second case occurs exactly when the
generator of bP4k+2 is the (4k + 1)�dimensional exotic Kervaire sphere.

Milnor had been stimulated by Brieskorn’s example of the neighbourhood boundary
⌃(3, 2, 2, 2) as a topological manifold to study the neighbourhood boundaries of other singu-
larities and explained his reflections in a letter to John Nash in April 1966. Brieskorn quoted in
[27] from this letter:

‘Dear John,
I enjoyed talking to you last week. The Brieskorn example is fascinating. After staring at it a

while I think I know which manifolds of this type are spheres, but the statement is complicated
and the proof doesn’t exist yet. Let ⌃(p1, . . . , pn) be the locus

zp1
1 + · · ·+ zpm

n = 0 , |z1|2 + · · ·+ |zn|2 = 1 .’
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Then Milnor continues with a concrete guess which of these manifolds are topological spheres.
Brieskorn further mentions that the letter contains on the edge a small sketch of about 1 cm,
which he would not have understood at the time.

Milnor’s sketch, which I copied from [27] (see Fig. 1), shows the image of the Milnor fibration
and thus the parallelizable manifold you are looking for. This sketch later became an icon in the
theory of singularities and decorated almost every lecture on the topology of singularities.

Fig. 1
Choose a sufficiently small sphere B" of radius " around the isolated singular point of the

hypersurface f(z1, . . . , zn) = 0 and then a small disc D� of radius � (<< ") in the complex plane
around 0. Then Milnor’s sketch shows X = f�1(D�) \ B". X r f�1(0) is a differentiable fiber
bundle whose non–singular fiber Xs = f�1(s), s 6= 0, is called “Milnor fibre”. Xs is a (n � 2)–
connected parallelizable manifold whose boundary is diffeomorphic to the boundary ⌃ of X0.
Thus, the Milnor fibre is the parallelizable manifold bounded by the exotic Kervaire–sphere,
which Hirzebruch and Brieskorn were looking for.

Brieskorn then succeeded in [8] to fully prove Milnor’s conjecture within 14 days. At the same
time he showed by an explicit calculation:

The neighbourhood boundary ⌃(2, 2, 2, 3, 5) of the icosahedron singularity is Milnor’s exotic
7–sphere, the creator of the group bP8 = ⇥7 of order 28. All the different 28 exotic differentiable
structures on S7 are given by the boundary ⌃(2, 2, 2, 3, 6k � 1), k = 1, . . . , 28, hence by simple
real analytic equations. In addition, he showed that every odd dimensional sphere bounding a
parallelizable manifold is diffeomorphic to the neighbourhood boundary ⌃(a1, . . . , am).

This was considered a sensation. While Milnor’s first construction of an exotic sphere was
indeed very specific, Brieskorn’s construction was quite natural and anything but “exotic”.

That Brieskorn was able to prove Milnor’s conjecture so quickly is also due to a lucky circum-
stance. Looking through the newly published journals in MIT’s library, he came across the work
[49] by Frédéric Pham. Pham, motivated by the singularities of Feynman integrals in theoretical
physics, examined in this paper exactly the singularities

Xa1
1 + · · ·+Xan

n = 0,

which Milnor had also considered in his letter to Nash. Pham calculated for these singularities
the homotopy type of the Milnor fiber and the monodromy of the Milnor fibration. Brieskorn
used these results and Hirzebruch’s calculation of the signature of the Milnor fibre to prove the
above mentioned results. Since then, these singularities are also called “Brieskorn Singularities”
or “Brieskorn–Pham Singularities”.

Brieskorn’s discovery of the exotic differentiable structures on the neighbourhood boundary
of singularities have led to many applications in the work of other mathematicians about the
differential topology of manifolds. In this context, there is only one work by Brieskorn himself,
the construction of exotic Hopf manifolds, together with Antonius van de Ven in [9].
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Brieskorn describes the two years in Boston and Cambridge as the two best of his mathematical
life.

Picard–Lefschetz monodromy and Gauss–Manin connection

For an isolated singularity, given by f 2 C{x0, . . . , xn}, f(0) = 0, consider Milnor’s constructi-
on f:X = f�1(S)\B ! S with B = B" and S = D� from the previous section. The non–singular
Milnor fibre Xs = f�1(s) is a deformation of X0 = f�1(0), the simplest deformation since it
is given by f itself. The Milnor fibre is the singularity-theoretic explanation for the fact that
Brieskorn’s exotic spheres bound parallelizable manifolds. However, it does not yet explain how
these parallelizable manifolds can be constructed by plumbing. This requires a somewhat mo-
re complicated deformation, a so-called morsification. The idea dates back to the two volumes
Théorie of the fonctions algébriques de deux variables indépendantes by Picard-Simart published
in 1897 and 1906, and to the monograph L’analysis situs et la géométry algébrique by Lefschetz.
It was later developed into the local Picard–Lefschetz theory, to which Brieskorn contributed in
1970 in the appendix to [12].

There Brieskorn considers a deformation

fa(x) = f(x)�
nX

i=0

aixi ,

where a = (a0, . . . , an) is chosen to be sufficiently general. If µ = µ(f) denotes the “Milnor
number” of f , i.e. the vector space dimension of the Milnor algebra

C{x0, . . . , xn}/h
@f

@x0
, . . . ,

@f

@xn
i,

then, in the neighbourhood of 0 2 Cn+1, there are exactly µ points zr such that fa has an
ordinary double point in zr, i.e. has a singularity of type A1. A deformation with µ ordinary
double points near 0 is called a “morsification” of f , an idea that goes back to René Thom. The
map fa : Xa = f�1

a (S) \ B ! S is singular exactly in the points z1, . . . , zµ and outside the
fibers through these points a differentiable fiber bundle with fiber Xa

s = f�1
a (s), s 6= fa(zr),

diffeomorphic to the Milnor fibre Xs.
Brieskorn now considers Milnor’s construction for the ordinary double points zr of fa, i.e.

fr
a : f�1

a (Dr) \ Br ! Dr, where Br ⇢ B is a sufficiently small ball around zr of radius ⇢ and
Dr ⇢ S is a small disc of radius � << ⇢ around fa(zr). Then, for suitable coordinates, y0, . . . , yn
in neighbourhood of zr

fr
a (y0, . . . , yn) = fa(zr) + y20 + · · · y2n .

It follows that the Milnor fibre F r
a of fr

a has the n–dimensional sphere

Sn
r = {y|y real , y20 + · · ·+ y2n = ⇢}

as a deformation retract. Sn
r ⇢ F r

a defines a homology class dr in Hn(F r
a ,Z), r = 1, . . . , µ, and

these are the “vanishing cycles” already considered by Lefschetz, as they contract to the singular
point zr when ⇢ goes to 0. By choosing appropriate paths �r in D from a boundary point of Dr

to the non-critical value s, one can transport dr into the Milnor fibre Xa
s and gets a homology

class er in Hn(Xa
s ,Z). Brieskorn then shows

Hn(X
a
s ,Z) = Ze1 � · · ·� Zeµ.

This procedure provides the desired plumbing construction of the Milnor fibre for the ADE–
singularities as follows. By choosing an Ehresmann connection for the differentiable fiber bundle
Xa r [

r
f�1
a (fa(zr)) ! D r {fa(zr)|r = 1, . . . , µ} the vanishing cycles Sr

n themselves can be
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transported via �r to embedded n–spheres into the Milnor fiber Xa
s , which are also called vanis-

hing cycles there. These vanishing cycles have tubular neighbourhoods in the Milnor fiber that
are isomorphic to their tangent disc bundle. For the ADE–singularities, the vanishing cycles
can be chosen in such a way that the Milnor fiber can be realized directly with the plumbing
construction of these disc bundles as a parallelizable manifold.

However, Brieskorn’s main goal in the paper [12] was not to construct vanishing cycles by
means of a morsification, but to compute the algebraic monodromy of an isolated hypersurface
singularity f 2 C{x0, . . . , xn} with f:X ! S as at the beginning of this section. The geometric
monodromy is a diffeomorphism of the Milnor fiber Xs to itself given by lifting a single closed
path � around 0 in S with start and end point s to the total space of the fiber bundle

X 0 := X rX0 ! S r {0} =:S0 .

The geometric monodromy induces the integral monodromy Hn(Xs,Z)
⇠=�! Hn(Xs,Z) on the

middle cohomology group of the Milnor fibre, the local Picard–Lefschetz monodromy of f , who-
se characteristic polynomial �f largely determines, according to Milnor, the topology of the
boundary ⌃ of f .

Brieskorn gives in this paper an algebraic description of the complex local Picard–Lefschetz
monodromy

hf : Hn(Xs,C)
⇠=�! Hn(Xs,C)

and derives from that an algorithm for computing the characteristic polynomial �f .
Brieskorn uses holomorphic differential forms to compute the complex monodromy. First, the

cohomology groups Hp(Xs,C), s 2 S0, are the fibers of a holomorphic vector bundle whose sheaf
of holomorphic sections is canonically isomorphic to

Rnf⇤CX0 ⌦CS0 OS0 .

Here Rnf⇤CX0 is the n–th direct image sheaf of the constant sheaf CX0 . Since the cohomology of
the Stein manifold Xs can be calculated using holomorphic differential forms, Brieskorn considers
the complex of relative holomorphic differential forms of X over S,

⌦•
X/S = ⌦•

X/df ^ ⌦•�1X,

with the differential ⌦p
X/S ! ⌦p+1

X/S induced by the outer derivative on the complex ⌦•
X of

holomorphic differential forms on the manifold X. One now has a canonical isomorphism

Rnf⇤CX0 ⌦CS0 OS0 ⇠= Hn(f⇤⌦
•
X0/S0)

and the right-hand side, the n–th cohomology sheaf of the image sheaf complex f⇤⌦•
X0/S0 , has

with
Hn(X/S) := Hn(f⇤⌦

•
X/S)

a continuation to all of S. Brieskorn shows that Hn(X/S) is coherent on S and that the stalk
satisfies

Hn(X/S)0 = Hn(⌦•
X/S,0) =: H,

which depends only on the singularity of f in 0.
Hn(X/S) has as OS–sheaf the rank µ = µ(f) = dimC Hn(Xs,C), s 2 S0, and Brieskorn

conjectured that it is locally free, which was shortly thereafter proved by Marcos Sebastiani in
[50]. Brieskorn defines on H the (meromorphic) local Gauss–Manin connection by the formula

Of! =
d!

df
.



20 GERT-MARTIN GREUEL AND WALTER PURKERT

This means that for a representative e! 2 ⌦n
X,0 of ! we have an equation de! = df ^  where d!

df

denotes the class of  in ⌦n
X/S,0/d⌦

n�1
X/S,0. That this is well defined follows from the so–called

De Rham lemma, in principle a statement about the exactness of the Koszul complex for the
regular sequence @f

@x0
, . . . , @f

@xn
. For k with fk 2 h @f@x0

, . . . , @f
@xn

i we have fk d!
df 2 H and Brieskorn

shows:
Of is a singular (meromorphic) first–order differential operator on H whose monodromy (by

analytic continuation of a fundamental system of solutions along a closed path in S0) is canonical
isomorphic to the local Picard–Lefschetz monodromy.

In addition, Brieskorn proves that Of is “regular–singular”, i.e. it can be transformed by a
meromorphic transformation into a differential operator with a pole of 1st order. From this,
Brieskorn derives an algorithm for the computation of the characteristic polynomial �f of the
monodromy of Of .

Since �f is an integer polynomial, which is algebraic in a certain sense (as Brieskorn shows),
it can be deduced from the regularity of Of together with the solution of the 7th Hilbert problem
by Gelfand and Schneider (1934), that the eigenvalues of the monodromy are roots of unity e2⇡iµj

with rational µj . The statement of this theorem is also referred to as “monodromy theorem” that
had already been proved by Pierre Deligne in 1970 for global algebraic morphisms by other
methods. Brieskorn’s proof is considered particularly elegant.

The Manuscripta paper on the local Gauss–Manin connection led to significant developments,
among others by Brieskorn’s students Kyoji Saito, John Peter Scherk, Wolfgang Ebeling, Claus
Hertling and the author of these lines. I myself was a student in Götingen and Brieskorn’s first
diploma student when he finished the paper. I was given the task to generalize the results to
complete intersections. The main difficulty was a generalization of the lemma of De Rham. With
the help of cohomological methods, which I used at the suggestion of Jean–Pierre Serre during
his visit to Göttingen, the proof was successful and was a main result of my diploma thesis,
which was completed in 1971. Later, the “generalized De Rham–Lemma” was further generalized
by Kyoji Saito as well as Wolfgang Ebeling and Sabir Gusein–Zade. The local Gauss–Manin
connection, along with Malgrange’s index theorem for regular–singular differential operators,
was also the key to the proof of an algebraic formula for the Milnor number of isolated complete
intersection singularities in [35] (announced in the joint work [17]), which was independently
derived by Lê Dũng Tráng using topological methods.

Besides the module H = Hn(⌦•
X/S,0) Brieskorn introduced the two modules

H 0 : = df ^ ⌦n
X,0/df ^ d⌦n�1

X,0 and
H 00 : = ⌦n+1

X,0 /df ^ d⌦n�1
X,0 ,

which are also free OS,0 modules of rank µ(f), and the Gauss–Manin connection is then identified
with a map Of :H 0 ! H 00, [df ^ !] ! [d!]. The meaning of this ad hoc definition was not clear
at first, but it later turned out to be fundamental. H 0 and H 00 are today referred to as the
“Brieskorn–lattice” and especially H 00 plays an important role in the study of the mixed Hodge
structure of isolated singularities and in Kyoji Saito’s “higher–residue pairings”. In addition to
the already mentioned students of Brieskorn important works in this context are due to Morihiko
Saito, Daniel Barlet, Claude Sabbah, Mathias Schulze and Christian Sevenheck, to name but a
few.

Simple singularities and simple Lie groups

Brieskorn’s work on simultaneous resolution of simple singularities led to one of his most im-
portant findings, the relationship between ADE singularities and simple Lie groups. He reported



LIFE AND WORK OF EGBERT BRIESKORN (1936 – 2013) 21

on this discovery to the International Congress of Mathematicians in Nice in 1970 and published
the result in the short note [13].

Alexander Grothendieck had read Brieskorn’s work on simultaneous resolution and was led to
a conjecture which he told Brieskorn. While Brieskorn had studied 1–parametric deformations
of the ADE singularities given by the defining polynomial, Grothendieck proposed to look at
the semiuniversal deformation of these singularities. He suggested that this is determined by
the adjoint quotient map of the simple Lie algebra of type A, D or E and that a simultaneous
resolution of the semiuniversal deformation of the singularities of the corresponding type is
given with the hep of the Springer–resolution of the nilpotent variety. Grothendieck himself had
studied simultaneous resolutions of singularities of adjoint quotient maps and had come across
the suspected connection through Brieskorn’s work.

Let G be a simple complex (algebraic) Lie group, i.e. a complex algebraic manifold with regular
group action that is simple as a group. If G is simply connected, then G is uniquely determined
by its Lie algebra g up to isomorphism. The simple Lie groups correspond to the simple Lie
algebras and these are classified by their fundamental root system. The root systems, in turn,
are described by their “Dynkin–diagram” (also Coxeter–Dynkin–Witt diagram) and determine
G up to isomorphism. The classification of all Dynkin–diagrams resulting from the simple Lie
groups provides four infinite series Ak(k � 1), Bk(k � 2), Ck(k � 3), Dk(g � 4) and the five
exceptional cases E6, E7, E8, F4 and G2. The Dynkin–diagrams of type Ak, Dk, E6, E7, E8 are
characterized by the fact that they are homogeneous, i.e. their root systems have equal roots.
These diagrams have the following shape (ADE graphs):

Ak : Dk : (k vertices)

E6 : E7 : E8 :
The name ADE singularity for the quotient singularities of the finite subgroups of SL(2,C)

comes from the relation to the simple Lie groups of type Ak, Dk or Ek. At the ICM 1970 in
Nice, Brieskorn presented the construction of the ADE singularities and their seminuniversal
deformation directly with the help of the corresponding Lie group as follows.

Considering the operation of the simple complex Lie group G on itself by conjugation, we call
x 2 G “regular” if the orbit of x, that is its conjugate class in G, has the maximum dimension.
If d is this dimension, then the next smaller orbit dimension is d� 2 and elements of this orbit
dimension are called “subregular”. G has exactly one regular orbit, containing 1 2 G in its
closure, and the closure of this orbit is called Uni(G), since it is the variety of the unipotent
elements of the group. The complement of the regular orbit in Uni(G) has codimension 2 and
is itself the closure of exactly one subregular orbit. If x 2 Uni(G) is an arbitrary element, then
consider a small slice X ⇢ G through x transversal to the orbit of X and a regular projection
⇡ : (G, x) ! (X,x) of complex space germs. The space germ (X,x) has in (G, x) complementary
dimension to the orbit of x and is smooth if x is a regular element. Only slices through non-
regular orbits produce singularities. If x is subregular, X \ Uni(G) has dimension two and an
isolated singularity in x.

Let x = xsxn be the Jordan–decomposition of x 2 G into a semisimple and unipotent part.
Assigning to x the conjugate class of xs yields a morphism � : G ! T/W , where T is a maximal
torus in G and W is the Weyl group. � is the adjoint quotient map. Each fiber of � is the union
of finitely many conjugation classes, T/W is a k–dimensional complex manifold (k = number
of vertices of the Dynkin diagram) and � maps Uni(G) to 1 2 T/W . With these notations
Brieskorn proved the following in [13].
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Let G be a simply connected complex Lie group of the type Ak, Dk, E6, E7, E8 and x 2 G a
subregular unipotent element. Then:

(1) (X \ Uni (G), x) is isomorphic to an ADE singularity of the same type as G.
(2) The adjoint quotient map germ in x factorises as  � ⇡,

� : (G, x)
⇡�! (X,x)

 �! (T/W, 1),

where  is the semi–universal deformation of the corresponding quotient singularity.
(3) Let

� //

✏✏

G

✏✏
T // T/W

be the simultaneous resolution of the adjoint quotient map of Grothendieck, with � =
{(x,B)|x 2 G,B Borel–subgroup containing x} and Y the preimage of the transversal
slice X in �. Then

Y //

✏✏

X

✏✏
T // T/W

is a simultaneous resolution of the semiuniversal deformation of the quotient singularity
of type Ak, Dk, Ek.

Brieskorn’s proof makes essential use of the fact that � is given by weighted-homogeneous
polynomials and that the ADE singularities are characterized by their weights. Incidentally,
the Weyl group W is equal to the monodromy group of the singularity. The proof sketched
by Brieskorn in [13] was completely worked out by Peter Slodowy. Slodowy later extended the
construction to all simple Lie groups, including the inhomogeneous root systems Bk, Ck, F4 and
G2, even over fields of arbitrary characteristic [51].

The relationship between Lie groups and singularities shown by Brieskorn led to further inve-
stigations. An entirely different construction of the ADE singularities with the help of the simple
algebraic groups of type A,D and E is due to Friedrich Knop [44], although the singularities
there are realized in different dimensions. A clarification of the occurrence of the polyhedral
groups in Brieskorn’s construction, and thus a direct relationship between the simple Lie groups
and the finite Klein groups, was achieved by Peter Kronheimer [46], using differential geometric
methods. Brieskorn had still written at the end of [13]:

‘Thus we see that there is a relation between exotic spheres, the icosahedron and E8. But I
still do not see why the regular polyhedra come in.’

Slodowy also investigated more complicated singularities and associated them with Kac–
Moody Lie algebras. Shortly before his death in 2002, he succeeded in constructing all the
simply elliptic singularities with the aid of the adjoint quotient map of the infinite–dimensional
loop group. The work was completed by Stefan Helmke in [39]. Slodowy had searched for this
result for many years and he reported this to Brieskorn, a few days before his death when he
was already badly marked by his illness, but still full of passion and enthusiasm. Brieskorn was
deeply touched that the continuation of his ideas could bring consolation and joy even in the
hardest hour.
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Generalized braid groups, Milnor lattice and Lorentzian space–forms

The construction of the semi-universal deformation of an ADE singularity with the help of the
adjoint operation of the corresponding simple Lie group led Brieskorn to investigate operations
of generalized braid groups and thus to turn to the investigation of discrete structures of isolated
singularities.

Let W be a finite reflection group operating linearly on the real finite–dimensional Euclidean
vector space E0 and let D0 ⇢ E0 be the union of the reflection hyperplanes H 0

s, where s is an
element of the set of the reflections ⌃ in W . Brieskorn considers the complexification E of E0

resp. Hs of H 0
s and the union D ⇢ E of the Hs, s 2 ⌃. The operation of W on E0 extends

canonically to E and maps Ereg = E rD to itself. Ereg/W is the space of regular orbits of the
finite complex reflection group W , whose fundamental group was calculated by Brieskorn in [14]
(see also cite EB1973). He shows:

The fundamental group ⇧1(Ereg/W ) has a presentation with generators gs, s 2 ⌃, and relati-
ons

gsgtgs · · · = gtgsgt · · · ,
with mst factors on both sides.

Here (mst) is the Coxeter–matrix of W with mst = order of st, and the gs are given by an
explicit geometric construction.

For the symmetric group W=Sn (= An�1), the corresponding fundamental group is the braid
group Bn introduced in 1925 by Emil Artin, the father of Michael Artin, as proved by Fox and
Neuwirth in 1962 and independently by Arnold in 1968. The finite irreducible reflection groups
are classified and fall into the types Ak, Bk, Dk, E6, E7, E8, F4, G2, H3, H4 and I2(m),m = 5 or
m � 7. The fundamental groups of the regular orbits of these complex reflection groups are
therefore generalizations of the braid groups.

The connection with singularities comes from the fact that for W of type Ak, Dk, E6, E7, E8

the space Ereg/W is the complement of the discriminant in the base space of the semiunversal
deformation of the simple singularity of the same type. This follows from Brieskorn’s construction
in [13].

These generalized braid groups were baptized “Artin groups” by Brieskorn and Kyoji Saito in
honor of Artin in [15], and they examined them from a combinatorial point of view. Among other
things, they solve the word and conjugation problems for these groups and determine the center.
These results were obtained at about the same time by Pierre Deligne in [28]. Deligne proved
that the spaces Ereg/W considered above are Eilenberg–MacLane spaces, as was conjectured by
Brieskorn in [14].

In the works mentioned below, Brieskorn studies discrete invariants of special classes of singu-
larities. Let (X0, x) ⇢ (Cn+1, x) be an isolated hypersurface singularity and F :X ! S, F (x) = 0,
a suitable representative of the semiuniversal deformation of (X0, x). If D is the discriminant of
F , that is, the set of points s 2 S for which the fiber is not smooth, then, with S0 = S rD, the
restriction F :X 0 = F�1(S0) ! S0 is a differentiable fiber bundle with fiber Xs, diffeomorphic
to the Milnor fiber of (X0, x). Since Xs has the homotopy type of a bouquet of n–dimensional
spheres, the middle homology group Hn(Xs,Z) is free of rank µ, the Milnor number of (X0, x).
If n is even, Hn(Xs,Z) carries an integral symmetric quadratic form, the intersection form <,>,
and the integer lattice

L = Hn(Xs,Z)
is called the “Milnor lattice” of the singularity.

If one selects a generic complex line near 0 in the affine space containing S, then the
intersection with S is a small disc � intersecting the discriminant D in µ different points
c1, . . . , cµ. The restriction of F over � is a morsification of (X0, x), as described above. For
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s 2 �0 = � r {c1, . . . , cµ} and a choice of paths �i in �0 from s 2 �0 to points near the
ci, i = 1, . . . , µ, one obtains so–called “vanishing cycles” ei 2 Hn(Xs,Z) with hei, eii = �2. The
set of vanishing cycles is denoted �⇤ ⇢ L.

By a proper choice of the paths �i the e1, . . . , eµ form a basis of the lattice L, which is then
called a “distinguished basis”. The set of all distinguished bases of L is denoted B⇤.

For every basis B 2 B⇤, the matrix of scalar products of the basis elements describes the
bilinear form on L, which is characterized by a graph DB . The vertices {1, . . . , µ} of DB corre-
spond to the basis elements e1, . . . , eµ and two vertices i, j are connected by |hei, eji| edges, each
with the sign ±1 of hei, eji 2 Z. DB is called (Coxeter–) Dynkin–diagram of B and the set of all
Dynkin–diagrams is denoted by D⇤.

On B⇤ and thus on D⇤ exists a natural operation of the classical braid group Bµ with µ strands,
which can be described by elementary operations at the level of the paths. Brieskorn points out
at various places that understanding this operation should be essential for an understanding of
the semiuniversal deformation.

Another invariant is the “monodromy group” of (X0, x). By definition, this is the image under
the canonical homomorphism of the fundamental group of the complement of the discriminant
in the automorphism group of the lattice L. It is already generated by the automorphisms that
belong to a distinguished basis.

An overview of these invariants and the relationships between them is given by Brieskorn in
the survey article [21], and he stresses their importance for the understanding of the geometry of
the semiuniversal deformation. Important work on these invariants are the fundamental works
of Andrei Gabrielov [33] and Sabir Gusein–Zade [38] as well as the lecture notes of Wolfgang
Ebeling [31].

A first step is to understand the deformation relations between singularities of a fixed modality
class, for, if one singularity deforms into another, this induces an inclusion of the corresponding
Milnor lattices. The classification of isolated hypersurface singularities in terms of their modality
(i.e., the number of independent parameters (moduli) of isomorphism classes in a neighbourhood
of the origin of the semiuniversal deformation) was initiated by V.I. Arnold in [1] and is one of
the starting points of singularity theory with far–reaching results. The adjacencies (deformation
relations) between the ADE singularities were already determined by Arnold. In [19] Brieskorn
calculates all possible adjacencies within Arnold’s list of unimodular singularities, which is the
next more complicated class in Arnold’s hierarchy, after the ADE singularities. This work is
refined in [22], where Brieskorn gives a very detailed description of the Milnor lattice of the 14
exceptional unimodular singularities.

The deformation relations within the unimodular singularities have been linked by Brieskorn
with a theory that seems to be far away from the theory of singularities, namely the theory
of partial compactifications of bounded symmetric domains. If F(L) denotes the isotropy–flag–
complex of L, a building in the sense of Tits, then the monodromy group � operates on F(L)
and the 1–dimensional simplicial complex F(L)/� is finite. For the simplest exceptional singu-
larities E12, Z11, Q10, Brieskorn proves that the Baily–Borel compactification of F(L)/� can be
identified with the C⇤–quotient of the punctured negatively graded part of the base space of
the semiuniversal deformation. Independent of Brieskorn, Eduard Looijenga proved these results
for all triangular singularities Tp,q,r in [47] and later, in a more general context, he constructed
important new compactifications of locally symmetric varieties.

In the work [23] Brieskorn gives an overview of the operation of the braid group on the
set B⇤ of distinguished bases of an isolated singularity. He also introduces the concept of an
automorphic set, which unifies many aspects of the braid group operation, and which was later
taken up and generalized by several authors. The following quote from the introduction shows
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again Brieskorn’s joy in the unity of mathematics, which is expressed in the interplay of many
different areas of mathematics.

“The beauty of braids is that they make ties between so many different parts of mathematics,
combinatorial theory, number theory, group theory, algebra, topology, geometry and analysis, and,
last but not least, singularities.”

This brings me almost to the end of the review of Brieskorn’s mathematical work. Still to
mention is the textbook Plane algebraic curves written together with Horst Knörrer, whose latest
reprint appeared in English translation in 2012. And of course his two textbooks Lineare Algebra
und Analytische Geometrie I, II 2 (Linear Algebra and Analytic Geometry I, II), which are also
worth reading because of the historical remarks by Erhard Scholz.

There is also a mathematical work together with his students Anna Pratoussevitch and Frank
Rothenhäusler from the year 2003 [26], which I would like to mention. The origins of this work
date back to at least 1992, when Brieskorn’s student Thomas Fischer discovered a polyhedron
that in a sense generalizes the classical dodecahedron. Brieskorn gave a report on this discovery
in 1996 in Oberwolfach [24]. The polyhedron has a very similar combinatorial structure to the
dodecahedron, but with an axis of symmetry of order 7 instead of 5. Let � be a discrete subgroup
of the Lie group gSU(1, 1), which operates by left translations. The quotient �\gSU(1, 1) is a
“Lorentzian space–form” and is described by a fundamental domain F for �. For co-compact �,
according to results of Dolgachev, �\gSU(1, 1) is the boundary of a quasi-homogeneous surface
singularity. The quasi-homogenous singularities of Arnold’s series Ek, Zk and Qk are of this type.

In this work, the authors describe the fundamental domains for the corresponding groups �
as polyhedra with total geodesic faces in the 3–dimensional Lorentz space, each series showing
a regular characteristic combinatorial pattern associated with the classical polyhedra.

E12–polyhedron
Brieskorn describes in the movie Science Lives: Egbert Brieskorn, see [27], the great joy he

felt when Fischer discovered the E12 polyhedron and as Pratoussevitch could expand this to the
infinite series Ek, Zk and Qk. In the sequence “Melencolia” of the film he explains that the correct
beginning of this infinite series should be the polyhedron in Dürer’s famous etching Melencolia
I. In the same sequence of the movie, he also discusses the importance of intuition, especially in
teaching students, in contrast to a purely analytical and structural approach. Fischer’s discovery
pleased Brieskorn so much that he himself calculated and drew a graphic representation of it
and called it “Opus 2”. He commissioned an artist to make a brass 3D–sculpture of the E12

polyhedron, which he donated to his teacher Friedrich Hirzebruch on his 75th birthday. As far as

2A third volume Linear Algebra and Analytical Geometry III was only partially completed by Brieskorn.
These parts with valuable historical information and cross–links are being re-typed and will be freely available
at https://imaginary.org/ soon.

https://imaginary.org/
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I know, he made only two or three copies of which he gave me a copy, which made me extremely
happy. A picture of this specimen, which closes the circle from the beginnings of the Platonic
solids and quotient singularities to the Lorentzian space–forms, may be a fitting conclusion to
this review of Brieskorn’s mathematical work.

Everyone who knew Egbert Brieskorn valued his extensive mathematical knowledge, his im-
mensely broad general education, his keen intelligence, his straightforwardness and absolute
intellectual honesty, his kind attention and helpfulness, and his prudent advice. And everyone
who got to know him better knows that he was a kind–hearted person. The history of science
will preserve his work and his name, and those who know and appreciate him will not forget
him.

Habilitations

Brieskorn supervised 24 Ph.D. dissertations, which can be found in the “Mathematics Genea-
logy Project”. Of his doctoral students, seven have completed their habilitation:

1975: HAMM, HELMUT AREND: Zur analytischen und algebraischen Beschreibung der
Picard-Lefschetz-Monodromie. Göttingen.

1980: GREUEL, GERT-MARTIN: Kohomologische Methoden in der Theorie isolierter Sin-
gularitäten. Bonn.

1984: SLODOWY, PETER: Singularitäten, Kac-Moody-Lie-Algebren. assoziierte Gruppen
und Verallgemeinerungen. Bonn.

1985: KNÖRRER, HORST: Geometrische Aspekte integrabler Hamiltonscher Systeme. Bonn.
1986: EBELING, WOLFGANG: Die Monodromiegruppen der isolierten Singularitäten voll-

ständiger Durchschnitte.Bonn.
1986: SCHOLZ, ERHARD: Symmetrie – Gruppe – Dualität. Studien zur Beziehung zwischen

theoretischer Mathematik und Anwendungen in Kristallographie und Baustatik im 19. Jahrhun-
dert. Wuppertal.

2000: HERTLING, CLAUS: Frobenius-Mannigfaltigkeiten, Gauß-Manin- Zusammenhänge
und Modulräume von Hyperflächensingularitäten. Bonn.
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SINGULARITIES AND POLYHEDRA1

EGBERT BRIESKORN

I reported about work of my students Thomas Fischer, Alexandra Kaess, Ute Neuschäfer,
Frank Rothenhäusler and Stefan Scheidt. This work describes the neighbourhood boundaries of
quasi–homogeneous surface singularities in a new way. It is known that these neighbourhood
boundaries are quotients G/� of a 3–dimensional Lie group G and a discrete subgroup �. For
example, for the quotient singularities C2

/� the group G is Spin(3)=S
3, the group of unit

quaternions, and � could for example be one of the three binary polyhedral groups (binary
tetrahedral T, binary octahedral O, binary icosahedral I). This gives the three singularities
E6, E7, E8. For the next set of examples, the simply–elliptic singularities eE6,

eE7,
eE8, the group

G is the Heisenberg group, and � is a congruence subgroup of the lattice of its integral matrices.
In most cases however, G is SU(1, 1) or some covering of it, and � comes from a Fuchsian group
� ⇢ PSU(1, 1) acting on the hyperbolic plane H = {x 2 C| |z| < 1}. All of this is well known.

Now I describe a very original construction discovered by Thomas Fischer in his 1992 PhD–
thesis:

Let � ⇢ PSU(1, 1) be discrete with compact quotient H/�. Assume that � has at least
one point in H with nontrivial isotropy subgroup. Choose such a point o 2 H. Let p be
the order of its isotropy group {� 2 � | �(o) = o}. Let � ⇢ SU(1, 1) be the inverse im-
age of �. For many singularities, the neighbourhood boundary is of the form SU(1, 1)/�
with a suitable �. For example, for the 14 quasihomogeneous exceptional 1–modular singu-
larities E12, E13, E14, Z11, Z12, Z13, Q10, Q11, Q12,W12,W13, S11, U12 the group � is the group of
orientation–preserving automorphisms of H in the group

P
(p, q, r) generated by the reflections

in the sides of a hyperbolic triangle with angles ⇡/p,⇡/q,⇡/r. In this case, the choice of o 2 H
amounts to choosing one of the integers in the so–called Dolgachev triple (p, q, r). We shall
indicate this by underlining this number, e.g. (2, 3, 7). Fischer’s construction:

SU(1, 1) =

⇢✓
a b

b a

◆ ��aa� bb = 1

�
=
�
x 2 R4

�� x2
0 + x

2
1 � x

2
3 � x

2
4 = 1

 
=: S

is a 3–dimensional pseudosphere with Minkowski–metric with signature (+,�,�). Up to a
factor �1/8, this agrees with the Killing metric. The construction will be done in R4 with
hx, xi = x

2
0 + x

2
1 � x

2
3 � x

2
4. Let C

+ be the positive cone C
+ = {x 2 R4 |hx, xi > 0} and

⇡ : C+ ! S be the retraction by central projection ⇡(x) := x/

p
hx, xi. For any g 2 S, let

Hg be the halfspace Hg := {x 2 R4|hx, gi  1}. Its boundary @Hg is the affine tangent space
@Hg = Tg(S). For any z 2 �(o) in the chosen special orbit �(o) ⇢ H, let Lz be the coset
Lz = {� 2 � | �(o) = z}. It has the cardinality 2p. Let Qz 2 R4 be defined by

Qz :=
\

g2Lz

Hg .

1
Tagungsbericht 27/1996, Singularitäten 14.07.-20.07.1996, Mathematisches Forschungsinstitut Oberwolfach

(MFO)..
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Qz is a 4–dimensional prism, the product of R2 with a plane 2p–gon. Consider

P :=
[

z2�(o)

Qz

and @+P := @P \ C
+.

@+P is the support of a 3–dimensional polyhedral complex and ⇡ : @+P ! S is a homeomor-
phism, which transfers the polyhedral structure to S. The following definition and theorem of
Fischer analyzes this structure:

Definition: Fg = C
+ \ @Hg \ (Qg(o) r

S
z2�(o)
z 6=g(o)

Qz).

Theorem:
(1) Fg is a compact polyhedron in the Minkowski–3–space @Hg

(2) {Fg}g2� is the set of 3–dimensional faces of a 3–dimensional polyhedral complex with
support @+P .

(3) � operates simply transitively on {Fg|g 2 �}.
(4) {⇡(Fg)} is a tesselation of S by totally geodesic polyhedra in this Minkowski–

pseudosphere. � acts simply transitively on the set of these ⇡(Fg), so each of them
can serve as a fundamental domain.

(5) Hence S/� is obtained from FG by pairing faces and identifying them in a specified way
given by � and the construction.

Fischer calculated the examples (2, 3, 7), (2, 3, 8), (2, 3, 9). These fit in very well with the
classical cases E6 = (2, 3, 3), E7 = (2, 3, 4) and E8 = (2, 3, 5). I myself added an analysis of the
cases eE6,

eE7,
eE8. The following pictures show the resulting 9 fundamental domains:

The other four students worked out all 14 exceptional (p, q, , r) with the exception of r = 2.
As a result, a pattern seems to emerge. The following shows a sample of their pictures:
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I presented some conjectures on the series–patterns. Work in progress by Ludwig Balke may
lead to a new and original way of looking at symmetry–breaking.
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The following pages show the handwritten notes of Brieskorn from the ”Vortragsbuch” of the
singularities workshop 1996 in Oberwolfach.
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SINGULARITIES AND EXOTIC SPHERES1

FRIEDRICH HIRZEBRUCH

In: Conference Report 27/1996, Singularities 14.07.-20.07.1996, Mathematical Research In-

stitute Oberwolfach, ”Brieskorn–Day”. 16.07.1996, Lecture on the occasion of the 60th birthday

of Egbert Brieskorn, short version.

Report on the academic year 1965/66. Brieskorn is C.L.E. Moore Instructor at M.I.T., Jänich

is at Cornell University, then at IAS in Princeton. I am in Bonn. There is an extensive correspon-

dence. From 30.09.–07.10.1965 I’m at a conference in Rome (report on Brieskorn’s simultaneous

resolutions). Brieskorn’s letter from 28.09.1965 reaches me there: "I have made the somewhat

confusing discovery in recent days that there may be 3 - dimensional normal singularities that

are topologically trivial. I discussed the example with Mumford this afternoon, and he had not

found a mistake by this evening: here it is: X = {x 2 C4 | x2
1 + x

2
2 + x

2
3 + x

3
4 = 0}.”. Proof by

resolution and calculation of all invariants of the neighbourhood boundary. In the Proc. Nat.

Aca. Sci. USA appears the more general example x
2
1 + · · ·+ x

2
k + x

3
k+1 = 0 (k odd).

Report on the extensive correspondence that follows, about Brieskorn’s discovery of the work

of Pham, which allows him to prove Milnor’s assertion in a letter to Nash - Milnor to Nash on

13.04.1966: ”The Brieskorn example is fascinating. After starting at if for a while, I think I know

which manifolds of this type are spheres but the statement is complicated and a proof does not

exist. Let
P

(p1, . . . , pn) be the locus z
p1
1 + · · ·+ z

pn
n = 0, |z1|2 + · · ·+ |zn|2 = 1 where pj � 2 ...”

Then Milnor gives the condition a) or b) for the exponents. – Gradually it becomes clear to all

parties that for the determination of the differentiable structure the calculation of the signature

of z
p1
1 + · · ·+ z

pn
n = 1(n � 3, n odd) is required. There are several letters from Brieskorn to me

and vice versa. Brieskorn writes his paper for the Inventiones Vol. 2 (1966). In this context,

he also studied (2, 3, 5, 30), 30 = Coxeter number of E8, and he finally accomplished the small

resolutions of this singularity in curves according to the E8–tree and thus the simultaneous

resolution of the surface families x
2
1 + x

3
2 + x

5
3 + t

30 = 0 (parameter t) and the remaining case of

his paper in Math. Ann. of 1966 (about which I reported in Rome). Understanding was achieved

within the framework of the root systems and the Weyl group (Brieskorn’s letter to Mrs. Tjurina

dated 13.09.1966) – Jänich had studied O(n)–manifolds W
2n�1(d) (two orbit types with isotropy

groups O(n�2), O(n�1) and orbit space D
2
, S

i
), and classified them as well as the knot manifolds

M
2n+1(k) on which O(n) operates (three orbit types O(n� 2), O(n� 1), O(n) with orbit space

D
4
, S

3�k, k (k the knot)). I bring the two located in the USA together by a report from March

1966, e.g. W
2n�1(d) is

P
(2, . . . , 2, d) and M

2n+1
(torus knot 3, 5) is

P
(2, . . . , 2, 3, 5). Brieskorn

writes on 29.03.1966: "Klaus Jänich and I had not noticed anything about this connection of our

work, and I was completely overjoyed, how you brought things together."

I had the same joy here in Oberwolfach, to be able to tell about it.

1Translated from the german article in: Tagungsbericht 27/1996, Singularitäten 14.07.-20.07.1996, Mathema-
tisches Forschungsinstitut Oberwolfach.
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ON THE b-EXPONENTS OF GENERIC ISOLATED PLANE CURVE

SINGULARITIES

E. ARTAL BARTOLO1, PI. CASSOU-NOGUÈS2, I. LUENGO3, AND A. MELLE-HERNÁNDEZ3

Dedicated to the memory of Egbert Brieskorn with great admiration

Abstract. In 1982, Tamaki Yano proposed a conjecture predicting how is the set of b-
exponents of an irreducible plane curve singularity germ which is generic in its equisingularity
class. In 1986, Pi. Cassou-Noguès proved the conjecture for the one Puiseux pair case in [9].
In [1] the authors proved the conjecture for two Puiseux pairs germs whose complex algebraic
monodromy has distinct eigenvalues. A natural problem induced by Yano’s conjecture is, for
a generic equisingular deformation of an isolated plane curve singularity germ to study how
the set of b-exponents depends on the topology of the singularity. The natural generalization
suggested by Yano’s approach holds in suitable examples (for the case of isolated singularites
which are Newton non-degenerated, commode and whose set of spectral numbers are all dis-
tincts). Morevover we show with an example that this natural generalization is not correct.
We restrict to germs whose complex algebraic monodromy has distinct eigenvalues such that
the embedded resolution graph has vertices of valency at most 3 and we discuss some examples
with multiple eigenvalues.

Introduction

Let f : (Cn
, 0) ! (C, 0) be a germ of a complex analytic function whose zero locus

(f�1(0), 0) ⇢ (Cn
, 0)

defines an isolated hypersurface singularity germ, that is the Minor number of f at 0,

µ(f, 0) := dimC
C{z1, . . . , zn}⇣
@f
@z1

, . . . ,
@f
@zn

⌘

is finite. A Milnor fibration was constructed in [19] as follows. Set B" = {z 2 Cn : |z| < ✏} and
S✏ = {z 2 Cn : |z| = ✏}, one can choose ✏0 such that for all 0 < ✏  ✏0, f�1(0) is transverse to S✏.

For 0 < ⌘ ⌧ ✏0 and D⌘ = {t 2 C : |t| < ⌘}, let X(t) = f
�1(t)\B✏0/2 and X = f

�1(D⌘)\B✏0/2.
By Milnor, for such suitable ✏ and ⌘, the mapping X \ f

�1(0) ! D⌘ \ {0} is a C
1-locally trivial

fibration whose general fibre Ff,0, called Milnor fibre, has the homotopy type of a bouquet of
exactly µ(f, 0) of (n� 1)-dimensional spheres.

The geometric monodromy hFf,0 : Ff,0 ! Ff,0 of the Milnor fibration is the monodromy trans-
formation of the Milnor fibration over the loop c exp(2⇡t), t 2 [0, 1] and c small enough. The geo-
metric monodromy induces the complex algebraic monodromy h

a,j : Hj(Ff,0,C) ! H
j(Ff,0,C)

2010 Mathematics Subject Classification. Primary: 14F10, 32S40; Secondary: 32S05, 32A30.
Key words and phrases. Bernstein-Sato polynomial, b-exponents, Brieskorn lattice, improper integrals.
1Partially supported by the grant MTM2016-76868-C2-2-P and
Grupo “Álgebra y Geometŕıa” of Gobierno de Aragón/Fondo Social Europeo.

2Partially supported by MTM2016-76868-C2-1-P and MTM2016-76868-C2-2-P.
3Partially supported by the grant MTM2016-76868-C2-1-P and Grupo Singular UCM.
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whose eigenvalues are roots of unity. Since the Milnor fibre is a connected bouquet of (n � 1)-
spheres, the only interesting algebraic monodromy is h

a,n�1 : Hn�1(Ff,0,C) ! H
n�1(Ff,0,C),

where dimC H
n�1(Ff,0,C) = µ(f, 0).

Let O be the ring of germs of holomorphic functions on (Cn
, 0), let D be the ring of germs of

holomorphic di↵erential operators of finite order with coe�cients in O. Let s be an indeterminate
commuting with the elements of D and set D[s] = D ⌦C C[s].

Given a holomorphic germ f 2 O, one considers O
h
1
f , s

i
·f

s as a free O
h
1
f , s

i
-module of rank

1 with the natural D[s]-module structure. Then, there exits a non-zero polynomial B(s) 2 C[s]
and some di↵erential operator P = P (x, @

@x , s) 2 D[s], holomorphic in x1, . . . , xn and polynomial

in @
@x1

, . . . ,
@

@xn
, which satisfy the following functional equation in O

h
1
f , s

i
f
s:

(1) P (s, x,D) · f(x)s+1 = B(s) · f(x)s.

The monic generator bf,0(s) of the ideal of such polynomials B(s) is called the Bernstein-Sato
polynomial (or b-function or Bernstein polynomial) of f at 0. The same result holds if we replace
O by the ring of polynomials in a field K of zero characteristic with the obvious corrections, see
e.g. [12, Section 10, Theorem 3.3].

This result was first obtained for f polynomial by Bernstein in [3] and in general by Björk [4].
One can prove that bf,0(s) is divisible by s+1, and we also consider the reduced Bernstein-Sato
polynomial

b̃f,0(s) :=
bf,0(s)

s+ 1
.

In the case where f defines an isolated singularity, one can consider the nowadays called
Brieskorn lattice H

00

0 := ⌦n
/df ^ d⌦n�2 introduced by Brieskorn in [8], and its saturation

H̃
00

0 =
X

k�0

(@tt)
k
H

00

0 .

Malgrange [18] showed that the reduced Bernstein polynomial b̃f,0(s) is the minimal polynomial

of the endomorphism �@tt on the vector space F := H̃
00

0 /@
�1
t H̃

00

0 , whose dimension equals the
Milnor number µ(f, 0) of f at 0. Following Malgrange [18], the set of b-exponents are the µ

roots {�̃1, . . . , �̃µ} of the characteristic polynomial of the endomorphism �@tt. Recall also that
exp(�2i⇡@tt) can be identified with the (complex) algebraic monodromy of the corresponding
Milnor fibre Ff,0 of the singularity at the origin.

Kashiwara [15] expressed these ideas using di↵erential operators and considered

M := D[s]fs
/D[s]fs+1

,

where s defines an endomorphism of D(s)fs by multiplication. This morphism keeps invari-
ant M̃ := (s + 1)M and defines a linear endomorphism of (⌦n

⌦D M̃)0 which is naturally
identified with F and under this identification �@tt becomes the endomorphism defined by the
multiplication by s.

In [18], Malgrange proved that the set Rf,0 of roots of the Bernstein-Sato polynomial is
contained in Q<0, see also Kashiwara [15], who also restricts the set of candidate roots. The
number �↵f,0 := maxRf,0 is the opposite of the log canonical threshold of the singularity and
Saito [21, Theorem 0.4] proved that

(2) Rf,0 ⇢ [↵f,0 � n,�↵f,0].

Also Saito in [20] showed that the local moduli of µ-constant deformation is determined by the
Brieskorn lattice if the µ-constant stratum is smooth, as in the case of germs of plane curves
where he gave in [20, p. 30] a more simple formula describing the reduced Bernstein-Sato. There
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are many papers devoted to study Bernstein-Sato polynomial but it would be worthwhile to
refer to the existence of a relative Bernstein-Sato polynomial in [5], by Briançon et al., and for
results on the computation of the roots of Bernstein-Sato polynomial for functions with isolated
singularity, even if the methods used in [6] are di↵erent. In [7], Briançon et al. gave a multiple of
the Bernstein-Sato polynomial for any two variables function with isolated singularities. Some
general properties of µ-constant deformations are also given by Varchenko in [24].

There is another set which is important too, the set of exponents of the monodromy (or
spectral numbers, up to the shift by one, in the terminology of Varchenko [25]). This notion was
first introduced by Steenbrink [22].

Let f : (Cn
, 0) �! (C, 0) be a germ of a holomorphic function with isolated singularity. In

[22] Steenbrink constructed a mixed Hodge structure on H
n�1(Ff,0,C). Let

H
n�1(Ff,0,C)� = ker(Ts � � : Hn�1(Ff,0,C) �! H

n�1(Ff,0,C));
where Tu, Ts are, respectively, the unipotent and semi-simple factors of the Jordan decomposition
of the monodromy h

n�1.
The set Spec(f) of spectral numbers are µ rational numbers

0 < ↵1  ↵2  · · ·  ↵µ < n

which are defined by the following condition:

#{j : exp(�2⇡i↵j) = �, b↵jc = n� p� 1} = dimC GrpF H
n�1(Ff,0,C)�, � 6= 1

#{j : ↵j = n� p} = dimC Gr
p
FH

n�1(Ff,0,C)1.
The set Spec(f) of spectral numbers is symmetric, that is ↵i + ↵µ�(i�1) = n. It is known that
this set is constant under µ-constant deformation of f , see [25].

As it is well-known, neither the Bernstein-Sato polynomial nor the b-exponents are constant
along µ-constant deformation. Given an equisingular type, a generic set of b-exponents or a
generic Bernstein-Sato polynomial are expected. In [27], Yano proposed a formula (see next
section) for the generic b-exponents for irreducible germs of curves (combined with the Jordan
form of the monodromy, this also yields to a formula for the generic Bernstein polynomial). This
formula was proved for one-Puiseux pair germs by the second named author in [10] and reproved
by M. Saito in [20].

In [1], the conjecture was proved for irreducible singularities with two Puiseux pairs and
monodromy without multiple eigenvalues. In this paper, we discuss how to extend the formula
for reducible germs of singularities. There is a natural interpretation of Yano’s formula in terms
of the resolution graph of the singularity, see (5). We are going to prove in this paper that this
formula holds for singularities with vertices of valency at most 3 (and at most two vertices of
valency 3) and monodromy without multiple eigenvalues (distinct from 1) (in fact, the correct
hypothesis may be distinct exponents of the monodromy, besides 1).

The restriction on the number 3-valency vertices comes from technical reason but it is most
probably avoidable; for example, the second named author proved it in [11] for singularities with
non-degenerate and commode Newton polygon (and distinct exponents for the monodromy).
The other two conditions seem to be more important, since we will give examples where it does
not hold in at least two cases: germs where the vertices have valencies at most 3 but there are
multiple exponents, and germs with vertices with valency greater than 3. We will discuss also
other examples and we will introduce the needed results about improper integrals.

1. Extended Yano’s problem

Let f : (C2
, 0) ! (C, 0) be a germ of a non-zero holomorphic function such that its zero locus

defines an isolated singularity germ.
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Extended Yano’s Problem ([27]). For a generic equisingular deformation of an isolated plane
curve singularity germ f : (C2

, 0) ! (C, 0) and Milnor number µ, to study how the set of
b-exponents {�̃1, . . . ,�̃µ} depends on the topology of f .

The local Bernstein-Sato polynomial bf,0(s) of a singularity germ is a powerful analytic in-
variant, but it is, in general, extremely hard to compute, even in the case of irreducible plane
curve singularities. It is well-known that the Bernstein-Sato polynomial varies in families in
the (non-singular) µ-constant stratum ⌃µ(f,0) of f at 0. Since, for plane curves this stratum is
irreducible, it is conceivable that a generic Bernstein-Sato polynomial exists, i.e., the Bernstein-
Sato polynomial of a germ f with the same topology as f , depends on f , but there is a generic
Bernstein-Sato polynomial bgen⌃µ(f,0)

(s): for every µ-constant deformation of such an f , there is

a Zariski dense open set U on which the Bernstein-Sato polynomial of any germ in U equals
b
gen
⌃µ(f,0)

(s).

1.1. The original Yano’s conjecture: the irreducible case.
Let f be an irreducible germ of plane curve. In 1982, Tamaki Yano [27] made a conjecture

concerning the b-exponents of such germs. Let (n, b1, b2, . . . , bg) be the characteristic sequence
of f , see e.g. [26, Section 3.1]. Recall that this means that f(x, y) = 0 has as root (say over x)
a Puiseux expansion

x = · · ·+ a1y
b1
n + · · ·+ agy

bg
n + . . .

with exactly g characteristic monomials. Denote b0 := n and define recursively

e
(k) :=

(
n if k = 0,

gcd(e(k�1)
, bk) if 1  k  g.

We define the following numbers for 1  k  g:

Rk :=
1

e(k)

0

@bke
(k�1) +

k�2X

j=0

bj+1

⇣
e
(j)

� e
(j+1)

⌘
1

A , rk :=
bk + n

e(k)
.

Note that Rk admits the following recursive formula:

Rk :=

(
n if k = 0,
e(k�1)

e(k) (Rk�1 + bk � bk�1) if 1  k  g.

We end with the following definitions R0
0 := n, r00 := 2 and for 1  k  g:

R
0
k :=

Rke
(k)

e(k�1)
, r

0
k :=

j
rke

(k)
/e

(k�1)
k
+ 1.

Yano defined the following polynomial with fractional powers in t

(3) R(n, b1, . . . , bg; t) := t+
gX

k=1

t

rk
Rk

1� t

1� t
1

Rk

�

gX

k=0

t

r0k
R0

k
1� t

1� t

1
R0

k

,

and he proved that R(n, b1, . . . , bg; t) has non-negative coe�cients.

Yano’s Conjecture ([27]). For almost all irreducible plane curve singularity germs
f : (C2

, 0) ! (C, 0) with characteristic sequence (n, b1, b2, . . . , bg), the b-exponents {�̃1, . . . ,�̃µ}

are given by the generating series
µX

i=1

t
�̃i = R(n, b1, . . . , bg; t).

For almost all means for an open dense subset in the µ-constant strata in a deformation space.



40 E. ARTAL, PI. CASSOU-NOGUÈS, I. LUENGO, AND A. MELLE

Yano’s conjecture holds for g = 1 as it was proved by Pi. Cassou-Noguès in [10] making
explicitly a relation between two variables improper integrals and the Bernstein-Sato polynomial
of f , see also [9].

In [1], the authors, with the same ideas, were interested in the case g = 2. For g = 2, the
characteristic sequence (n, b1, b2) can be written as (n1n2,mn2,mn2+q) where n1,m, n2, q 2 Z>0

satisfying
gcd(n1,m) = gcd(n2, q) = 1.

In [1] we solve Yano’s conjecture for the case

(4) gcd(q, n1) = 1 or gcd(q,m) = 1.

The above condition is equivalent to ask for the algebraic monodromy to have distinct eigenval-
ues. In that case, the µ b-exponents are all distinct and they coincide with the opposite of roots
of the reduced Bernstein-Sato polynomial (which turns out to be of degree µ).

To encode the topology of a germ of an irreducible plane curve singularity

(C = f
�1

{0}, 0) ⇢ (C2
, 0)

several sets of invariants can be used: Puiseux characteristic exponents, Puiseux pairs, New-
ton pairs, (minimal) embedded resolution graph, Eisenbud-Neumann splice diagram, semigroup
�(C,0) ⇢ N generated by all the possible intersection multiplicities i({h = 0}, C) at 0 for all
h 2 O(C2,0), etc.

Let f : (C2
, 0) ! (C, 0) be a germ of a non-zero holomorphic function f . Let B be an open

ball centered at the origin. Let ⇡ : X ! B be an embedded resolution of (f�1
{0}, 0). We denote

by Ei, i 2 J , the irreducible components of ⇡�1(f�1
{0})red. For every i 2 J , let Ni and ⌫i � 1

be the multiplicities of Ei in the divisor of respectively f � ⇡ and ⇡
⇤(dx ^ dy) on X. One has

that Ni and ⌫i belong to N⇤ and if Ei is an irreducible component of the strict transform of
f
�1

{0} then ⌫i = 1. Denote also E̊i := Ei \ ([j 6=iEj) for i 2 J . Then one has the following
interpretation of the R(n, b1, . . . , bg; t)

R(n, b1, . . . , bg; t) = t�

X

i2J,Ei 6=C̃

�(E̊i)t
⌫i/Ni

1� t

1� t1/Ni

where C̃ is the unique strict transform of f�1
{0}. For a vertex i of the minimal embedded

resolution graph its valency �i is the number of adjacent vertices to it. A vertex is called a
rupture vertex if its valency is at least 3. Most of the vertices in the resolution graph have
valency 2 and since the corresponding exceptional divisors Ei are rational curves �(E̊i) = 0.
Furthermore in this case the valency of the vertex are either 1, 2 or 3.

The shape of the minimal embedded resolution graph in this case is the same as the Eisenbud-
Neumann splice diagram (cf. [14, page 49]). If the germ (C, 0) has g Newton pairs {(pk, qk)}

g
k=1

with gcd(pk, qk) = 1 and pk � 2 and qk � 1 (and by convention, q1 > p1), define the integers
{ak}

g
k=1 by a1 := q1 and ak+1 := qk+1 + pk+1pkak for k � 1. Then its Eisenbud-Neumann splice

diagram decorated by the following splice data {(pk, ak)}
g
k=1 and has the following shape:

a1

p1

a2

p2

ag�1

pg�1

ag

pg

Figure 1.
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The g rupture components Ẽ1, . . . , Ẽg, ordered from the left to the right of the resolution graph
are the same as in the splice diagram and their numerical data can be computed inductively
from the

Ñk := ak · pk · pk+1 · . . . · pg for 1  k  g;
⌫̃k := pk⌫̃k�1 + qk where ⌫̃0 = 1,

The numerical data associated to the components g+1 components of valency 1 E0, E1, . . . , Eg,
here E0 is the most left hand side vertex corresponding to the first blow-up and its numerical
data is equal to (N0, ⌫0) = (n, 2) with n = p1p2 · · · pg. The numerical data associated to other
valency one components can be also computed from

Nk = ak · pk+1 · . . . · pg for 1  k  g;
⌫k = ⌫̃k�1 + d

qk
pk
e for 1  k  g

1.2. Yano’s conjecture for isolated germs of plane curves.
A natural extension of the Yano conjecture for isolated plane curve singularity germ could be

the following conjecture

Extended Yano’s Conjecture. For almost all isolated plane curve singularity germ
f : (C2

, 0) ! (C, 0) with isolated singularity and Milnor number µ, the b-exponents {�̃1, . . . ,�̃µ}

are given by the generating series

(5)
µX

i=1

t
�̃i = t+

X

i

(�i � 2)

✓
t
⌫i/Ni

1� t

1� t1/Ni

◆
,

showing how b-exponents depends on the topology of f .

Example 1.1. Let f(x, y) = y
4
� x

6 be a germ with two A2-singularities having intersection
number equals 6. The minimal embeded resolution graph has 3 exceptional divisors E1, E2, E3

with numerical data (N, ⌫, �) given respectively by equals (4, 2, 1), (6, 3, 1) and (12, 5, 4). Then
(5) equals

t+ 2

✓
t
5/12 (1� t)

(1� t1/12)

◆
�

✓
t
2/4 (1� t)

(1� t1/4)
+ t

3/6 (1� t)

(1� t1/6)

◆

equals

t+ t
4/3 + t

5/4 + t
7/6 + 2t13/12 + 2t11/12 + t

5/6 + t
3/4 + t

2/3 + 2t7/12 + 2t5/12.

Using Singular [13] inside [23], a µ-constant versal deformation of f is given by

g(x, y, a, b) := f + ax
3
y
2 + bx

4
y
2

and the Bernstein-Sato polynomial of g for random values of a and b is equal to

�17/12,�4/3,�5/4,�7/6,�13/12,�1,�11/12,�5/6,�3/4,�2/3,�7/12,�5/12,

so that they do not coincide.
This can be confirmed using checkRoot for s = �17/12 of [16] in Singular [13], where the

base field is C(a, b). Moreover, it can be proved that for general a, b the Tjurina number equals
the expected value for Hertling-Stahlke bound, i.e., 14; using [17] the values of Tjurina number
are constant in these µ-constant strata.

The previous example shows that the proposed conjecture may not hold when there are ver-
tices with valency greater than 3. Based on the irreducible case we want to study the conjecture
for the case where valencies are at most 3.
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Modified extended Yano’s Conjecture. Let ⌃µ be the µ-constant stratum of a germ
f : (C2

, 0) ! (C, 0) of isolated singularity, such that no eigenvalue ⇣ 6= 1 of the monodromy
is mutiple (in particular the valency of the vertices of the resolution graph is at most 3). Then
the µ b-exponents {�̃1, . . . ,�̃µ} of a generic element of ⌃µ are given by the generating series (5)

Most probably, the hypothesis on the monodromy can be replaced no repeated non-integral
exponent of the monodromy as the result in [11] for non-degenerate Newton polynomial germs
suggests; some examples in the last section go in the same direction. The condition on the
valency seems to be more essential, due to Example 1.1.

1.3. Singularities with non-degenerated principal part and commode.
Assume that the power series f has non-degenerated principal part and denote its Newton

polygon at 0 by �f , with ` facets and commode (�f meets with x = 0 at (0, ⌧0) and with y = 0
at (�0, 0)). We also assume that the set Spec(f) of spectral numbers are distinct.

Assume that fi(x, y) = 1, with fi(x, y) =
cix+diy

ni
, is the equation of the facet Fi of �f so that

gcd(ci, di, ni) = 1, 1  i  `.
Set

N = {q 2 Q : �0q 2 N or ⌧0q 2 N }.

Let bf be the monic polynomial such that its roots are the rational numbers �i,k := �
ci+di+k

ni
:

with 0  k < ni and for all facet Fi such that �i,k /2 N .

Theorem 1.2 ([11, Theorem 1]). For almost all germs of plane curves which have �f as Newton
polygon at the origin and all non-integral elements in Spec(f) are distinct then f admits bf as
Bernstein-Sato polynomial.

Note that Example 1.1 does not satisfy the hypotheses of the above theorem. The minimal
embeded resolution graph of germs in Theorem 1.2 has all exceptional divisors of valencies
exactly 1, 2 and 3. There are at most 2 divisors with valency 1 and ` divisors of valency 3. For
all 1  i  `, let Ei be the corresponding divisor has numerical data (Ni, ⌫i, �i) = (ni, ci+ di, 3).
So that the roots in this case appear as in the EN-diadram of the germ. So that a generic
equisingular deformation of f admits bf as Bernstein-Sato polynomial.

If two spectral numbers are congruent mod Z, their di↵erence is ±1, and they correspond to
a 2-Jordan block of the monodromy, so we can recover the b-exponents from the Bernstein-Sato
polynomial.

Proposition 1.3. If the germ f is Newton non-degenerated with respect to its Newton polygon,
commode and all the spectral numbers are distinct then for a generic equisingular deformation
of f the b-exponents are given by (5).

2. Improper integrals

Most of the results in this section come from [1]. We start with 1-variable improper integrals.

Proposition 2.1. Let f : [0, 1]⇥ C ! C be an analytic function. Then the function

s 7!

Z 1

0
f(t, s)ts

dt

t

is holomorphic on <s > 0 and admits a meromorphic continuation to C with poles contained in
Z0. Moreover, if f(t, s) is algebraic whenever t is algebraic and s rational, then, the residues
are algebraic.

If the function f is independent of s, then the above function will be denoted by Gf (s). Let
us consider now the 2-variable case.
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Proposition 2.2. Let f 2 R[x, y] such that f > 0 in [0, 1]2 and let a1, b1, a2, b2 2 Z�0 (by
convention bi

ai
= +1 if ai = 0). The function

s 7!

Z 1

0

Z 1

0
f(x, y)sxa1s+b1y

a2s+b2 dx

x

dy

y
.

is holomorphic in <s > max
⇣
�

b1
a1
,�

b2
a2

⌘
and admits a meromorphic continuation on C, where

the set of poles is a subset of S =
n
�

b1+⌫1
a1

, ⌫1 2 Z�0

o
[

n
�

b2+⌫2
a2

, ⌫2 2 Z�0

o
.

We can be more explicit on those poles.

Proposition 2.3. With the hypotheses of Proposition 2.2, let ↵ 2 S.

(P1) If ↵ = �
b1+⌫1
a1

for some ⌫1 2 Z�0 and ↵ 6= �
b2+⌫2
a2

8⌫2 2 Z�0, then the pole is of order
at most one and its residue equals

1

⌫1!a1
Gh⌫1,↵,x(a2↵+ b2), h⌫1,↵,x(y) :=

@
⌫1f

↵

@x⌫1
(0, y).

(P2) If ↵ = �
b2+⌫2
a2

for some ⌫2 2 Z�0 and ↵ 6= �
b1+⌫1
a1

8⌫1 2 Z�0, then the pole is of order
at most one and its residue equals

1

⌫2!a2
Gh⌫2,↵,y (a1↵+ b1), h⌫2,↵,y(x) :=

@
⌫2f

↵

@y⌫2
(x, 0).

(P3) If ↵ = �
b1+⌫1
a1

= �
b2+⌫2
a2

for some ⌫1, ⌫2 2 Z�0, then the pole is of order at most 2 and

the coe�cient of (s� ↵)�2 in the Laurent expansion is

1

⌫1!⌫2!a1a2

@
⌫1+⌫2f

↵

@x⌫1@y⌫2
(0, 0).

(P4) If in the previous situation the pole is of order at most one, then the continuation of the
functions Gh⌫1,↵,x and Gh⌫2,↵,y are holomorphic at a2↵ + b2 and a1↵ + b1, respectively
and its residue equals

1

⌫1!a1
Gh⌫1,↵,x(a2↵+ b2) +

1

⌫2!a2
Gh⌫2,↵,y (a1↵+ b1).

The last result does not appear in [1] but it can be deduced easily. The following lemma is
useful for the residue computations.

Lemma 2.4. Let p 2 N and c 2 R>0. Given s1, s2 2 C such that �↵ = s1 + s2 > 0 then

(6) G(yp+c)↵(ps1) +G(1+cxp)↵(ps2) =
c
�s2

p
B (s1, s2)

where B is the beta function.

In [1], we proceeded as follows. For a fixed equisingularity type, we consider generic poly-
nomial representatives f with real algebraic coe�cients, in some field K, and such that for a
suitable semi-algebraic compact domain D, we had f > 0 in D \ {(0, 0)} (the origin is in the
boundary of D). For a special choice of coordinates and a weight function g we consider the
following integrals

(7) I(f, g,�1,�2,�3)(s) :=

Z

D
f(x, y)sx�1y

�2g(x, y)�3
dx

x

dy

y

where �1,�2,�3 + 1 2 Z>0. These integrals are holomorphic in a semiplane of C and admitted
a meromorphic continuation (see Example 4.3 for an idea of the proof). The knowledge of the
residues allowed us to prove the following theorem.
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Theorem 2.5. Let f 2 K[x, y] be as above. Let ↵ be a pole of I(f,�1,�2,�3)(s) with transcen-
dental residue, and such that ↵+ 1 is not a pole of I(f,�0

1,�
0
2,�

0
3)(s) for any (�0

1,�
0
2,�

0
3). Then

↵ is a root of the Bernstein-Sato polynomial bf (s) of f .

3. Partial proof of the conjecture

We are going to prove the modified extended conjecture when the number of rupture vertices
is small.

Theorem 3.1. The extended Yano’s conjecture holds for germs of plane curve singularities with
no multiple eigenvalues of the monodromy (except maybe 1), and such that there are at most two
rupture vertices and their valency is at most 3.

Sketch of the proof. As we have seen in Example 1.1, the valency condition and the non-existence
of multiple values distinct from 1 seem to be essential. The condition of 1 or 2 branching vertices
is only technical.

There are three types of such singularities.

(S1) The resolution graph is linear.
(S2) The germ is the product of two irreducible germs with one-Puiseux pair (m,n) and inter-

section number > mn, and eventually two smooth branches with intersection numbers
m,n with the singular branches.

(S3) The resolution graph coincides with the one of a two-Puiseux pair irreducible (which is
part of the germ).

The case (S1) is a consequence of [11, Theorem 1]. The case (S2) is represented by the µ-
constant versal deformation of f = x

✏
y
⌘((ym�x

n)2�x
u
y
v), where ✏, ⌘ 2 {0, 1} and u, v depend

on the intersection number of the two singular branches. We omit the cases where there are
multiple eigenvalues distinct from 1. We follow the strategy in [1]. The presence of x, y does not
a↵ect this strategy as we explain later for (S3). If there are more than 2 branches, 1 is a multiple
eigenvalue of the monodromy. Nevertheless, the only point where this condition is needed is for
Varchenko’s lower semicontinuity [24] and only eigenvalues distinct from 1 cannot be multiple
for this result.

Let us finish with (S3). Let us consider the improper integral I(f, g,�1,�2,�3) of (7), studied
in [1], where �1,�2,�3 + 1 2 Z>0, f, g are real polynomials positive on [0, 1]2 \ {(0, 0)}, f is a
2-Puiseux-pair germ singularity for which the Newton polygone is of type (ym ± x

n)p, g is a
1-Puiseux pair singularity with Newton polygone ym±x

n and maximal contact with f . For (S3)
we replace f by x

✏
y
⌘
fg

� , ✏, ⌘, � 2 {0, 1}. We repeat the process as in [1]. ⇤

4. Computations on examples with multiple eigenvalues

Example 4.1. Let us consider f(x, y) = y
5 + x

2
y
2 + x

5; its µ-constant miniversal deformation
is a singleton, so its Bernstein-Sato polynomial coincides with the generic one. This singularity
does not satisfy [11, Theorem 1] since the exponents ±

1
10 ,±

3
10 appear twice (± 1

2 appear only
once). Using Singular, the Bernstein polynomial is

✓
s+

1

2

◆2 ✓
s+

7

10

◆✓
s+

9

10

◆
(s+ 1)

✓
s+

11

10

◆✓
s+

13

10

◆
.

The extended conjecture is satisfied even though we are not in the hypotheses of the modified
one.

Example 4.2. Let us consider f(x, y) = y
5+x

2
y
2+x

7; its µ-constant versal deformation is also a
singleton, so its Bernstein polynomial coincides with the generic one. This singularity does satisfy



ON THE b-EXPONENTS OF GENERIC ISOLATED PLANE CURVE SINGULARITIES 45

(5, 3) (10, 5) (4, 2) (10, 5) (5, 3)

Figure 2. Resolution graph of y5 + x
2
y
2 + x

5 with (N, ⌫)-data.

[11, Theorem 1] since ± 1
2 appear as exponents of the monodromy, even though exp

�
2i⇡±1

2

�
= �1

is a double eigenvalue. Using Singular, we can confirm the expected Bernstein-Sato polynomial.

Example 4.3. Let us consider f(x, y) = x
3
y
3+x

7+y
8; a µ-constant versal deformation is given

by ft,s(x, y) := x
3
y
3 + x

7 + tx
6
y+ sxy

7 + y
8. As in the previous example the hypotheses of [11,

Theorem 1] are satisfied and hence the extended conjecture holds; note that there are multiple
eigenvalues for the monodromy but the exponents of the monodromy are distinct.

(7, 3) (14, 6) (21, 7) (6, 2) (15, 5) (24, 8) (8, 3)

Yano’s candidates start at 1
3 = 7

21 = 8
24 . The particular Bernstein-Sato polynomials may

depend on s, t; let us study some jumps using improper integrals. Choose t, s 2 R�0; note that
ft,s > 0 in [0, 1]2 \ {(0, 0)}. Let us denote, for �1,�2 2 Z�1:

I�1,�2 =

Z

[0,1]2
ft,s(x, y)

s
x
�1y

�2
dx

x

dy

y

Let us decompose this square in two domains:

{(x, y) 2 [0, 1]2 | x
4
3  y  1}, {(x, y) 2 [0, 1]2 | 0  y  x

4
3 }.

Integrating on each subdomain we decompose I�1,�2 = I1,�1,�2 + I2,�1,�2 .
Let us consider the change of variables x 7! xy

3, y 7! y
4:

x 7! xy
3
, y 7! y

4 =) I1,�1,�2 = 4

Z

[0,1]2
f̃t,s(x, y)

s
x
�1y

3�1+4�2+21s dx

x

dy

y

where

f̃t,s(x, y) := tx
6
y + sxy

10 + x
7 + x

3 + y
11
.

In the same way is x 7! x
3, y 7! x

4
y;

x 7! x
3
, y 7! x

4
y =) I2,�1,�2 = 3

Z

]0,1]2
f
⇤
t,s(x, y)

s
x
3�1+4�2+21s

y
�2

dx

x

dy

y
.

where

f
⇤
t,s(x, y) := txy + sx

10
y
7 + x

11
y
8 + y

3 + 1.

Note that I2,�1,�2 satisfies the hypotheses of Proposition 2.2, which was the goal of these changes
of variables. Since it is not the case for I1,�1,�2 , let us perform a decomposition of the square as

{(x, y) 2 [0, 1]2 | 0  y  x
3
11 }, {(x, y) 2 [0, 1]2 | x

3
11  y  1},
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and denote the corresponding integral decomposition as I1,�1,�2 = I1,1,�1,�2 + I1,2,�1,�2 . Suitable
changes of variables yield:

x 7! x
11
, y 7! x

3
y =) I1,1,�1,�2 =44

Z

[0,1]2
f̂t,s(x, y)

s
x
4(5�1+3�2+24s)

y
3�1+4�2+21s dx

x

dy

y
,

where

f̂t,s(x, y) := tx
36
y + sx

8
y
10 + x

44 + y
11 + 1,

and

x 7! xy
11
, y 7! y

3 =) I1,2,�1,�2 = 12

Z

[0,1]2
f̌t,s(x, y)

s
x
�1y

4(5�1+3�2+24s) dx

x

dy

y
,

where

f̌t,s(x, y) := tx
6
y
36 + sxy

8 + x
7
y
44 + x

3 + 1.

The candidate pole �
8
21 can be pole only for �1 = �2 = 1, and in this case the residue is

44

21

Z 1

0

@f̂
� 8

21

@y
(x, 0)x� 32

7
dx

x
+

3

21

Z 1

0

@f
⇤� 8

21

@x
(0, y)y

dy

y
=

�
8 · 44t

212

Z 1

0
(1 + x

44)�
29
21x

220
7
dx

x
�

3 · 8t

212

Z 1

0
(1 + y

3)�
29
21 y

2 dy

y
=

�
8t

212

Z 1

0
(1 + u)�

29
21u

5
7
du

u
�

8t

212

Z 1

0
(1 + u)�

29
21u

2
3
du

u
= �

8t

212
B

✓
5

7
,
2

3

◆
.

Hence, for t 6= 0 (and algebraic), we have that � 8
21 is a root of the Bernstein-Sato polynomial.

Note that we can prove that � 29
21 is a pole of I7,2 with transcendental residue for any (algebraic)

value of t, s. In particular, � 29
21 is a root of the Bernstein polynomial if t = 0 and s is algebraic

after Theorem 2.5. Note that �
8
21 and �

29
21 cannot be simultaneously roots of the Bernstein-

Sato polynomial, since exp
�
�2i⇡ 8

21

�
= exp

�
�2i⇡ 29

21

�
is a simple eigenvalue of the monodromy.

These results are confirmed by Singular and checkRoot. We have then proved that there is a
function f0 in the µ-constant stratum such that � 8

21 is not a root of Bernstein-Sato polynomial
for f0, compare with [2]

Example 4.4. Let us consider f±(x, y) := (x4
� y

3)2 + x
6
y
2 which corresponds to the case

(S3). A µ-constant versal deformation is given by ft(x, y) = f±(x, y) + t1x
8
y + t2x

9. Let
D := {(x, y) 2 [0, 1]2 | 0  y  x

4
3 } and for t1, t2 2 R�0, consider

I�1,�2,�3 :=

Z

D
ft(x, y)

s
x
�1y

�2(x4
� y

3)�3
dx

x

dy

y

for �1,�2,�3+1 2 Z>0. In order to check that it is holomorphic with meromorphic continuation,
we perform a first change of variable:

x 7!x
3
, y 7! x

4(1� y) =) I�1,�2,�3=3

Z

[0,1]2
f̃t(x, y)

s
x
3�1+4�2+12�3+24s

y
�3+1

q(y)
dx

x

dy

y

where q(y) := (1� y)�2�1(3� 3y + y
2)�3 and

f̃t(x, y) = y
2(3� 3y + y

2)2 + x
2(1� y)2 + t1x

4(1� y) + t2x
3
.

Decomposing the square in two triangles with the diagonal line, we can decompose

I�1,�2,�3 = I1,�1,�2,�3 + I2,�1,�2,�3 ;
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(8, 3) (16, 5) (24, 7)

(26, 8)

(6, 2)

Figure 3.

with the following changes of variables we obtain

x 7! x, y 7! xy =) I1,�1,�2,�3=3

Z

[0,1]2
f̂t(x, y)

s
x
3�1+4�2+13�3+1+26s

y
�3+1

q(xy)
dx

x

dy

y

and x 7! xy, y 7! y =):

I2,�1,�2,�3=3

Z

[0,1]2
f̌t(x, y)

s
x
3�1+4�2+12�3+24s

y
3�1+4�2+13�3+1+26s

q(y)
dx

x

dy

y
,

where

f̂t(x, y) = y
2(3� 3xy + x

2
y
2)2 + (1� xy)2 + t1x

2(1� xy) + t2x,

f̃t(x, y) = (3� 3y + y
2)2 + x

2(1� y)2 + t1x
4
y
2(1� y) + t2x

3
y.

Example 4.5. A µ-constant miniversal deformation for f(x, y) = (y2 � x
3)2 + x

12 is constant.
It does not satisfy the hypotheses of the modified extended conjecture, since there are mul-
tiple eigenvalues (and multiple exponents of the monodromy) but, nevertheless, the extended
conjecture holds.

Example 4.6. Let f(x, y) := x(y3 � x
2)(y2 � x

10), with µ-constant miniversal deformation
ft(x, y) := f(x, y)+ ty

7. This example has multiple eigenvalues (besides 1) and it is a counterex-
ample for the extended conjecture. It is not hard to prove that 19

13 is not a Yano’s candidate while
�

19
13 is a root of the Bernstein polynomial as it can be checked with checkRoot in Singular

(working over C(t) instead of randomly evaluating t).

(5, 2)(7, 3) (13, 5) (7, 3) (9, 4) (11, 5)
(13, 6)

Figure 4. Resolution graph for Example 4.6

Example 4.7. Let f(x, y) := y
10

� x
3
y
5
� x

12. A µ-constant versal deformation is given by

ft(x, y) := f(x, y) + t1x
7
y
3 + t2xy

9 + t3x
9
y
2 + t4x

8
y
3 + t5x

11
y

+t6x
10
y
2 + t7x

9
y
3 + t8x

11
y
2 + t9x

10
y
3 + t10x

11
y
3
.

Using random values we can prove that �
19
15 and �

4
15 are both roots of the Bernstein poly-

nomial, but only 4
15 is a Yano’s candidate.
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THE SHEAF ↵•
X

DANIEL BARLET

Abstract. We introduce, in a reduced complex space, a “new coherent sub-sheaf” of the
sheaf !•

X which has the “universal pull-back property” for any holomorphic map, and which
is, in general, bigger than the usual sheaf of holomorphic di↵erential forms ⌦•

X/torsion. We
show that the meromorphic di↵erential forms which are sections of this sheaf satisfy integral
dependence equations over the symmetric algebra of the sheaf ⌦•

X/torsion. This sheaf ↵•
X is

closely related to the normalized Nash transform.
We also show that these q�meromorphic di↵erential forms are locally square-integrable on

any q�dimensional cycle in X and that the corresponding functions obtained by integration
on an analytic family of q�cycles are locally bounded and continuous on the complement of
a closed analytic subset.

Introduction

In this article, we discuss the following question: given a reduced complex space X, the
normalization of X consists in building a proper modification ⌫ : X̃ ! X such that meromorphic
locally bounded functions onX becomes holomorphic after pull-back to X̃. Moreover this process
gives a desingularization process for curves, that is to say for X of pure dimension 1.

It seems then natural to define an analogous process for meromorphic locally bounded di↵er-
ential forms. The main trouble is to define what means “locally bounded” for a meromorphic
di↵erential form of positive degree on a reduced complex space. To define this notion is the
purpose of this paper. Of course, this does not lead to a simple proof of a desingularization
process for a reduced complex space, but we will show that the natural process associated to
“normalization of meromorphic di↵erential forms” is simply the classical normalized Nash

transform, and it is an old (an probably very di�cult) conjecture that this process leads to a
desingularization. We hope that the introduction of this “new sheaf” ↵•

X
will be useful in that

direction.
But in fact, the main reason to introduce this sheaf is the look for the “universal pull-

back property” which means to define a coherent sheaf of meromorphic di↵erential forms
which admits a natural pull-back for any holomorphic map between reduced complex spaces
and which is “maximal” with this property. Note that if we only consider complex manifolds
the sheaf ⌦•

X
has this property, but we will show that this is no longer maximal when X admits

singularities.
Our main result is the theorem 4.1.1 (and its precise formulation 4.1.2) giving the “universal

pull-back property” for these sheaves. We obtain also two other results which may be useful:

• The fact that for any section ↵ of the sheaf ↵q

X
the form ↵ ^ ↵̄ is locally integrable on

any holomorphic cycle of dimension q and also the local boundness and the “generic”
continuity of such an integral when the q�cycle moves in an analytic family (see theorem
5.1.7);

2010 Mathematics Subject Classification. 32C15, 32C30, 32Sxx, 32S45.
Key words and phrases. Meromorphic, di↵erential forms, singular space, Universal pull-back property, Nor-

malized Nash transform, Integral dependence equation, di↵erential forms.
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• The existence of a local integral dependence equation for a section of ↵q

X
over the sym-

metric algebra of the sheaf ⌦q

X
/torsion (see proposition 5.2.1).

We conclude this article by computing some simple examples showing that the sheaf ↵•
X

may
be di↵erent from other classical sheaves of meromorphic di↵erential forms which are used on
singular complex spaces.

We thank the referee for remarks and questions which helped to improve and correct this
article.

1. Universal pull-back for ⌦•
X
/torsion

It is well known that the sheaves ⌦•
X

of holomorphic di↵erential forms on complex spaces
have a functorial pull-back. To begin we shall prove that the sheaves ⌦•

X
/torsion still have this

“universal pull-back” property on reduced complex spaces.

Proposition 1.0.1. Let X be a reduced complex space and consider a torsion holomorphic
p�form ↵ on X (meaning that ↵ vanishes at smooth points in X). Let Z be an analytic subset
in X. Then the p�holomorphic form induced by ↵ on Z is again a torsion form on Z.

Proof. Without any lost of generality we can assume that Z is irreducible. Let S be the singular
set of X. If Z is not contained in S the result is obvious. Also if the dimension of Z is less
that p the conclusion is again obvious. So let dim Z = p+ q with q � 0 and let Z 0 be the dense
open set of smooth points x in Z for which the multiplicity of x in X is minimal. It is enough
to show that the restriction of ↵ to Z 0 vanishes. As the problem is local on Z 0, we can assume
that we have an open neighbourhood X 0 of x0 in X and a local parametrisation ⇡ : X 0 ! U on
a polydisc U of Cn with the following properties:

i) ⇡(x0) = 0.
ii) U = V ⇥W where V and W are polydiscs with center 0 respectively in Cp+q and Cn�p�q.
iii) Z 00 := Z 0 \X 0 = ⇡�1(V ⇥ {0}) set theoretically and ⇡ : Z 00 ! V ⇥ {0} is an isomorphism.

Define the analytic family of (p + q)�cycles (Zw)w2W in X 0 parametrized by W by letting
Zw := ⇡⇤(V ⇥ {w}), where the pull-back by ⇡ is taken in the sense of cycles1. Then, if k is the
degree of ⇡ (which is the multiplicity in X of each point in Z 00) we have Z0 = k.Z 00 as a cycle in
X 0. Remark that for w generic in W the intersection of the cycle Zw with the ramification set
of ⇡ has no interior point in Zw which is a reduced cycle. So the restriction of the holomorphic
form ↵ to Zw for w generic is a torsion form.

Now choose a non-negative continuous function with compact support ⇢ on X 0, a holomorphic
q�form � on X 0 and define the function on W

' : W ! R+, w 7! '(w) :=

Z

Zw

⇢.(↵ ^ �) ^ (↵ ^ �).

It is a continuous function (see [B-M 1] ch.IV) and it vanishes for w generic in W as ↵ generically
vanishes on Zw for such a w. Then it vanishes for w = 0 and this shows that the restriction of
↵ to an open dense subset of Z 0 vanishes. ⇤

Corollary 1.0.2. Consider a holomorphic map f : X ! Y where X and Y are reduced complex
spaces.Then, if ↵ is a p�holomorphic form on Y which is a torsion form, the p�holomorphic
form f⇤(↵) is a torsion form on X.

1This means that if f : U ! Symk(X0) is the holomorphic map classifying the fibers of ⇡, the cycle Zw is the
cycle-graph of the analytic family of k�tuples in X0 defined by the restriction of f to V ⇥{w}; see [B-M 1] ch.IV.
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Proof. It is enough to consider the case where X is a connected complex manifold. Let X 0 be
the open dense subset of X where f has maximal rank. On X 0 the map f is locally a submersion
on a locally closed complex sub-manifold of Y and the previous proposition applies to show that
the pull-back of ↵ on this locally closed sub-manifold vanishes. So the holomorphic form f⇤(↵)
vanishes on X 0. Then it is a torsion form on X. ⇤
Definition 1.0.3. Let f : X ! Y a holomorphic map between two reduced complex spaces. We
have a natural graded pull-back OX�morphism

(*) f⇤ : f⇤(⌦•
Y
/torsion) ! ⌦•

X
/torsion

We shall denote f⇤⇤(⌦•
Y
) the image of this graded sheaf morphism.

We shall also denote f⇤⇤(G) for any sub-sheaf G of ⌦•
Y
/torsion its image by the morphism f⇤

above (or also when G is a subs-sheaf of ⌦•
Y
).

So, by definition, f⇤⇤(⌦•
Y
) (and more generally f⇤⇤(G)) is a sub-sheaf of the sheaf ⌦•

X
/torsion,

so it has no OX�torsion.

Lemma 1.0.4. Let f : X ! Y and g : Y ! Z two holomorphic maps between reduced complex
spaces. Then we have equality of the sub-sheaves f⇤⇤(g⇤⇤(H)) and (g � f)⇤⇤(H) for any sub-sheaf
H of the sheaf ⌦•

Z
/torsion.

Proof. The pull-back by g gives a morphism

g⇤(⌦•
Z
/torsion) ! ⌦•

Y
/torsion

with image g⇤⇤(⌦•
Z
/torsion) and the pull-back by f gives a morphism

f⇤(g⇤(⌦•
Z
/torsion)) ! f⇤(⌦•

Y
/torsion)

which, by right-exactness of the tensor product, is surjective on f⇤(g⇤⇤(⌦•
Z
/torsion)). Then we

have the following commutative diagram

f⇤(g⇤(⌦•
Z
/torsion))

↵ //

'
✏✏

f⇤(g⇤⇤(⌦•
Z
/torsion)

u //

�

))

f⇤(⌦•
Y
/torsion)

v

✏✏
(g � f)⇤(⌦•/torsion)

� // ⌦•
X
/torsion

.

Here ↵ is surjective and the image of � is the sub-sheaf f⇤⇤(g⇤⇤(⌦Z)) by definition. Also the
image of � is in (g � f)⇤⇤(⌦•

Z
) by definition. Now the commutativity of the diagram allows to

conclude. ⇤
Conclusion.

• The usual pull-back for holomorphic di↵erential forms induced a natural pull-back for
the sheaf ⌦•

X
/torsion by any holomorphic map between reduced complex spaces. The

previous lemma shows that this pull-back is functorial.

2. Normalization of a coherent sheaf

2.1. Definition. Let F be a coherent sheaf on a reduced complex space X and let pr : F ! X
be the associated linear bundle over X. Recall that, if on the open set U in X we have a
presentation

Om

X

M! On

X
! F ! 0

where M is a matrix with holomorphic entries, then F|U is given as the kernel

Ker[tM : U ⇥ Cn ! U ⇥ Cm].
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Then a section of F over an open set U inX is a holomorphic map over U , F|U ! U⇥C, which
is linear on the fibres of pr|U ; and conversely if f : F|U ! U ⇥C is a holomorphic map which is
linear on the fibres of pr|U , let g : V ⇥W ! C be a holomorphic function on a neighbourghood

of (x0, 0) 2 U ⇥Cn inducing f on F \ (V ⇥W ). Write g =
P

+1
⌫=0

�⌫ be the Taylor expansion of
g in homogeneous polynomials in the Cn �variables. Then �1, the homogeneous part of degree
1 in the Cn �variables, induces f on X \ (V ⇥ Cn). And �1 is a holomorphic function which is
linear on fibres.

For the notion of linear bundle see [F.76], [A-M.86] or [B-M 2].

The symetric algebra of a linear bundle. We define the symetric algebra

S•(F) := �+1
h=0

Sh(F),

where Sh(F) is the sheaf of holomorphic functions on F which are homogeneous of degree h
along the fibres of F . If �1, . . . ,�N is a local generator of F near a point x0 2 X then, for
↵ 2 NN such that |↵| =

P
N

j=1
↵j = h, the �↵ := �↵1

1
. . . .�↵N

N
for all such ↵ generate locally

Sh(F) near x0.

Note that if F is, on an open set U ⇢ X, the kernel of tM : U ⇥ Cn ! U ⇥ Cm, the linear
bundle Sh(F ) associated to the coherent sheaf Sh(F) is defined as the kernel of the holomorphic
map, linear on the fibers:

Sh(
tM) : U ⇥ Sh(Cn) ! U ⇥ Sh(Cm).

As the complex space F is not reduced in general, the vanishing of a holomorphic function ho-
mogeneous of degree h on the fibres of F is not given, in general, by generic vanishing on F
of such a function. But, when we assume that X is reduced and FX\S is a vector bundle, the
vanishing of a section of Sh(F) on an open set U \ S is just pointwise vanishing.

Recall that the exterior algebra of a coherent sheaf may be defined in the same way using the
kernel of the map ⇤q(tM) : U ⇥ ⇤q(Cn) ! U ⇥ ⇤q(Cm) on the “linear bundle side”, or directly
as a quotient of the tensor product F⌦q.

Proposition 2.1.1. Let X be a reduced complex space and let F be a coherent sheaf on X. Let
S ⇢ X be a closed analytic subset with no interior point in X such that on X \ S the sheaf F is
locally free. Then there exists a modification ⌧ : X̃ ! X with the following properties :

i) The center of ⌧ is contained in S.
ii) The sheaf ⌧⇤(F)

�
torsion is locally free on X̃.

iii) The reduced complex space X̃ is normal.
iv) For any holomorphic map f : Y ! X from a normal complex space Y such that f�1(S) has

no interior point in Y and such that the coherent sheaf f⇤(F)
�
torsion is locally free, there

exists an unique holomorphic lifting f̃ : Y ! X̃ such that ⌧ � f̃ = f . And in this situation
we have

f̃⇤(⌧⇤(F)
�
torsion) = f⇤(F)

�
torsion.

Proof. Note that, without any lost of generality, we may assume that F has no torsion. Con-
sider first an open set U in X such that on U the coherent sheaf F has a presentation

Om

X

M�! On

X
! F ! 0.

Let n�p be the generic rank of the holomorphic matrix M . Then the linear bundle L associated
to F|U is the kernel of the holomorphic map, linear on the fibres

idX ⇥tM : U ⇥ Cn ! U ⇥ Cm .
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Then we have a holomorphic map g : U \ S ! Gr(p, n) which sends the p�dimensional vector
sub-space KertMx to the corresponding point in Gr(p, n), the grassmannian of p�vector sub-
spaces in Cn. Consider then the closed analytic subset

Z := {(x, P ) 2 U ⇥Gr(p, n) / P ⇢ KertM(x)}.

Over U \S the set Z coincides with the graph of the holomorphic map g. Then define X̃U as the
normalization of the union of the irreducible components of Z which dominate an irreducible
component of U . The projection map ⌧ : X̃U ! U is clearly a (proper) modification of U with
center contained in S.

Let V ! Gr(p, n) be the universal bundle of Gr(, p, n) and let U the associated coherent sheaf.
Let p2 : X̃U ! Gr(p, n) the composition of the normalization with the projection on Gr(p, n).
Then let us show that there is a natural isomorphism ⌧⇤(F)

�
torsion ! p⇤

2
(U). For that purpose

it is equivalent to prove that there is a natural holomorphic map, linear on the fibres

p⇤
2
(V ) ! ⌧⇤(F )

of linear bundles from the pull-back on X̃U of the tautological rank p�vector bundle V on
Gr(p, n) to the linear bundle ⌧⇤(F ) associated to ⌧⇤(F). But this map is obvious as the fiber of
p⇤
2
(V ) at x̃ 2 X̃U is, by definition, a p�vector subspace of the fibre of ⌧⇤(F ) at x̃. Moreover, this

map is an isomorphism on U \S by construction, so it is injective. The corresponding morphism
of coherent sheaves ⌧⇤(F) ! p⇤

2
(U) is then surjective and its kernel is supported by ⌧�1(S).

This implies that it induces an isomorphism ⌧⇤(F)
�
torsion ' p⇤

2
(U).

To complete the proof of the assertions i) to iv), it is enough now to prove that the property
iv) holds for the modification ⌧ : X̃U ! U because this will imply the globalisation of this
construction, thanks to the patching of these local pieces via the “universal property”.

So let f : Y ! U be a holomorphic map from a normal complex space Y such that f�1(S) has
no interior point in Y and such that f⇤(F)

�
torsion is locally free on Y . Then by right exactness

of the tensor product we have on Y the exact sequence

Om

Y

f
⇤
(M)�! On

Y
! f⇤(F) ! 0.

This implies that the rank p vector bundle G associated to the locally free sheaf f⇤(F)
�
torsion

is a sub-vector bundle of the linear bundle f⇤(F ) which is the kernel of the holomorphic map,
linear in the fibres

idY ⇥f⇤(tM) : Y ⇥ Cn ! Y ⇥ Cm .

This induces a holomorphic map g̃ : Y ! Gr(p, n) which sends y 2 Y to the fibre at y of
G ⇢ Y ⇥ Cn. As G and f⇤(F ) are isomorphic over Y \ f�1(S) which is a dense open set by
assumption, this proves the uniqueness of g̃ and then of the map f̃ := (f, g̃) : Y ! X̃U . ⇤
Definition 2.1.2. In the situation of the previous proposition we shall call the modification
⌧ : X̃ ! X the normalization of the coherent sheaf F on X.

We shall say that a holomorphic map f : Y ! X is normalizing for the coherent sheaf

F on X which is locally free outside the closed analytic subset S with no interior point in X,
when it satisfies the following conditions:

i) The complex space Y is normal.
ii) The closed analytic subset f�1(S) has no interior point in Y .
iii) The sheaf f⇤(F)

�
torsion is locally free on Y .

Thanks to the universal property of the normalization ⌧ : X̃ ! X of F , the holomorphic map
f is normalizing for F if and only if the map f factorizes through the modification ⌧ .
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Remark. The normalization of a coherent sheaf F on a reduced complex space X is always a
locally projective modification, as , by construction, it is locally contained in a product of an
open set in X by a grassmannian.

Note that the proposition 2.1.1 is consequence of rather elementary results and do not use
the desingularization theorem of H. Hironaka. But thanks to Hironaka, for any X and any
coherent sheaf F on X there always exists a proper modification ⌧ : X̂ ! X which is smooth
and normalizes the sheaf F : it is enough to apply the desingularization theorem to the normal-
ization of F constructed above. Moreover, we may always assume that such a “normalizing”
desingularization is a projective modification of X. This remark will be used in the next section.

Note that, in general, a desingularization of X is not necessarily normalizing for the sheaf
⌦1

X
, see for instance the case of S3 in example 6.2.

For a pure dimensional reduced complex space X the Nash transform (resp. the normalized
Nash transform) is simply the previous results applied to the coherent sheaf ⌦1

X
. Note that the

corresponding linear bundle on X is the Zariski tangent linear bundle on X. See section 5.

Lemma 2.1.3. In the situation of the proposition 2.1.1, consider an integer q � 1 and the
coherent sheaf ⇤q(F) and its normalization ⌧q : X̃q ! X. Then we have a natural holomorphic
map

'q : X̃ ! X̃q

satisfying the following properties

(1) 'q is a modification with center contained in S and ⌧q � 'q = ⌧ .
(2) We have a natural isomorphism of locally free sheaves on X̃

eq : ⇤q(⌧⇤(F)
�
torsion)) ! '⇤

q
(⌧⇤

q
(⇤q(F)

�
torsion).

Proof. Note that we may assume without any lost of generality that F has no torsion. As the
sheaf ⌧⇤(F)

�
torsion is locally free on X̃ the sheaf ⇤q(⌧⇤(F)

�
torsion) is also locally free on X̃.

The natural surjective morphism

⇤q(⌧⇤(G)) ! ⌧⇤(⇤q(G)), ⌧⇤(g1) ^ · · · ^ ⌧⇤(gq) 7! ⌧⇤(g1 ^ · · · ^ gq)

for any coherent sheaf G induces an isomorphism

(@) ⇤q(⌧⇤(F)
�
torsion) ! ⌧⇤(⇤q(F)

�
torsion)

because the kernel must be a torsion sub-sheaf of ⇤q(⌧⇤(F)
�
torsion) which is locally free. Then

the universal property of the normalization of the sheaf ⇤q(F) gives the holomorphic map
'q : X̃ ! X̃q such that ⌧q � 'q = ⌧ , and the isomorphism (@) allows to obtain the isomor-
phism eq. ⇤

Consequence. If the holomorphic map f : Y ! X is normalizing for the coherent sheaf F it
is normalizing for the sheaf ⇤q(F) for any integer q � 0.

This will be useful for instance for F = ⌦1

X
, because a normalizing map for ⌦1

X
is then

normalizing for each ⌦q

X
8q � 1.

2.2. Locally bounded sections. Let X be a reduced complex space, F a coherent sheaf on
X which is locally free outside the closed analytic subset S ⇢ X with no interior point in X.
Consider the linear bundle on X, pr : F ! X, associated to F . For any open set U in X a
section � 2 �(U,F) corresponds to a holomorphic function f : FU ! C which is linear on the
fibres of F .
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Definition 2.2.1. We shall say that � 2 �(U \ S,F) is a locally bounded section of F
near the point s0 2 U when there exist an open neighbourhood U0 of s0 in U , sections �1, . . . ,�N
sections of F on U0 and continuous bounded functions ⇢1, . . . , ⇢N on U0\S such that the function
f on FU0\S corresponding to � is given by

f =
NX

j=1

⇢j(x).fj(x, v) 8(x, v) 2 FU0\S

where, for each j 2 [1, N ], fj : FU0 ! C is the holomorphic function linear on the fibres of F
which corresponds to �j 2 �(U0,F)

Remark that, by definition of S, FU0\S is a reduced complex space: it is a holomorphic vector
bundle on a reduced complex space. So the equality above is a “pointwise equality”.

Of course, if � is the restriction to U0 \S of a section � 2 �(U0,F), it is locally bounded near
each point in U0: take �1 = � and ⇢1 ⌘ 1 !

Note that the function f : FU0\S ! C corresponding to a locally bounded section

� 2 �(U0 \ S,F)

is locally bounded near each point of FU0\S which belongs to the irreducible components of FU0

which surject onto an irreducible component of U0. So, in general, such a f is not a locally
bounded function on FU0 but only on the closure in FU0 of FU0\S .

Lemma 2.2.2. Let S ⇢ X be a closed analytic subset with no interior point in X containing
the singular set in X and assume that the coherent sheaf F is locally free on X \ S. Let

� 2 �(U0 \ S,F)

and f : FU0\S ! C the corresponding holomorphic function linear on the fibers of F .Then the
fonction f is bounded in a neighbourhood of the point {s0}⇥ {0} in the closure of FU0\S in F 2

if and only if the section � is locally bounded near s0 as a section of F on U0 \S in the sense of
the definition 2.2.1.

Proof. Let first consider a section � of F which is locally bounded near s0 in the sense of the
definition 2.2.1. Then we can find holomorphic sections �1, . . . ,�N on an open neighbourhood
U0 of s0 in U and continuous bounded functions ⇢1, . . . , ⇢N on U0\S, such that � =

P
N

n=1
⇢n.�n

on U0 \ S. Then, if f1, . . . , fN are the holomorphic functions (linear on the fibres) on F|U0
cor-

responding to �1, . . . ,�N , we have f =
P

N

j=1
⇢j .fj on F|U0\S . This implies that the function

f is locally bounded near points in the intersection of pr�1(s0) with the closure of FU0\S . In
particular near {s0}⇥ {0}.

Conversely, if f is locally bounded on the intersection with F|U0\S of a neighbourghood of
{s0}⇥{0} in the closure of FU0\S , remark that, as an obvious consequence of its homogeneity on

the fibres of FU0\S , it is locally bounded in a neighbourhood of each point of pr�1(s0)\ FU0\S .

Consider now a modification ⌧ : X̃ ! X with center contained in S such that X̃ is normal and
such that the strict transform ⌧̃ : F̃ ! F of F is a holomorphic vector bundle. Then the function
f � ⌧̃ is locally bounded near ⌧�1((s0)⇥{0}) in F̃ . As F̃ is a holomorphic vector bundle over the
normal complex space X̃, it is a normal complex space and then f � ⌧̃ extends to F̃|⌧�1(U0)

to a

holomorphic function f̃ which is linear on the fibres. If �1, . . . ,�N are sections of F on an open

2Note that if G is an irreducible component of FV which is contained in pr�1(V \ S) then G does not meet
the open set where f is defined. So we obtain the same condition on � if we replace F by F

�
torsion.
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neighbourhood U0 of s0 in U which generate F at each point of U0, their pull-back by ⌧ generate
the coherent sheaf on X̃ associated to F̃ at each point of ⌧�1(U0). Near each such point we can

write f̃ =
P

N

j=1
cj ⌦ ⌧�1(�j) where c1, . . . , cN are local holomorphic functions on X̃. Using a

continuous partition of unity along the compact fibre ⌧�1(s0) we obtain that f can be written

as
P

N

j=1
⇢j .�j on U0 \ S where ⇢1, . . . , ⇢N are bounded continuous functions on U0 \ S. ⇤

Corollary 2.2.3. Let X be a reduced complex space and let F be a coherent sheaf on X. Let
S ⇢ X be a closed analytic subset with no interior point in X such that F is locally free on
X \ S. Note j : X \ S ! X the inclusion. Let Y be a normal complex space and consider a
(proper) modification ⌧ : Y ! X normalizing the sheaf F . Then the sheaf ⌧⇤(⌧⇤(F)

�
torsion) is

the sub-sheaf of the sheaf j⇤j⇤(F) of sections which are locally bounded along S.
So this sheaf is independent of the choice of such a ⌧ .

Proof. First consider a section of ✓ 2 ⌧⇤(⌧⇤(F)
�
torsion). It can be written locally on Y as a sumP

N

j=1
gj .⌧⇤(�j) where �1, . . . ,�N generate locally F and where g1, . . . , gN are local holomorphic

functions on Y . Then using a continuous partition of unity along the fibres of ⌧ we see that ✓
satisfies the definition 2.2.1.

Conversely, if ⌘ is a section of the sheaf j⇤j⇤(F) which is locally bounded along S, its lifting
gives a holomorphic function on ⌧⇤(F ) on the complement of ⌧�1(S), which is linear on the
fibres and locally bounded near the points of ⌧⇤(F ) which are in the closure of the restriction of
⌧⇤(F ) to Y \ ⌧�1(S). But this closure is a vector bundle, by our assumption on ⌧ . As a vector
bundle on a normal complex space is a normal complex space, the Riemann extension theorem
holds, and this holomorphic function extends holomorphically to this vector bundle. Then it is
a section of the sheaf ⌧⇤(⌧⇤(F)

�
torsion) concluding the proof. ⇤

Proposition 2.2.4. Let S ⇢ X be a closed analytic subset with no interior point in X containing
the singular set in X and assume that the coherent sheaf F is locally free on X \ S. Consider a
holomorphic function f on F|U\S which is linear on the fibres of F and which is locally bounded

along pr�1(S) \ pr�1(U \ S) corresponding to a locally bounded section � of F on U \ S. Then
for each point s0 in S there exists an open neighbourhood U0 of s0 in X, an integer h � 1 and
sections s1, . . . , sh on U0 respectively of the sheaves S1(F), . . . , Sh(F) such that the equality of
sections of Sh(F) :

�h +
hX

a=1

sa.�
h�a = 0

is satisfied on the open set U0 \ S.

proof. We keep the notations of the proof of the previous lemma 2.2.2. As the function f is
locally bounded on F1, the conic bundle over X which is the union of the irreducible components
of F near the point {s0}⇥ {0} which dominate an irreducible component of X at s0, there exist
an open neighbourhood U0 of s0 in X, an integer h � 1 and holomorphic functions s̃1, . . . , s̃h
on an open neighbourhood W of F1 \ pr�1(U0 ⇥ {0}) such that �h +

P
h

a=1
s̃a.�h�a = 0 on

W \ pr�1(U0 \ S). Taking the homogeneous degree h parts of the expansions of this equality
in the fibres of pr : F ! X leads to sections s1, . . . , sh of the sheaves Sa(F), where sa is the
homogeneous degree a part of s̃a

3 concluding the proof. ⇤

3which is in fact well-defined only modulo torsion in Sa(F)(U0), but this torsion is concentrated on S, so is
irrelevant for the desired equality on U0 \ S.
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3. Definition of the sheaf ↵•
X

It will be convenient to use the following definition in the sequel.

Definition 3.0.1. Let X be a reduced complex space. We say that a modification ⌧ : X̃ ! X is
a special desingularization of X when the following properties are satisfied:

i) X̃ is a complex manifold.
ii) The modification ⌧ is projective.
iii) The sheaf ⌧⇤(⌦1

X
)
�
torsion is locally free on X̃.

We have already remark that, thanks to Hironaka and to the fact that the normalization of
the sheaf ⌦1

X
is a projective modification of X, for any modification ✓ : Y ! X there exists a

special desingularization ⌧ : X̃ ! X which factors through ✓.

The following result is the key of the definition of the sheaf ↵•
X

on a reduced complex space
X.

Theorem 3.0.2. Let X be a reduced complex space and let S be a closed analytic subset with
no interior point in X containing the singular set of X. Let ↵ be a section on X of the sheaf
!p

X
. The following properties are equivalent for ↵:

• There exists locally on X a normalizing modification for the sheaf ⌦1

X

4

⌧ : X̃ ! X such that ↵ extends to a section on X of the sub-sheaf
⌧⇤⌧⇤⇤(⌦

p

X
) of !p

X
. (A)

• There exists, locally on X, a finite collection (⇢j)j2J of continuous functions on X \S
which are bounded near S and holomorphic p�forms (!j)j2J in ⌦p

X

�
torsion such that

↵ =
P

j2J
⇢j .!j as a (p, 0) currents on X. (B)

Note that under the second property stated in the theorem, the (p, 0)�current onX associated
to the form

P
j2J

⇢j .!j on X \ S is defined by

C1
c

(X)n�p,n 3 ' 7!
Z

X

' ^ (
X

j2J

⇢j .!j)

and this integral is absolutely convergent as the functions ⇢j are locally bounded near each point
in S. It defines a (p, 0)�current on X with order 0. The assumption that ↵ is a section of the
sheaf !p

X
implies that this current is @̄�closed on X.

Proof. Let us begin by the implication (A) ) (B). By definition, a section ↵ 2 !p

X
is in the

sub-sheaf ⌧⇤⌧⇤⇤(⌦•
X
) if, locally on X̃, it can be written as a linear combination of pull-back

of holomorphic forms on X with holomorphic coe�cients in O
X̃
. Using the properness of the

modification ⌧ and a C1 partition of the unity on X̃ we obtain the first part of (B) because ⌧
induces an isomorphism X̃ \ ⌧�1(S) ! X \S by hypothesis. The last property in (B), that is to
say the fact that the current defined on X by the right hand-side coincides with ↵, is consequence
of the fact that both are sections of the sheaf !p

X
and are equal on X \ S.

To prove the implication (B) ) (A) consider the pull-back to X̃ \ ⌧�1(S) of the formP
j2J

⇢j .!j . We obtain a holomorphic section on X̃ \ ⌧�1(S) of the locally free sheaf

⌧⇤(⌦p

X
)
�
torsion

4In fact normalizing for the sheaf ⌦p
X would be enough; see lemma 2.1.3.
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which has locally bounded coe�cients along ⌧�1(S) when we compute it in a local trivialisa-
tion near a point of ⌧�1(S). So, by normality of X̃, it extends to a holomorphic section ↵̃ of
⌧⇤(⌦p

X
)
�
torsion and then defines a section of ⌧⇤(↵̃) of the sheaf ⌧⇤(⌧⇤(⌦

p

X
)
�
torsion). Note that

the pull-back of holomorphic forms gives an injective morphism ⌧⇤(⌦p

X
)
�
torsion ! ⌦p

X̃

�
torsion

with image ⌧⇤⇤(⌦p

X
). So ⌧⇤(↵) defines a holomorphic form on X̃ and the direct image of this

form and ↵ coincide on X \S, and then on X as sections of the sheaf !p

X
because this sheaf has

no non-zero section supported in S. ⇤
Remarks.

(1) The condition (B) does not depend on the choice of the modification ⌧ normalizing the
sheaf ⌦1

X
.

(2) Let L•
X

be the direct image of the sheaf ⌦•
Y

where ⌧ : Y ! X is a desingularization of
X. Using a special desingularization of X in the proof above we obtain that the form ↵
is in the coherent sub-sheaf Lp

X
⇢ !p

X
, so it gives the inclusion ↵•

X
⇢ L•

X
.

Corollary 3.0.3. Let ⌧ : X̃ ! X be any proper modification of X which is normalizing the
sheaf ⌦1

X
. The graduate sub-sheaf ↵•

X
:= ⌧⇤(⌧⇤⇤(⌦•

X
)) of the sheaf L•

X
is independent of the

choice of the modification of X normalizing ⌦1

X
. ⇤

Corollary 3.0.4. Let X be a pure dimensional reduced complex space and let

X := [i2IXi

be its decomposition in irreducible components. Then the sheaf ↵•
X

has a natural injection in the
locally finite direct sum of the direct images in X of the sheaves ↵•

Xi
for i 2 I.

Proof. This is an easy consequence of the fact that a section of the sheaf L•
X

is a section of
↵•
X

if and only if it satisfies the condition (B) in the previous theorem, because we have an
isomorphism L•

X
' �i2I (ji)⇤(L•

Xi
), where ji : Xi ! X is the inclusion. ⇤

Note that when X is not irreducible the injective map ↵•
X
,! �i2I (ji)⇤(↵•

Xi
) is not an

isomorphism, in general, because the injective map

⌦•
X
/torsion ,! �i2I (ji)⇤(⌦

•
Xi

/torsion)

is not an isomorphism, in general.
But, for each i 2 I, and any point x 2 Xi, the “restriction” map

↵•
X,x

! ↵•
Xi,x

is surjective because each restriction map ⌦•
X,x

/torsion ! ⌦•
Xi,x

/torsion is surjective.

4. Universal pull-back for ↵•
X

4.1. Statement of the theorem. The main result of this paragraph is the following theorem.

Theorem 4.1.1. For any holomorphic map f : X ! Y between reduced complex spaces, there
exists a functorial5 graduate OX�morphism

f̂⇤ : f⇤↵•
Y
! ↵•

X

which is compatible with the usual pull-back of the sheaf ⌦•
Y
/torsion.

For any holomorphic maps f : X ! Y and g : Y ! Z between reduced complex spaces we have

(1) f̂⇤(ĝ⇤(↵)) = [g � f
⇤
(↵) 8↵ 2 ↵•

Z
.

5We shall make this precise in the theorem 4.1.2 below.
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Let now give a precise formulation of this result. For that purpose let C be the category of
reduced complex spaces with morphisms all holomorphic maps. We may enrich this category,
using the universal pull-back property for the graded sheaf ⌦•

X
/torsion :

Let Cdiff be the category whose objects are pairs (X,⌦•
X
/torsion) where X is an object in

C and where the morphisms are given by pairs (f, f⇤) where f : X ! Y is a morphism in
C and f⇤ : f⇤(⌦•

Y
/torsion) ! ⌦•

X
/torsion is the graded pull-back by f of holomorphic forms

modulo torsion (see section 1). Of course the forget-full functor G0 : Cdiff ! C obtained by
(X,⌦•

X
/torsion) 7! X, (f, f⇤) 7! f is an equivalence of category.

Then the precise content of the theorem above is the following result.

Theorem 4.1.2. [Precise formulation] There exists a category Cb�diff whose objects are pairs
(X,↵•

X
) where X is in C and where the graded coherent sheaf ↵•

X
has been defined in section 3

for any object X in C. The morphisms are given by pairs (f, f̂⇤) for each f : X ! Y a morphism
in C where f̂⇤ : f⇤(↵•

Y
) ! ↵•

X
is the graded OX�linear sheaf map defined by f . Moreover, the

following properties holds:

(1) For each X 2 C we have a graded OX�linear injection

⌘X : ⌦•
X
/torsion ! ↵•

X
.

(2) For any morphism f : X ! Y in C we have a commutative diagram of graded OX�linear
maps of sheaves

(2) f⇤(⌦•
Y
/torsion)

f
⇤
//

f
⇤
(⌘Y )

✏✏

⌦•
X
/torsion

⌘X

✏✏
f⇤(↵•

Y
)

f̂
⇤

// ↵•
X

where f̂⇤ is the graded OX�linear map of coherent sheaves on X associated to the holo-
morphic map f .

Of course the interest of this result comes from the fact that the sheaf ↵•
X

is, in general,
strictly bigger that the sheaf ⌦•

X
/torsion; see section 6.

For any holomorphic map f : X ! Y between reduced complex spaces a pull-back morphism
f ] : f⇤(L•

Y
) ! L•

X
is defined in [K. 00]. But this pull-back is not functorial on these sheaves:

let ⌧ : X̃ ! X be a desingularization of X 2 C and let x 2 X be a point such that ⌧�1(x) has
dimension � 1. Let ! be a holomorphic form near ⌧�1(x) in X̃ which does not induce a torsion
form on an irreducible component � of ⌧�1(x). Then, because the map ⌧|� : � ! X factorizes
by the constant map to {x} the functoriality of the pull-back of ! on � would imply that the
pull-back has to be zero. But this map factorizes also by the inclusion of � in X̃ and ⌧ . As the
pull-back by ⌧ is injective (by definition of L•

X
), this gives a contradiction. Such an example is

given in section 6.3.

4.2. The proof.

Preliminaries. Consider the following situation: let Z be a connected complex manifold and
consider a proper holomorphic map ⇡ : Z ! X which is surjective on a reduced (irreducible)
complex space X. Let q := dimZ � dimX and let k be the number of connected components of
the generic fibre of ⇡. Assume that we have a kähler form ! on Z.
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Claim. After a suitable normalization of !, the smooth (q, q)�form w := 1

k
.!^q is d�closed and

satisfies the condition ⇡⇤(w) = 1 as a d�closed (0, 0)�current on X.

Proof. Consider the Stein factorization ⇡0 : Z ! Y, ✓ : Y ! X of ⇡; the reduced complex space
Y is irreducible. We have a meromorphic fibre-map Y ��� > Cq(Z) for ⇡0 (see [B-M 1] ch.IV
Th. 9.1.1) and this implies, thanks to the irreducibility of Y , that the generic fibres of ⇡0 are in
the same connected component of the space of q�cycles in Z. So the volume computed by !^q

of the connected components of the generic fibres of ⇡ is constant, and we may normalized ! in
order that this volume is equal to 1. Then the d�closed (0, 0)�current ⇡⇤(w) on X is equal to
1 on a dense Zariski open set in X. This implies our claim.

Assume now that the complex manifold Z has finitely many connected components Z1, . . . , Zr

such that the restriction of ⇡ is surjective on each Zj and such that each Zj has a kähler form
!j . We can normalize each !j in order that the integral of the form wj := 1

kj
.!^qj is equal to

1/r.kj on each connected component of the generic fibres of ⇡j := ⇡|Zj
and then the smooth

form w :=
P

r

j=1
wj satisfies again the condition ⇡⇤(w) = 1 as a (0, 0)�current on X.

In this situation we shall say that the smooth form w on Z satisfies the condition

(@).

The proof of the theorem 4.1.2 will use the following proposition.

Proposition 4.2.1. Let X = [i2I Xi be the decomposition of a reduced complex space X as the
union of its irreducible components. Let Z := [j2J Zj be a disjoint union of connected complex
kähler manifolds. Assume that we have a map ✓ : J ! I which is surjective and has finite fibres.
Let ⇡ : Z ! X be a proper holomorphic map normalizing the sheaf ⌦1

X
, such that for each j 2 J

it induces a surjective map

⇡j : Zj ! X✓(j)

and let qj := dimZj�dimX✓(j). For each j 2 J let wj be a smooth (qj , qj)�form on Zj which is
d�closed and satisfies the condition (@) relative to the restriction of ⇡ to Zj (see preliminaries
above). Let w :=

P
j2J

wj.
Let � be a section on Z of the sheaf ⇡⇤⇤(⌦p

X
). Then we have:

(1) The @̄�closed (p, 0)�current ⇡⇤(� ^w) on X is independent of the choices of the forms
wj, assuming that they are d�closed and satisfy the condition (@).

(2) The section ⇡⇤(� ^ w) on X of the sheaf !p

X
is a section of the sub-sheaf ↵p

X
.

(3) If there exists a section ↵ of the sheaf ⌦p

X
/torsion such that � = ⇡⇤⇤(↵) on Z, then

↵ = ⇡⇤(� ^ w) as a section on X of the sheaf !p

X
.

Remarks.

(1) It is enough to prove assertion 1) and 3) of the proposition above for each map ⇡j , j 2 J
because the sheaf !p

X
is a sub-sheaf of the direct sum of the sheaves !p

Xi
, i 2 I and the

restriction of � to Zj is a section of the sheaf ⇡⇤⇤
j
(⌦p

X✓(j)
) for each j 2 J .

This is not the case for the assertion 2) of the proposition: the sheaf ↵p

X
is a sub-sheaf of

the direct sum of the sheaves ↵p

Xi
, i 2 I but, in general, strictly smaller than this direct

sum. Note also that the condition on � to be a section of the sheaf ⇡⇤⇤(⌦p

X
) is stronger

than the condition on each �j := �|Zj
, j 2 J to be a section of the sheaf ⇡⇤⇤

j
(⌦p

X✓(j)
).

(2) In general, a section � 2 �(Z,⇡⇤⇤(⌦p

X
)) is not equal to some ⇡⇤⇤(↵) where ↵ is in

�(X,⌦p

X
) even in the case where ⇡ : Z ! X is a special desingularization of X. ⇤
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Proof. Thanks to the previous remark, we may assume that X is irreducible to prove assertions
1) and 3) of the proposition.

In the case qj = 0 the map ⇡j is generically finite and wj is a locally constant function on
Z with a prescribed value on each Zj . So there is no choice for wj and the first assertion of
the proposition is trivial. As the second assertion is also clear in this case (the sheaf !p

X
has no

torsion on X by definition), we shall assume qj � 1 in the sequel.
The fact that the current ⇡⇤(� ^w) is @̄�closed on X is consequence of the fact that on each

Zj the smooth (p + qj , qj) form � ^ wj is @̄�closed and of the holomorphy of ⇡. Let w0 be a
smooth form on Z which is d�closed and satisfies the condition (@). We want to show that
⇡⇤(� ^ (w � w0)) vanishes as a section of the sheaf !p

X
. Let X 0 be the open and dense subset

of smooth points in X for which the Stein factorization of each ⇡j : Zj ! X is a covering of
degree kj . Remember that, as we assume that X is irreducible here, the set I is reduced to one
point and so J is a finite set. On this open set X 0 it is enough to prove that for each j 2 J the
current (⇡j)⇤(� ^ (wj � w0

j
)) vanishes. So we can fix j and replace locally X 0 by one sheet of

the corresponding finite covering and make the proof in this case. That is to say that we may
assume that Z is smooth and connected and that ⇡ : Z ! X has connected fibers on X.

In this case the generic fibres of ⇡ are irreducible and of dimension q. For any x 2 X 0 there
exists an open neighbourhood V (x) of ⇡�1(x) which is a deformation retract of ⇡�1(x). Then
we have an isomorphism H2q(V (x),C) ! C which is given by integration on ⇡�1(x). But w
and w0 have the same integral on ⇡�1(x) by the property (@). So there exists a (2q� 1) smooth
form ✓ on V (x) such that d✓ = w � w0 by de Rham’s theorem.

Consider now a small open neighbourhood U of x in X 0 such that ⇡�1(U) ⇢ V (x). Let
x1, . . . , xn be a local coordinate system on U . Then the sheaf ⇡⇤(⌦p

X
) is a free sheaf of

OZ�modules on ⇡�1(U) with basis ⇡⇤(dxL) where L runs in all ordered sub-sets of cardinal
p in [1, n]. If we write � =

P
|L|=p

gL.⇡⇤(dxL) on U the holomorphic functions gL on ⇡�1(U)
are constant along the fibres of ⇡ and so there exists holomorphic functions fL, |L| = p, with
gL = ⇡⇤(fL) (recall that U is a smooth open set in X). This means that there exists a holomor-
phic p�form ↵ on U such that � = ⇡⇤(↵) on ⇡�1(U).
Let  2 C1

c
(U)(n�p,n). By definition of the direct image we have

h⇡⇤(� ^ d✓), i =
Z

⇡�1(U)

� ^ d✓ ^ ⇡⇤( ).

But it follows from the equality � = ⇡⇤(↵) on ⇡�1(U) that the form

� ^ ⇡⇤( ) = ⇡⇤(↵ ^  )

is d�closed as ↵ ^  is d�closed on U (its degree is 2n). So by Stokes formula the integral

Z

⇡�1(U)

� ^ d✓ ^ ⇡⇤( ) = ±
Z

⇡�1(U)

d
�
� ^ ✓ ^ ⇡⇤( )

�

vanishes. This implies that the section ⇡⇤(� ^ (w � w0)) of the sheaf !p

X
vanishes on the open

dense subset X 0, so everywhere on X as the sheaf !p

X
has no torsion.

Assertion 3) of the proposition is clear, because the equality is obvious at the generic points
in X.

Let us prove assertion 2). We no longer assume that I has a unique point.
Let ⌧ : X̃ ! X be a special desingularization of X, so X̃ is the disjoint union of special
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desingularizations ⌧i : X̃i ! Xi for each i 2 I, and consider the commutative diagram

X̃ ⇥X,str Z

⇡̃

✏✏

⌧̃ // Z

⇡

✏✏
X̃

⌧ // X

where X̃ ⇥X,str Z is the strict transform, so the union of irreducible components of X̃ ⇥X Z
which dominate some X̃i.

Note that the map ⌧ � ⇡̃ is normalizing for the sheaf ⌦1

X
because it is the case for ⌧ (and

also for ⇡). Then the p�form ⌧̃⇤⇤(�) gives, for each such component, a section of the sheaf
(⇡ � ⌧̃)⇤⇤(⌦p

X
) and as the d�closed form ⌧̃⇤(w) satisfies the condition (@) for the map ⇡̃, the

@̄�closed current ⇡̃⇤(⌧̃⇤⇤(�)^ ⌧̃⇤(w)) is in fact a p�holomorphic form on X̃ thanks to Dolbeault-
Grothendieck’s lemma. This already proved that ↵ := ⇡⇤(� ^ w) is a section of the sheaf Lp

X
,

because ⌧⇤⇤(⇡⇤(� ^ w)) = ⇡̃⇤(⌧̃⇤⇤(�) ^ ⌧̃⇤(w))) at the generic points of X̃, so everywhere on X̃.
Now the map ⌘ : ⌦p

X̃
! ⌦p

X̃
given by � 7! ⇡̃⇤(⇡̃⇤⇤(�) ^ ⌧̃⇤(w)) is the identity map, thanks to

the assertion 3). So, if ⇡̃⇤⇤(�) gives a section of the image of the sub-sheaf ⇡̃⇤⇤�⌧⇤⇤(⌦p

X
)) of the

sheaf ⌦p

X̃⇥X,strZ

�
torsion, � will be a section of the image of the sub-sheaf ⌧⇤⇤(⌦p

X
) because the

map ⇡̃⇤ : ⇡̃⇤(⌦p

X̃
) ! ⌦p

(X̃⇥X,strZ)
is injective.

Apply this to � := ⌧⇤⇤(↵) = ⇡̃⇤
�
⌧̃⇤⇤(�)^ ⌧̃⇤(w)

�
which is a section of ⌦p

X̃
as we already proved

that ↵ is a section in Lp

X
; we obtain that ⌧⇤⇤(↵) is a section of the sheaf ⌧⇤⇤(⌦p

X
) because, as

the diagram above commutes, ⌧̃⇤⇤(�) is a section of the sheaf ⌧̃⇤⇤
�
⇡⇤⇤(⌦p

X
)
�
= ⇡̃⇤⇤�⌧⇤⇤(⌦p

X
)
�

thanks to the lemma 1.0.4. ⇤

Remark. If Z is not assumed to be smooth in the previous proposition, replacing Z by a
projective desingularization � : Z̃ ! Z (as before, this means that Z̃ is the disjoint union of
projective desingularizations �j : Z̃j ! Zj for j 2 J), the proposition applies to the proper map
⇡ � � and to �̃ := �⇤(�) which is a section of the sheaf (⇡ � �)⇤⇤(⌦p

X
). Then the result is still

true. ⇤

Proof of theorem 4.1.1. The first step in proving the theorem will be the construction of
f̂⇤(↵) 2 ↵•

X
when ↵ is a section of the sheaf ↵•

Y
. So let ↵ be a section on Y of the sheaf ↵p

Y
. Let

⌧ : Ỹ ! Y be a special desingularization of Y . Consider the following commutative diagram

Z
✓ //

⇡1   

X̃

⇡

✏✏

f̃ // Ỹ

⌧

✏✏
X

f // Y

where X̃ ⇢ X⇥Y Ỹ is the strict transform ofX, that is to say the union of irreducible components
of X ⇥Y Ỹ which dominate an irreducible component of X, and where ⇡ and f̃ are induced by
the natural projections of X ⇥Y Ỹ . Then let Z be a special desingularization of X such that ⇡1
factorizes by ⇡ (see the remark following the definition 3.0.1).

Now the problem is local on X and Y and we may assume that X, X̃, Y, Ỹ and Z are kähler.
So we may assume that we have on Z a smooth d�closed form w which satisfies the condition
(@) for the proper map ⇡1 (we use a special desingularization to reach the precise situation of
the proposition 4.2.1; see the remark above and the remark following the definition 2.1.2).
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Let � be the section of ⌧⇤⇤(⌦p

Y
) defined by ↵; then the form (f̃ �✓)⇤⇤(�) is a section of ⇡⇤⇤

1
(⌦p

X
)

because if we write locally on Ỹ

� :=
X

l

gl.⌧
⇤⇤(!l)

where !l are local sections of ⌦p

Y
and gl are holomorphic functions on Ỹ , we obtain

(f̃ � ✓)⇤⇤(�) =
X

l

(f̃ � ✓)⇤(gl).(f̃ � ✓)⇤⇤(⌧⇤⇤(!l))

and the equality (f̃ � ✓)⇤⇤(⌧⇤⇤(!l)) = ⇡⇤⇤
1
(f⇤⇤(!l)) due to the commutativity of the diagram and

the lemma 1.0.4 shows that (f̃ � ✓)⇤⇤(�) is a section of the sheaf ⇡⇤⇤
1
(⌦p

X
). So we can apply the

proposition 4.2.1 and obtain that (⇡1)⇤((f̃ � ✓)⇤⇤(�) ^ w) is a section of the sheaf ↵p

X
. This will

give the definition of f̂⇤(↵) when we shall have proved that it is independent of the choice of the
special desingularization ⌧ : Ỹ ! Y .

Note that the proposition 4.2.1 already gives the independence of the choice of w (assumed
d�closed and satisfying (@)) in this construction.

The proposition 4.2.1 gives also that for ↵ a section of ⌦p

Y
/torsion f̂⇤(↵) is a section of

⌦p

X
/torsion and coincides with the usual pull-back f⇤(↵) (see section 1).

Remark now that, as the sheaf ↵p

X
has no torsion on X, to prove the independence of f̂⇤(↵)

on the choice of the special desingularization ⌧ , it is enough to prove it at the generic points of
X. Moreover, this problem is local on X and so we may assume that X is smooth and connected.

In our construction, we sum the various direct images (⇡j)⇤(f̃⇤(�) ^ wj) when j describes
the various connected components of the desingularization of X̃. Each such component is sent
by f̃ in a connected component of Ỹ and then it is enough to show the invariance of the
current (⇡j)⇤(f̃⇤(�) ^ wj) if we change only one connected component of Ỹ in the given special
desingularization, and also if we consider only the corresponding connected components of the
special desingularization of X̃. So, in fact, it is enough to prove the following special case of our
problem:

Assume that X is smooth and connected and that Y is irreducible. Let ⌧ : Ỹ ! Y be a
special desingularization of Y and let ✓ : ˜̃Y ! Ỹ be a proper smooth modification of Ỹ . So our

new special desingularization of Y will be ⌧ � ✓ : ˜̃Y ! Y .
Now we shall consider the following diagram, where X̃ is a special desingularization of an

irreducible component of the strict transform X ⇥Y Ỹ and ˜̃X is a special desingularization of

the strict transform of X̃ ⇥
Ỹ

˜̃Y :

˜̃X

✓̃

✏✏

˜̃
f // ˜̃Y

✓

✏✏

X̃

⌧̃

✏✏

f̃ // Ỹ

⌧

✏✏
X

f // Y

Let q the dimension of the generic fibres of ⌧̃ and k the number of connected components
of its generic fibres. Let ! be a kähler form of Ỹ normalized in order that the form f̃⇤(!^q)
satisfies the condition (@) for the map ⌧̃ . Let q̃ be the dimension of the generic fibre of ✓̃ and

let !̃ a kähler form on ˜̃Y normalized in order that the form ˜̃f⇤(!̃^q̃) satisfies the condition (@)
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for the map ✓̃. Now consider the (q+ q̃, q+ q̃)�smooth form w := ˜̃f⇤(✓⇤(!^q)^ !̃q̃) on ˜̃X which
is d�closed. It satisfies the condition (@) for the map ⌧̃ � ✓̃.

So the definition of f̂⇤(↵) using the special desingularization ⌧ � ✓ is given by

(⌧̃ � ✓̃)⇤
�
(✓ � ˜̃f)⇤(�) ^ w

�
,

But, as f̃⇤⇤(�) is a section of the sheaf ⌦p

X̃
/torsion, we have the equality

✓̃⇤(✓̃
⇤⇤(f̃⇤⇤(�)) ^ ˜̃f⇤(!̃q̃)) = f̃⇤⇤(�)

and the conclusion follows from the fact that

(⌧̃ � ✓̃)⇤
�
(✓ � ˜̃f)⇤⇤(�) ^ w

�
= ⌧̃⇤[✓̃⇤

�
✓̃⇤⇤(f̃⇤⇤(�)) ^ ˜̃f⇤(!̃q̃)

�
^ f̃⇤(!q))].

The compatibility of this construction with the pull-back of holomorphic forms modulo torsion
which is given by the last assertion of the proposition 4.2.1 obviously gives that the injective
OX�linear morphism

⌘X : ⌦•
X
/torsion ! ↵•

X

for each X 2 C gives the commutative diagram (2) of the precise formulation 4.1.2 of the theorem
for each morphism f : X ! Y in C.

Now we have to prove the functoriality of f̂⇤. Then consider a holomorphic maps f : X ! Y
and g : Y ! Z. We want to prove the formula (1) of the theorem.
Consider the commutative diagram

˜̃X
˜̃
f //

✓̃

✏✏

˜̃Y

✓

✏✏

X̃
f̃ //

⌧2

✏✏

Ỹ
g̃ //

⌧1

✏✏

Z̃

⌧

✏✏
X

f // Y
g // Z

where ⌧ : Z̃ ! Z is a special desingularization, where g̃ : Ỹ ! Z̃ is the strict transform of g by
⌧ , where f̃ : X̃ ! Ỹ is the strict transform of f by ⌧1, where
˜̃f : ˜̃X ! ˜̃Y is the strict transform of f̃ by ✓ : ˜̃Y ! Ỹ which is a special desingularization of Ỹ .
Let ↵ be a section of ↵p

Z
, note � := ⌧⇤⇤(↵) 2 ⌧⇤⇤(⌦p

Z
)6 and let w1 and w2 be smooth d�closed

forms satisfying the condition (@) of the proposition 4.2.1 for the maps ⌧1 and ✓̃ respectively.
We have

ĝ⇤(↵) = (⌧1)⇤(g̃
⇤⇤(�) ^ w1)

but we have also, because g̃⇤⇤(�) is a section of ⌧⇤⇤
1
(⌦p

Y
)

ĝ⇤(↵) = (⌧1 � ✓)⇤(✓⇤⇤(g̃⇤⇤(�) ^ ✓⇤(w1))).

Then we obtain

f̂⇤(ĝ⇤(↵)) = (⌧2 � ✓̃)⇤
� ˜̃f⇤⇤(✓⇤⇤(g̃⇤⇤(�))) ^ ˜̃f⇤(w1) ^ w2

�
.

6See the simple lemma 4.2.3 below.
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As the square

X̃
g̃�f̃ //

⌧2

✏✏

Z̃

⌧

✏✏
X

g�f // Z

is also the strict transform of g � f by ⌧ we have

[g � f
⇤
(↵) = (⌧2)⇤

�
(g̃ � f̃)⇤⇤(�) ^ f̃⇤(w1)

�
.

Then the conclusion follows from the equality

✓̃⇤
� ˜̃f⇤⇤(✓⇤⇤(g̃⇤⇤(�))) ^ ˜̃f⇤⇤(✓⇤(w1)) ^ w2

�
= f̃⇤⇤(g̃⇤⇤(�)) ^ f̃⇤(w1)

obtained by the comparaison of both hand-sides at the generic points of X̃. ⇤

Our next result shows that the sheaf ↵•
X

is “maximal” in order to construct the pull-back via
the method of the proposition 4.2.1.

Proposition 4.2.2. Let ⇡ : Z ! X be a proper surjective holomorphic map between irreducible
complex spaces. Put q := dimZ � dimX. Let � 2 ↵p

Z
be equal to ⇡̂⇤(↵) for a section ↵ of the

sheaf ↵p

X
. Let also w be a smooth (q, q)�form on Z which is d�closed and satisfies the condition

(@) of the proposition 4.2.1 for the map ⇡. Then the (p, 0)�current ⇡⇤(� ^ w) on X (which is
@̄�closed and independent of the choice of w satisfying dw = 0 and (@); see proposition 4.2.1)
is equal to the image in !p

X
of the section ↵ of the sheaf ↵p

X
.

Using the “pull-back” theorem 4.1.1 the proof of the result above will follow from this simple
lemma.

Lemma 4.2.3. Let X be a reduced complex space and ⌧ : X̃ ! X a desingularization of X.
Then the image of the pull-back ⌧̂⇤ : ⌧⇤(↵•

X
) ! ↵•

X̃
= ⌦•

X̃
is the subsheaf ⌧⇤⇤(⌦•

X
) of ⌦•

X̃
.

Proof. By definition, a section of this image is locally on X̃ a O
X̃
�linear combination of holo-

morphic forms on X̃ which are locally O
X̃
�linear combinations of pull-back by ⌧ of holomorphic

forms on X. So the conclusion is clear. ⇤
Remark. As a consequence of the previous lemma, if ⌧ is a special desingularization of X we
have ⌧⇤⌧̂⇤ is the identity on the sheaf ↵•

X
.

Proof of the proposition 4.2.2. Let ⇡̃ : Z̃ ! X̃ be the strict transform of ⇡ by ⌧ , and
denote by ⌧̃ : Z̃ ! Z the corresponding projection on Z which is a modification. So we have the
following commutative diagram

Z̃
⇡̃ //

⌧̃

✏✏

X̃

⌧

✏✏
Z

⇡ // X

The (q, q)�form ⌧̃⇤(w) is smooth and d�closed in Z̃ and satisfies the condition (@) of the
proposition 4.2.1 for the proper surjective holomorphic map ⌧ � ⇡̃. As we can write � = ⇡̂⇤(↵)
where ↵ is a section of ↵p

X
, we have, by functoriality of the pull-back for the sheaf ↵•

Y
and the

equality ⌧ � ⇡̃ = ⇡ � ⌧̃
ˆ̃⌧⇤(�) = b̃⇡

⇤
(⌧̂⇤(↵)).
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But, thanks to the previous lemma, we have ⌧̂⇤(↵) which is a section of ⌧⇤⇤(⌦p

X
) and using

the smoothness of X̃ we have b̃⇡
⇤
= ⇡̃⇤⇤. Then we obtain, using the lemma 1.0.4, the fact that

ˆ̃⌧⇤(�) is a section of the sheaf (⌧ � ⇡̃)⇤⇤(⌦p

X
). Then the proposition 4.2.1 applies to the map

⌧ � ⇡̃ : Z̃ ! X with the form ⌧̃⇤(w) and the section ˆ̃⌧⇤(�) of the sheaf (⌧ � ⇡̃)⇤⇤(⌦p

X
) and gives

that the (p, 0)�current on X given by � := (⌧ � ⇡̃)⇤(ˆ̃⌧⇤(�) ^ ⌧̃⇤(w)) is @̄�closed on X and is a
section of the sheaf ↵p

X
.

But the (p+ q, q)�current ⌧̃⇤(ˆ̃⌧⇤(�)^ ⌧̃⇤(w)) is equal to � ^w at least over the generic points
in X, the (p, 0)�current ⇡⇤(� ^w) is @̄�closed in X and generically equal to � and ↵. So ↵ and
� are equal as sections of the sheaf ↵p

X
. ⇤

5. Integration on cycles

5.1. Integrals.

Notations. Let V be a complex manifold and h be a continuous hermitian form on V . So h is a
real continuous positive definite (1, 1)� di↵erential form on V . If ! is a continuous (p, p)�form
on V , we shall consider ! as a continuous sesqui-linear form on ⇤p(TV ) and we shall write

k!kK  C.h^p

where K is a subset in V and C > 0 a constant, if for any point x 2 K and any v1, . . . , vp 2 TV,x

the inequality

|!(x)[v1 ^ · · · ^ vp]|  C.h^p(x)[v1 ^ · · · ^ vp]

holds. For instance, if ↵,� 2 ⌦p

V
we shall write k↵ ^ �̄kK  CK .h^p when for any x 2 K and

any v1, . . . , vp 2 TV,x we have

(1) |↵(x)[v1 ^ · · · ^ vp]|.|�(x)[v1 ^ · · · ^ vp]|  CK .h^p(x)[v1 ^ · · · ^ vp].

Remark. If f : W ! V is a holomorphic map and if (1) holds then we shall have

(2) kf⇤(↵) ^ f⇤(�)kf�1(K)  CK .f⇤(h)^p

but, in general, f⇤(h) is still positive but no longer definite on W .
Conversely if (2) holds on a set L in W then (1) is satisfied on f(L).

Proposition 5.1.1. Let X be a reduced complex space, let S be the singular set in X and let h
be a continuous hermitian metric on X. Let U be a relatively compact open set in X. For all
↵,� 2 ↵p

X
there exists a constant CU > 0 such that the following inequality holds at each point

in Ū \ S
k↵ ^ �̄kŪ\S  CU .h

^p

Ū\S .

Proof. Remark that the problem is local on the compact set Ū \S because near smooth points
in X the assertion obviously holds. Let ⌧ : X̃ ! X be a special desingularization of X. Then
we shall show that for each point y 2 ⌧�1(Ū \ S) there exists an open neighbourghood W of y
in X̃ and a positive constant CW such that the inequality

k⌧⇤⇤(↵) ^ ⌧⇤⇤(�)kW  CW .⌧⇤⇤(h)^p

holds: if y is a point in X̃ we can write in an open neighbourghood W of y

↵ =
X

|I|=p

gI .⌧
⇤⇤(dxI) and � =

X

|I|=p

hI .⌧
⇤⇤(dxI)
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where x1, . . . , xN are local coordinates in a closed embedding of an open set U ⇢⇢ X in CN

near ⌧(y). Our estimates is consequence of the facts that the holomorphic functions gI and hI

are locally bounded and that for any (I, J) there is a constant cI,J
U

> 0 with

kdxI ^ dxJ)kU  cI,J
U

.h^p

because we can assume that h is induced by a continuous hermitain form on CN .
Now the properness of ⌧ allows to find a a constant CU such that the inequality

k⌧⇤⇤(↵) ^ ⌧⇤⇤(�)kK  CU .⌧
⇤⇤(h)^p

holds on the compact set K := ⌧�1(Ū). This allows to conclude thanks to the remark above. ⇤

Corollary 5.1.2. Let X be a complex space of pure dimension n, and let ↵,� be sections on X
of the sheaf Ln

X
. Then, if ⇢ is a continuous compactly supported function on X the integral

Z

X\S
⇢.↵ ^ �̄

is absolutely convergent for any closed analytic subset S containing the singular set in X and its
value does not depends on the choice of S.
Now fix a continuous hermitian metric h on X and a compact set K in X. If ↵ and � are
sections of the sheaf ↵n

X
, there is constant C > 0 depending on ↵,�, h and K such that for any

⇢ 2 C 0

K
(X) we have

(3)
���
Z

X\S
⇢.↵ ^ �̄

���  C.

Z

X

|⇢|.h^n  C.||⇢||.
Z

Supp ⇢

h^n.

Proof. The first part is consequence of the fact that ⌧⇤⇤(↵) and ⌧⇤⇤(�) are holomorphic n�forms
on X̃. The estimates when ↵,� are sections of ↵n

X
is a direct consequence of the previous

proposition. ⇤

Remarks.

(1) Of course, in the second part of the corollary we may replace ⇢ by the characteristic func-
tion of an open subset V ⇢ K in order to obtain, with the same constant C independent
on the choice of V , the estimate

(3 bis) |
Z

V \S
↵ ^ �̄|  C.

Z

V

h^n.

(2) Note that the estimations (3) or (3bis) do not hold in general when ↵ and � are sections
in the sheaf Ln

X
. For instance let

X := {(x, y, z) 2 C3 / x.y = z2} and ↵ = � =
dx ^ dy

z
.

They are sections of the sheaf L2

X
but not sections of the sheaf ↵2

X
(see the example

with k = 2 in the paragraph 6.2); let K := {|x|  1} \ {|y|  1} in X and let h be the
metric induced on X by the standard kähler form on C3. Then we have

Z

V (r)

↵ ^ ↵̄ = �.r2

where V (r) := {|x|  r} \ {|y|  r} \X and
R
V (r)

h^2 = �.r4 for any r 2]0, 1[, showing
that the estimate (3bis) cannot hold.
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Definition 5.1.3. For ↵,� sections of the sheaf Ln

X
the common values of the absolutely con-

vergent integrals
R
X\S ⇢.↵ ^ �̄ will be denoted simply by

R
X
⇢.↵ ^ �̄.

Lemma 5.1.4. Let f : Y ! X a proper generically finite and surjective holomorphic map
between two complex spaces of pure dimension n; let k be the generic degree of ⇡. Let ↵,� be
sections on X of the sheaf Ln

X
and ⇢ 2 C 0

c
(X). Then the holomorphic n�forms f⇤⇤(↵) and

f⇤⇤(�) are well defined on a dense Zariski open set in Y and extend as sections on Y of the
sheaf Ln

Y
. We have the equality

Z

X

⇢.↵ ^ �̄ = k.

Z

Y

f⇤(⇢).f⇤⇤(↵) ^ f⇤⇤(�).

Proof. Remark that it is enough to prove the lemma for ↵ = �. Let ⌧ : X̃ ! X be a
desingularization of X. As ⌧⇤⇤(↵) is an holomorphic n�form on X̃ the form ↵ is locally L2 on
X. Let H" be an open "�neighbourhood of H a closed analytic subset in X such that the map
f : Y \ f�1(H) ! X \ H is a finite covering between two complex manifolds. Then the usual
change of variable gives, if ⇢ is in C 0

c
(X)

Z

X\H"

⇢.↵ ^ ↵ = k.

Z

Y \f�1(H")

f⇤(⇢).f⇤⇤(↵) ^ f⇤⇤(↵).

Letting " goes to 0 shows that f⇤⇤(↵) is locally L2 on any desingularization of Y and so f⇤⇤(↵)
is a section of the sheaf Ln

Y
. The conclusion follows easily. ⇤

Definition 5.1.5. Let X be a complex space and let Y ⇢ X be an irreducible p�dimensional
analytic subset in X. We shall denote j : Y ! X the the inclusion. Let ↵,� be sections of
the sheaf ↵p

X
on X and ⇢ be a continuous function with compact support in X. We define the

number
R
Y
⇢.↵ ^ � as the integral

Z

Y

j⇤(⇢).ĵ⇤(↵) ^ ĵ⇤(�).

Note that this definition makes sense because the pull-back ĵ⇤ : j⇤(↵p

X
) ! ↵p

Y
is well defined

and because the inclusion ↵p

Y
⇢ Lp

Y
allows to use the definition 5.1.3. Remark that this definition

only depends on the irreducible analytic subset Y of X. So we may extend by additivity the
definition of the integral Z

Y

⇢.↵ ^ �

to any p�dimensional cycle Y in X.

The next lemma shows that the change of variable holds for such a integral.

Lemma 5.1.6. Let f : X ! Y be a holomorphic map and let ↵,� be sections on Y of the
sheaf ↵p

Y
. Let ⇢ be a continuous compactly supported function on Y . Let Z be a p�cycle in X

and assume that the cycle f⇤(Z) is defined in Y 7. Then the restriction to |Z| of the continuous

function f⇤(⇢) has compact support and the integral
R
Z

f⇤(⇢).f̂⇤(↵) ^ f̂⇤(�) is well defined and
we have Z

Z

f⇤(⇢).f̂⇤(↵) ^ f̂⇤(�) =

Z

f⇤(Z)

⇢.↵ ^ �̄.

7This means that the restriction of f to |Z| is proper; see [B-M 1] chapter IV.
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proof. First remark that any irreducible component � of Z which has an image of dimension
at most equal to p� 1 does not contribute to the right hand-side and also to the left hand-side
because the forms f̂⇤(↵) and f̂⇤(�) vanish on such a irreducible component:

Let g : � ! f(�) be the map induced by f ; by functoriality of the pull-back ĝ⇤ factorizes
through ↵p

f(�)
which is zero.

Then the result is in fact a local statement near each point of the support of the cycle f⇤(Z).
And because of our previous remark and the fact that closed analytic subsets with no interior
point can be neglected in the integrals, it is enough to prove the result when Z is smooth and
when f induces an isomorphism of Z on f(Z). In this case, which is not trivial because Z and
f(Z) can be contained in the singular sets of X and Y , the functorial property of the pull-back
and the fact that for a complex manifold V we have ↵p

V
= ⌦p

V
allow to conclude. ⇤

Theorem 5.1.7. Let X be a reduced complex space and let (Yt)t2T be an analytic family of
p�cycles in X parametrized by a reduced complex space T . Fix a compact set K in X and let
↵,� be sections of the sheaf ↵p

X
on X. Let ⇢ be a continuous function with a compact support

in K and define the function ' : T ! C by

'(t) :=

Z

Yt

⇢.↵ ^ �.

Then ' is locally bounded and for any given hermitian metric h on X and any compact set L
in T there exists a constant C depending only on K,↵,�, h and L (but not on the choice of ⇢)
such that the following estimate holds for each t 2 L:

(E) |'(t)|  C.

Z

Yt

|⇢|.h^p  C.||⇢||.
Z

Yt\Supp ⇢

h^p.

Moreover for each point t0 2 T there exists an open neighbourhood T0 of t0 in T and a closed
analytic subset ⇥0 ⇢ T0 with no interior point in T0 such that ' is continuous on T0 \⇥0.

Proof. We shall cut this proof in several steps.

Step 1. Let ⌫ : T̃ ! T the normalization of T . The family (Y
⌫(t̃)

)
t̃2T̃

is an analytic family of

p�cycles in X parametrized by T̃ , and if the theorem is proved for this family it implies the
result for the initial family, because the function is constant on the fibres of the normalization
map.

So we shall assume that T is normal in the sequel.

Step 2. If the generic cycle Yt is not reduced and irreducible, the normality of T allows to write
the family (Yt)t2T as a finite sum of analytic families of p�cycles in X parametrized by T such
that the sum of these families is our initial family and such that the generic cycle in each family
is reduced and irreducible (see ch. IV theorem 3.4.1 of [B-M 1]). So it is enough to prove the
theorem for such a family.

So we shall assume that for t generic in T the cycle Yt is reduced and irreducible.

Step 3. Let G ⇢ T ⇥X the cycle-graph of our analytic family. It is a reduced and irreducible
cycle and the projection ⇡ : G ! T is (by definition) a geometrically flat map, that is to say
that there exists an analytic family of cycles (Zt)t2T in G such that for each t 2 T we have
|Zt| = ⇡�1(t) and such that the generic cycle Zt is reduced and irreducible. Of course, here we
have Zt := {t}⇥ Yt for each t 2 T .

Note pr : G ! X the projection and define on G the sections of the sheaf ↵p

G
by letting

↵1 := p̂r⇤(↵) and �1 := p̂r⇤(�). Then, it is enough to prove the theorem for the function
t 7!

R
Zt

⇢̃.↵1 ^ �̄1 where ⇢̃ := pr⇤(⇢) thanks to the change variable theorem proved in lemma
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5.1.6. Remark that pr induces an isomorphism of |Zt| onto |Yt| for each t 2 T and also that the
continuous function ⇢̃ on G has a ⇡�proper support.

Step 4. Let ⌧ : G̃ ! G be a special desingularization of G. Define the subset

⇥ := {t 2 T / 9y 2 K dimy (pr � ⌧)�1(t) � p+ 1}.

This is a locally closed analytic subset8 in T with no interior point. For a given t0 2 T , fix
an open neighbourhood T0 of t0, small enough in order that ⇥0 := ⇥ \ T0 is a closed analytic
subset. The map

q : G̃ \ (pr � ⌧)�1(T0) \ (pr � ⌧)�1(⇥) ! T0 \⇥0

is p�equidimensional on a normal basis, so it is geometrically flat and we have an analytic family
(Z̃t)t2T0\⇥0

of fibres of q which are p�cycles in G̃, and for t generic in T0 \ ⇥0 the cycle Z̃t is
irreducible.

Note that the pull-back of ↵1 and �1 on G̃\ (pr � ⌧)�1(T0) are holomorphic p�forms. So, by
the usual result of the continuity of integration of a continuous form on a continuous family of
cycles (see [B-M 1] ch. IV prop. 2.3.1), we conclude using the lemma 5.1.6 that the function '
is continuous on T0 \⇥0.

Step 5. The local boundness on T of the function ' is given by the corollary 5.1.2 which gives
the estimate (E) by integration. ⇤
Remarks.

(1) In the case of a proper family of compact cycles in X, it is easy, using results of [B-M 1]
chapter IV, to prove that the function ' becomes continuous after a suitable modification
of the complex space T .

(2) Already in the case of the normalization map, if ↵ is a locally bounded meromorphic
function on X, the function x 7! |↵(x)|2 is not continuous on X in general.

5.2. Normalized Nash transform. Let us begin by two examples.
Two examples.

(1) We shall show in section 6.2 that for k � 2 and k � 1 � q � k/2 the form

!q := zq.(dx/x� dy/y)

is a section of the sheaf ↵1

Sk
where

Sk := {(x, y, z) 2 C3 / x.y = zk}

which are not sections of the sheaf ⌦1

Sk
/torsion.

But as we have dx/x+ dy/y = k.dz/z on Sk we obtain the equality

!2

q
= k2.z2q�2.(dz)2 � 4z2q�k.dx.dy;

so !2

q
is equal, for q � k/2, modulo torsion to a section of S2(⌦1

Sk
), the piece of degree

2 in the symmetric algebra of the sheaf ⌦1

Sk
.

(2) We shall show in section 6.4 that on X := {(x, y, u, v) 2 C4 / x.y = u.v} the form
a := u.dv ^ dx/x is a section of the sheaf ↵2

X
which is not in ⌦2

X
/torsion. But using the

following identities on X:

u.dv ^ dx/x+ u.dv ^ dy/y = dv ^ du

u.dv ^ dy/y + v.du ^ dy/y = dx ^ dy

8See, for instance, the lemma 2.1.8 in [B.15].
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we obtain that

a2 + a.(du ^ dv + dx ^ dy)� (dv ^ dx).(du ^ dy) = 0

which is a homogeneous integral dependence equation for a on the symmetric algebra of
the sheaf ⌦2

X
/torsion.

The next proposition will show that these examples are special cases of a general phenomenon.

Proposition 5.2.1. Let X be a normal complex space. Then for each integer q the sheaf ↵q

X
is

the sub-sheaf of meromorphic sections of the sheaf ⌦q

X
/torsion which satisfy a homogeneous inte-

gral dependence equation over the sheaf S•(⌦q

X
), the symmetric algebra of the sheaf ⌦q

X
/torsion.

Proof. This is a special case of the proposition 2.2.4. ⇤
Notation. For integers n < N we shall denote Gr(n,N) the grassmannian manifold of sub-
vector spaces in CN of dimension n.

Let X be a reduced complex space pure of dimension n and let S its singular locus. Assuming
that X is embedded in an open set U in CN we have a holomorphic map

✓ : X \ S ! Gr(n,N)

sending each point x 2 X \ S to the n�dimensional vector sub-space of CN which directs
the tangent space at x to X. This map is holomorphic on X \ S and meromorphic along
S: assuming that X is locally defined by {f = 0} in an open set in CN the analytic subset
G ⇢ G̃ := {(x, P ) 2 X ⇥ Gr(n,N) / P ⇢ Ker[dfx]}, which is the union of the irreducible
components of G̃ which contain an irreducible component of the graph of the map ✓, is a proper
modification of X which is the closure of the graph of the map ✓.

We shall note N : X̂ ! X the projection on X of the normalization of G. We shall call the
(local) normalized Nash transform of X this modification.

Let ⇡ : U ! Gr(n,N) the universal n�vector bundle of Gr(n,N) and let Lq be the sheaf of
section of the dual vector bundle to ⇤q(U). Let pr : X̂ ! Gr(n,N) be the projection.

Proposition 5.2.2. For each integer q there is a canonical isomorphism

cq : N ⇤(↵q

X
)/torsion ! pr⇤(Lq).

Proof. This proposition is an easy consequence of Corollary 2.2.3 and Lemma 2.1.3. ⇤

As a consequence of this proposition we obtain that for a normal complex space we have
↵q

X
' N⇤(Lq) for any integer q � 0.

Lemma 5.2.3. Let X be a reduced complex space and let ⌧ : X̃ ! X be any (proper) modifica-
tion. Then we have a natural inclusion ↵•

X
,! ⌧⇤(↵•

X̃
).

Proof. Consider a special desingularization ✓ : ˜̃X ! X̃ and remark that ⇡ := ⌧ � ✓ is a
desingularization of X. Then we have

↵•
X

= ⇡⇤(⇡
⇤⇤(⌦•

X
) = ⌧⇤(✓⇤

�
✓⇤⇤(⌧⇤⇤(⌦•

X
))
�
.

Now the equality ↵•
X̃

= ✓⇤(✓⇤⇤(⌦•
X̃
)) and the inclusion ⌧⇤⇤(⌦•

X
) ⇢ ⌦•

X̃
/torsion give

✓⇤⇤(⌧⇤⇤(⌦•
X
) ⇢ ✓⇤⇤(⌦•

X̃
)

✓⇤
�
✓⇤⇤(⌧⇤⇤(⌦•

X
)
�
⇢ ↵•

X̃
and then

↵•
X

⇢ ⌧⇤(↵
•
X̃
)
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concluding the proof. ⇤

Remark. This shows that when we consider a sequence of successive modifications over a re-
duced complex space X, the sequence of coherent sub-sheaves (⌧⌫)⇤(↵•

X⌫
) is locally stationary

on X. For instance, this is the case for iterated normalized Nash transforms over a given X.

6. Some examples

6.1. Computation of !•
X

for hypersurfaces. We shall need the following elementary lemma.

Lemma 6.1.1. Let U be an open polydisc in Cn and D an open disc in C. Let X ⇢ U ⇥D be
a reduced multiform graph of degree k in U ⇥D with canonical equation P 2 O(U)[z], which is
a monic degree k polynomial in z. Then we have the inclusion

�(X,!q

X
) ⇢

k�1X

j=0

zj

P 0(z)
.�(U,⌦q

U
)

with equality for q = n.

Proof. First will shall prove the following formula, where (j, h) 2 [0, k � 1]2:

detj,h
⇥
TraceX/U (

zj+h

P 0(z)
)
⇤
= (�1)k.(k�1)/2.

Assume, without loss of generality, that D is centered at the origin with radius R. Then for
r > R we have, thanks to Cauchy’s formula

TraceX/U (
zm

P 0(z)
) =

1

2i⇡
.

Z

|z|=r

zm.dz

P (z)
.

Then for m  k � 2 put z = r.ei.✓ we obtain

TraceX/U (
zm

P 0(z)
) =

1

2⇡
.

Z
2⇡

0

rm+1�k.ei.(m+1�k).d✓

1 +O(1/r)

and letting r ! +1 gives 0. For m = k � 1 the same computation gives

TraceX/U (
zk�1

P 0(z)
) =

1

2⇡
.

Z
2⇡

0

d✓

1 +Q((1/r).e�i.✓)

Where Q is a polynomial without constant term.

So we obtain that TraceX/U (
z
k�1

P 0(z) ) = 1. This is enough to get the formula above.

To prove the inclusion

�(X,!q

X
) ⇢

k�1X

j=0

zj

P 0(z)
.�(U,⌦q

U
),

take ↵ 2 !q

X
and write

↵ =
X

|H|=q

gH .dtH

where gH are degree  k � 1 polynomials in z with meromorphic functions on U as coe�cients.
As we have P 0(z).dz = �

P
n

h=1

@P

@th
.dth on X, this is possible. Now for any f 2 O(X) we have
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TraceX/U [f.↵] 2 ⌦q(U) and this implies that for any H ⇢ [1, n],TraceX/U [f.gH ] is in O(U). Let
g be a meromorphic function on X and assume that we write

g =
k�1X

j=0

aj .
zj

P 0(z)

where aj , j 2 [0, k � 1] is a meromorphic function on U . This is always possible for the gH as
we can see in what follows. Let mp := TraceX/U [z

p.g] for p 2 [0, k� 1]. Then we have the linear
system in the (aj), j 2 [0, k � 1]:

k�1X

j=0

aj .TraceX/U [
zp+j

P 0(z)
] = mp 8p 2 [0, k � 1].

But the determinant of this linear system is (�1)k.(k�1)/2, so this implies, if we assume that the
functions mp are holomorphic on U , that the functions aj for j 2 [0, k � 1], are holomorphic in

U and so that g is in 1

P 0(z) .O(X). Then our inclusion is proved, as O(X) =
P

k�1

j=0
O(U).zj .

Note that in the situation above, the condition in order that ↵ =
P

k�1

j=0

z
j

P 0(z) .⌦
q(U) will be in

!q(X) is that for any j 2 [0, k � 1] the (q + 1)�forms

TraceX/U [z
j .dz ^ ↵]

are holomorphic in U for all j 2 [0, k�1]. This is consequence of the fact that for any � 2 ⌦p(X)
the (p+ q)�form TraceX/U [↵ ^ �] must be holomorphic (see [B. 78] for this characterization of
the sheaf !•

X
). For q = n this extra condition is empty, so the equality occurs. ⇤

Remark. For a general reduced multiform graph X ⇢ U ⇥B where B is now a polydisc in Cp,
for any linear form l in Cp which separates generically the fibres of the projection ⇡ : X ! U ,
the map idU ⇥ l : U ⇥ B ! U ⇥ C is proper and generically injective on X. If we define
Yl := (idU ⇥ l)(X), we are in the situation of the lemma above, and, as the direct image by ⇡
induces an injective sheaf map ⇡⇤ : !•

X
! ⇡⇤(!•

Yl
), we obtain the inclusion

⇡⇤!
•
X

⇢
k�1X

j=0

l(x)j

P 0
l

.⌦•
U

for any such l, where Pl is the canonical equation for Yl (see [B-M 1] chapter II). Note that the
canonical equation Pl is obtained from the canonical equation of the reduced multiform graph
X by the evaluation at l (with z = l(x)); see loc. cit. ⇤

Note that, if X is a reduced complex space of pure dimension n, a section ↵ 2 !n

X
is in Ln

X

i↵ ↵ ^ ↵̄ is locally integrable on X. The analogous characterization, for p < n, involves local
integrability of ↵ ^ ↵̄ on all p�dimensional irreducible analytic subset Y ⇢ X not contained in
the singular set of X; so it may be useful as a necessary condition but very di�cult to check as
a su�cient condition.

Preliminary remark. Let ⌧ : X̃ ! X be a desingularization of a reduced complex space X.
Note S the singular set in X and assume that the center of ⌧ is contained in S.

• Let ↵ 2 !p

X
. To check if ↵ is in Lp

X
is equivalent to check if ⌧⇤(↵), as a section of ⌦p

X̃

on ⌧�1(X \ S), extends to a section of ⌦p

X̃
on X̃.

• For ↵ 2 Lp

X
to check if ↵ is a section of ↵p

X
is equivalent to check if ⌧⇤⇤(↵) extends to a

section of ⌧⇤⇤(⌦p

X
) when ⌧ is a special desingularization of X. But this not true,

in general, for an arbitrary desingularization of ⌧ .
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• But for any desingularization, it is a necessary condition in order that ↵ 2 Lp

X
belongs

to ↵p

X
that ⌧⇤⇤(↵) is a section of ⌧⇤⇤(⌦p

X
) on X̃.

So, in order to have a complete description of the sheaf ↵•
X
, we shall use a special desingu-

larization of X.

6.2. The case X := {(x, y, z) 2 C3 / x.y = zk}, k � 2.
Notation. After blow-up (x, y, z) in C3 the homogeneous coordinates in P2 will be (↵,�, �).
The symetry between x and y allows to consider only the chart {↵ 6= 0} on which we put
b := �/↵, c := �/↵ and the chart {� 6= 0} on which we put a := ↵/�, b := �/�.

Our first example will be the normal complex spaces, where k 2 N, k � 2

X := Sk := {(x, y, z) 2 C3 / x.y = zk}.
Note that S0 and S1 are smooth complex surfaces.

Lemma 6.2.1. For any k � 2 the normal complex space Sk is nearly smooth9. So we have
L•
Sk

= !•
Sk

for any k.

Proof. Let ⇣ be a k�th primitive root of 1. Then Sk is isomorphic to the quotient of C2

by the action of the automorphism ✓(u, v) = (⇣.u, ⇣�1.v). The quotient map is given by
q(u, v) = (uk, vk, u.v) 2 C3. ⇤

Now compute the sheaf !h

X
for h 2 [0, 2]. We have !0

X
= OX as X is normal, and

!2

X
= OX .dx^dy

zk�1 . A rather easy computation shows that the quotient !1

X

�
⌦1

X
is generated

on OX by the image of x.dy
�
zk�1 = �y.dx/zk�1 + k.dz which is annihilated in this quotient by

x, y and zk�1.

Lemma 6.2.2. For any k � 2, the sheaf ↵2

Sk
coincides with ⌦2

Sk

�
torsion.

Proof. Remark that for k = 0, 1 the lemma is obvious as Sk is smooth. We shall prove the
lemma by induction on k � 2.
We have to consider the case k = 2 first because it appears that the computation is special in
this case (see the denominator k � 2 in the computation for k � 3).

For k = 2 after blowing-up the origin we have a smooth manifold:

Claim. This a special desingularization of S2.

Proof. In the chart {↵ 6= 0} we have y = x.b, z = x.c, b = c2 so (x, c) is a coordinate
system in this chart and the sheaf ⌧⇤(⌦1

S2
)
�
torsion is generated by dx and x.dc, so it is free.

In the chart {� 6= 0} we have x = z.a, y = z.b, a.b = 1 and so (z, a) is a coordinate system
with a 6= 0. Then the sheaf ⌧⇤(⌦1

S2
)
�
torsion is generated by dz and z.da which is also free. By

symetry in x and y, the proof of the claim is complete.

Let us come back to the computation of ↵2

S2
.

In the chart {↵ 6= 0}, we have
dx ^ dy

z
= 2.dx ^ dc

9See [B-M. 17]
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which is holomorphic but not in ⌧⇤(⌦2

S2
) ' O

X̃
.x.dx ^ dc.

In the chart {� 6= 0}, we have x = z.a, y = z.b, a.b = 1 and

dx ^ dy

z
= �2dz ^ da/a

which is holomorphic but not in ⌧⇤⇤(⌦2

S2
) ' O

X̃
.z.dz ^ da.

The assertion is proved for k = 2.

Consider now the case k = 3. Then the blowing-up the origin gives a smooth manifold:

Claim. This desingularization of S3 is not special.

Proof. In the chart {↵ 6= 0} we have y = x.b, z = x.c, b = x.c3 so (x, c) is a coordinate
system in this chart and the sheaf ⌧⇤(⌦1

S3
)
�
torsion is generated by dx and x.dc so it is free.

But in the chart In the chart {� 6= 0} we have x = z.a, y = z.b and a.b = z and (a, b) is
a coordinate system. As x = a2.b and y = a.b2, the sheaf ⌧⇤(⌦1

S2
)
�
torsion is generated by

d(a2.b), d(a.b2), d(a.b) and it is not locally free near the point a = b = 0.

But blowing-up the point a = b = 0 in the second chart make the pull-back of the sheaf
⌧̃⇤(⌦1

S3
)
�
torsion locally free, where ⌧̃ is the composition of ⌧ and the blow-up of the point

a = b = 0 in the second chart:
In the chart a = ✓.b of this second blow-up the coordinate system is given by (b, ✓) so

x = ✓2.b3, y = ✓.b3, z = ✓.b2. Then the sheaf ⌧̃⇤(⌦1

S3
)
�
torsion is generated by dx, dy, dz. An easy

computation shows that dx = �✓.dy+3✓.b.dz so sheaf ⌧̃⇤(⌦1

S3
)
�
torsion is free in this chart. The

other chart is obtained by exchanging a and b.

Consider now the section dx^dy

z
of !3

S3
. Its pull-back by ⌧̃ is given by

d(✓2.b3) ^ d(✓.b3)

✓.b2
= �3✓.b3.db ^ d✓

and the generator of the sheaf ⌧̃⇤(⌦2

S3
)
�
torsion is given by

⌧̃⇤(dy ^ dz) = ✓.b4.db ^ d✓.

So we conclude that neither dx^dy

z
nor dx^dy

z2 are in ↵2

S3
.

As the assertion is proved for k = 2, 3 we may assume that, for k � 4 the equality is proved
for Sk�2. Then let X̃ ! X := Sk be the blow-up of Sk at the singular point x = y = z = 0. In
the chart {� 6= 0} of X̃ we have the relations

x = a.z, y = b.z a.b = zk�2

and we find a copy of Sk�2. For k � 4 we have

dx ^ dy =
k

k � 2
.z2.da ^ db = k.

a.b

k � 2
.
da ^ db

zk�4
,

dx ^ dz =
a

k � 2
.
da ^ db

zk�4
, dy ^ dz =

b

k � 2
.
da ^ db

zk�4
.

So in this chart

⌧⇤⇤(⌦2

Sk

�
torsion) = OSk�2 .

�
a, b

�
.
da ^ db

zk�4

and, as a consequence of the fact that zk�q�2 is not in the ideal
�
a, b

�
.OSk�2 for q � 1, for

each q � 1 the 2�form dx^ dy
�
zq is not a section of the sheaf ⌧⇤⇤(⌦2

Sk

�
torsion) near the origin
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a = b = z = 0 in this chart. So the sheaf ↵2

Sk
is equal to ⌦2

Sk

�
torsion. ⇤

Lemma 6.2.3. For all k � 0 the vector space L1

Sk

�
↵1

Sk
has dimension p = [(k � 1)/2] the

integral part of (k� 1)/2. A basis is given by the 1�forms x.dy/zq for q in [[k/2] + 1, k� 1], for
k � 2.

Proof. We shall begin by a simple remark.
Assume that k � 2 and let p := [(k � 1)/2]. Then for any q 2 [1, p] the form x.dy/zq satisfies

an integral dependence equation on ⌦1

Sk
. We have

x.dy/zq + y.dx/zq = d(zk)/zq = k.zk�q�1.dz

and also
(x.dy/zq).(y.dx/zq) = zk�2q.(dx).(dy).

This implies that x.dy/zq is solution of the integral dependence equation

X2 � (k.zk�q�1.dz).X + zk�2q.(dx).(dy) = 0

in S2(⌦1

Sk
)
�
torsion. So these sections of the sheaf !1

X
are in fact sections of the sheaf ↵1

X
.

Now remark also that with the weights x ! k, y ! k, z ! 2 the form x.dy/zq has weight
2(k� q). Then they have di↵erent quasi-homogeneities, so they are linearly independent over C.
Let now prove that for k � 1 > q > p the form x.dy/zq is not in ↵1

Sk
by induction on k � 0. As

the assertion is empty for k = 0, 1 assume k � 2 and the assertion proved for k � 2.
We have seen that after blowing-up the singular point in Sk for any k � 2 we find only one

singular point of the type Sk�2 in the chart {� 6= 0} and that the form x.dy/zq is given by the
following computation in this chart {� 6= 0} :

x = z.a, y = z.b, a.b = zk�2 x.dy/zq = a.db/zq�2 + zk�q�1.dz.

But on Sk�2 we know, by the induction hypothesis, that the form a.db/zq�2 is not a section of
↵1

Sk�2
for q � 2 > [k�3

2
] = p� 1. So only the case q = p+ 1 is left.

Assume first that k = 2p + 1. In the last chart {� 6= 0} in the desingularization process of
S2p+1 by blowing up the unique singular point at each step, we reach the following relations:

x = up.vp+1, y = up+1.vp, z = u.v x.dy
�
zp+1 = (p+ 1).up�1.vp.du+ p.up.vp�1.dv

where (u, v) 2 C2 is a local coordinate system.
But, as we have seen for k = 3 this desingularization is not special. So we have to blow up

the origin one more time and chek that we obtain now a special desingularization of S2k+1. In
the chart u = ✓.v we obtain x = ✓p.v2p+1, y = ✓p+1.v2p+1, z = ✓.v2 which gives

dx = ✓p�1.v2p.(p.v.d✓ + (2p+ 1).✓.dv) := ✓p�1.v2p.A

dy = ✓p.v2p.((p+ 1).v.d✓ + (2p+ 1).✓.dv) := ✓p.v2p.B

dz = v.(v.d✓ + 2✓.dv) := v.C

Now remark that B = �A+ (2p+ 1).C which implies that

dy = �✓.dx+ (2p+ 1).✓p.v2p�1.dz

and so the pull-back of ⌦1

S2p+1
is locally free after this last blow-up.

Now the pull-back of the form x.dy/zp+1 is given by

✓p�1.v2p�1.B = ✓p�1.v2p�1.(�A+ (2p+ 1).C)
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and it is now easy to see that this does not belong to the sub-sheaf generated by dx and dz.
Now assume that k = 2p with p � 2 then in the last chart {� 6= 0} we shall have, with

coordinates (z, u) with u 6= 0
x = zp.u, y = zp/u.

We again have to check that this is a special desingularization of S2p. But as u 6= 0 in this chart,
(dx, dz) generate the pull-back of ⌦1

S2p
.

Now, as x.dy/zp+1 = u.dy/z to see if this form belongs to sub-sheaf generated by (dx, dz)
is equivalent to see if zp�1.du is a section of this sub-sheaf. This is clearly not the case as
zp�1.du = dx/z � p.zp�2.u.dz. ⇤

6.3. The case X := {(x, y, z) 2 C3 / x3 + y3 + z3 = 0}. Now consider

X := {(x, y, z) 2 C3 / x3 + y3 + z3 = 0}.
The lemma 6.1.1 gives the inclusion

!1

X
⇢ 1

z2
.⌦1

C2 +
1

z
.⌦1

C2 + ⌦1

C2

where x, y are the coordinates on C2. An easy computation shows that the forms

↵ := (x.dy � y.dx)/z2

and z.↵ generate !1

X

�
⌦1

X
.

Let ⌧ : X̃ ! X the blowing-up at the origin of X.

Claim. This is a special desingularization:
In the chart {↵ 6= 0} we have

y = u.x, z = v.x, u3 + v3 + 1 = 0.

Then we can choose (x, u) or (x, v) as local coordinates when v 6= 0 or u 6= 0. The sheaf
⌧⇤(⌦1

X
) is generated by dx and x.du when v 6= 0 and so is free on this open set. So the sheaf

⌧⇤(⌦1

X
)
�
torsion is locally free on this blow-up, proving the claim.

In the chart {� 6= 0} let a := ↵/� and b := �/�; then we have the relations

x = z.a, y = z.b, a3 + b3 + 1 = 0

and then we can choose (z, a) or (z, b) as local coordinates. Then we have

↵ = a.db� b.da = db/a2 = �da/b2.

In the chart {↵ 6= 0} we have

y = u.x, z = v.x, u3 + v3 + 1 = 0.

Then we can choose (x, u) or (x, v) as local coordinates and ↵ = du/v2 = �dv/u2. This shows
that !1

X
= L1

X
. But ↵ does not vanish on the exceptional divisor, so ↵ is not a section of ↵1

X
.

But, in the first chart,

z.↵ = z.a.db� z.b.da = a.dy � a.b.dz � b.dx+ a.b.dz = a.dy � b.dx 2 ⌧⇤⇤(⌦1

X
)

and in the second chart

x.↵ = x.du/v2 = dy/v2 � u.dx/v2 = �dz/u2 + v.dx/u2

also belong to ⌧⇤⇤(⌦1

X
).

Then x.↵, y.↵ and z.↵ are sections of ↵1

X
and the quotient L1

X

�
↵1

X
is a vector space of

dimension 1 with basis ↵. ⇤
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Note that x.y.z.↵ is not a section of ⌦1

X
/torsion because if we assume that x.y.z.↵ is a section

of ⌦1

X
/torsion, we can write

x.y.(x.dy � y.dx) = z.
⇥
�.dx+ µ.dy + ⌫.dz + ⇢.df + �.f

⇤

in C3, where �, µ, ⌫ where homogeneous of degree 2, ⇢ is a complex number and where

� := u.dx+ v.dy + w.dz

with u, v, w complex numbers. This gives, for instance �x.y2 = z.� + 3z.⇢.x2 + u.f which is
impossible.

So the vector space ↵1

X
/⌦1

X
has dimension at least 2. The complete determination of the

quotient ↵1

X
/⌦1

X
is a non-trivial exercise left to the reader.

Lemma 6.3.1. For X := {(x, y, z) 2 C3 / x3 + y3 + z3 = 0} we have

dimC ↵2

X

�
⌦2

X
= 2, dimC L2

X

�
↵2

X
= 3 dimC !2

X

�
L2

X
= 1.

Proof. After blowing-up (x, y, z) in C3 we consider the chart {� 6= 0} as above. We have

! :=
dx ^ dy

z2
= �dz

z
^ db

a2
=

dz

z
^ da

b2
.

Then x.!, y.!, z! are holomorphic in this chart, as we have x = z.a and y = z.b and this chart
is enough as dx ^ dy/z2 = dy ^ dz

�
x2 = dz ^ dx

�
y2 so x.!, y.!, z.! belongs to L2

X
.

But this is not the case for !. So dim!2/L2

X
= 1.

The sheaf ⌧⇤⇤(⌦2

X

�
torsion) in this chart is generated by

z.(da/a2) ^ dz = �z.(db/b2) ^ dz.

Then it is equal to z.⌦2

X̃
in this chart. So a section in L2

X
is in ↵2

X
if and only if it belongs to

(x.L2

X
)\(y.L2

X
)\(z.L2

X
). This intersection is generated by x.y.!, y.z.!, z.x.! as a OX�module.

The vector space L2

X
/↵2

X
is generated by x.!, y.!, z.! because x2.!, y2.!, z2.! are in ⌦2

X
⇢ ↵2

X
.

We let to the reader the proof that they give a basis of L2

X
/↵2

X
.

Let us prove that x.y.z.! is not in ⌦2

X
/torsion.

Assume that x.y.z.! 2 ⌦2

X
/torsion. Then we can write on C3:

x.y.dx ^ dy � z
⇥
�.dx ^ dy + µ.dy ^ dz + ⌫.dz ^ dx+ (a.dx+ b.dy + c.dz) ^ df

⇤
= 0

where we can assume that �, µ, ⌫ are linear forms on C3 and a, b, c are complex number, using
the homogeneity of the situation. The coe�cient of dx ^ dy in this identity is equal to

x.y � z.�� a.y2 + b.x2,

which cannot be identically zero. Contradiction.
As it is easy to see that x.y.! = y.z.! = z.x.! and x.y.z.! are linearly independent over C

(di↵erent homogeneities) we conclude that dim↵2

X
/⌦2

X
= 2. ⇤

Remark. We have on X

! :=
dx ^ dy

z2
=

dy ^ dz

x2
=

dz ^ dx

y2
so

(x.y.!)2 =
x2.y2.(dx ^ dy)2

z4
=

x2.dx ^ dy

z2
.
y2.(dx ^ dy)

z2
= (dz ^ dy).(dx ^ dz),

because on X we have x2.dx ^ dy = �z2.dz ^ dy and y2.dx ^ dy = �z2.dx ^ dz. This gives an
integral dependence relation for x.y.! in the symetric algebra of ⌦2

X
/torsion.
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6.4. The case X := {(x, y, u, v) 2 C4 / x.y = u.v}. Let us begin by the verification that
blowing-up the origin gives a special desingularization for X.

Write X as {(x1, x2, x3, x4) 2 C4 / x2

1
+ x2

2
+ x2

3
+ x2

4
= 0} and look at the chart ↵ 6= 0. So

we have x2 = b.x1, x3 = c.x1, x4 = e.x1 with the relation 1 + b2 + c2 + e2 = 0 and coordinates
(x1, b, c) on the subset e 6= 0. The the sheaf ⌧⇤(⌦1

X
) is generated by dx1, x1.db, x1.dc because

for e 6= 0 we have x1.de = �e�1[c.x1.dc + b.x1.db]. So modulo its torsion, the sheaf ⌧⇤(⌦1

X
) is

locally free.

Lemma 6.4.1. The sheaf L3

X
is equal to !3

X
and is given by OX .! where we define

! :=
dy ^ du ^ dv

y
.

Moreover, ! does not belong to ↵3

X
.

proof. On X we have x.dy + y.dx = u.dv + v.du

! = �dx ^ du ^ dv

x
=

du ^ dx ^ dy

u
=

dv ^ dx ^ dy

v
.

To see that !3

X
= OX .! it is enough (X is a hypersurface !) to see that

! ^ df/f = dx ^ dy ^ du ^ dv/f

where f := x.y � u.v. This is clear.
Using the symetries between the coordinates, it is enough to see that ⌧⇤(!) is holomorphic in

the first chart of the strict transform X̃ of X by the blow-up at the origin in C4 to show that !
is a section of L3

X
. Let y = �.x, u = µ.x, v = ⌫.x. Then

⌧⇤(!) = �dx

x
^ x.dµ ^ x.d⌫ = �x.dx ^ dµ ^ d⌫

where x, µ, ⌫ are the coordinates for X̃ in this chart (and � = µ.⌫). So ! 2 L3

X
.

To see that ! is not in ↵3

X
it is enough to see that ! does not belongs to ⌧⇤⇤(⌦3

X
) in the first

chart above. An easy computation show that ⌧⇤⇤(⌦3

X
) is generated by

⇡⇤⇤(dx ^ du ^ dv) = x2.dx ^ dµ ^ d⌫

and so ! = �x.dx ^ dµ ^ d⌫ does not belong to ⌧⇤⇤(⌦3

X
). ⇤

Lemma 6.4.2. The meromorphic form w := u.dv ^ dx/x is a section of ↵2

X
but it is not a

section of ⌦2

X
/torsion and its di↵erential is not a section of ↵3

X
.

proof. As

u.dv ^ dx/x+ v.du ^ dx/x = �dx ^ dy

is holomorphic on X, u and v play the same role for this form modulo holomorphic forms. Also
u.dv^ (dx/x+dy/y) = dv^du so x and y play also the same role modulo holomorphic forms on
X. So it is enough to see that in the first chart of the strict transform X̃ of X by the blow-up
at the origin in C4 the form ⌧⇤⇤(w) is a section of ⌧⇤⇤(⌦2

X
) to prove that w is a section of ↵2

X
.

Using the same coordinates as above we obtain

⌧⇤⇤(w) = µ.x.d(⌫.x) ^ dx/x = µ.x.d⌫ ^ dx = µ.dv ^ dx

which is a section of ⌧⇤⇤(⌦2

X
).
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To see that w is not a section of ⌦2

X
/torsion assume the contrary. Then, by symmetry10

w0 := v.du ^ dx/x is also a section of ⌦2

X
/torsion and the di↵erential of w � w0 must be a

section of ⌦3

X
/torsion. But we have already seen that 2.! = �d(w � w0) is not a section of ↵3

X
.

Contradiction. ⇤

Note that an integral dependence relation on the symmetric algebra of the sheaf ⌦2

X
/torsion

for w is given in the second example of the begining of the section 5.1.

Lemma 6.4.3. We have ⌦1

X
/torsion = ↵1

X
= L1

X
= !1

X
.

Proof. Write X := {x2

1
+ x2

2
+ x2

3
+ x2

4
= 0} ⇢ C4. Then thanks to the lemma 6.1.1 we have:

!1

X
⇢ ⌦1

C3 +
1

x4

.⌦1

C3 .

To prove that ⌦1

X
/torsion = !1

X
it is enough to consider a section in !1

X
, let

w := (a.dx1 + b.dx2 + c.dx3)

and put v := w/x4 and to show that v is a section of ⌦1

X
/torsion. But then

Trace⇡(v ^ dx4) = w ^ Trace⇡(dx4/x4)

must be a holomorphic form on C3, where ⇡ : X ! C3 is the projection which makes X a
branched covering of degree 2. This condition implies df ^w is in f.⌦2

C3 where f := x2

1
+x2

2
+x2

3
.

As the sheaf ⌦1

S2
has no torsion11, this implies that w = u.df + f.⇠ where u 2 OC3 and ⇠ 2 ⌦1

C3 .
But f = �x4 on X, so this gives v = �⇠ � u.dx4 on X and v is in ⌦1

X
. ⇤

Lemma 6.4.4. We have !2

X
= ⌦2

X
/torsion� C .⌘ where

⌘ :=
x1.dx2 ^ dx3 + x2.dx3 ^ dx1 + x3.dx1 ^ dx2

x4

.

Proof. Write ! := (a.dx1 ^ dx2 + b.dx2 ^ dx3 + c.dx3 ^ dx1)/x4 where a, b, c are holomorphic
on C3. Then ! is in !2

X
if and only if Trace⇡(dx4 ^ !) is a section of ⌦3

C3 . This is satisfyed if
and only if a.x3 + b.x1 + c.x2 is a multiple of ⇠ := x2

1
+ x2

2
+ x2

3
in OC3 . This gives the relation

(a � g.x3).x3 + (b � g.x1).x1 + (c � g.x2).x2 = 0. And, as x1, x2, x3 is a regular sequence, this
implies

a = g.x3 + �.x1 + µ.x2, b = g.x1 + �0.x2 � �.x3, c = g.x2 � �0.x1 � µ.x3

where �,�0, µ are in OC3 . This shows that !2

X
is generated as a OX�module by ⌦2

X
and ⌘. Note

that we already know that ⌘ is not a section of ⌦2

X
/torsion as we have shown that !2

X
is not

equal to ⌦2

X
/torsion

Claim. For i = 1, 2, 3, 4 xi.⌘ is in ⌦2

X
/torsion:

for instance:
x1.⌘

x4

=
x1

x4

.(x1.dx2 ^ dx3 + x2.dx3 ^ dx1 + x3.dx1 ^ dx2)

=
1

x4

.(�(x2

2
+ x2

3
+ x2

4
).dx2 ^ dx3 + (x2.dx3 � x3.dx2) ^ x1.dx1)

=
1

x4

.(�(x2

2
+ x2

3
+ x2

4
).dx2 ^ dx3 + (x2.dx3 � x3.dx2) ^ (�x2.dx2 � x3.dx3 � x4.dx4))

= �x4.dx2 ^ dx3 � x2.dx3 ^ dx4 + x3.dx2 ^ dx4 2 ⌦2

X

10or using (u.dv + v.du) ^ dx/x = dy ^ dx.
11This is easy to see using the fact that S2 = {f = 0} is the quotient of C2 by ±1.
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proving our claim. ⇤

6.5. The case X := {(x, y, z, t) 2 C4 / x.y.z = t3}. Remark first that the form !1 := y.z.dx/t2

is in !1

X
because we have, with the notation f := x.y.z � t3:

!1 ^ df =
z.t3.dx ^ dy + y.t3.dx ^ dz + 3t2.y.z.dx ^ dt

t2
2 ⌦2

C4 modulo(f/t2).⌦2

C4

which allows to conclude as t is not a zero divisor in X (see [B.78]).
Consider now the following sections of !1

X
:

u := t.!1 v := t.!2 w := t.!3

where !2 and !3 are deduced from !1 respectively by

x ! y, y ! z, z ! x and x ! z, y ! x, z ! y.

Then we have in the symmetric algebra of ⌦1

X
:

u+ v + w = 3t.dt u.v + v.w + w.u = t.(z.dx.dy + x.dy.dz + z.dx.dy) u.v.w = t3.dx.dy.dz.

This shows that u, v, w satisfy the following integral dependence relation over the symmetric
algebra of ⌦1

X
:

⇥3 � 3t.dt.⇥2 + t.(z.dx.dy + x.dy.dz + z.dx.dy).⇥� t3.dx.dy.dz = 0.

Note that, because the coe�cient of ⇥ does not belong to (t2), we do not obtain an integral
dependence relation over the symmetric algebra of ⌦1

X
for ⇥/t so for the forms !i, i = 1, 2, 3!

In fact they are not sections of the sheaf ↵1

X
(for instance the restriction of !1 to the surface

S3 ' {z = 1} \X is not in ↵1

S3
(see sub-section 6.2).

Let us now verify that t.u is not a section of ⌦1

X
/torsion. Assume that we can write

y.z.dx = t.
�
�.dx+ µ.dy + ⌫.dz + ✓.dt) modulo f.⌦1

X
+OX .df

then, by homogeneity, we may assume that �, µ, ⌫ are homogeneous of degree 2 and

y.z.dx = t.
�
�.dx+ µ.dy + ⌫.dz + ✓.dt) + �.df

where � is a constant. This implies

y.z.(1� �)� t.� = 0, t.µ+ �.x.z = 0

which is already enough to obtain a contradiction, as these equations imply � = 1 and � = 0
respectively. ⇤

Remark. Using the map ((x, y, z) 7! (x + y, x + j.y, x + j2.y,�z) which sends the previous
Y := {x3 + y3 + z3 = 0} to X = {x.y.z = t3} allows to find an integral equation over the
symmetric algebra of ⌦1

Y
of the section

(x2 + y2 � x.y).d(x+ y)

z

of ↵1

Y
.
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To Egbert Brieskorn, in memory.

1. Introduction

Brieskorn’s paper “Die Monodromie der isolierten Singularitäten von Hyperfläschen,” pub-
lished in 1970 in Manuscripta Mathematica, gave a new insight to the theory of monodromy
and Gauß-Manin connections. The paper, written in the framework of isolated hypersurface sin-
gularities, has been generalized for isolated complete intersection singularities by G.-M. Greuel
in 1975 [10]. In the following times and also more recently, a long list of authors, among them
P. Deligne [7], W. Ebeling [8], H. Hamm [12], Lê D. T. [20], B. Malgrange [24], D.Siersma [37]
etc. provided generalizations and developments of the monodromy theory. The regularity of
the Gauß-Manin connection, proved by Brieskorn in the framework of isolated hypersurface sin-
gularities has been proved and developped in various situations by many authors, among them
G.-M. Greuel [10], C. Hertling [15], F. Pham [28], K. Saito [29], M. Saito [30], J. Scherk and
J.H.M. Steenbrink [31], M. Schulze [32], A. Varchenko [38], etc.

There are many surveys concerning the various aspects of monodromy and including de-
velopments of the theory. In particular, Ebeling’s survey [8] shows very well the importance
of Brieskorn’s article as well as developments and generalisations of the Brieskorn’s results.
Siersma’s survey [37] deals with the non-isolated case, and presents new results in this frame-
work.

The present paper, based on ideas of the second author [34, 35, 36], does not pretend any
originality. It is not devoted to specialists, but to “beginners”. The aim of the paper is to
introduce monodromy theory and provide some elementary view about the Brieskorn paper.
Our aim is not to replace the reading of this very important Brieskorn article, but hopefully to
encourage one to read it.

The authors thank the referee and Gert-Martin Greuel for valuable comments and corrections.

2. Connections and monodromy

2.1. Definitions and notations. Let f : (Cn+1
, 0) ! C be an analytic function defined in a

neighbourhood of the origin 0 in Cn+1 and such that f(0) = 0. We denote by (z0, . . . , zn) the
local coordinates of Cn+1 at 0. Let us assume that f admits an isolated singularity at 0, that
is the partial derivatives (@f/@zi)(z) have a common zero at the origin and there is no other
singularity in a neighbourhood of 0.

One denotes by O the local ring of Cn+1 at 0 and by I the ideal of O

I =

⌧
@f

@z0
, . . . ,

@f

@zn

�
.

The Milnor number of the singularity is defined by:

µ = dimC O/I,

denoted by bf,0 in Brieskorn [5].

http://dx.doi.org/10.5427/jsing.2018.18f
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Let us fix some (classical) notations. Let " and ⌘ be such that 0 < ⌘ < " and denote:
B" ⇢ Cn+1 the ball defined by kzk < ", z 2 Cn+1,
D ⇢ C the disk defined by |t| < ⌘, t 2 C, and D

0 = D \ {0},
X = B" \ f

�1(D) = {z 2 Cn+1 ; kzk < " and |f(z)| < ⌘},
X

0 = X \ f�1(0) and Xt = X \ f
�1(t) for all t 2 D.

The following classical picture illustrates the situation.

0

X0

X

B"

0•D

Cn+1

C

f

The fundamental theorem, due to Milnor is the following:

Theorem 2.1 (Milnor). If " and ⌘ are small enough, then:
(i) The map f : X \ f�1(0) ! D \ {0} is a C1 di↵erentiable fibration, locally trivial and whose
fibres have the homotopy type of a bouquet of µ spheres with dimension n.
(ii) There exists "1 < " such that the intersection of Xt with the sphere Sr ⇢ Cn+1 centered at
0 and with radius r is transverse for all |t|  ⌘ and "1  r  ".

In the following, we intend to make explicit the action of the fundamental group ⇡1(D0) on
the cohomology of the fibre H

n(Xt;C) for t 2 D
0. We will use some results on connections.

2.2. Connections. Let ⇡ : E ! B a locally trivial fibre bundle, where the fibre F and basis B
are locally compact. We assume that F has the homotopy type of a finite complex. One define
a (complex) vector fibre bundle H

n(⇡) with basis B in the following way:
The total space is the set of pairs (t,↵) where t 2 B and ↵ 2 H

n(Ft;C), where Ft = ⇡
�1(t).

The projection of Hn(⇡) on B sends (t,↵) to t. The vectorial structure of the fibres is clear.
The topology of Hn(⇡) is defined by the way of local charts: for every open subset U ⇢ B which
is a trivialization domain of ⇡ : E ! B, one has a homeomorphism  |U : E|U ! U ⇥ F and
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then for every t 2 U , an identification  t : Ft
⇠�! F . For all t 2 B, one has an isomorphism

 
⇤
t : H⇤(F ;C) ⇠�! H

⇤(Ft;C). The local chart of Hn(⇡) over U is defined by the bijection

 U : Hn(⇡)|U ! U ⇥H
n(F ;C)

such that  U (t,↵) = (t, ( ⇤
t )

�1(↵)). The vector bundle H
n(⇡) is then well defined.

The charts  U are given by locally constant maps: if V = U \U
0 is connected, the transition

map V ! Aut(Hn(F )) defined by the local charts, is constant. The group Aut(Hn(F )) is a
discrete group, that allows to introduce on H

n(⇡) a locally flat connection r (by the way of the
parallel transport, see for example [19]).

Definition 2.2. The horizontal sections of the bundleHn(⇡) are sections for which the covariant
derivative for the connection r vanishes, that is sections which, locally, are transformed by each
 U into constant sections of the trivial bundle U ⇥H

n(F ;C).

One notices that, if B is a complex analytic manifold, then H
n(⇡) is a holomorphic vector

bundle over B and r is a locally flat holomorphic connection.

2.2.1. Monodromy. The parallel transport defines, for all t0 2 B, an action of ⇡1(B, t0) on
H

n(⇡)t0 . A practical way to determine this action is the following:
Let � : [0, 1] ! B a loop at t0 and let ↵ 2 H

n(Ft0 ;C). One considers a subdivision

0 = ⌧0 < ⌧1 < · · · < ⌧q = 1

of [0, 1] su�ciently fine so that, for all i = 1, . . . , q � 1, there exists a horizontal section vi of
H

n(⇡) defined in an open subset of B containing �([⌧i, ⌧i+1]) and such that:

v0(�(0)) = ↵ vi�1(�(⌧i)) = vi(�(⌧i)), i = 1, . . . , q � 1.

The homotopy class of � in ⇡1(B, t0) acting on ↵ 2 H
n(Ft0 ;C) provides an element

vq�1(�(1)) 2 H
n(Ft0 ;C).

One has:

⇡1(B, t0)⇥H
n(Ft0 ;C) 7! H

n(Ft0 ;C)
� , ↵  vq�1(�(1))

and the result is independent of the performed choices.
This action of the fundamental group on the cohomology of the fibre is called monodromy of

the fibre bundle ⇡ : E ! B. We can also define it as the holonomy of the bundle H
n(⇡).

2.3. Application to the Brieskorn-Milnor bundle. With the notations of section 1, let us
denote ⇡ = f |X0 : X 0 ! D

0. Then ⇡ is the projection of a locally trivial bundle to which the
construction of section 2 applies.

One obtains a complex vector bundle Hn(⇡) of rank µ. That is a complex analytic bundle on
a non-compact Riemann surface, then, following Grauert [9], an analytically trivial fibre bundle.
That implies that H

n(⇡) admits a system of µ holomorphic sections sj over D
0 = D \ {0},

linearly independent at each point. In general, they are not horizontal sections. In fact, one can
choose them horizontal when the monodromy is identity, and according to A’Campo [1], that
implies that the singularity is quadratic and n is odd.

In the case of the Milnor bundle, the connection r defined on H
n(⇡) is called Gauß-Manin

connection. We have seen that it defines an action of ⇡1(D0
, t0) on H

n(⇡)t0 and that action
coincides with the action of ⇡1(D0

, t0) = Z on H
n(Xt0 ;C) = Cµ determined by the Milnor

fibration.
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In other words, the local solutions of r(s) = 0 give a locally constant sheaf of C-vector
spaces of dimension µ and the action of ⇡1(D0) on a fibre of this sheaf is the monodromy of the
singularity.

In order to compute this monodromy, we need to determine the solutions of r(s) = 0. That
is the reason for which, in section 4.2, we will have to extend r at 0. But, in a first step, we
will show that the horizontal sections of Hn(⇡) can be characterized as solutions of a di↵erential
equation the monodromy of which coincide with the monodromy of the singularity.

Let U , open subset in D
0, and s1, . . . , sµ a basis of holomorphic sections of Hn(⇡). Every

holomorphic section s of Hn(⇡) over U , can be written as s =
Pµ

j=1 �jsj where the functions
�j : U ! C are holomorphic.

Let us still denote by r the covariant derivative r @
@t

determined by the connection r, rela-

tively to the vector field @
@t of D0. For every j = 1, . . . , µ, then r(sj) is written

r(sj) =
µX

k=1

akjsk

where the akj are holomorphic functions defined in D
0. Then we have

r(s) =
X

j

�
0

jsj +
X

j

�j

X

k

akjsk =
X

k

(�0k +
X

j

akj�j)sk.

Let us denote � = (�1, . . . ,�µ)t (column vector) and denote by A the matrix ((akj)). One has:

Lemma 2.3. A holomorphic section s =
Pµ

j=1 �jsj of Hn(⇡) over U is a horizontal section if
and only if the di↵erential equation

(2.4) �0 +A� = 0

is satisfied.

The monodromy of the singularity can then be interpreted in the following way:
For initial values given at t0 2 D

0, one can define locally solutions of (2.4) which generate the
µ-dimensional vector space of solutions of (2.4) over a neighbourhood of t0. In the same way as
before, for every loop � : [0, 1] ! D

0 at t0, one considers a subdivision 0 = ⌧0 < ⌧1 < · · · < ⌧q = 1
of [0, 1] su�ciently fine so that, for all 0  i  q � 1, then �([⌧i, ⌧i+1]) is contained in an open
subset of B, trivialization of Hn(⇡). Then, one can follow, by analytic extension, the µ solutions
of (2.4), which are given at t0, along the loop �. One obtains in every point of � a system of µ
linearly independent solutions of (2.4). The matrix giving the “new” sections, obtained in that
way at the point t0, in terms of the “old” ones is a monodromy matrix of the singularity.

The monodromy of the solutions of the di↵erential equation (2.4) is then equivalent to the
monodromy of the singularity.

Computing the monodromy of the singularity is then equivalent to solving the di↵erential
equation (2.4). In order to do that, we need to:
(i) construct a basis of holomorphic sections of Hn(⇡),
(ii) compute the matrix A, given the function f .

That is the aim of the following section.

3. Construction of analytic sections of H
n(⇡)

Let us denote by ! a di↵erential form of degree n over X. The restriction of ! to each fibre
Xt, for t 6= 0, denoted by !|Xt , has maximum degree and is a closed di↵erential form. We show
now that the section s! : D0 ! H

n(⇡) defined by

s!(t) = [!|Xt ] 2 H
n(Xt;C)
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is a holomorphic section of Hn(⇡) and we compute r(s!).
The main part of this section comes from [33] and [34].

3.1. Leray coboundary. Let X be a complex analytic manifold with (complex) dimension n+1
and W a complex analytic submanifold of X with (complex) codimension 1. The long exact
sequence in cohomology with compact supports and with coe�cients in C is written:

· · · �! H
p
c (X \W )

i⇤�! H
p
c (X) �! H

p
c (W )

��! H
p+1
c (X \W ) �! · · ·

where i
⇤ is induced by the inclusion X \W ⇢ X and � is the classical coboundary operator.

By Poincaré duality, applied to X \W,X and W , one obtains the exact sequence:

· · · �! Hq+1(X \W )
i⇤�! Hq+1(X) �! Hq�1(W )

@�! Hq(X \W ) �! · · ·

with p+ q + 1 = 2n+ 2. The map @, dual of the coboundary �, is called Leray boundary.
Applying the functor Hom(·;C), one deduces from the second exact sequence, the following

long exact sequence:

· · · �! H
q(X \W )

r�! H
q�1(W ) �! H

q+1(X) �! H
q+1(X \W ) �! · · · .

where H
q+1(X) �! H

q+1(X \W ) is induced by the inclusion of X \W into X and where the
map r, dual of @, is called Leray coboundary.

3.2. Residue - Leray-Norguet Theorem.

Definition 3.1. Let us consider ! a closed holomorphic form in X \W , one says that ! admits
a pole of order less or equal to 1 on W if, for all x 2 W and for all holomorphic function g

defined in a neighbourhood Ux of x and vanishing on Ux \W , then g ! admits a holomorphic
extension in Ux.

If ! admits a pole of order less or equal to 1 on W and if U is the domain of a system of local
coordinates z1, . . . , zn+1 such that W \U is defined by the equation z1 = 0, then the coe�cients
of ! in this coordinate system are holomorphic functions of z2, . . . , zn+1 and meromorphic with
a pole of order  1 in the coordinate z1.

As ! is closed, one has: d(z1!) = dz1 ^ ! on U \W and, as z1! is holomorphic on U , then
dz1 ^ ! is also holomorphic on U . That implies that ! is of the form

(3.2) ! =
dz1

z1
^ '+ ⌘

where ' and ⌘ are holomorphic on U .

Lemma 3.3 ([33]). The restriction of ' to U \W , denoted by '|U\W , depends only on !.

Then there exists a well determined holomorphic form on W , called residue of ! and denoted
by resW (!), characterized by the fact to be locally the restriction of a holomorphic form ' which
verifies equation (3.2).

Lemma 3.4 ([33]). The form resW (!) is a closed form on W .

We can now state the Leray-Norguet Theorem:

Theorem 3.5 ([21] and [27]). Let ! be a closed holomorphic q-form on X \W with a pole of
order  1 on W , then

(3.6) r ([!]) = 2i⇡ [resW (!)] .
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Corollary 3.7. Under the same hypothesis as in theorem 3.5, one has, for all (q�1)-dimensional
cycle ⇠ on W :

(3.8)

Z

@(⇠)
! = 2i⇡

Z

⇠
resW (!).

3.3. Return to the Brieskorn bundle. Under the hypothesis of section 1, let us denote by
! a holomorphic form of degree n on X. For all t 2 D

0, the form !|Xt is closed. We show now
the following theorem:

Theorem 3.9 (Brieskorn). Let s! the section of Hn(⇡) defined by s!(t) = [!|Xt ], one has
(i) s! is a holomorphic section of Hn(⇡),
(ii) if d! = df ^ ', then r(s!) = s'.

To show the theorem, one proves a preliminary result: Let us consider a holomorphic form ↵

of degree n+1 on X. For all t 2 D
0, the form ↵/(f � t) is a closed holomorphic form on X \Xt.

According to Lemma 3.3, the form rest

✓
↵

f � t

◆
= resXt

✓
↵

f � t

◆
is a closed holomorphic form

of degree n on Xt; moreover, the map

t 

rest

✓
↵

f � t

◆�
2 H

n(Xt : C)

defines a section of the bundle H
n(⇡).

Lemma 3.10. a) The map t 
h
rest

⇣
↵

f�t

⌘i
defines a holomorphic section of Hn(⇡).

b) One has

r
✓

rest

✓
↵

f � t

◆�◆
=

1

2i⇡
rt


↵

(f � t)2

�

where rt : Hn+1(X \Xt) �! H
n(Xt) is the Leray coboundary.

Proof. Let t0 be a point in D
0 and U a neighbourhood of t0 in D

0 which is a trivialization
domain of the bundle ⇡ : X 0 ! D

0. For every homology class ⇠t0 2 Hn(Xt0), there exists a class
⇠ 2 Hn(⇡�1(U)) whose restriction to Xt0 is ⇠t0 . We denote by ⇠t 2 Hn(Xt) the restriction of ⇠
to Xt, for t 2 U .

In order to prove a) of the Lemma, we show that the map

t hrest
✓

↵

f � t

◆
, ⇠ti

is holomorphic. According to (3.6), one has:
⌧
rest

✓
↵

f � t

◆
, ⇠t

�
=

1

2i⇡

⌧
rt


↵

f � t

�
, ⇠t

�
=

1

2i⇡

⌧
↵

f � t
, @t⇠t

�

because rt is the dual of the Leray boundary @t : Hn(Xt) ! Hn+1(X \Xt).
Let

jt : Hn+1(X \ ⇡�1(U)) ! Hn+1(X \Xt)

be the morphism induced by the inclusion Xt ⇢ ⇡
�1(U); there exists a class

z 2 Hn+1(X \ ⇡�1(U))

such that for all t, one has jt(z) = @t(⇠t). In fact, let us assume that U is a closed disk, centered
at t0, then one has a commutative diagram.
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H
n
c (⇡

�1(U))
� //

it

✏✏

P 0

⇠
''

H
n+1
c (X \ ⇡�1(U))

P
⇠

//

✏✏

Hn+1(X \ ⇡�1(U))

jt

✏✏

Hn(⇡�1(U))

✏✏

H
n
c (Xt)

P 0
t

⇠

''

�t // Hn+1
c (X \Xt)

Pt

⇠
// Hn+1(X \Xt)

Hn(Xt)

@t

22

in which the vertical arrows are induced by the inclusion Xt ⇢ ⇡
�1(U) and the morphisms

P, P
0
, Pt and P

0
t are Poincaré duality isomorphisms. Let us denote ⇣t = (P 0

t )
�1(⇠t) 2 H

n
c (Xt)

and ⇣ = (P 0)�1(⇠) 2 H
n
c (⇡

�1(U)), then one has it(⇣) = ⇣|Xt = ⇣t. The class z = P �(⇣) satisfies,
for all t 2 U , the equality jt(z) = @t(⇠t). One has:

(3.11)

⌧
rest

✓
↵

f � t

◆
, ⇠t

�
=

1

2i⇡

Z

z

↵

f � t
,

that is a holomorphic function in t. In fact, the cycle z on which we take integration is fixed (i.e.

independent of t) and situated in X \ ⇡�1(U), out of the singularities of
↵

f � t
. That proves a).

In order to show b), firstly we observe that if s denotes a holomorphic section of Hn(⇡), then
one has

(3.12) hr(s)(t), ⇠ti =
d

dt
hs(t), ⇠ti.

In fact, in U , the section s can be written as s(t) =
P
'i(t)si(t) where the sections si are

a basis of horizontal sections of Hn(⇡). As the classes ⇠t are restriction of the same class ⇠ in
Hn(⇡�1(U)), then hsi(t), ⇠ti is constant.

That implies:

hr(s)(t), ⇠ti =
X

'
0

i(t) hsi(t), ⇠ti =
d

dt
hs(t), ⇠ti .

Using the computations performed in the proof of a), one obtains, for the section s of Hn(⇡)

defined by s(t) =
h
rest

⇣
↵

f�t

⌘i
:

⌧
r

rest

✓
↵

f � t

◆�
, ⇠t

�
=

d

dt

⌧
rest

✓
↵

f � t

◆
, ⇠t

�
=

1

2i⇡

d

dt

Z

z

↵

f � t
=

1

2i⇡

Z

z

↵

(f � t)2
=

1

2i⇡

⌧
rt


↵

(f � t)2

�
, ⇠t

�
.

That proves b) of the Lemma. ⇤

Proof of Theorem 3.9. Let ! be a holomorphic form of degree n on X, the lemma 3.10 can be
applied to the form ↵ = df ^ !. In particular, the section

t 

rest

df ^ !
f � t

�
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of Hn(⇡) is holomorphic. But, by definition of the residue (formula (3.2)), one has:

(3.13)


rest

df ^ !
f � t

�
=


rest

d(f � t) ^ !
f � t

�
= [!|Xt ] = s!(t).

That proves (i) of the theorem.
According to (3.13) and (b) of lemma 3.10, one has:

r(s!)(t) =
1

2i⇡
rt


df ^ !
(f � t)2

�
=

1

2i⇡
rt


d!

f � t
� d

✓
!

f � t

◆�

and, as the class of d

✓
!

f � t

◆
is zero, one has:

r(s!)(t) =
1

2i⇡
rt


d!

f � t)

�
=

1

2i⇡
rt


df ^ '
f � t

�
= ['|Xt ] = s'(t),

that is (ii) of the theorem. ⇤

4. Brieskorn’s results and the Gauß-Manin connection

In this section, one constructs a complex of sheaves, whose cohomology sheaf, restricted to
D

0, is isomorphic to the sheaf of germs of holomorphic sections of Hn(⇡). That allows us to
extend the connection r into a di↵erential operator which is singular at the origin.

4.1. Relative de Rham complex. Given a manifold Y , we denote by ⌦⇤

Y the complex of
sheaves of germs of holomorphic forms on Y . We know that, if Y is a Stein manifold, then
H

⇤(Y ;C) is the cohomology of ⌦⇤

Y . That applies in particular for all points t in D to the fibre
Xt = f

�1(t) \B" of f |X : X ! D.
To study the monodromy, that is the action of the parallel transport along a loop in D

0 on a
fibre, we construct a complex of di↵erential forms which, when restricted to a fibre Xt, is ⌦⇤

Xt
.

That will be the relative de Rham complex of f |X : X ! D, denoted by ⌦⇤

X/D and defined by:

⌦p
X/D = ⌦p

X/(df ^ ⌦p�1
X ).

We verify that ⌦⇤

X/D is a complex, because one has:

d(df ^ !) = �df ^ d! 2 df ^ ⌦⇤

X .

We want to study the germs, in D, of di↵erential forms defined along the fibres of the function
f |X : X ! D. In other words, we want to consider, for every open subset U in D, the sections
of the sheaf ⌦p

X/D over f�1(U). They are, by definition, the sections of the sheaf f⇤⌦p
X/D over

U .
Now, it is natural to define the relative de Rham cohomology sheaves of f |X : X ! D by:

Hp(X/D) = H
p(f⇤⌦⇤

X/D).

Theorem 4.1. [Brieskorn [5, Satz 1.5]] The sheaf Hn(X/D) is an analytic coherent sheaf on D.

We denote by Hn the sheaf of germs of holomorphic sections of H
n(⇡) and by OD0 the

structural sheaf of D0, i.e. the sheaf of germs of holomorphic sections on D
0. Brieskorn shows

the following result:

Theorem 4.2. [Brieskorn [5]] The correspondence !  s! induces an isomorphism of OD0 -
modules:

(4.3)  : Hn(X/D)|D0 ! Hn
.
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Here, we will verify only that  is well defined. In fact, an element ! of Hn(X/D)|D0 can be
represented by a section of f⇤(⌦n

X/D) on an open subset U in D
0, or, that is equivalent to say, a

section of ⌦n
X/D on f

�1(U).

For every disk U in D
0, the inverse image f�1(U) is a Stein manifold. As the sheaves ⌦n

X and
⌦n

X/D are coherent (see [5]), the obtained section can be lifted into a section of ⌦n
X on f

�1(U),

that is a holomorphic di↵erential form of degree n on f
�1(U). We still denote it by !.

By theorem 3.9, one obtains a holomorphic section s! of Hn(⇡) whose germ at the point t is
s!(t). That defines  .

4.2. Gauß-Manin connection. The previous construction provides an extension of the sheaf
Hn into a sheaf Hn(X/D) which is defined over all of D. The isomorphism of theorem 4.2
allows us to identify the homomorphism r : Hn ! Hn, defined at section 2, with a C-linear
homomorphism:

r : Hn(X/D)|D0 ! Hn(X/D)|D0 .

According to section 3, the local solutions of r(s) = 0 give a locally constant sheaf of C-
vector spaces of dimension µ and the action of ⇡1(D0

, t0) on the fibre at t0 of this sheaf is the
monodromy of the singularity.

To compute the monodromy, we will extend r into a singular di↵erential operator rf defined
on Hn(X/D)0 and will prove that its monodromy is equivalent to the one of the singularity.

We will admit the following theorem which provides an interpretation of Hn(X/D)0:

Theorem 4.4 (Brieskorn [5]). Let ⌦⇤

X/D,0 considered as a complex of OD,0-modules. One has
a canonical isomorphism:

(4.5) Hn(X/D)0 ! H
n(⌦⇤

X/D,0)

induced by the restriction ⌦⇤

X/D ! ⌦⇤

X/D,0.

More precisely, let U be a neighbourhood of 0 in D and ! be a holomorphic form of degree n

on f
�1(U). That one represents a cycle of �(f�1(U),⌦n

X/D) that gives a section of Hn(X/D)
over U . The isomorphism of the theorem sends the value of this section at 0 to the class, in
H

n(⌦⇤

X/D,0), of the cycle represented by !.
The di↵erential operator rf will be defined on

(4.6) E = H
n(⌦⇤

X/D,0) =
{! 2 ⌦n

X,0 : 9⌘ 2 ⌦n
X,0, d! = df ^ ⌘}

df ^ ⌦n�1
X,0 + d⌦n�1

X,0

.

As rf is a singular operator, it will take values, not in E, but in a OD,0-module F containing
E as sub-OD,0-module. That will be

(4.7) F = ⌦n
X/D,0/d⌦n�1

X/D,0 = ⌦n
X,0/df ^ ⌦n�1

X,0 + d⌦n�1
X,0 .

We can now define rf :
An element ! in E is represented by a holomorphic form ! of degree n defined in a neigh-

bourhood of 0 in X and such that d! = df ^' where ' is holomorphic in a neighbourhood of 0.
We define rf : E ! F by:

(4.8) rf (!) = '

where ' is the class of ' in F .
One verifies easily that rf is a di↵erential operator with polar singularity in the following

sense:
i) rf is C-linear,
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ii) rf (g(t)!) = g
0(t) ! + g(t) rf (!),

iii) there exists a positive integer k such that tk rf (E) ⇢ E.
In order to verify (iii), let us recall that, for k large enough, fk belongs to the ideal generated

by ( @f
@z0

, . . . ,
@f
@zn

) in the local ring of Cn+1 at origin. Then for every (n + 1)-holomorphic form

↵, there is ⌘ such that f
k
↵ = df ^ ⌘. For all elements ' in F , represented by a holomorphic

n-form ', one has:

d(fk
') = f

k
d'+ kf

k�1
df ^ '

= df ^ ⌘0

that shows that tk ' 2 E, then (iii).
We observe that this shows more, namely:

Lemma 4.9. F/E is torsion.

The result of Sebastiani [36] is the following:

Theorem 4.10. Hn(X/D)0 is a free OD,0-module.

We know (theorem 4.1) that Hn(X/D) is coherent, that implies that Hn(X/D) is locally free
of rank µ at the point 0. Then we can show that the monodromy of rf is equivalent to the
monodromy of the singularity of f at the origin. More precisely:

Theorem 4.11. Let ! an element in E represented by a holomorphic form ! of degree n on
X and such that rf (!) = ', where ' is the class in F of a holomorphic form ' on X, then
r(s!) = s'.

According to the previous observation, if U denotes an open disk centered at 0, one can find
holomorphic forms !1, . . . ,!µ defined on f

�1(U), such that d!j = df ^ 'j with 'j holomorphic
in f

�1(U) and such that the sections e!1, . . . , e!µ of Hn(X/D)|U , induced by !1, . . . ,!µ generate
the sheaf.

Each !j represents an element !j in E and one has:

(4.12) rf (!j) = 'j .

As F/E is torsion, 'j can be written:

(4.13) 'j =
µX

k=1

akj !k

where the akj are germs of meromorphic functions at the origin in D. If U is small enough, one
can assume that the akj are holomorphic in D

0. In the same way as above, let us denote by A

the matrix of akj . The system of di↵erential equations associated to rf in the basis !1, . . . ,!µ

of E and determined by (4.12) is written:

(4.14) �0 +A� = 0.

Let V be an open subset in D
0 contained in U . The system (4.14) is the same as the one

associated to r in the basis s!1 , . . . , s!µ of Hn|V . In fact, according to theorem 3.9, one has:

(4.15) r(s!j ) = s'j

and, according to (4.13):

(4.16) s'j =
µX

k=1

akj s!k



94 JEAN-PAUL BRASSELET AND MARCOS SEBASTIANI

If � = (g1, . . . , gµ) is a solution of (4.14) on V , let us denote s =
Pµ

j=1 gj s!j ; then one has
r(s) = 0 and s is a horizontal section of Hn(⇡) over V (see lemma 2.3).

One deduces that the monodromy of rf is the same as the one of r and, according to what
we have seen above, the monodromy of solutions of (4.14) coincides with the monodromy of the
singularity.

Let us denote by K the field of fractions of OD,0, i.e. the field of germs of meromorphic
functions on D at 0. As F/E is torsion, then rf can be extended into a connection, still
denoted by r, on the K-vector space:

E = E ⌦O K = F ⌦O K.

In the following section, we show that the connection r is regular.

5. Regularity of the Gauß-Manin connection

5.1. Recall of the theory of di↵erential equations. Let us denote, as before, K the field of
germs of meromorphic functions on D and r a connection on a K-vector space E . Let us denote
by (e1, . . . , eµ) a basis for E , one defines the akj 2 K by

r(ej) =
µX

k=1

akj ek.

A computation (already made, see lemma 2.3), shows that the horizontal sections for the con-
nection r are characterized by a di↵erential system. More precisely, if � = (g1, . . . , gµ)t are the
components of s 2 E in the basis (e1, . . . , eµ) and if A = ((akj)) is the matrix of the akj , one
obtains the di↵erential system:

(5.1) �0 +A� = 0

whose solutions are the horizontal sections of r.

Definition 5.2. One calls fundamental matrix Y (t) of (5.1), every matrix µ⇥µ whose columns
are solutions of (5.1) and such that detY (t) 6= 0.

One knows, by the general theory ([6, p.111], [13, p.70]), that every linear system of di↵erential
equations of the type �0+A(t)� = 0 where A(t) is a matrix of analytic functions over 0 < |t| < a,
admits fundamental matrices of the form

(5.3) Y (t) = Z(t)tR

where Z(t) is a matrix of analytic functions for 0 < |t| < a and R a constant matrix.
Then, one can provide the theorem of the classical theory:

Theorem 5.4. The following conditions are equivalent:
(a) By a change of variables of the type Y = MZ, where M is an invertible matrix with
meromorphic coe�cients, equation (5.1) can be transformed into an equation in which the matrix
A admits at most a simple pole at the origin.
(b) There exists a fundamental matrix of (5.1) in which Z(t) admits at most a pole at the origin.
(c) In every angular sector 0  arg t  � of the universal covering of D0, the horizontal sections
of r have low growing, that means that in one (or all) basis of E , the components gj verify an
estimation of the type |gj(t)|  C↵,� t

�N .

Definition 5.5. One says that the connection r is regular (or with regular singular points) if
one of the previous conditions is satisfied.



BRIESKORN AND THE MONODROMY 95

5.2. Regularity of the Gauß-Manin connection. Brieskorn proved in [5] the regularity of
the Gauß-Manin connection of an isolated hypersurface singularity, using results of Gri�ths.
The general theorem can be proved by analytic methods (Nilsson [26], Gri�ths [11], Malgrange
[24]), or arithmetic ones (Katz [17]), or algebraic ones (Deligne [7]). We will adopt the proof by
Malgrange [24].

Theorem 5.6. The Gauß-Manin connection is regular.

Let p : S ! D
0 the universal covering of D0. Let us consider a family of cycles

�(u) 2 Hn(Xp(u);C)

depending continuously on u 2 S, i.e. if u0 is near u, then �(u0) is image of �(u) by the canonical
isomorphism:

Hn(Xp(u0);C) ' Hn(Xp(u);C).
By abuse of notation, we will denote �(t) instead of �(u), when p(u) = t, providing if necessary
the argument of t.

Considering, for ! 2 �(X;⌦n
X), the function on S (multiform function on D

0) defined by
I(t) =

R
�(t) !. In a first step, we show that the integrals I(t) verify a regular di↵erential system

if and only if (5.1) is regular, then we will show that these integrals verify (c) of the Theorem
5.4.

It results from Theorem 3.9 and from (3.12) that I is holomorphic and one has:

d

dt

Z

�(t)
! =

Z

�(t)
r(!).

Taking D smaller if necessary, one can find !1, . . . ,!µ in �(X;⌦n
X) such that !1, . . . ,!µ is a

basis of E = F ⌦O K. In this basis, the matrix of the connection is the matrix A = ((akj)) such
that:

r(!j) =
µX

k=1

akj!k

(see 4.12 and 4.13). The equation associated to the Gauß-Manin connection is the equation
(4.14): �0 +A� = 0.

Let us denote

(5.7) Ij(t) =

Z

�(t)
!j ,

one has:

dIj

dt
=

Z

�(t)
r(!j) =

µX

k=1

akj

Z

�(t)
!k =

µX

k=1

akjIk.

In another words, I = I1, . . . , Iµ is solution of the system

(5.8) I
0 �A

t
I = 0

dual of (5.1).

Lemma 5.9. The system (5.1) is regular if and only if (5.8) is regular.

Proof. Let Y a fundamental matrix for (5.1); derivating the equality Y ·Y �1 = id and replacing
Y

0(t) by �A(t)Y (t), we show that (Y �1)t is a fundamental matrix for (5.8), in other words one
has ((Y �1)t)0 �A

t(Y �1)t = 0. That proves the lemma. ⇤
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Now to prove regularity of the Gauß-Manin connection, it su�ces to prove the following result:
“When t ! 0, with ↵  argt  �, the Ij(t) have slow growing.”

In fact, Malgrange proves a more precise result based on the following Lemma:

Lemma 5.10. Let ! 2 �(X;⌦n
X), one has:

lim
t!0, argt=0

Z

�(t)
! = 0.

Proof. Let us choose a strictly positive real number t0 and denote T = f
�1([0, t0])\X. Then T

is a semi-analytic set and is contractible (because T can be contracted in a neighbourhood of X0

and X0 is contractible). Following  Lojaciewicz [22], one can find a semi-analytic triangulation
K of T such that X0 and Xt0 are sub-complexes and such that 0 is a vertex.

Let � a cycle in Xt0 representing �(t0); as T is contractible, there is a chain � in K such that
@� = �.

Let us recall the result by Herrera [14]: for every chain with integer coe�cients ⇤ =
P

aj�j

where the �j are oriented simplices in K, we define:

(5.11)

Z

⇤
! =

X
aj

Z

�j

!

where
R
�j
! = 0 if deg! 6= dim�j and, if deg! = dim�j , then

R
�j
! =

R
�̊j
! = limC

R
C !, where

C describes the family of compact subsets situated in the interior �̊j of �j . Following Herrera
[14], the integral (5.11) converges and one has

Z

@⇤
! =

Z

⇤
d!.

Then, the integral I(t0) is written:

I(t0) =

Z

�
! =

Z

�
d!.

Let us fix t 2]0, t0] and consider a subdivision eK of K such that Xt and f
�1(]0, t]) are sub-

complexes of eK. Denoting by ⌧j the oriented simplices of eK, one can consider � as a chain
e� =

P
nj⌧j in eK. One can write:

e� = �0

t + �00

t

where �0
t =

P
mj⌧j with mj = nj if ⌧j ⇢ f

�1([0, t]) and mj = 0 otherwise, and where �00
t is a

chain in eK whose support is contained in f
�1([t, t0]). Moreover, one has:

@�00

t = @ e� � @�0

t.

On the one hand, the cycle @ e� represents �(t0) in Xt0 (in fact we have f@� = @ e�). On the
other hand the support of @�0

t is a cycle of Xt homologous, in f
�1([t, t0]), to �(t0). Then @�0

t

represents �(t) in Xt. One has:

I(t) =

Z

@�0
t

! =

Z

�0
t

d!.

The chain � is written � =
P

aj�j in the triangulation K. We show now the formula:

(5.12)

Z

�0
t

d! =
X

aj

Z

�j\f�1([0,t])
d!
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which makes sense, according to Herrera [14], because �j \ f
�1([0, t]) is a semi-analytic set. To

prove the lemma, it su�ces to show that

(5.13) lim
t!0

Z

�j\f�1([0,t])
d! = 0.

If �j is in X0, that is trivial. In fact, as 0 is a vertex in K, then �̊j ⇢ X0 \ {0} and d!|̊�j = 0.
If �j is not in X0, then �̊j \X0 is the empty set. For every compact subset C in �̊j , one can

find a su�ciently small t so that �̊j \ f
�1([0, t]) ⇢ �̊j \ C. One has:

Z

�j

d! =

Z

�̊j

d! =

Z

�̊j\f�1([0,t])
d! +

Z

�̊j\f�1([0,t])
d!

where the second member of the sum tends to
R
�̊j

d! when t tends to 0. That shows (5.13).

Let us prove (5.12). We write all simplices �j in K as a sum
P
⌧jk of simplices in eK. More

precisely, �j can be written as

e�j =
X

k2I

⌧jk +
X

k2J

⌧jk

where, for k 2 I, one has ⌧jk ⇢ �j \ f
�1([0, t]) and, for k 2 J , then ⌧jk is not contained in

�j \ f
�1([0, t]). With the previous notations, e� can be written as:

e� = �0

t + �00

t

where �0
t =

P
j aj

P
k2I ⌧jk. One has:
Z

�0
t

d! =
X

j

aj

X

k2I

Z

⌧jk

d! =
X

j

aj

Z

�j\f�1([0,t])
d!.

That ends the proof of the lemma. ⇤
Proof of Theorem 5.6. In order to prove the theorem 5.6, it su�ces now to prove the following:
“With the hypothesis of Lemma 5.10, for ↵  arg t  �, then I(t) remains bounded when t

tends to 0.”
It is su�cient to prove the result for the integrals of type Ij(t) because I(t) is linear combi-

nation of Ij(t) with coe�cients in OD,0.

From the equation dIj
dt =

P
k akjIk, one deduces that there exists a constant C and an integer

k > 0 such that: ����
dIj

dt

���� 
C

k + 1

1

|t|k+1
sup(|I1|, . . . , |Iµ|).

Passing to polar coordinates (in (r, ✓)) and integrating in r, one deduces that, when arg t is
bounded one has:

|Ij(t)|  C
0
e
C|t|�k

.

From Lemma 5.10 and from the Phragmen-Lindelöf Theorem [6, p. 162] one obtains the result
for |� � ↵| < ⇡

k . The general case ↵ and � can be deduced immediately. ⇤
5.3. Development of the integral I(t). Firstly let us recall the classical results of monodromy
theory [18].

Let t0 2 D
0, with, for instance arg t0 = 0. Let us denote by h the endomorphism of Hn(Xt0 ;C)

induced by action of the generator of ⇡1(D0
, t0) represented by the loop �  e

2i⇡�
t0 with

� 2 [0, 1].

Theorem 5.14. (a) The eigenvalues of h are roots of unity.
(b) If h = S ·U with S semi-simple and U unipotent, and [S,U ] = 0, then one has (U�I)n+1 = 0.
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That implies that, in the Jordan decomposition of the matrix of h, the submatrices corre-
sponding to the eigenvalues of h have at most rank n+ 1.

Let us choose �1, . . . , �µ such that the set �1(t0), . . . , �µ(t0) is a basis for Hn(Xt0 ;C) and such
that

R
�k(t0)

!j = �jk . Let us denote

Ijk(t) =

Z

�k(t)
!j .

The set I1k, . . . Iµk is a basis of solutions of the equation

dIj

dt
=

X
akjIk.

From theorem 5.6 and from the classical theory of systems of di↵erential equations with regular
singular points [13, p. 73], one obtains that the matrix I = (Ijk) is of the type:

I(t) = J(t)tC = J(t) · eC log(t)

where J 2 GL(µ,K) and C 2 End(Cµ).
The action of h on I is translated by the substitution log t  log t + 2i⇡; then, in the basis

�j(t0), h is expressed by the multiplication by exp(2i⇡C). Writing C in Jordan form, we obtain
the following result:

Proposition 5.15. Let ! 2 �(X;⌦n
X), and let � defined as above, one has a converging devel-

opment in D
0:

(5.16)

Z

�(t)
! =

X

↵,q

C↵,q(!) t
↵ (log t)q

where exp(2i⇡↵) belongs to the set of eigenvalues of h (so that ↵ 2 Q) and

↵ > 0 and 0  q  n+ 1.

Moreover, as J is meromorphic, then the set of ↵ has lower bound [13]. One deduces from
the lemma 5.10 that one has:

C↵,q(!) 6= 0 implies ↵ > 0.

On the other hand, let � be an eigenvalue for h, then, for a certain p � 1 and for a suitable
choice of �(t0), one has (h� �)p�(t0) = 0 and (h� �)p�1

�(t0) 6= 0.

Lemma 5.17. There are ⌘ 2 ⌦n
X and ↵ > 0 such that exp 2i⇡↵ = � and C↵,p�1(⌘) = 0.

Proof. If that would not be the case , writing e�(t0) = (h��)p�1
�(t0), one would have

R
e�(t0) ⌘ = 0,

for all ⌘ 2 ⌦n
X . But, as Xt0 and X are Stein manifolds, the di↵erential forms ⌘|Xt0

generate
H

n(Xt0 ;C). That would imply e�(t0) = 0, that is contradictory with hypothesis. ⇤

6. Relation between monodromy and Bernstein polynomials

6.1. Bernstein polynomials. Let s be an indeterminate and consider the set of finite summa-
tions X

k,`

ak,`(x) s
k (f(x))s�k

where ak,` are germs of analytic functions at the origin in Cn+1. With obvious relations
f(x)f(x)s�k�1 = f(x)s�k and also obvious composition laws, that is a OX,0-algebra.

Let us now consider the di↵erential operators P (x, s, @
@x ) with analytic coe�cients in x and

polynomials in s:

P (x, s,
@

@x
) =

X
bk↵(x) s

k

✓
@

@x

◆↵

.
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These operators act on the previous ring, writing

@

@xi
f
s�k = (s� k)

@f

@xi
f
s�k�1

.

Giving to s integer values, the previous operations are compatible with the classical operations
on meromorphic functions. We can now provide the theorem proved by I.N. Bernstein [2] when
f is a polynomial and extended by J.E. Björk [3] when f is a germ of an analytic function with
any singularity at the origin:

Theorem 6.1. There exists a polynomial B(s) 6= 0 and a di↵erential operator P (x, s, @
@x ) such

that:

(6.2) P

✓
x, s,

@

@x

◆
f
s = B(s)fs�1

.

It is clear that the set of polynomials B(s) such that one has a relation of type (6.2) is an
ideal. We will denote by b(s) and will call Bernstein polynomial of f the generator of this ideal
whose highest degree term is equal to 1.

One has P (x, 0, @
@x ) = b(0)f�1, that implies b(0) = 0. We will denote

b(s) = seb(s).
The Malgrange’s result is the following:

Theorem 6.3 (Malgrange [23]). Let � be an eigenvalue of h whose multiplicity in the minimal
polynomial of h equals p, then there are rational numbers ⌫1, . . . , ⌫p 2 Q with the following
properties:
(a) exp(2i⇡⌫j) = � for j = 1, . . . , p,

(b) the polynomial (s+ ⌫1) · · · (s+ ⌫p) divides eb.

We will restrict ourselves to prove the theorem in the case � 6= 1. In fact, Malgrange shows
that all roots of the Bernstein polynomial can be obtained in the previous way, thus they are
rational numbers. In a more precise way, let �0 + A� the equivalent form of (5.1) for which

tA is holomorphic at 0; then b(s) = seb(s) where eb(s) is the minimal polynomial of (tA)(0).
Many authors extended and generalized these results, let us quote the work of Kashiwara [16]
in relation with D-modules.

Example 6.4. Let us consider the polynomial f = z
2
1 + · · · z2n+1; choosing P =

P @2

@z2
i
, one finds

eb(s) = s+ n�1
2 . But Hn(X1;C) has dimension 1 on C and we have h = (�1)n�1.

6.2. Periods of integrals. Let ↵ be an (n+ 1)-holomorphic form on X, there is ! 2 ⌦n
X such

that d! = ↵. The di↵erential form
↵

f � t
is closed and holomorphic in X �Xt and it admits a

pole with order 1 along Xt. We denote

↵

df
(t) = rest

✓
↵

f � t

◆

and Z

�(t)

↵

df
=

Z

�(t)

↵

df
(t).

This integral does not depend on the homology class of �(t) in Hn(Xt;C), moreover one has:

Lemma 6.5.

(6.6)

Z

�(t)

↵

df
=

d

dt

Z

�(t)
!.
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Proof. According to Theorem 3.5, one has:
Z

�(t)

↵

df
=

1

2i⇡

Z

��(t)

↵

f � t

where � is the Leray boundary. We have:
Z

�(t)

↵

df
=

1

2i⇡

Z

��(t)

d!

f � t
=

1

2i⇡

Z

⇣

d!

f � t

where, for t in a small enough open subset U , ⇣ is a fixed cycle in Hn+1(X \ ⇡�1(U)) (see the
comments after (3.11)).

From the relation
df ^ !
(f � t)2

= �d

✓
!

f � t

◆
+

d!

f � t
,

one obtains Z

⇣

d!

f � t
=

Z

⇣

df ^ !
(f � t)2

=
d

dt

Z

⇣

df ^ !
f � t

.

Using again results of section 3.3, one can write:

1

2i⇡

Z

⇣

df ^ !
f � t

=
1

2i⇡

Z

��(t)

df ^ !
f � t

=

Z

�(t)
rest

✓
df ^ !
f � t

◆
=

Z

�(t)
!|Xt =

Z

�(t)
!.

That proves the Lemma. ⇤

Given the converging development of
R
�(t) ! (see (5.16)), the integral admits a converging

development

(6.7)

Z

�(t)

↵

df
=

X

�,q

d�,q(↵) t
� (log t)q

where � 2 Q>�1, and exp(2i⇡(�+1)) = � is an eigenvalue of h whose multiplicity in the minimal
polynomial is p, and p� 1 � q � 0. Moreover, there exists an (n+ 1)-holomorphic form ↵ and
a rational number � with d�,q(↵) 6= 0. In fact, according to Lemma 5.17, if ⌘ 2 ⌦n

X and if
↵ = df ^ ⌘, one has:

(6.8)

Z

�(t)
⌘ =

Z

�(t)

↵

df

which is not zero.

6.3. Proof of Theorem 6.3.

A) Proof in the case � 6= 1. Let � be an eigenvalue for h, with multiplicity p in the minimal
polynomial of h. For 1  k  p, one defines ⌫k as the infimum of � such that there exists
q  k � 1 and ↵ 2 ⌦n+1

X such that d�,q(↵) 6= 0 and exp(2i⇡(� + 1)) = �.
In order to show (b) of Theorem 6.3, in the case � 6= 1, it is su�cient to show that the

polynomial (s+ ⌫1) · · · (s+ ⌫p) divides b(s). We will proceed in three steps:
1) Let us consider a fixed point ⌧ 2 [0, 1] such that ⌧ < ⌘. We consider a C1 singular

cycle in X⌧ which represents �(⌧), in other words, �(⌧) =
P

nisi where the si are applications
si : �n ! X⌧ , with �n standard simplex in Rn+1.
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Considering a trivialization of the bundle ⇡ : X 0 ! D
0, restricted to ]0, ⌧ ], one defines appli-

cations esi such that the following diagram commutes:

�n⇥]0, ⌧ ]
esi //

p2
%%

X

⇡

✏✏
]0, ⌧ ]

and such that esi|{1} = si. Here, p2 is obviously the second projection.
Let us denote

�(t, ⌧) =
X

niesi|�n⇥]0,⌧ ] f
s�1

↵.

For every s 2 C, one has (choosing t0 such that arg t0 = 0):
Z

�(t0,⌧)
f
s�1

↵ =
X

ni

Z

esi|�n⇥]0,⌧]

f
s�1

↵

We can assume that each esi|�n⇥]0,⌧ ] is contained in an open subset Ui in which ↵|Ui = df ^ ⌘i.
In that case, Z

esi|�n⇥]0,⌧]

f
s�1

↵ =

Z ⌧

t0

t
s�1

dt

Z

esi|�n⇥{t}

⌘i.

In fact, one knows that there exists ! 2 ⌦n
X such that d! = ↵. Then

Z

esi|�n⇥]0,⌧]

f
s�1

↵ =

Z ⌧

t0

t
s�1(d!)].

where (d!)] is the result of integration of d! along the fibres of p2.
By Stokes, one obtains (for 0 < t  t0):

Z t0

t
(d!)] =

Z

esi|�n⇥[t,t0]

d! =

Z

esi|�n⇥{t0}

! �
Z

esi|�n⇥{t}

!.

Then, by derivation and using (6.6) and (6.8), one has:

(d!)] =
d

dt

Z

esi|�n⇥{t}

! =

Z

esi|�n⇥{t}

↵

df
=

Z

si|�n⇥{t}

⌘i.

On the one hand, by construction of the esi, the cycle �(t) is homologous to
P

niesi|�n⇥{t}. On
the other hand, esi|�n⇥{t} is contained in an open subset Vi (contained in Ui) and such that:

⌘i|Vi\Xt = rest

✓
↵

f � t

◆ ���
Vi

because , in Vi, one has
↵

f � t
=

df

f � t
^ ⌘i.

One obtains that
X

ni

Z

si|�n⇥{t}

=

Z

�(t)

↵

df
and:

Z

�(t0,⌧)
f
s�1

↵ =

Z ⌧

t0

t
s�1

dt

Z

�(t)

↵

df
.

2) The previous computation allows us to write:

b(s)

Z ⌧

t0

t
s�1

dt

Z

�(t)

↵

df
= b(s)

Z

�(t0,⌧)
f
s�1

↵ =

Z

�(t0,⌧)
[P (x, s,

@

@x
)fs]↵.
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Let us denote by P
⇤ the adjoint operator of P , acting on ⌦n+1

X . It is defined, in local coordinates
in the following way:

If P =
P

a⌫(s, x)D⌫ with D
⌫ =

⇣
@

@z1

⌘⌫1

· · ·
⇣

@
@zn+1

⌘⌫n+1

and if ↵ = gdz1 ^ · · · ^ dzn+1, then

P
⇤
↵ =

�P
(�1)|⌫|D⌫(a⌫g)

�
dz1 ^ · · · ^ dzn+1. The operator P ⇤ satisfies:

[P (x, s,
@

@x
)fs]↵ = f

s(P ⇤
↵) + d(fs

↵p)

with P
⇤
↵ 2 ⌦n+1

X [s] and ↵p 2 ⌦n
X [s].

By Stokes and by construction of the esi (see above) one obtains
Z

�(t0,⌧)
[P (x, s,

@

@x
)fs]↵ =

Z

�(t0,⌧)
f
s(P ⇤

↵) +

Z

�(⌧)��(t0)
f
s
↵p.

The same argument as in the first step of the proof shows that
Z

�(t0,⌧)
f
s(P ⇤

↵) =

Z ⌧

t0

t
s
dt

Z

�(t)

P
⇤
↵

df
,

and then

b(s)

Z ⌧

t0

t
s�1

dt

Z

�(t)

↵

df
=

Z ⌧

t0

t
s
dt

Z

�(t)

P
⇤
↵

df
+

Z

�(1)
↵p � t

s
0

Z

�(t0)
↵p.

According to Lemma 5.10, for su�ciently large Re(s), one can consider the limit for t0 tending
to 0 in the previous equality. One obtains:

(6.9) b(s)

Z ⌧

0
t
s�1

dt

Z

�(t)

↵

df
=

Z ⌧

0
t
s
dt

Z

�(t)

P
⇤
↵

df
+

Z

�(1)
↵p.

3) Let us assume that ⌫1 = ⌫2 = . . . = ⌫k < ⌫k+1, and let us choose ↵ 2 ⌦n+1
X such that

d⌫1,k�1(↵) 6= 0 (in (6.7)).

Using the development (6.7)) of
R
�(t)

↵
df and the formula

R 1
0 t

⌫+s�1(log t)kdt = dk

dsk

⇣
1

s+⌫

⌘
, the

integral
R ⌧
0 t

s�1
dt

R
�(t)

↵
df can be extended, for Re(s) > 1, into a meromorphic function of s 2 C,

with a pole of order k at �⌫1.
In the same way,

R ⌧
0 t

s
dt

R
�(t)

P⇤↵
df admits a development of type (6.7) and can be extended

into a meromorphic function of s 2 C, without pole at �⌫1.
Finally

R
�(⌧) ↵p is a polynomial in s.

Equality (6.9) implies that (�⌫1) is a root of order k of b(s). One works in the same way for
⌫k+1, . . . , ⌫p, that implies the result. ⇤
B) The case � = 1. In the case � = 1, the proof is similar but requires more carefulness. The

previous method proves only that (s+ ⌫1) · · · (s+ ⌫p) divides b = seb and there is a risk to “lose”

some root of eb (see [23]). ⇤
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(1970), 103–161. DOI: 10.1007/BF01155695
[6] E. Coddington and N. Levinson, Theory of Ordinary Di↵erential Equations, Mc Graw-Hill, 1955.

https://doi.org/10.1016/1385-7258(73)90044-9
https://doi.org/10.1007/BF01155695


BRIESKORN AND THE MONODROMY 103
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Goulaouic-Schwartz, exposé 20, 1973–74.
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larités algébriques (Séminaire Shih), IHES 1969-70 and Boletim de Soc. Bras. de Mat. 1 (1971) 47–57.
DOI: 10.1007/BF02614961

[34] M. Sebastiani, Calcul de la monodromie d’après E. Brieskorn, “Séminaire sur la topologie des singularités
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Abstract. It is well-known that a foliation by curves of degree greater than or equal to
two, with isolated singularities, in the complex projective space of dimension greater than or
equal to two, is uniquely determined by the scheme of its singular points. The main result
in this paper is that the set of foliations which are uniquely determined by a subscheme (of
the minimal possible degree) of its singular points, contains a nonempty Zariski-open subset.
Our results hold in the projective space defined over any algebraically closed ground field.

1. Introduction and statement of the results

Let Pn = Pn
K be the projective space of dimension n � 2 over an algebraically closed ground

field K and let OPn ,⇥Pn and H denote its structure, tangent and hyperplane sheaves. For an
OPn -sheaf E , we will write E(d) for E ⌦H⌦d, if d � 0 and E ⌦ (H⇤)⌦|d|, if d < 0.

Let

(1.1) E = E(n, r � 1) = H0(Pn,⇥Pn(r � 1)), and e = e(n, r � 1) = dimKE.

A foliation by curves with singularities (or simply a foliation in the sequel) of degree r on Pn is
the class [s] 2 PE of a global section s 2 E. We denote the scheme of zeroes of [s] by ([s])0. We
say [s] has isolated singularities if dim ([s])0 = 0 and we say is non-degenerate, if it has isolated
singularities and ([s])0 is reduced.

It is known that a foliation [s] of degree r � 2 in Pn with isolated singularities is uniquely
determined by ([s])0, in the sense that ([s0])0 ◆ ([s])0 for some [s0] of degree r, implies that
[s0] = [s] (that is, s0 = � · s, for some � 2 K⇤): For K = C, the result was first established for [s]
non-degenerate, in [10] and the general statement was later obtained in [6]. For an algebraically
closed ground field K, it was established for n = 2 in [5], and the general version was finally
established in [1].

Let [s] be a foliation of degree r > 2 in Pn, with isolated singularities. At least if K = C,
there always exist proper subschemes Z ⇢ ([s])0 such that [s] is uniquely determined by Z in
the sense that ([s0])0 ◆ Z for some [s0] of degree r, implies that [s0] = [s]. This is the content
of Proposition 1.1 below. Given n � 2, and r � 2, the degree of such subschemes Z is bounded
from below by a certain integer m(n, r � 1) which we compute in Lemma 1.2 below. The main
result of the paper, Theorem 1.3 below, is that the set of foliations [s] (with isolated singularities
or not) which are uniquely determined by a Z ⇢ ([s])0 having this minimal degree contains a
nonempty Zariski open subset of PE.

Our main reference is [3]. Our notation comes from there.
Let U ⇢ Pn be an open a�ne that trivializes ⇥Pn(r � 1), and let p 2 U . The restriction of a

section s 2 E to U is an a�ne vector field ŝ = (s1, . . . , sn). The multiplicity µ(s, p) of s at p, is

2000 Mathematics Subject Classification. Primary 32S65; Secondary 32L10.
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the intersection multiplicity at p of the hypersurfaces sj = 0, i.e., the vector-codimension in the
local ring OPn,p of the ideal generated by {sj}nj=1:

(1.2) µ(s, p) = dimKOPn,p/(s
1, ..., sn) · OPn,p.

It is clear that µ(s, p) = µ(�s, p), for every � 2 K⇤, so that µ([s], p) = µ(s, p) is well-defined and,
moreover, that p is a singularity of [s] if and only if µ(s, p) 6= 0 and that µ(s, p) is non-zero and
finite if and only if p is an isolated singularity of [s]. Moreover, [s] is non-degenerate if and only
if µ([s], p) = 1, for every p 2 ([s])0.

It follows from the Euler sequence

(1.3) 0 �! OPn(r � 1) �! OPn(r)�(n+1) ⇧⇤�! ⇥Pn(r � 1) �! 0,

that e = (n+ 1)
�n+r

n

�
�
�n+r�1

n

�
and that a foliation [s] with isolated singularities has

deg([s])0 = cn(⇥Pn(r � 1)) =
nX

j=0

rj

zeroes, counting multiplicities.
The subsets Und ⇢ U0 of foliations which are non-degenerate resp. have isolated singularities

are both non-empty Zariski-open in PE.
The sheaf of ideals of a closed subscheme Z ⇢ Pn will be denoted by IZ . For a zero-dimensional

subscheme Y ⇢ Pn, the space of sections H0(Pn,⇥Pn⌦IY (r�1)) that vanish on Y will be denoted
by

(1.4) EY = H0(Pn,⇥Pn ⌦ IY (r � 1)), with eY = dimKEY .

If Y has degree y and it is reduced, we may consider it as a point in the symmetric product
SyPn.

Our first result generalizes [7, Corollary 3.3]:

Proposition 1.1. Let n � 2 and r � 2 be integers, let [s] be a foliation with isolated singularities

of degree r in the complex projective space Pn
, and let s1 2 H

0(Pn,⇥Pn(r� 1)) be a section that

vanishes at a subscheme Z 0 ⇢ ([s])0 whose degree satisfies degZ 0 � deg([s])0 � (n(r � 1) � r).
Then s1 = �s for some � 2 C⇤

and hence [s1] = [s].

Lemma 1.2. Let n � 2 and r � 2, be integers, let e be given by (1.1). Let ! = !(n, r�1) = [e�1
n ]

be the integral part of the number between brackets and let 0  ⇢  n � 1 be the unique integer

such that e� 1 = n · ! + ⇢.
Let Y be a zero-dimensional closed subscheme of Pn

of degree y, and assume that

eY = h
0(Pn,⇥Pn ⌦ IY (r � 1)) = 1.

Then y � !, if ⇢ = 0 and y � ! + 1, if 1  ⇢  n � 1. In consequence, the minimal possible

degree m(n, r � 1) of a zero-dimensional subscheme Y ⇢ ([s])0 such that eY = 1 is

m(n, r � 1) =

(
! if ⇢ = 0 , and

! + 1 if 1  ⇢  n� 1.

Theorem 1.3. Let n � 2 and r � 2, be integers. Let ! = [e�1
n ] and 0  ⇢  n � 1 be as in

Lemma 1.2, and eY , as in (1.4).

(a) If ⇢ = 0, then the subset

B! = {[s] 2 PE | 9Y 2 S!Pn
with Y ⇢ ([s])0 and PEY = {[s]}}

contains a nonempty Zariski-open subset V! of PE.
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(b) If 1  ⇢  n� 1, then the subset

B!+1 = {[s] 2 PE | 9Y 1 2 S!+1Pn
with Y 1 ⇢ ([s])0 and PEY 1 = {[s]}}

contains a nonempty Zariski-open subset V!+1 of PE.

It follows in particular that for U = Und or U0 and V = V! or V!+1 (depending on (a) or (b)

above, resp.), the subsets U
T
V are nonempty Zariski-open subsets of PE.

2. The proofs

Proof of Proposition 1.1. Consider X = Pn, E = ⇥Pn(r � 1), Z = (s)0 and a fixed divisor L of
degree ` on Pn. It is then clear that detE = OPn(nr + 1) and that F in the complete linear
system |detE � L| has degree nr + 1 � ` = r + 1 if and only if ` = (n � 1)r. Hence, the linear
system |KPn +L| = PH0(Pn,OPn(`� (n+1))) = PH0(Pn,OPn(n(r�1)� r�1))) is (k�1)�very
ample [14, Definition 1.1] if and only if k = n(r � 1)� r. It follows from [14, Theorem 1.2] that
any F 2 |detE�L| = PH0(Pn,OPn(r+1)) that passes through a subscheme Z 0 ⇢ (s)0 of degree
degZ 0 � deg(s)0 � (n(r� 1)� r) necessarily passes through all of (s)0. Now, for an s1 as in the
statement, each of its components satisfy the conditions of the F above, and hence (s1)0 ◆ (s)0.
This, together with [6, Theorem 3.5], gives the desired conclusion. ⇤
Proof of Lemma 1.2. Let Y 2 SyPn be a zero-dimensional closed subscheme of Pn of degree y,
with sheaf of ideals IY . We have a short exact sequence of sheaves

(2.1) 0 �! IY �! OPn �! OY �! 0.

It follows that h2(Pn, IY (j)) = 0, for n = 2 and j � �2 from [9, Lemma 2.4] and for n > 2 and
every j, from Serre’s computations.

Now, consider the short exact sequence obtained by tensoring (1.3) with the sheaf IY above
and its associated long exact cohomology sequence. Using an appropriate twist of (2.1), it follows
easily that

h0(Pn,⇥Pn ⌦ IY (r � 1))�h1(Pn,⇥Pn ⌦ IY (r � 1))

= h0(Pn,⇥Pn(r � 1))� n · y, or
(2.2)

eY � e1Y = e� n · y, where e1Y = h1(Pn,⇥Pn ⌦ IY (r � 1)).

For a closed point p 2 Pn, the (linear) space Ep has codimension n in PE. Hence, the term
e1Y = h1(Pn,⇥Pn ⌦ IY (r � 1)) in (2.2) is equal to the number of dependent conditions imposed
by the points of Y in E.

Now assume eY = 1.
It then follows from (2.2) that n · y � e1Y = e � eY = e � 1  n · y, and hence, that

! = [e�1
n ]  e�1

n  y, which is the first assertion. In the same vein, it is easy to see that if
eY = 1 and y = !, then e1Y = 0 if and only if ⇢ = 0.

On the other hand, if 1  ⇢  n � 1, then e � 1 = ! · n + ⇢ = e � eY = y · n � e1Y , hence
(y � !) · n = (e1Y � ⇢): This equation cannot hold for y = ! and hence y � ! � 1, which is the
second assertion. We close by recalling that if y = !+1 and eY = 1, then e1Y = n� ⇢ > 0, as is
easy to see. ⇤
Proof of Theorem 1.3 (a). This is a straight-forward consequence of [3, Theorem 0.1]. The proof
is included to fix our further notation.

For y  ! = !(n, r � 1), let Ny,k = {Y 2 SyPn | eY = e � n · y + k}. It follows that
Ny = Ny,0 ⇢ SyPn is open (because it is the subvariety of Y 2 SyPn where eY attains its
minimum value) and nonempty (because of [3, Theorem 0.1(a)]). It is hence dense in SyPn and
dim Ny = n · y.
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Let

SyPn ⇧̂1 � SyPn ⇥ PE ⇧̂2�! PE.

be the product variety with canonical projections. Let A be the universal family of foliations of
degree r � 1 from [10], and consider the variety

Zy = {(Y, [s]) 2 SyPn ⇥ PE |A(p, [s]) = [s](p) = 0, for every p 2 Y }
= {(Y, [s]) 2 SyPn ⇥ PE | p 2 ([s])0, for every p 2 Y }
= {(Y, [s]) 2 SyPn ⇥ PE |Y ⇢ ([s])0}
= {(Y, [s]) 2 SyPn ⇥ PE | [s] 2 PEY } ⇢ SyPn ⇥ PE,

(2.3)

with restrictions ⇧1 = ⇧̂1|Zy : Zy �! SyPn and ⇧2 = ⇧̂2|Zy : Zy �! PE. Let

Zy,0 = ⇧1
�1(Ny) = {(Y, [s]) 2 Zy |Y 2 Ny}.

Zy,0 is open in Zy. It is moreover irreducible and has the same dimension

n · y + e� n · y � 1 = e� 1

as PE does, because all fibers ⇧1
�1(Y ) are irreducible and have the same dimension

dim PEY = e� n · y � 1

(which is equal to zero, if y = ! and ⇢ = 0). Now consider the restrictions

⇧1 = ⇧1|Zy,0 : Zy,0 �! Ny ⇢ SyPn

and ⇧2 = ⇧2|Zy,0 : Zy,0 �! PE and recall that, set-theoretically,

⇧2(Zy,0) = {[s] 2 PE | 9Y 2 Ny such that Y ⇢ ([s])0}.
⇧2 is a regular map between irreducible varieties of the same dimension which we claim to
be dominant (the closure of its image ⇧2(Zy,0) is PE or B = ⇧2(Zy,0) is contained in no
hypersurface). Assuming this for a moment, we may finish the proof applying [11, Proposition
6.4.1] which shows the existence of a subset

(2.4) Vy ⇢ B

which is open and dense in B = PE and the desired conclusion follows taking y = ! in (2.4).
We prove that ⇧2 is dominant by contradiction: If it were not, then we may assume that

B = C is an irreducible hypersurface and there exists a nonempty subset V 0 ⇢ B open and
dense in C such that dim ⇧2

�1([s0]) = dim Zy,0 � dim C = 1, for every [s0] 2 V 0. Since

(2.5) ⇧2
�1([s0]) = {(Y, [s0]) |Y 2 Ny and Y ⇢ ([s0])0},

the condition dim ⇧2
�1([s0]) = 1 implies that some p 2 Y is a non-isolated singularity of [s0].

Since V 0 = C \W for some non-empty open set W ⇢ PE, it follows that ⇧2
�1(V 0) is a non-

empty open subset of the irreducible Zy,0, hence it is dense. Consider a Y 2 Ny from (2.5).
Then ⇧2

�1(V 0) \ (Y ⇥ PEY ) 6= ; is therefore open and dense. This implies that

{[s] 2 PEY | 9p 2 Y with dimp([s])0 = 1}
is non-empty and open, therefore is dense in PEY .

On the other hand, for Y 2 Ny, the subspace EY is the transversal intersection
T

p2Y Ep of

the linear subspaces Ep ⇢ E and E1
p = {s 2 E |µ([s], p) = 1} is open and dense in Ep (by [10,

Lemma 1.2]), so that
\

p2Y
E1

p ⇢ EY is also open and dense in EY ,
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and

(2.6) P(
\

p2Y
E1

p) ⇢ PEY is open and dense.

These two open sets of PEY should have non-empty intersection, which is clearly absurd. This
finishes the proof of Theorem 1.3 (a). ⇤

To prepare for the proof of Theorem 1.3 (b), we keep the previously introduced notation. We
still consider y = ! and the unique ⇢ with 1  ⇢  n� 1 such that e� 1 = n · ! + ⇢. It follows
that eY = ⇢ + 1 if Y 2 N!. For each such Y , let s = {s0, . . . , s⇢} be a K-basis of EY : These
sections define a vector-bundle map

� = �s : T �! ⇥Pn(r � 1)

from the trivial vector bundle T of rank ⇢+1. In an open a�ne U ⇢ Pn that trivializes both T
and ⇥Pn(r � 1), � is represented by the matrix

(2.7) A = As = [ŝ0, . . . , ŝ⇢] 2Mn⇥(⇢+1)(OPn(U))

whose column ŝi = (s1i , . . . , s
n
i ) 2 OPn(U)�n is the restriction of si to U , for i = 0, . . . , ⇢.

On the other hand, let M = Mn⇥(⇢+1)(K) be the a�ne variety of matrices with n rows and
(⇢ + 1) columns with coe�cients in K. It is well-known (see [4]) that the subvariety M⇢ of
matrices A 2M with rkA  ⇢ is irreducible and has codimension n� ⇢ in M. This means that
the ideal I⇢ of M⇢ is generated by some n� ⇢ (maximal) minors

(2.8) AJ ⇢ A of size |J | = ⇢+ 1,

and M⇢ is (arithmetically) Cohen-Macaulay. The matrix As corresponds to a morphism
f : U �! M; x 7! As(x), and U⇢+1 = f�1(M⇢) is independent of the trivialization chosen.
This allows to define the degeneracy locus D⇢+1(s) of the collection of sections s by

U⇢+1 = D⇢+1(s)
\

U

(see [2, II, §4]). It is clear form this construction that

(2.9) D⇢+1(s) = {p 2 Pn | (s0 ^ · · · ^ s⇢)(p) = 0}, and that codimD⇢+1(s)  n� ⇢.

Similarly, we have

D⇢(s) = {p 2 Pn | (si1 ^ · · · ^ si⇢)(p) = 0, for every {i1, . . . , i⇢} ⇢ {0, . . . , ⇢}}.
Our interest in these degeneracy loci comes from the following facts:

Lemma 2.1. Let n � 2 and r � 2, and assume that e � 1 ⌘ ⇢ mod n, with 1  ⇢  n � 1.
Let Y 2 N! and let s = {s0, . . . , s⇢} be a K-basis of EY . Then D⇢+1(s) is the locus of singular

points p 2 Pn
of sections s = s� 2 EY , and, moreover, D⇢+1(s) \ D⇢(s) is the locus of points

p 2 Pn
such that there exists a unique [s] 2 PEY that vanishes both at Y and at p.

Proof. Recall that

U⇢+1 =D⇢+1(s)
\

U = {x 2 U | rkAs(x)  ⇢}

={x 2 U |As(x) · ~� = ~0, for some 0 6= ~� = (�0, . . . ,�⇢)
t 2 K⇢+1}

={x 2 U | there exists ~� 6= ~0 2 K⇢+1 such that ŝ�(x) = (
⇢X

i=0

�iŝi)(x) = ~0}

={x 2 U | ŝ�(x) = 0, for some s� 2 EY },
which proves the first statement.
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For the second one, recall that (D⇢+1(s)\D⇢(s))
T
U is the set of x 2 U such that rkAs(x) = ⇢,

so that there exists a unique ~0 6= ~� (modulo scalar multiplication) such that s�(x) = 0 for
s� =

P⇢
i=0 �isi 2 EY . ⇤

Remark 2.2. Under the conditions of Lemma 2.1:

(1) We have D⇢+1(s) \ D⇢(s) 6= ;: Indeed, if (D⇢+1(s) \ D⇢(s))
T
U = ; for every such U ,

then the sections in s are linearly dependent in all Pn and hence, they form no basis of
EY , which is absurd.

(2) It is easy to see that, for ⌧ = ⇢ and ⇢+1, we have D⌧ (s) = D⌧ (s0), for any other K-basis
s0 of EY . This allows us to define D⌧ (Y ) to be D⌧ (s), for some K-basis s of EY , and

CY = D⇢+1(Y ) \D⇢(Y ).

Hence, CY is nonempty for every Y 2 N! and it follows from Lemma 2.1 that, for every
Y 1 = Y ⇥ {p} 2 N! ⇥ CY ⇢ S!+1Pn, there exists a unique [s] 2 PEY 1 . It follows
moreover that

dim CY = dim D⇢+1(Y ), for every Y 2 N!.

We have the following refinement of [2, II§4 Proposition 4.1]:

Proposition 2.3. Let n � 2 and r � 2 be integers such that

e� 1 ⌘ ⇢ mod n, with 1  ⇢  n� 1

and let Y 2 N!. Then, D⇢+1(Y ) has the expected codimension n� ⇢ and hence it is a complete

intersection. In consequence, it is not only (arithmetically) Cohen-Macaulay, but also equidi-

mensional of dimension ⇢. In particular, CY is equidimensional of dimension ⇢.

Proof. Let s = {s0, . . . , s⇢} be a K-basis of EY . On the one hand, it follows from (2.6) that
we may assume that µ([si], p) = 1, for every p 2 Y and every i = 0, . . . , ⇢. On the other hand,
consider the matrix As(x) from (2.7), with x in some such U ⇢ Pn. For J = {j1 < · · · < j⇢+1},
let

As(x)
J =

0

B@
sj10 (x) · · · sj1⇢ (x)

...
. . .

...

s
j⇢+1

0 (x) · · · s
j⇢+1
⇢ (x)

1

CA

be a (maximal) minor of As(x) from (2.8). We have already seen in (2.9) that

codimD⇢+1(Y )  n� ⇢.

If ⇢ = n � 1, then it is clear that Dn(Y ) is a hypersurface, so we can assume that ⇢ < n � 1:
Assume that codimD⇢+1(Y ) is strictly smaller than n � ⇢, say, equal to n � ⇢ � 1, then one of
these (maximal) minors As(x)J has determinant identically equal to zero and hence, at least one
of its rows is linearly dependent to the others. This implies that, for every si 2 s, no p 2 Y \ U
is an isolated singularity of si, because (s1i,p, . . . , s

n
i,p) ⇢ OPn,p is not a regular sequence. This

contradiction shows that codimD⇢+1(Y ) = n� ⇢. The Cohen-Macaulay and equidimensionality
properties of D⇢+1(Y ) follow from [8] (Proposition 18.13 and Corollary 18.14, respectively). The
last statement is clear from Remark 2.2. ⇤

Proof of Theorem 1.3 (b). In analogy with (2.3), let

Z!+1 = {(Y 1, [s]) 2 S!+1Pn ⇥ PE |Y 1 ⇢ ([s])0} ⇢ S!+1Pn ⇥ PE,
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with restrictions ⇧1 : Z!+1 �! S!+1Pn and ⇧2 : Z!+1 �! PE. Consider

eN!+1 = {Y 1 = Y ⇥ {p} |Y 2 N! and p 2 D⇢+1(Y )} ⇢ S!+1Pn,

eN 0
!+1 = {Y 1 = Y ⇥ {p} |Y 2 N! and p 2 D⇢(Y )} ⇢ eN!+1, and

M!+1 = {Y 1 = Y ⇥ {p} |Y 2 N! and p 2 CY } ⇢ eN!+1.

(2.10)

Let
eZ!+1 = ⇧�1

1 ( eN!+1) ⇢ Z!+1

and let e⇧1 : eZ!+1 �! eN!+1 and e⇧2 : eZ!+1 �! PE be the restrictions to eZ!+1 of the projections
⇧1 and ⇧2 above, respectively.

eN!+1 is a nonempty quasiprojective subvariety, possibly reducible (for D⇢+1(Y ) may have
components), singular (for D⇢+1(Y ) is singular along D⇢(Y )), but equidimensional of dimension
equal to n · ! + ⇢ = e� 1.

We claim that, set-theoretically:

e⇧2( eZ!+1) = ⇧2(Z!,0) � V! 6= ;,

and in consequence, e⇧2 is dominant (because V! = PE).
It only remains to prove the equality in the claim and this goes as follows: [s] 2 ⇧2(Z!,0) if and

only if [s] = ⇧2(Y, [s]), for some Y 2 N! and Y ⇢ ([s])0 ⇢ D⇢+1(Y ) by Lemma 2.1. In particular,

any q 2 ([s])0 \ Y lies in D⇢+1(Y ) so that [s] = e⇧2(Y ⇥ {q}, [s]), with Y 1 = Y ⇥ {q} 2 eN!+1.
The reciprocal inclusion is trivial.

We claim moreover that there exist

(2.11) [s] 2 V! such that [s] = e⇧2(Y ⇥ {p}, [s]), with p 2 CY (Y 2 N!).

Otherwise, for every [s] 2 V!, [s] = e⇧2(Y ⇥ {q}, [s]), for some q 2 D⇢(Y ) and the restriction re⇧2

of e⇧2 to e⇧�1
1 ( eN 0

!+1):

eZ!+1 � e⇧�1
1 ( eN 0

!+1)
re⇧2�! PE

is dominant. This is absurd, for dim e⇧�1
1 ( eN 0

!+1) < e� 1, by Remark 2.2, and (2.11) follows.
Finally by the moment, we claim that

(2.12) µ([s0], q) = 1, for every [s0] and q 2 Y ⇥ {p} 2M!+1 satisfying (2.11) :

It follows from Lemma 2.1 that [s0] is the unique foliation that vanishes at every

q 2 Y 1 = Y ⇥ {p},

so that {[s0]} = PEY 1 ⇢ PE is zero-dimensional. By [10, Lemma 1.2],

{[s] 2 PEY 1 |µ([s0], q) > 1, for some q 2 Y 1}

is a proper closed subset of PEY 1 , hence is empty, and the conclusion follows.
Now, let

eZ1
!+1 = e⇧�1

1 (M!+1) ⇢ eZ!+1

(which is non-empty by (2.11)) and let e⇧1 : eZ1
!+1 �! M!+1 and e⇧2 : eZ1

!+1 �! PE be the

restrictions to eZ1
!+1 of the projections e⇧1 and e⇧2.

The quasiprojective variety M!+1 is non-empty, possibly reducible but equidimensional of
dimension equal to e�1, by Proposition 2.3. Moreover, e⇧1 is surjective and for every Y 1 2M!+1,
the fibre e⇧�1

1 (Y 1) has dimension zero (it is a closed point (Y 1, [s]) because [s] is unique, by
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Lemma 2.1). This, together with [13, Theorem 1.26], shows that for every irreducible component
M c

!+1 of M!+1,
eZ1,c
!+1 = e⇧�1

1 (M c
!+1) ⇢ eZ1

!+1

is irreducible and has dimension e� 1. It is hence a component of eZ1
!+1.

Now consider a component eZ1,c
!+1 containing a (Y ⇥ {p}, [s]) satisfying (2.11) and let

(2.13) e⇧c
2 : eZ1,c

!+1 �! PE

be the restriction to eZ1
!+1 of the map e⇧2. As with part (a), the proof of Theorem 1.3 (b) follows

if we prove that e⇧c
2 is dominant for, in this situation [11, Proposition 6.4.1] gives the existence

of the Zariski-open set we are seeking for: V!+1 ⇢ e⇧c
2( eZ

1,c
!+1), open and dense in PE, the closure

of e⇧c
2( eZ

1,c
!+1).

We prove that e⇧c
2 is dominant modifying the previous proof that

⇧2 : Zy,0 �! PE is dominant, this time letting B = e⇧c
2( eZ

1,c
!+1): If it were not, then we

may assume that B = C is an irreducible hypersurface and there exists a nonempty subset
V 0 ⇢ B open and dense in C such that dim ( e⇧c

2)
�1([s0]) = dim eZ1,c

!+1 � dim C = 1, for every
[s0] 2 V 0. Since

(2.14) ( e⇧c
2)

�1([s0]) = {(Y 1, [s0]) |Y 1 2M!+1 and Y 1 ⇢ ([s0])0},

the condition dim ( e⇧c
2)

�1([s0]) = 1 implies that some p 2 Y 1 is a non-isolated singularity of
[s0], for every [s0] 2 V 0.

But on the other hand, these [s0] certainly do satisfy (2.11) for some Y 1 = Y ⇥ {p} 2M!+1

and hence, they also must satisfy (2.12). This contradiction shows that (2.13) is dominant and
the proof of Theorem 1.3 (b) has been completed.

⇤

3. Closing remarks

For n = 2 and r � 2, let Mr = r(r + 5)/2. It is easy to see that

m(2, r � 1) = Mr � (t� 1), either if r = 2t or 2t+ 1 .

Recall form [7, Theorem 3.5] that for every non-degenerate foliation [s] of degree r in P2, there
exists a subscheme Z ⇢ ([s])0 of degree Mr which determines [s] uniquely (although K = C
in [7], the attentive reader will notice that the results therein hold for an algebraically closed
ground field K).

For small values of r, we have the following values:

r m(2, r � 1) Mr c2(⇥P2(r � 1))
2 7 7 7
3 12 12 13
4 17 18 21
5 24 25 31
6 31 33 43
7 40 42 57

We conclude that for a non-degenerate foliation [s] of degree 2 in P2 no proper subscheme of
([s])0 may uniquely determine [s] and that every non-degenerate foliation [s] of degree 3 in P2

has a minimal subscheme which uniquely determines it.
At this point, we can moreover prove (see [12]) that for any such Z ⇢ ([s])0, there exists a

subscheme of degree Mr�1 of Z which still determines [s] uniquely. The conclusion is that every
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non-degenerate foliation [s] of degrees 4 and 5 in P2 has a minimal subscheme which uniquely
determines it.

The question wether every non-degenerate foliation [s] of degree r � 6 in P2 has a minimal
subscheme which uniquely determines it remains open.
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SINGULARITIES
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To the memory of Egbert Brieskorn

Abstract. We collect some classical results about holomorphic 1-forms of a reduced com-
plex curve singularity. They are used to study the pull-back of holomorphic 1-forms on an
isolated complete intersection curve singularity under the normalization morphism. We won-
der whether the Milnor number µ and the Tjurina number ⌧ of any isolated plane curve
singularity satisfy the inequality 3µ < 4⌧ .

1. Introduction

Consider a reduced complex curve singularity (X, 0) ⇢ (CN
, 0), defined by an ideal I ⇢ OCN ,0,

with r = r(X, 0) branches. Let ⌫ : (X̄, 0̄) ! X, 0) be the normalization, where (X̄, 0̄) is the

multi-germ consisting of r smooth branches. We set

O := OX,0 = OCN ,0/I, the local ring of the germ (X, 0);

Ō := ⌫⇤OX̄,0̄, the direct image of the local ring of the multi-germ (X̄, 0̄);

⌦ := ⌦
1

CN ,0/I⌦
1

CN ,0 +OCN ,0dI, the holomorphic 1-forms on (X, 0);

⌦̄ := ⌫⇤⌦
1

X̄,0̄
, the direct image of the holomorphic 1-forms on (X̄, 0̄);

! := !X,0 = Ext
N�1

OCN,0
(O,⌦

N
CN ,0), the dualizing module of (X, 0);

T⌦ := H
0

{0}
(⌦), the torsion submodule of the O-module ⌦.

Let d : O ! ⌦ be the exterior derivation. We have the following maps

dO ! ⌦ ! ⌦̄ ! !,

where dO ! ⌦ is the inclusion, ⌦ ! ⌦̄ is given by the pull-back of forms under the morphism ⌫,

and ⌦̄ ! ! is the inclusion, if we identify the dualizing module ! with the module of Rosenlicht’s

regular di↵erential forms as explained in [BG80]. Then the maps dO ! ⌦ and ⌦̄ ! ! are clearly

injective and T⌦ is the kernel of the map ⌦ ! ⌦̄ (cf. [BG80]). We write ⌦̄/⌦ for the cokernel

of the map ⌦ ! ⌦̄ and similarly for the other maps. These objects give rise to the following

numerical invariants:

2010 Mathematics Subject Classification. Primary 14H20; Secondary 14F10, 14H50, 32S05.
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variant, normalization.
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m := mt(X, 0), the multiplicity of (X, 0);

� := �(X, 0) = dimC(Ō/O), the delta-invariant of (X, 0);

µ := µ(X, 0) = dimC(!/dO), the Milnor number of (X, 0);

� := �(X, 0) = dimC(!/⌦);
⌧
0

:= ⌧
0
(X, 0) = dimC(T⌦);

⌧ := ⌧(X, 0) = dimC(T 1

X,0), the Tjurina number of (X, 0).

Here T
1

X,0 is the tangent space of the base space of the semiuniversal deformation of (X, 0).

If (X, 0) is a plane curve singularity with I = hfi, then µ = dimC(O/Jf ) (the classical Milnor

number, cf. [BG80, M68]) and ⌧ = dimC(O/hfi+ Jf ), where Jf is the Jacobian ideal generated

by the partials of f .

The aim of this note is to prove the following.

Theorem 1.1. Let (X, 0) be a reduced complete intersection curve singularity. Then the follow-
ing hold.

(1) ⌧ = ⌧
0
= � � � +m� r,

(2) ⌧ � � = dimC(⌦̄/⌦). In particular, one has the equality

dimC(⌦̄/⌦) = � � r + 1

if and only if the singularity (X, 0) is weighted homogeneous.
(3) ⌧ > µ/2 if (X, 0) is not smooth.

In the second section we recall a number of classical results on isolated complete intersection

singularities (due to the second author with several co-authors, and written partly in German),

which are somewhat scattered in the literature and apparently not well known. We collect

them here with reference to the original sources. In the third section we give a quick proof of

Theorem 1.1 using the results quoted before and discuss its relations with similar results by

Delphine Pol, see Remark 3.1. In the final section we discuss the possible values of the quotient

⇢(X, 0) = µ(X, 0)/⌧(X, 0) and ask whether ⇢(X, 0) < 4/3 for any plane curve singularity.

We would like to thank Mathias Schulze for a useful remark, see Remark 3.1.

2. The classical results

We start by recalling the following general result.

Theorem 2.1. ([BG80])
For a reduced curve singularity the following holds.

(1) µ = 2� � r + 1,
(2) µ � � � � +m� r,
(3) dimC(⌦/dO) = µ+ ⌧

0
� �,

(4) dimC(!/⌦̄) = �,
(5) If (X, 0) is smoothable (e.g. if it is a complete intersection) then ⌧

0
� �, with equality

i↵ µ = dimC(⌦/dO).

Proof. All these claims are proved in [BG80]. Indeed, (1) is Proposition 1.2.1, (2) is Lemma

6.1.2, (3) appears in the proof of Theorem 6.1.3, (4) in the proof of Proposition 1.2.1, while (5)

is Corollary 6.1.4 together with Corollary 6.1.6 of [BG80]. ⇤

When (X, 0) is a complete intersection, we have the following additional properties. Some

of these results are also reproduced in Looijenga’s book [L84], see in particular Section 8.C. In
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the case of plane curves, the reader can also consult the introductory book [W04], in particular

Section 11.6.

Theorem 2.2. ([Gr75] [Gr80]), [GMP85])
Let (X, 0) be a reduced complete intersection curve singularity. Then

(1) µ = dimC(⌦/dO), dO \ T⌦ = 0,
(2) ⌧ = ⌧

0
 µ,

(3) ⌧ = µ i↵ (X, 0) is quasihomogeneous.

Proof. Indeed, (1) is Proposition 5.1, resp. Lemma 4.5 in [Gr75] (for arbitrary positive dimen-

sional isolated complete intersection singularities, resp. for complete intersections with arbitrary

singularities, suitably modified), (2) is Satz 3.1(2a) in [Gr80]. The claim (3) is Corollary 2.2

in [GMP85] (where also a generalization to Gorenstein curves is proved), while the plane curve

case goes back to K. Saito [KS71]. ⇤

3. The proof of Theorem 1.1

The sequence

0 ! T⌦ ! ⌦/dO ! !/dO ! !/⌦ ! 0

is exact by Theorem 2.2 (1) with dimC(⌦/dO) = µ = dimC(!/dO). Hence

⌧
0
= dimC(T⌦) = dimC(!/⌦) = �.

Claim (1) follows now from Theorem 2.2 (2) and Theorem 2.1 (2). The claim (2) is a consequence

of the exact sequence

0 ! ⌦̄/⌦ ! !/⌦ ! !/⌦̄ ! 0

together with (1), Theorem 2.1 (4) and the definition of �. Using (1) and Theorem 2.1 (1) we

get

⌧ � � +m� r = (µ+ r � 1)/2 +m� r = µ/2 + (m� 1)/2 + (m� r)/2 > µ/2,

since m � r and m > 1 if (X, 0) is not smooth.

Remark 3.1. It was drawn to our attention by Mathias Schulze that an alternative proof of

the equality in Theorem 1.1 (2) can be obtained from [Pol14, Proposition 3.31]. Assume that

(X, 0) is irreducible for simplicity. Let f1 = · · · = fn = 0 be the equations for the germ (X, 0)

in (CN
, 0), with N = n + 1 and fi 2 OCN ,0, for i = 1, ..., n. Then ⌧

0
is the codimension of the

Jacobian ideal JX in O, where JX is the ideal of O, spanned by all the n ⇥ n-minors in the

Jacobian matrix (@fi/@xj)i=1,n;j=0,n, see [Gr75, Proposition 1.11(iii)]. Delphine Pol shows that

one has the following equality

JX = g ·
⌫
⇤
(⌦)

dt
,

in the local ring Ō = C{t}, where g is a generator of the conductor ideal CX . Note that the

codimension of JX in Ō is clearly by the above discussion ⌧ + �. Since g, regarded as an element

of Ō = C{t}, has order µ, it follows that the codimension of g ·
⌫⇤

(⌦
1
X,0)

dt in Ō is given by

µ+ dimC(⌦̄/⌦).

The claim follows from these formulas. Note that both the proofs given, and the literature used,

by Delphine Pol are quite di↵erent from ours.
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Remark 3.2. (1) The equality ⌧ = ⌧
0
holds more generally if (X, 0) is Gorenstein, which follows

from local duality. For an arbitrary reduced curve singularity (X, 0) the relation between ⌧ and

⌧
0
is unclear. It is an old and still open question if for a non smooth (X, 0) we have always ⌧ > 0

(i.e. (X, 0) is not rigid) and ⌧
0
> 0 (Berger’s conjecture).

(2) For a plane curve singularity (X, 0) the expression ⌧ � � appears also as the codimension

of the extended tangent space to the orbit of the parametrization (X̄, 0̄) ! (C2
, 0) of (X, 0) by

the action of the right-left group A of Mather ([GLS07, Proposition II.2.30(5)]).

4. A remark on the quotient µ/⌧

Assume in this section that we are in the case of plane curve singularities, and we write

f1 = f to simplify our notation. Let M(f) = OC2,0/Jf be the Milnor algebra of the singularity

(X, 0), where Jf denotes the Jacobian ideal of f . Let hfi denote the principal ideal spanned

by f in M(f) and kermf denote the kernel of the morphism mf : M(f) ! M(f) given by

the multiplication by f . Then we know that hfi ⇢ kermf , see [BrS74]. Moreover, one has

dimC(hfi) = µ � ⌧ and dimC(kermf ) = ⌧ . Using this approach, Yongqiang Liu has shown in

[Li17] that

⌧ �
1

2
µ.

He asked there which values can take the quotient

⇢ := ⇢(X, 0) = µ(X, 0)/⌧(X, 0).

The obvious inequality ⌧  µ and Theorem 1.1 (3) show that

1  ⇢(X, 0) < 2

when (X, 0) is non smooth. It also shows that the inclusion of ideals hfi ⇢ kermf is strict when

(X, 0) is not a smooth germ.

To construct singularities (X, 0) with a large quotient ⇢(X, 0) is not easy, since the Tjurina

number ⌧(X, 0) is di�cult to compute in general, e.g. since it is not a topological invariant it

cannot be expressed in terms of Puiseux pairs.

Example 4.1. There is a sequence of isolated plane curve singularities (Xm, 0) such that the

sequence of rational numbers ⇢(Xm, 0) is strictly increasing with limit 4/3. Moreover, the singu-

larities can be chosen to be all either irreducible, or consisting of smooth branches with distinct

tangents.

In the irreducible case, consider the sequence of singularities

(Xm, 0) : f = x
2m+1

+ x
m
y
m+1

+ y
2m

= 0.

Then the associated projective plane curve of degree d = 2m+ 1

C : x
2m+1

+ x
m
y
m+1

+ y
2m

z = 0

is free with exponents (d1, d2) = (m,m), see [DSt17, Theorem 1.1]. This implies that

⌧ = ⌧(Xm, 0) = ⌧(C) = (d� 1)
2
� d1d2 = 3m

2
,

see [DSt17, Equation (2.2)]. Since clearly (Xm, 0) is a semi-weighted homogeneous singularity,

it follows that µ = µ(Xm, 0) = 2m(2m� 1), and hence the claim follows in this case.

In the case of singularities consisting of smooth branches with distinct tangents, consider the

sequence

(Xm, 0) : f = x
2m+1

+ y
2m+1

+ x
m+1

y
m+1

.

Again (Xm, 0) is a semi-weighted homogeneous singularity, and from that we get

µ = µ(Xm, 0) = 4m
2
.
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To determine the Tjurina number, note that the monomials x
a
y
b
for 0  a, b  2m � 1 form

a basis for the Milnor algebra M(f). The Euler formula implies that the monomial x
m+1

y
m+1

belongs to the ideal (f) ⇢ M(f). To get a basis for the Tjurina algebra T (f) = M(f)/(f) of

f , we have to discard from the above basis all the multiples of x
m+1

y
m+1

, namely (m � 1)
2

elements. It follows that ⌧ = ⌧(Xm, 0) = 4m
2
� (m� 1)

2
, which yields the claim in this case as

well.

Question 4.2. Is it true that

⇢(X, 0) = µ(X, 0)/⌧(X, 0) <
4

3

for any isolated plane curve singularity?

The answer to this question is positive for semi-quasi-homogeneous singularities (X, 0); see

the recent preprint [AB18].
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Abstract. This paper is a sequel to [He11] and [GH17]. In [He11] a notion of marking
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1. Introduction

We dedicate this paper to the memory of Egbert Brieskorn. It has its roots in work which the
second author, Claus Hertling, had done as a student of Brieskorn in Bonn in the early 90’s.

1.1. Reminiscences of the second author. Prof. Dr. Egbert Brieskorn accepted me as a
diploma student in the spring of 1989. On March 10 and 13, 1989, he gave two full days (Friday
+ Monday) of lectures for his new diploma students (including me) and doctoral students. I still
have his handwritten manuscript of 52 pages. There he introduced us to isolated hypersurface
singularities. He talked about the Jacobi algebra, the universal unfolding with its discriminant,
the Milnor fibration, its monodromy, local systems and integrable connections and systems
of regular singular linear di↵erential equations in general, his own work on the Gauss-Manin
connection and especially the Brieskorn lattice, and the mixed Hodge structure which it induces.
He strongly recommended to read [AGV88], [SaM89] and [SS85]. He proposed to me to work on
the moduli of singularities using the Gauss-Manin connection.

I followed his advice in my diploma thesis and my doctoral thesis and beyond the doctoral
thesis. The subject developed into a long-going project of mine, which I took up again and
again. The present paper is in some sense a final step of it.

In the doctoral thesis [He93], I formulated the global Torelli type conjecture that an isolated
hypersurface singularity is determined up to right equivalence by its Brieskorn lattice together
with the Milnor lattice and the Seifert form (conjecture 1.1 (b) reformulates this conjecture). I
proved it in the doctoral thesis for all unimodal singularities, the exceptional bimodal singulari-
ties, the bimodal quadrangle singularities, and the bimodal series E3,p.

For the other seven bimodal series, I made in the spring 1993, some months after finishing the
doctoral thesis, long calculations (120 pages) which led to a proof of this Torelli type conjecture
for all series except the three bimodal subseries S]

1,10r, S1,10r, Z1,14r. At that time I thought that
I would never review and publish these results. The paper [He95] recapitulated the main results
of the doctoral thesis and of these calculations for the eight bimodal series, but it did not at all
give all details (only 2.5 pages are devoted to the bimodal series).

Later I constructed a classifying space DBL for Brieskorn lattices [He99] and a moduli space
Mµ(f0) of the right equivalence classes of all singularities in the µ-homotopy class of a reference
singularity f0 [He02]. More recently, in [He11], I defined the notion of a marked singularity, I
constructed a classifying space M

mar

µ
(f0) for marked singularities, and I formulated a Torelli

type conjecture for marked singualarities, which is stronger than the Torelli type conjecture in
the doctoral thesis for unmarked singularities.

The three papers [He11], [GH17] and the present paper prove the Torelli conjecture for marked
singularities for all singularities with modality 0, 1 and 2. The present paper deals with the
bimodal quadrangle singularities and the eight bimodal series. It comprises the calculations
from the spring 1993 and adds a lot more arguments and calculations, which are necessary for
the marked version.

It is satisfying, that the Torelli type conjectures hold for all singularities with modality 0, 1
and 2. For each family, the interplay between the variations of the Brieskorn lattices and the
automorphism group of the Milnor lattice with Seifert form is fascinating and takes the best
possible shape. I believe that Brieskorn would have liked these positive results and the many
techniques used for their proofs. I thank him for proposing to me in March 1989 to work on the
moduli of singularities using the Gauss-Manin connection. It was a good advice.

1.2. Notions, conjectures and results. In this paper, a singularity is a holomorphic function
germ f : (Cn+1

, 0)! (C, 0) with an isolated singularity at 0. Then its Milnor lattice Ml(f) ⇠= Z
µ

is the Z-latticeHn(f�1(⌧),Z) for some small ⌧ 2 R>0 for a suitable representative of f . Its Seifert
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form is called L : Ml(f) ⇥Ml(f) ! Z. Its monodromy is called Mh : Ml(f) ! Ml(f). The
automorphism group of the Milnor lattice with the Seifert form is GZ(f) := Aut(Ml(f), L). It
will play a predominant role in this paper.

This paper is a sequel to [He11] and [GH17]. In [He11], a strongly marked singularity (f, ⇢)
and a marked singularity (f,±⇢) are defined. Here one has to fix first a reference singularity f0.
Then f is in the µ-homotopy class of f0, i.e. a µ-constant family of singularities exists which
contains f0 and f . And ⇢ : (Ml(f), L(f)) ! (Ml(f0), L(f0)) is a chosen isomorphism. Two
singularities f1 and f2 are right equivalent if a coordinate change ' with f1 = f2 �' exists. Two
strongly marked singularities (f1, ⇢1) and (f2, ⇢2) are right equivalent if a coordinate change '
with f1 = f2 � ' and ⇢1 = ⇢2 � (')hom exists, where (')hom : Ml(f1) ! Ml(f2) is the induced
isomorphism.

In [He02] a moduli space Mµ(f0) for the right equivalence classes of all singularities in the
µ-homotopy class of a reference singularity f0 was constructed as an analytic geometric quotient.
In [He11], this construction was enhanced to the construction of moduli spaces M

mar

µ
(f0) and

M
smar

µ
(f0) of marked and strongly marked singularities. Here M

smar

µ
(f0) is Hausdor↵ and an

analytic space only if assumption (8.1) or assumption (8.2) holds.

Assumption (8.1): Any singularity in the µ-homotopy

class of f0 has multiplicity � 3.

Assumption (8.2): Any singularity in the µ-homotopy

class of f0 has multiplicity 2.

We expect that one of them holds for any µ-homotopy class of singularities. This would be an
implication of the Zariski multiplicity conjecture. But that is not proved in general.

But M
mar

µ
(f0) is Hausdor↵ and an analytic space, independently of these assumptions. Lo-

cally it is isomorphic to the µ-constant stratum Sµ(f) of a singularity in the base space of
a universal unfolding of that singularity. The group GZ(f0) acts properly discontinuously on
M

mar

µ
(f0). The quotient is Mmar

µ
(f0)/GZ ⇠= Mµ(f0). Therefore a neighborhood of [f ] in Mµ(f0)

is isomorphic to the quotient of Sµ(f) by a finite group. M
mar

µ
(f0) can be considered as a Te-

ichmüller space for singularities, in analogy to the Teichmüller spaces for closed complex curves.
It can also be considered as a global µ-constant stratum, simultaneously for all singularities in
one µ-homotopy class.

The papers [He11], [GH17] and this paper determine M
mar

µ
(f0) for all singularities with

modality 0, 1 and 2. The second column of the following table (1.1) gives their isomorphism
classes.

Singularity family M
mar

µ
(f0) DBL(f0)

ADE-singularities point point
simple elliptic sing. H H

hyperbolic sing. C C

exc. unimodal sing. C C

exc. bimodal sing. C
2

C
2

quadrangle sing. (H� (a discrete set))⇥ C H⇥ C

the 8 series, for m 6 |p C
⇤ ⇥ C C

NBL

the 8 subseries with m|p 1 many copies of C⇤ ⇥ C H⇥ C
NBL

(1.1)
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Here the eight series and the respective numbers m are given in the following table (1.2).
Here p 2 Z�1.

series W
]

1,p S
]

1,p U1,p E3,p Z1,p Q2,p W1,p S1,p

m 12 10 9 18 14 12 12 10
(1.2)

One sees that M
mar

µ
(f0) is simply connected for all singularities with modality 0 and 1 and

for the exceptional bimodal singularities. For the quadrangle singularities and the series with
m 6 |p, it is connected, but not simply connected. And for the subseries with m|p, it is not
even connected, but has infinitely many components. This last result is a counterexample to
conjecture 3.2 (a) in [He11], which said that Mmar

µ
(f0) should be connected.

In [He11], also two subgroups Gsmar(f0) and G
mar(f0) of GZ(f0) were defined. Gsmar(f0) was

defined as the subgroup which is generated by the transversal monodromies of all µ-constant
families which contain f0. Here the transversal monodromy of a µ-constant family ft, t 2 T ,
with ft0 = f0 is the representation ⇡1(T, t0) ! GZ(f0) which comes from the local systemS

t2T
Ml(ft). Then G

mar(f0) is the group generated by G
smar(f0) and � id. A rough way to

talk about this description is to say that the elements of G
smar(f0) are of geometric origin.

G
mar(f0) can also be characterized as the subgroup of GZ which maps the component (Mmar

µ
)0

of Mmar

µ
(f0), which contains [(f0,± id)], to itself. This last characterization gives

GZ(f0)/G
mar(f0)

1:1 ! {components of Mmar

µ
(f0)}. (1.3)

In view of this, Mmar

µ
(f0) is connected if and only if GZ(f0) = G

mar(f0). By table (1.1), this
holds for all singularities with modality 0, 1 or 2 except the eight subseries withm|p. Obviously, it
is important to control GZ(f0). This was the major task in [He11] and [GH17] for the singularities
considered there, and it takes approximately half of this paper for the singularities considered
here, the bimodal series and the quadrangle singularities. The rough outcome in all cases is
that the pair (Ml(f0), L) is surprisingly rigid and that GZ(f0) is surprisingly small. The next
table (1.4) gives more information on GZ(f0) for all singularities with modality 0, 1 and 2. Here
Mh 2 GZ is the classical monodromy. It commutes with all elements of GZ. The only families
in table (1.4) where {±M

k

h
| k 2 Z} is not finite, are the hyperbolic singularities Tpqr.

Singularity family GZ(f0)/{±M
k

h
| k 2 Z}

ADE-singularities {id} or S2 or S3

simple elliptic sing. a finite extension of SL(2,Z)
hyperbolic sing. a finite group
exc. unimodal sing. {id} or S2 or S3

exc. bimodal sing. {id} or S2 or S3

quadrangle sing. a triangle group
the 8 series, for m 6 |p a cyclic finite group
the 8 subseries with m|p an infinite Fuchsian group

(1.4)

[He11] treats the ADE-singularities and 22 of the 28 exceptional (unimodal and bimodal)
singularities. [GH17] treats the other 6 exceptional singularities, the simple elliptic singularities
and the hyperbolic singularities. The present paper treats the quadrangle singularities and the
8 series.

In the case of the eight subseries with m|p, Gmar(f0) is the finite subgroup of the infinite
group GZ(f0) such that G

mar(f0)/{±M
k

h
| k 2 Z} is the finite cyclic group which is generated

by one elliptic element.
If the µ-homotopy class of f0 contains at least one singularity with multiplicity two, then

� id 2 G
smar(f0) and G

smar(f0) = G
mar(f0). Conjecture 3.2 (b) in [He11] complements this.
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It claims that � id /2 G
smar(f0) if assumption (8.1) holds. This is true for all singularities with

modality 0, 1 and 2. For the bimodal series and the quadrangle singularities, it is proved in this
paper.

In [He99] the second author defined a classifying space DBL(f0) for Brieskorn like lattices
(i.e. for objects which are su�ciently similar to the Brieskorn lattice H

00
0 (f0), see section 7

before theorem 7.11 for details). The group GZ(f0) acts properly discontinuously on it. The
elements of DBL(f0) are marked Brieskorn like lattices, and the elements of DBL(f0)/GZ(f0)
are isomorphism classes of Brieskorn like lattices. One obtains a holomorphic period map

BL : Mmar

µ
(f0)! DBL(f0). (1.5)

By [He02, Theorem 12.8] it is GZ(f0)-equivariant, and it is an immersion (this fact is an infini-
tesimal Torelli type result). Now the following Torelli type conjectures are natural. Part (a) is
for marked singularities. Part (b) recasts the Torelli type conjecture in [He93]. Part (a) implies
part (b).

Conjecture 1.1. (a) [He11, Conjecture 5.3] The map BL is injective.
(b) [He93, Kap. 2 d)] The map BL/GZ(f0) : Mµ(f0)! DBL(f0)/GZ(f0) is injective.

Theorem 1.2. ([He93][He11][GH17] and the theorems 9.1 and 10.1 in this paper) Both Torelli
type conjectures are true for all singularities with modality 0, 1 and 2.

The proofs have in almost all cases two parts:

(1) A good control of an (often multivalued) period map T ! DBL(f0), where T is the
parameter space of a well chosen family of normal forms.

(2) A good control of GZ(f) and its action on M
mar

µ
(f0) and DBL(f0).

In all cases, (1) is less work than (2). For the ADE-singularities, (1) is empty as there T is a
point, but (2) is not.

Part (b) of conjecture 1.1 was proved in [He93] for the unimodal and bimodal singularities
except seven of the eight series. For the seven series, the second author had unpublished cal-
culations shortly after [He93]. But for technical reasons, part (b) stayed open for the subseries
S
]

1,10r, S1,10r, Z1,14r. [He93] and these unpublished calculations give (1) and a part of (2).
In view of these old results, the major point in [He11], [GH17] and in this paper is (2). But

also some refinement of (1) is needed in the case of the singularities in this paper. The refinement
is used for a better control of the transversal monodromy of the family of normal forms.

Finally, the conjecture GZ(f0) = G
mar(f0) is probably wrong in general as it is wrong for

the subseries with m|p. But for all singularities with modality 0, 1 and 2 except the eight
series, the Torelli result for marked singularities and (1.3) require GZ(f0) = G

mar(f0) to be true,
as BL is an immersion and there dimM

mar

µ
(f0) = modality(f0) = dimDBL(f0). And there

GZ(f0) = G
mar(f0) holds indeed. For the eight series, dimDBL(f0) > dimM

mar

µ
(f0), so there

is enough space in DBL for infinitely many copies of (Mmar

µ
(f0))0.

Open questions are now how to control the subgroup G
mar(f0) ⇢ GZ(f0) in general, and how

to attack the Torelli conjectures in greater generality. For the second question, we plan to thicken
M

mar

µ
(f0) to a µ-dimensional F -manifold M

mar(f0) which is locally at each point of Mmar

µ
(f0)

the base space of a universal unfolding. Then we will try to embed the Torelli type conjecture
for Mmar

µ
into a family of Torelli type conjectures for all the µ-homotopy strata of multigerms

of singularities in M
mar(f0). We hope that this global point of view and the di↵erent geometry

there with Stokes structures will give us new techniques. But this is a hope for the future.

1.3. Structure of the paper. Section 2 is a collection of techniques which are useful to
control the automorphisms of a pair (⇤, L) or a pair (⇤,Mh) where ⇤ is a Z-lattice, L is a
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unimodular bilinear form and Mh is an automorphism of finite order. We define Orlik blocks and
study their automorphisms (lemma 2.8 will be very useful), and we cite classical algebraic facts
on unit roots ⇣ and the rings Z[⇣]. All this is needed for the control of GZ(f0) in the sections 5
and 6.

Section 3 discusses infinite Fuchsian groups which arise as subgroups of groups GL(2,Z[⇣])
with ⇣ a unit root. They are in fact arithmetic Fuchsian groups. But our treatment is essentially
self-contained. Solutions of Pell equations with coe�cients in Z[⇣] play a role. For the quadrangle
singularities, we need a precise analysis of some of these groups. They are certain triangle groups.

Section 4 recalls some classical notions and facts around singularities: Milnor fibration,
Milnor lattice Ml(f), monodromy Mh, Seifert form L, Coxeter-Dynkin diagram, Stokes matrix,
Thom-Sebastiani type results, suspension, polarized mixed Hodge structure onH

1
C , its polarizing

form.
Section 5 is long. It studies GZ(f0) for the eight bimodal series. Theorem 5.1 states the

results. We start with a distinguished basis of the Milnor lattice with Coxeter-Dynkin diagram
in [Eb81]. We calculate the monodromy Mh and find 2 or 3 (3 only for Z1,p) Orlik blocks whose
direct sum is of index 1 or 2 in Ml(f0). Then GZ(f0) is studied using these Orlik blocks and their
rigidity and the results from the sections 2 and 3. A lot of calculations are needed, the di↵erent
series behave di↵erently. The singularities in the families Q2,p,W1,6s�3, S1,10 need special care.

Section 6 gives similar results for GZ(f0) for the quadrangle singularities. Theorem 6.1 states
the results. Many, but not all, calculations and arguments in section 5 are also valid in section
6. Therefore this section is much shorter.

Section 7 gives a rather complete account on the Gauss-Manin connection and the Brieskorn
lattice H 00

0 (f) of a singularity f . It does not rewrite the proofs in [Br70] and other papers, but it
cites almost all known results. A highlight is the treatment of the bilinear forms. The polarizing
form of the polarized mixed Hodge structure is connected with the restriction of K. Saito’s higher
residue pairings to H

00
0 (f) and with Pham’s intersection form for Lefschetz thimbles. We need

the Fourier-Laplace transform FL(H 00
0 (f)) for a Thom-Sebastiani formula for Brieskorn lattices.

We need this in the special case of a suspension f(z0, ..., zn) + z
2
n+1 because we want to treat

the suspensions in a more conceptual way than in [He93][He11][GH17].
Section 8 reviews the notions and results from [He11], the (strongly) marked singularities and

their moduli spacesMsmar

µ
(f0) andM

mar

µ
(f0), the µ-constant monodromy groups Gsmar(f0) and

G
mar(f0), and the Torelli conjectures. Corollary 8.14 is an application of the Thom-Sebastiani

result for FL(H 00
0 (f)) in section 7 and states that the marked Torelli conjecture for f0 is equivalent

to the marked Torelli conjecture for f0(z0, ..., zn) +
P

m

j=n+1 z
2
j
for any fixed m � n + 1. This

allows us to consider in the sections 9 and 10 only the surface singularities.
Section 9 proves the marked Torelli conjecture for the bimodal series (theorem 9.1). It

establishes the good control (1) of the multivalued period map T ! DBL(f0) where T = C
⇤⇥C

is the parameter space of normal forms in [AGV85]. Theorem 5.1 provides crucial information
on GZ(f0).

Section 10 proves the marked Torelli conjecture for the quadrangle singularities (theorem
10.1). It starts with a careful choice of normal forms with parameter space T = (C�{0, 1})⇥C.
It establishes the good control (1) of the multivalued period map T ! DBL(f0). Theorem 6.1
provides crucial information on GZ(f0).

2. Z-lattices with unimodal bilinear form and monodromy

This section provides tools for the study of the Milnor lattices with Seifert form and monodromy
for the bimodal series and the quadrangle singularities, in the sections 5 and 6. These lattices
turn out to be quite rigid and to have rather few automorphisms. This is important for the global
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Torelli results in the sections 9 and 10. This section puts together elementary, but nontrivial
observations about Z-lattices with a unimodal bilinear form and an (induced) monodromy.

Let ⇤ be a Z-lattice of rank µ 2 Z�1, i.e. a free Z-module of rank µ. Let L : ⇤ ⇥ ⇤ ! Z be
a unimodal bilinear form, i.e. for any basis �1, . . . , �µ we have det(L(�i, �j)i,j=1,...,µ) = ±1. We
do not suppose that L is symmetric or antisymmetric. Let Mh : ⇤ ! ⇤ be the automorphism
which is uniquely determined by

L(Mh(a), b) = �L(b, a)for a, b 2 ⇤. (2.6)

We call L the Seifert form and Mh the monodromy. (2.6) implies

L(Mh(a),Mh(b)) = L(a, b), (2.7)

i.e. L is Mh-invariant. We make the assumption that

Mh is finite, (2.8)

i.e. Mh is semisimple and its eigenvalues are unit roots. Then the characteristic polynomial p⇤
of Mh is a product of cyclotomic polynomials.

Notations 2.1. (a) For any subring R ⇢ C denote ⇤R := ⇤ ⌦Z R. For any monodromy
invariant subspace V ⇢ ⇤C denote by E(V ) ⇢ S

1 the set of eigenvalues of Mh on V and by pV

its characteristic polynomial. For � 2 E(V ) denote V� := ker(Mh � � id : V ! V ) ⇢ V . For

any monodromy invariant sublattice ⇤(1) ⇢ ⇤ write E(⇤(1)) := E(⇤(1)
C ) and p⇤(1) := p

⇤(1)
C

and

⇤(1)
�

:= (⇤(1)
C )�. For any product p 2 Z[t] of cyclotomic polynomials with p|p⇤(1) denote

⇤(1)
C,p :=

M

�: p(�)=0

⇤(1)
�

and⇤(1)
p

:= ⇤(1)
C,p \ ⇤

(1)
. (2.9)

Then ⇤(1)
p is a primitive and monodromy invariant sublattice of ⇤(1).

(b) Recall that a sublattice ⇤(1) of ⇤ is primitive (in ⇤) if and only if ⇤/⇤(1) has no torsion.
Recall also that for any sublattice ⇤(2) ⇢ ⇤ there is a unique primitive sublattice ⇤(3) with

⇤(3)
Q = ⇤(2)

Q , that it is ⇤(3) = ⇤(2)
Q \ ⇤ and that [⇤(3) : ⇤(2)] <1.

(c) For n 2 Z�1, the cyclotomic polynomial �n is

�n =
Y

�: ord(�)=n

(t� �).

It is unitary, in Z[t] and irreducible in Z[t] and Q[t].

(d) We define the square root on S
1 � {�1} by

p
e2⇡i↵ := e

⇡i↵ for ↵ 2]� 1
2 ,

1
2 [.

Lemma 2.2. (a) Let � 2 E(⇤) � {1}. Then the sesquilinear (i.e., linear⇥semilinear) form
h� : ⇤� ⇥ ⇤� ! C with

h�(a, b) :=
p
�� · L(a, b) (2.10)

is hermitian, i.e. h�(b, a) = h�(a, b). Especially,
p
�� ·L(a, a) 2 R. Together, these forms define

a hermitian form h :=
L

�2E(⇤)�{1} h�.

(b) Let V ⇢ ⇤C be a monodromy invariant subspace with 1 /2 E(V ). The following two
properties are equivalent.

(↵) h|V is positive definite.
(�) The hermitian form on V defined by (a, b) 7! L(a, b) + L(b, a) is positive definite.
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Proof: (a) For a, b 2 V�

p
�� · L(b, a) = �

p
�� · L(Mh(a), b) = �

p
�� · � · L(a, b)

=
p
�� · L(a, b) =

p
�� · L(a, b).

(b) Consider some � 2 E(V ). Observe
p
��+

p
�� > 0 and for a, b 2 V

L(a, b) + L(b, a) = L(a, b) + L(b, a)

=
p
�� · h�(a, b) +

p
�� · h�(b, a)

= (
p
��+

p
��) · h�(a, b). ⇤

Remarks 2.3. (i) The surface singularities considered in this paper do not have 1 as an eigen-
value of their monodromy. Therefore we do not treat the case � = 1 here.

(ii) Part (b) of lemma 2.2 connects to the polarization of the polarized Hodge structure of
these surface singularities and rewrites it in di↵erent ways. (�) is the classical way, with �L�L

t

on ⇤R as intersection form and L+L
t as polarizing form. And (↵) is the way used in the sections

3, 5 and 6.

In 1972 Orlik formulated the beautiful conjecture 2.5 below on the integral monodromy of
quasihomogeneous singularities [Or72]. It is known to be true for the quasihomogeneous curve
singularities [MW86] and for the quasihomogeneous singularities with modality  2 [He95]. But
it is open for most other quasihomogeneous singularities.

A key observation for the treatment of the Milnor lattices of the bimodal series singularities
and the quadrangle singularities is that they all have a structure close to Orlik’s conjecture. The
following definition gives the ingredients.

Definition 2.4. Let (⇤, L,Mh) be as above. An Orlik block is a primitive and monodromy
invariant sublattice ⇤(1) ⇢ ⇤ with ⇤(1)

% {0} and with a cyclic generator, i.e. a lattice vector
e
(1) 2 ⇤(1) with

⇤(1) =

deg p
⇤(1)�1M

j=0

Z ·M j

h
(e(1)). (2.11)

Conjecture 2.5. [Or72, conjecture 3.1] Let (⇤,Mh) be the Milnor lattice with monodromy of
a quasihomogeneous singularity. Let k := max(dim⇤� |� 2 E(⇤)). Then a decomposition

⇤ =
L

k

j=1 ⇤
(k) into Orlik blocks ⇤(1)

, . . . ,⇤(k) with p⇤(j+1) |p⇤(j) for 0  j < k exists.

Remarks 2.6. (i) A cyclic monodromy module has only one Jordan block for each eigenvalue.
In this paper Mh is semisimple. Therefore in an Orlik block, each eigenvalue has multiplicity
one.

(ii) In Orlik’s conjecture 2.5, the polynomials p⇤(1) , . . . , p⇤(k) are unique. They are

p⇤(j) =
Y

�2E(⇤): dim⇤��j

(t� �) for j = 1, . . . , k. (2.12)

(iii) In the sections 5 and 6, we will work most often with two Orlik blocks ⇤(1) and ⇤(2) such
that ⇤(1) +⇤(2) = ⇤(1) �⇤(2) and that it is either equal to ⇤ or has index 2 in ⇤ and such that
L(⇤(1)

,⇤(2)) = L(⇤(2)
,⇤(1)) = 0.

(iv) In all cases in section 5 with [⇤ : ⇤(1) � ⇤(2)] = 2 except S1,10, we will show

Aut(⇤, L) = Aut(⇤(1) � ⇤(2)
, L). (2.13)
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In many of these cases, there is an element �5 2 ⇤(1)
�2
� {0} which is mapped by any element

g of Aut(⇤, L) [Aut(⇤(1) � ⇤(2)
, L) to ±�5 and such that

⇤(1) � ⇤(2) = {a 2 ⇤ |L(a, �5) 2 2Z}. (2.14)

Then any g 2 Aut(⇤, L) maps ⇤(1) � ⇤(2) to itself, so Aut(⇤, L) ⇢ Aut(⇤(1) � ⇤(2)
, L).

If this inclusion ⇢ holds, the following argument shows that Aut(⇤, L) is either equal to or a
subgroup of index 2 in Aut(⇤(1) � ⇤(2)

, L). Unfortunately it looks hard to exclude the second
case. Therefore in section 5 we show the equality (2.13) in a di↵erent (and more laborious) way.

Let ⇤(0) ⇢ ⇤Q be the unique lattice such that

L : ⇤(0) ⇥ (⇤(1) � ⇤(2))! Z

is unimodal. Then ⇤(0) � ⇤ � ⇤(1) � ⇤(2) and [⇤(0) : ⇤] = 2 and

Aut(⇤(1) � ⇤(2)
, L) = Aut(⇤(0)

, L).

1st case, ⇤(0)
/(⇤(1)�⇤(2)) ⇠= Z/4Z. Then ⇤ is the unique lattice between ⇤(0) and ⇤(1)�⇤(2)

with [⇤(0) : ⇤] = 2. Then any g 2 Aut(⇤(1) � ⇤(2)
, L) respects ⇤, so (2.13) holds.

2nd case, ⇤(0)
/(⇤(1) � ⇤(2)) ⇠= Z/2Z ⇥ Z/2Z. Then there are three lattices between ⇤(0)

and ⇤(1) � ⇤(2) with index 2 in ⇤(0), one for each subgroup of index 2 in Z/2Z ⇥ Z/2Z. One
of them is ⇤. Another one is {a 2 ⇤(0) |L(a, �5) 2 2Z}. No element of Aut(⇤(0)

, L) maps ⇤ to
this lattice. But it looks hard to exclude the possibility that half of the elements of Aut(⇤(0)

, L)
map ⇤ to the third lattice between ⇤(0) and ⇤(1) � ⇤(2).

(v) If ⇤(1) ⇢ ⇤ is an Orlik block with cyclic generator e(1) and if p⇤(1) = p1 ·p2 with deg p1 � 1

and deg p2 � 1, then the sublattice ⇤(2) := ⇤(1)
p1 is also an Orlik block, and a cyclic generator is

e
(2) := p2(Mh)(e

(1)). (2.15)

(vi) If ⇤(1) ⇢ ⇤ is an Orlik block with generator e(1) and � 2 E(⇤(1)) is an eigenvalue of the
monodromy on ⇤(1), then an eigenvector is

v(e(1),�) :=
p⇤(1)

t� � (Mh)(e
(1)). (2.16)

And then

L(v(e(1),�), v(e(1),�))

= L(v(e(1),�),
p⇤(1)

t� �
(Mh)(e

(1)))

= L(
p⇤(1)

t� �
(M�1

h
)v(e(1),�), e(1))

=
p⇤(1)

t� �
(�) · L(v(e(1),�), e(1))

=
p⇤(1)

t� �
(�) · L( p⇤(1)

t� � (Mh)(e
(1)), e(1)). (2.17)

This calculation will be useful in section 5.

The following two lemmata concern automorphisms of sums of Orlik blocks (lemma 2.7) or of
a single Orlik block (lemma 2.8). They will be useful tools in order to show the rigidity of the
Milnor lattices in the sections 5 and 6.

Lemma 2.7. Let (⇤,Mh) be as above (we will not need L here, only Mh). Let ⇤(1)
, . . . ,⇤(k) ⇢ ⇤

be Orlik blocks with cyclic generators e
(1)

, . . . , e
(k) and with

⇤(1) + . . .+ ⇤(k) = ⇤(1) � . . .� ⇤(k)
.
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Consider an element

g 2 Aut(⇤(1) � . . .� ⇤(k)
,Mh).

Then there are unique polynomials pij 2 Z[t]<rank⇤(j) for i, j = 1, . . . , k with

g(e(j)) =
kX

i=1

pij(Mh)(e
(i)). (2.18)

Suppose now that p0 2 Z[t] divides gcd(p⇤(1) , . . . , p⇤(k)) and that

g = id on ⇤(j)
p
⇤(j)/p0

for any j, (2.19)

so that g acts nontrivial only on (⇤(1) � . . .� ⇤(k))p0 . Then

pij = �ij +
p⇤(i)

p0
· qij (2.20)

for suitable polynomials qij 2 Z[t]<deg p0 .
Suppose furthermore that a unit root ⇠ satisfies p0(⇠) = 0. Then g with respect to the eigen-

vectors v(e(1), ⇠) 2 ⇤(1)
⇠

, . . . , v(e(k), ⇠) 2 ⇤(k)
⇠

(defined in (2.16)) is given by

g(v(e(j), ⇠)) =
kX

i=1

(�ij +
p⇤(j)

p0
· qij)(⇠) · v(e(i), ⇠) (2.21)

Proof: Only the part after (2.18) is nontrivial. Suppose that p0 and g are as stated above.
By assumption

g(e(j))� e
(j) 2 (⇤(1) � . . .� ⇤(k))p0

⇢
kM

i=1

⇤(i)
C,p0

=
kM

i=1

p⇤(i)

p0
(Mh)(⇤

(i)
C ).

Thus pij � �ij 2
p
⇤(i)

p0
· C[t], thus pij � �ij 2

p
⇤(i)

p0
· Z[t]<deg p0 .

The following calculation proves (2.21).

g(v(e(j), ⇠)) = g

✓
p⇤(j)

t� ⇠ (Mh)(e
(j))

◆
=

p⇤(j)

t� ⇠ (Mh)
⇣
g(e(j))

⌘

=
p⇤(j)

t� ⇠ (Mh)

 
kX

i=1

✓
�ij +

p⇤(i)

p0
· qij

◆
(Mh)(e

(i))

!

=
kX

i=1

✓✓
�ij +

p⇤(i)

p0
· qij

◆
· p⇤(j)

t� ⇠

◆
(Mh)(e

(i))

=
kX

i=1

✓
�ij +

p⇤(j)

p0
· qij

◆
(Mh)(v(e

(i)
, ⇠))

=
kX

i=1

✓
�ij +

p⇤(j)

p0
· qij

◆
(⇠) · v(e(i), ⇠).

⇤

Let (⇤, L,Mh) be as above, and suppose that ⇤ is a single Orlik block. Because of
(2.8) Aut(⇤, L,Mh) � {±M

k

h
| k 2 Z}. The paper [He18] solves the problem when equality
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Aut(⇤, L,Mh) = {±M
k

h
| k 2 Z} holds. It turns out that it depends only on the finite set

Ord := {ord� |� eigenvalue of Mh} ⇢ Z�1 (2.22)

of orders of the eigenvalues of the monodromy Mh. Though the necessary and su�cient condi-
tions in theorem 1.2 in [He18] are involved. They use the directed graph with vertex set Ord
and set of directed edges {(a, b) 2 Ord2 | b

a
is a power of a prime number}. A simpler su�cient

condition (which is su�cient for the cases in this paper) is given in the following lemma. There
the graph is connected and has a root m1, and an additional property holds for the prime number
2. The lemma is cited from [He11, lemma 8.2], but it goes back to arguments in [He98, ch. 6].

Lemma 2.8. Let (⇤, L,Mh) be as above. Suppose that ⇤ is a single Orlik block. We make
the following nontrivial assumption on the set Ord: There exist four sequences (mi)i=1,...,|Ord |,
(j(i))i=2,...,|Ord |, (pi)i=2,...,|Ord |, (ki)i=2,...,|Ord | of numbers in Z�1 and two numbers i1, i2 2 Z�1

with i1  i2  |Ord | and with the properties:

Ord = {m1, . . . ,m|Ord |},
pi is a prime number, pi = 2 for i1 + 1  i  i2, pi � 3 else,
j(i) = i� 1 for i1 + 1  i  i2, j(i) < i else,
mi = mj(i)/p

ki

i
.

Then

Aut(⇤, L,Mh) = {±M
k

h
| k 2 Z}. (2.23)

We will need some basic facts for the unit roots ⇣ = e
2⇡i/m with m 2 {10, 12, 14, 18}. The

following theorem 2.9 collects some facts for general unit roots. Theorem 2.10 cites two classical
results on orders in algebraic number fields. Lemma 2.11 puts together some specific properties
for the unit roots of the orders m 2 {10, 12, 14, 18}.

Theorem 2.9. Fix m 2 Z�3 and define ⇣ := e
2⇡i/m, p1 := ⇣ + ⇣.

(a)

Eiw(⇣) := {±⇣k | k 2 Z}
= {unit roots in Q(⇣)} = {unit roots in Z[⇣]}
= {a 2 Z[⇣] | |a| = 1}.

(b) Z[⇣] is the ring of algebraic integers of Q(⇣).
(c) Z[p1] is the ring of algebraic integers of Q(p1). And Q(p1) is the maximal real subfield of

Q(⇣).
(d) Q(⇣) has class field number 1 and thus Z[⇣] is a principal ideal domain if and only if

m 2 A1 [A2 [A3 where

A1 = {1, 3, 5, . . . , 21} [ {25, 27, 33, 35, 45},
A2 = {2n |n 2 A1},
A3 = {4n |n 2 A4}, A4 = {1, 2, 3, . . . , 12} [ {15, 21}.

(e) If Q(⇣) has class field number 1, then Q(p1) has class field number 1 and thus Z[p1] is a
principal ideal domain.

(f) ⇣ � 1 2 (Z[⇣])⇤ if m /2 {pk | p a prime number, k 2 Z�1}.
⇣ + 1 2 (Z[⇣])⇤ if m /2 {2 · pk | p a prime number, k 2 Z�1}.

Proof: (a) [Wa97] lemma 1.6 and exercise 2.3. (b) [Wa97] theorem 2.6. (c) [Wa97] proposition
2.16. (d) [Wa97] theorem 11.1. (e) [Wa97] theorem 4.10. (f) [Wa97] proposition 2.8. ⇤
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Theorem 2.10. Let K be an algebraic number field of degree n = s + 2t over Q with s real
embeddings �j : K ! R, j = 1, . . . , s, and 2t complex embeddings �j : K ! C, j = s+ 1, . . . , n,
with �s+t+j = �s+j for j = 1, . . . , t.

(a) [BS66, Ch. 2, 3.1 Theorem 1] Define � := (�1, . . . ,�s+t) : K ! R
s ⇥ C

t ⇠= R
n. Any

Q-basis of K maps to an R-basis of Rn. Thus the image under � of any order O ⇢ K is a lattice
of rank n in R

n.
(b) (Dirichlet’s unit theorem, [BS66, Ch. 2, 4.3 Theorem 5]) Let O ⇢ K be an order. One

can choose r = s + t � 1 units a1, . . . , ar 2 O⇤ such that any unit has a unique representation
⇠ · ak1

1 · . . . · akr

r
with k1, . . . , kr 2 Z and ⇠ a root of 1 in O.

Of course, n = '(m) = 2t in the case O = Z[⇣] ⇢ K = Q(⇣), and n = '(m)
2 = s in the case

O = Z[p1] ⇢ K = Q[p1], where ⇣ = e
2⇡i/m and p1 = ⇣ + ⇣.

The unit roots of orders m 2 {10, 12, 14, 18} are most important in this paper. The next
lemma collects specific properties of Z[⇣] for these orders.

Lemma 2.11. Fix m 2 {10, 12, 14, 18} and define ⇣ = e
2⇡i/m and p1 = ⇣ + ⇣.

Z[⇣] and Z[p1] are principal ideal domains (by theorem 2.9 (d)+(e)).
(a) m = 10: �10(t) = t

4 � t
3 + t

2 � t+ 1,

Z[⇣]⇤ = Eiw(⇣) · Z[p1]⇤ � {⇣ � 1},
Z[p1]

⇤ = {±1}⇥ {pk1 | k 2 Z} � {p1 � 2, p1 � 1, p1, p1 + 1},

p1 =

p
5 + 1

2
> 0, p3 := ⇣

3 + ⇣
3
=
�
p
5 + 1

2
< 0,

Gal(Q(p1) : Q) = {id,'},' : p1 7! p3 7! p1,

(x� p1)(x� p3) = x
2 � x� 1, p1 + p3 = 1, p1p3 = �1, p

2
1 = p1 + 1.

(b) m = 12: �12(t) = t
4 � t

2 + 1,

Z[⇣]⇤ = Eiw(⇣) · Z[p1]⇤ [ (⇣ + 1) · Eiw(⇣) · Z[p1]⇤

= Eiw(⇣) · {(⇣ + 1)k | k 2 Z} � {⇣ � 1, ⇣ + 1},
Z[p1]

⇤ = {±1}⇥ {pk1 | k 2 Z} � {p1 � 2, p1 + 2},

p1 =
p
3 > 0, p5 := ⇣

5 + ⇣
5
= �
p
3 < 0,

Gal(Q(p1) : Q) = {id,'},' : p1 7! p5 7! p1,

(x� p1)(x� p5) = x
2 � 3, p1 + p5 = 0, p1p5 = �3, p

2
1 = 3.

(c) m = 14: �14(t) = t
6 � t

5 + t
4 � t

3 + t
2 � t+ 1,

Z[⇣]⇤ = Eiw(⇣) · Z[p1]⇤ � {⇣ � 1},
Z[p1]

⇤ = {±1}⇥ {pk1
1 p

k3
3 | k1, k3 2 Z}

� {p1 � 2, p1 � 1, p1, p1 + 1},

p1 > 0, p3 := ⇣
3 + ⇣

3
> 0, p5 := ⇣

5 + ⇣
5
< 0,

Gal(Q(p1) : Q) = {id,','2},' : p1 7! p3 7! p5 7! p1,

(x� p1)(x� p3)(x� p5) = x
3 � x

2 � 2x+ 1, p1 + p3 + p5 = 1,

p1p3p5 = �1, p1p3 = p1 � 1, p21 = �p5 + 2.
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(d) m = 18: �18(t) = t
6 � t

3 + 1,

Z[⇣]⇤ = Eiw(⇣) · Z[p1]⇤ � {⇣ � 1},
Z[p1]

⇤ = {±1}⇥ {pk1
1 p

k5
5 | k1, k5 2 Z}

� {p1 � 2, p1, p1 + 1},

p1 > 0, p5 := ⇣
5 + ⇣

5
< 0, p7 := ⇣

7 + ⇣
7
< 0,

Gal(Q(p1) : Q) = {id,','2},' : p1 7! p5 7! p7 7! p1,

(x� p1)(x� p5)(x� p7) = x
3 � 3x� 1, p1 + p5 + p7 = 0,

p1p5p7 = 1, p1p5 = �p5 � 1, p21 = �p7 + 2.

Proof: That the index [Z[⇣]⇤ : Eiw(⇣) · Z[p1]⇤] is 1 for m 2 {10, 14, 18} and 2 for m = 12,
follows from [Wa97, theorem 4.12 and corollary 4.13]. That Z[p1]⇤ is as stated, follows for
m 2 {10, 14, 18} from [Wa97, theorem 8.2 and lemma 8.1 (a)]. For m = 12 [Wa97, §8.1] is not so
useful, but there the proof of Z[p1]⇤ = {±1} · {pk1 | k 2 Z} is easy. Everything else is elementary.
⇤

Part (b) of the following lemma applies with ⇤ = Ml(f) and ⇤(1) = eB1�B2 (see the theorems
5.1 and 6.1) to most of the Milnor lattices in the sections 5 and 6. We will need (2.24).

Lemma 2.12. (a) Let p =
Q

i2I
�mi

be a product of cyclotomic polynomials. Then p(1) ⌘ 1(2)
if and only if all mi 2 Z�1 � {2k | k 2 Z�0}.

(b) Let (⇤, L,Mh) be as above (we will not need L here, only Mh). Let ⇤(1) ⇢ ⇤ be an
Mh-invariant sublattice with [⇤ : ⇤(1)] = 2. Write

p⇤ = p1 · p2with pj =
Y

m2Jj

�m

and J1 ⇢ Z�1 � {2k | k 2 Z�0}, J2 ⇢ {2k | k 2 Z�0}.
Then J2 6= ;, p2 6= 1, and

⇤p = ⇤(1)
p

for any p with p|p1, (2.24)

[⇤p : ⇤(1)
p

] = 2 for any p with p2|p. (2.25)

Proof: (a) Observe �2k(t) = t
2k�1

+ 1 for k � 1 and

t
2k·q � 1 = (t2

k

� 1)(t2
k(q�1) + t

2k(q�2) + . . .+ t
2k + 1). (2.26)

For odd q > 1, the second factor has at t = 1 the odd value q. Therefore �m(1) ⌘ 1(2) for any
m with 2k|m|2k · q and 2k 6= m with q odd.

(b) For an arbitrary element � 2 ⇤� ⇤(1),

⇤� ⇤(1) = � + ⇤(1)
.

This set is Mh-invariant because ⇤(1) is Mh-invariant. Thus for any k 2 Z�1 M
k

h
(�) 2 ⇤�⇤(1).

By part (a) p1(1) ⌘ 1(2). Thus p1(Mh)(�) 2 ⇤� ⇤(1) and

p1(Mh)(⇤� ⇤(1)) ⇢ ⇤� ⇤(1)
.

On the other hand

p1(Mh)(⇤p1) = {0} ⇢ ⇤(1)
, thus ⇤p1 ⇢ ⇤(1)

, thus (2.24).

p1(Mh)(⇤) ⇢ ⇤p2 , thus ⇤p2 \ (⇤� ⇤(1)) 6= ;, thus (2.25).
⇤
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3. Some Fuchsian groups

Notations 3.1. For any m 2 Z�3 define ⇣ := e
2⇡i/m and p1 := ⇣ + ⇣. The letter ⇠ will denote

in this section a primitive m-th unit root. An element of Q(⇣) will be written as a or a(⇣). Then
a(⇠) is the image '(a) for ' 2 Gal(Q(⇣) : Q) with '(⇣) = ⇠.

Any element A =

✓
a b

c d

◆
2 GL(2,C) acts on P

1
C by the linear transformation z 7! az+b

cz+d
,

which is an automorphism of P1
C. The limit set L(�) ⇢ P

1
C of a subgroup � ⇢ GL(2,C) is

[Le64, III 1B]

L(�) = {z 2 P
1
C | 9 z0 2 P

1
C and 9 a sequence of di↵erent

elements �i 2 � with �i(z0)! z}.
A subgroup � ⇢ GL(2,C) and the induced subgroup of PGL(2,C) are called Fuchsian if � maps
a certain circle C ⇢ P

1
C to itself and L(�) ⇢ C. By a theorem of Poincaré [Le64, III 3I], a

subgroup � ⇢ GL(2,C) is Fuchsian if it maps a certain circle C ⇢ P
1
C to itself and is discrete

in GL(2,C).
In the sections 5 and 6 we will encounter Fuchsian groups which arise in the following way.

Theorem 3.2. Let m 2 Z�3, ⇣ := e
2⇡i/m, p1 := ⇣ + ⇣, and w = w(⇣) 2 Q(⇣) with

w(⇣) > 0 (thus w(⇣) = w(⇣) 2 Q(p1)), (3.1)

w(⇠) < 0 for any primitive m-th unit root ⇠ /2 {⇣, ⇣}. (3.2)

Then the matrix group

� := {A 2 GL(2,Z[⇣]) |
✓
�1 0
0 w

◆
= A

t

✓
�1 0
0 w

◆
A} (3.3)

is an infinite Fuchsian group. It preserves the circle

C = {z 2 C | |z|2 = w}. (3.4)

The map

{(a, c, �) 2 Z[⇣]2 ⇥ Eiw(⇣) | |a|2 � 1 = w · |c|2}! �

(a, c, �) 7! A :=

✓
a w · c · �
c a · �

◆
(3.5)

is a bijection (here Eiw(⇣) = {±⇣k | k 2 Z}, see theorem 2.9 (a)).

Proof: The matrix

✓
�1 0
0 w

◆
defines an indefinite hermitian form on C

2. The isotropic lines

are C ·
✓
z

1

◆
with z 2 C. Therefore any matrix A 2 � maps C to itself.

The matrix equation which defines � can be spelled out as follows,
✓
�1 0
0 w

◆
=

✓
a c

b d

◆✓
�1 0
0 w

◆✓
a b

c d

◆

=

✓
�aa+ wcc �ab+ wcd

�ab+ wcd �bb+ wdd

◆
. (3.6)

The determinant � = detA = ad � bc is in Z[⇣] and has absolute value 1, so it is in Eiw(⇣) by
theorem 2.9 (a). The equations above give

a� = a(ad� bc) = (wcc+ 1)d� (wcd)c = d, (3.7)

wc� = wc(ad� bc) = (ab)a� (aa� 1)b = b.
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This yields the bijection (3.5).
The defining equation

|a(⇣)|2 � 1 = w(⇣) · |c(⇣)|2 (3.8)

for the pairs (a(⇣), c(⇣)) 2 Z[⇣]2 on the left hand side of (3.5) is in the case (a, c) 2 Z[p1]2 and
w(⇣) 2 Z[p1] a Pell equation. We obtain the inequalities

0  |c(⇣)|2 = w(⇣)�1(|a(⇣)|2 � 1),

|a(⇣)| � 1 (3.9)

and

0  |c(⇠)|2 = (�w(⇠))�1(1� |a(⇠)|2) < (�w(⇠))�1
,

|a(⇠)|  1for any primitive m-th unit root ⇠ /2 {⇣, ⇣}. (3.10)

� maps C to itself. Therefore by Poincaré’s theorem, it is a Fuchsian group if it is a discrete
matrix group. This holds if the set

P1 := {a 2 Z[⇣] | 9 c 2 Z[⇣] with |a|2 � 1 = w · |c|2}
intersects each compact set K ⇢ C in a finite set.

The embedding � : Q(⇣) ! R
'(n) from theorem 2.10 (a) maps Z[⇣] to a lattice in R

'(n).
Because of (3.10), it maps P1 \K to a subset of

�(Z[⇣]) \
⇣
K ⇥ {z 2 C | |z|  1}'(n)/2�1

⌘
.

This is a finite set. Therefore � is a Fuchsian group.
The next lemma shows that the set P1 and the group � contain infinitely many elements. ⇤

Lemma 3.3. Let m 2 Z�3, ⇣, p1 and w 2 Q(p1) be as in theorem 3.2. Then the set

P2 := {(a, c) 2 Z[p1] | a2 � 1 = w · c2} (3.11)

contains infinitely many pairs. If w 2 Z[p1], then P2 contains pairs (a, c) with w|(a� 1).

Proof: If ew = w · u2 for some u 2 Z[p1]� {0} then a pair (a,ec) 2 Z[p1]2 with a
2 � 1 = ew · ec2

induces a pair (a, c) = (a,ec · u) in P2. Therefore we can suppose w 2 Z[p1].
We will now construct infinitely many units in Z[

p
w, p1]⇤ � Z[p1]⇤ and from them infinitely

many pairs (a, c) in P2.
The algebraic number field Q(

p
w, p1) has degree '(m) over Q and two real embeddings and

'(m)�2 complex embeddings, because of (3.1) and (3.2). By Dirichlet’s unit theorem (theorem
2.10 (b)), the unit group Z[

p
w, p1]⇤ of the order Z[

p
w, p1] in Q(

p
w, p1) contains a free abelian

group of rank 2 + '(m)�2
2 � 1 = '(m)

2 .

The unit group Z[p1]⇤ contains only a free abelian group of rank '(m)
2 �1. Therefore infinitely

many units a1 +
p
wc1 2 Z[

p
w, p1]⇤ with a1 6= 0 and c1 6= 0 exist. Then also a1 �

p
wc1,

(a1 +
p
wc1)

2 = (a21 + wc
2
1) +

p
w(2a1c1) =: a2 +

p
wc2,

andh := (a1 +
p
wc1)(a1 �

p
wc1) = a

2
1 � wc

2
1

are units, h being in Z[p1]⇤. Then

(a3, c3) := (
a2

h
,
c2

h
) 2 P2 (3.12)

because

a
2
3 � wc

2
3 = h

�2(a22 � wc
2
2) = h

�2(a2 +
p
wc2)(a2 �

p
wc2)

= h
�2(a1 +

p
wc1)

2(a1 �
p
wc1)

2 = 1.
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Only finitely many units a1+
p
wc1 can give the same pair (a3, c3). Therefore there are infinitely

many pairs (a3, c3) in P2.
For the last statement, suppose that (a4, c4) 2 P2 with c4 6= 0. Then the pair

(a5, c5) := (a24 + wc
2
4, 2a4c4)

is also in P2,

a
2
5 � wc

2
5 = (a5 +

p
wc5)(a5 �

p
wc5)

= (a4 +
p
wc4)

2(a4 �
p
wc4)

2 = (a24 � wc
2
4)

2 = 1.

And it satisfies w|(a5 � 1) because of

a5 � 1 = a
2
4 + wc

2
4 � 1 = 2wc24.

⇤
Remarks 3.4. (i) The equation a

2� 1 = wc
2 is for w 2 Z[p1] a Pell equation. A generalization

of lemma 3.3 is theorem 3 in [Sch06].

(ii) The notion of an arithmetic Fuchsian group is defined in [Sh71, ch 9.2]. The group � in
theorem 3.2 is in fact an arithmetic Fuchsian group. This would follow immediately from [Ta75,
theorem 2], if it were clear a priori that � is a Fuchsian group of the first kind, i.e. a Fuchsian
group with limit set L(�) = C. It follows with some work from a comparison of the data in
theorem 3.2 with the data in [Sh71, ch. 9.2].

(iii) The five triangle groups below in theorem 3.6 are arithmetic triangle groups. They are
in the list in [Ta77, theorem 3] of all 85 arithmetic triangle groups.

(iv) Theorem 3.2 and lemma 3.3 will be used in the steps 2 and 4 in the proof of theorem 5.1
on the groups GZ for the bimodal series.

Remarks 3.5. (i) The triangle groups below in theorem 3.6 will arise in theorem 6.1 as quotients
of the groups GZ for the quadrangle singularities.

(ii) There the first six of the eight elements w(⇣) in table (5.72) in the case r = 0 will be used.
So here W1,0 and S1,0 are seen as 0-th members of the series W ]

1,p and S
]

1,p, not the series W1,p

and S1,p.

(iii) Using the notations and formulas from lemma 2.11, the first six of the eight elements
w(⇣) in table (5.72) in the case r = 0 can be written as follows. In the case U1,0 we change from
m = 9 to m = 18, so below ⇣ = e

2⇡i/18 for E3,0 and U1,0.

W1,0 : w(⇣) =
6

(2� p1)p1
=

1

(2� p1)(2 + p1)
· 2p1(p1 + 2).

S1,0 : w(⇣) =
�2

(�p3)(�p3 � 1)
= 1 · 2p31.

U1,0 : w(⇣) =
�3

(2 + p7)(1� p1)
= 1 · p1(p1 + 2).

E3,0 : w(⇣) =
3(2� p1)

(p1 + 2)(p1 � 1)
= (2� p1)

2 · p1(p1 + 2).

Z1,0 : w(⇣) =
1

�p5
= 1 · (�p5)�1 = 1 · (p1 � 1).

Q2,0 : w(⇣) =
2� p1

p1 + 1
= (2� p1) ·

1

p1 + 1
. (3.13)
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(iv) In theorem 3.2 one can replace w by ew := w · uu for any u 2 Z[⇣]⇤. The group � for w

and the group e� for ew are isomorphic, and the triples in (3.5) are related by

(ea,ec, e�) = (a, c · u�1
, �).

We can choose u such that ew is simpler to work with than w. In the products for w in (iii), the
left terms are of the form uu for a suitable unit u 2 Z[⇣]⇤. The right terms are ew. We will work
with the terms ew in theorem 3.6.

Theorem 3.6. The image in PGL(2,C) of the group � in theorem 3.2 for the following values
of m and w

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

m 12 10 18 14 12
w 2p1(p1 + 2) 2p31 p1(p1 + 2) (�p5)�1 (p1 + 1)�1

(3.14)

is a Schwarzian triangle group of the following type:

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

(2, 12, 12) (2, 10, 10) (2, 3, 18) (2, 3, 14) (2, 3, 12)
(3.15)

Proof: The proof has three steps. In step 1, we will present two matrices A1 and A2 in �
whose images in PGL(2,C) are elliptic and generate in each case a Schwarzian triangle group
of the claimed type. We will prove this. In step 2, we will show that no matrix in � is closer to
A1 than A2. This will be used in step 3 to prove that the images in PGL(2,C) of A1 and A2

generate the image of � in PGL(2,C). The steps 1 and 3 together give theorem 3.6.

Step 1: One checks easily with (3.5) that the following matrices A1 and A2 are in �.

A1 =

✓
⇣ 0
0 1

◆
for all 5 cases. (3.16)

W1,0 : A2 =

✓
p1 + 2 �2p1(p1 + 2)

1 �(p1 + 2)

◆
, detA2 = �1,

S1,0 : A2 =

✓
(⇣ + 1)p1 �2p31⇣

1 �(⇣ + 1)p1

◆
, detA2 = �⇣,

E3,0 & U1,0 : A2 =

✓
p1 + 1 �p1(p1 + 2)

1 �(p1 + 1)

◆
, detA2 = �1,

Z1,0 : A2 = p1(1� ⇣3) ·
✓
1 �(�p5)�1

1 �1

◆
, detA2 = ⇣

3
,

Q2,0 : A2 =

✓
⇣ + 1 �⇣
p1 + 1 �(⇣ + 1)

◆
, detA2 = �⇣.

(3.17)

A matrix A 2 GL(2,C) is elliptic if its eigenvalues �1 and �2 satisfy �2
�1
2 S

1. Let

✓
zj

1

◆
be

an eigenvector with eigenvalue �j for j = 1, 2 (possibly z1 = 0 and z2 = 1). Then the linear
transformation of A is a rotation around the fixed point z1 with angle ↵(A) = arg �2

�1
. For A 2 �

elliptic we number the eigenvalues �1,�2 such that |z1| < |z2|, so then |z1|2 < w and z1 is in the
interior of the circle C. One sees in all 5 cases

�1(A1) = 1,�2(A1) = ⇣,↵(A1) =
2⇡

m
, (3.18)

tr(A2) = 0,↵(A2) = ⇡. (3.19)
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The following table lists for the product A1A2 the eigenvalues �1,�2 and the angle ↵(A1A2).

�1 �2 ↵

W1,0 ⇣
4

⇣
3 �2⇡

12
S1,0 ⇣

4
⇣
3 �2⇡

10
E3,0 & U1,0 ⇣

8
⇣
2 �2⇡

3
Z1,0 e

2⇡i/6
⇣
2

e
�2⇡i/6

⇣
2 �2⇡

3
Q2,0 ⇣

6
⇣
2 �2⇡

3

(3.20)

Therefore the images of A1 and A2 in PGL(2,C) generate a Schwarzian triangle group of the
type in table (3.15) [Le64, VII 1G].

Step 2: Write A2 =

✓
a2 b2

c2 d2

◆
and write A =

✓
a b

c d

◆
for any A 2 �.

Claim 1: Any A 2 � with c 6= 0 satisfies |a| � |a2|.
The proof consists in making the proof of theorem 3.2 more constructive.
First we look for candidates f 2 Z[p1] of |a|2 which are compatible with the inequalities

(3.9) and (3.10) and which satisfy f < |a2|2. Then we will show that these candidates are not
compatible with the equality |a|2 = 1 + w · |c|2.

Denote by
�
R = (�R

1 , . . . ,�
R
'(m)/2) : Q(p1)! R

'(m)/2

the tuple of the embeddings �R
j
: Q(p1) ! R. Then �

R(Z[p1]) is a Z-lattice in R
'(m)/2. The

candidates are the numbers f = f(p1) in Z[p1] with

�
R(f) 2 ]1, |a2|2[ ⇥ ]0, 1['(m)/2�1

. (3.21)

This follows from the inequalities (3.9) and (3.10). With su�cient numerical precision of the
numbers pj in lemma 2.11, it is easy to find these candidates. They are as follows.

W1,0 : f(p1) = ↵ · 1 + � · p1, (↵,�) 2 {(2, 1), (4, 2), (6, 3)}.
S1,0 : f(p1) = ↵ · 1 + � · p1, (↵,�) 2 {(2, 2), (2, 3)}.
E3,0 & U1,0 : ;.
Z1,0 : ;.
Q2,0 : ;.

All these candidates will be excluded with the help of the condition

Norm(|a|2 � 1) = Norm(w · |c|2) = Norm(w) ·Norm(|b|2).
Here the norm is the norm in Q(p1) and Z[p1] with values in Q respectively Z.

The case W1,0: Norm(w) = �12, Norm(1 + p1) = �2, Norm(3 + 2p1) = �3,
Norm(5 + 3p1) = �2.

The case S1,0: Norm(w) = �4,Norm(1 + 2p1) = �1,Norm(1 + 3p1) = �5.
Step 3: It is su�cient to show the following claim 2.

Claim 2: For any matrix A3 2 � with c3 6= 0, a number k 2 Z exists such that the product

A4 := A3 ·A�k

1 A2A
k

1 =

✓
a3 b3

c3 d3

◆✓
a2 ⇣

�k
b2

⇣
k
c2 d2

◆
(3.22)

satisfies

|c4| < |c3|, here c4 = c3a2 + ⇣
k
d3c2. (3.23)
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We can choose k 2 Z such that

� := | arg(c3a2)� arg(�⇣kd3c2)| 
⇡

m
. (3.24)

Observe

|⇣kd3c2|2
|c3a2|2

=
|a3|2 |a2|2�1

w(⇣)

|a3|2�1
w(⇣) |a2|2

=
1� |a2|�2

1� |a3|�2
. (3.25)

The trivial inequality 1�|a3|�2
< 1 and the inequality |a3| � |a2| from step 2 give the inequalities

�
1� |a2|�2

�
|c3a2|2 < |⇣kd3c2|2  |c3a2|2. (3.26)

Observe also
p
1� |a2|�2 < cos

⇡

m
. (3.27)

Therefore

|c4| = |c3a2|2(sin�)2 + (|c3a2| cos� � |d3c2|)2

< |c3a2|2(sin
⇡

m
)2 +

⇣
1�

p
1� |a2|�2

⌘2
· |c3a2|2

= |c3|2 · |a2|2
✓
(sin

⇡

m
)2 +

⇣
1�

p
1� |a2|�2)

⌘2◆

(⇤)
< |c3|2. (3.28)

(⇤)
< follows in all 5 cases by an explicit calculation. ⇤

4. Review on the topology of singularities

In this section, we recall some classical facts about the topology of singularities, and we fix some
notations.

An isolated hypersurface singularity (short: singularity) is a holomorphic function germ
f : (Cn+1

, 0)! (C, 0) with an isolated singularity at 0. Its Jacobi ideal is

J(f) :=

✓
@f

@x0
, . . . ,

@f

@xn

◆
⇢ OCn+1,0.

Its Jacobi algebra is OCn+1,0/J(f). Its Milnor number µ := dimOCn+1,0/J(f) is finite. For the
following notions and facts compare [AGV88] and [Eb07]. A good representative of f has to be
defined with some care [Mi68][AGV88][Eb07]. It is f : X ! � with � = {⌧ 2 C | |⌧ | < �} a
small disk around 0 and X = {x 2 C

n+1 | |x| < "} \ f
�1(�) for some su�ciently small " > 0

(first choose ", then �). Then f : X 0 ! �0 with X
0 = X � f

�1(0) and �0 = �� {0} is a locally
trivial C1-fibration, the Milnor fibration. Each fiber has the homotopy type of a bouquet of µ
n-spheres [Mi68].

Therefore the (reduced for n = 0) middle homology groups are

H
(red)
n (f�1(⌧),Z) ⇠= Z

µ for ⌧ 2 �0. Each comes equipped with an intersection form I, which
is a datum of one fiber, a monodromy Mh and a Seifert form L, which come from the Milnor
fibration, see [AGV88, I.2.3] for their definitions. Mh is a quasiunipotent automorphism, I and
L are bilinear forms with values in Z, I is (�1)n-symmetric, and L is unimodular. L determines
Mh and I because of the formulas [AGV88, I.2.3]

L(Mha, b) = (�1)n+1
L(b, a), (4.1)

I(a, b) = �L(a, b) + (�1)n+1
L(b, a) = L((M � id)a, b). (4.2)
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(4.2) tells especially that ker(Mh � id) is the radical of I and that L is (�1)n+1-symmetric on
this radical. The semisimple part of Mh is called Ms, the unipotent part Mu, the nilpotent part
N = logMu.

The Milnor lattices Hn(f�1(⌧),Z) for all Milnor fibrations f : X 0 ! �0 and then all

⌧ 2 R>0 \�0

are canonically isomorphic, and the isomorphisms respect Mh, I and L. This follows from
Lemma 2.2 in [LR73]. These lattices are identified and called Milnor lattice Ml(f).

The group GZ is

GZ = GZ(f) := Aut(Ml(f), L) = Aut(Ml(f),Mh, I, L), (4.3)

the second equality is true because L determines Mh and I. A good control of this group for
the bimodal series and the quadrangle singularities will be crucial in this paper. It is the task
of the sections 5 and 6.

The Milnor lattice comes equipped with a set B of distinguished bases, certain tuples � =
(�1, . . . , �µ) of Z-bases of the Milnor lattice. Each one is defined with a generic deformation of f
which has µ A1-singularities which have all di↵erent critical values. One chooses a distinguished
system of paths in � from the critical values to � 2 @� and pushes vanishing cycles along these
paths to Hn(f�1(�),Z) = Ml(f). See [AGV88] or [Eb07] for details. In all cases except the
simple singularities, the set B is infinite. Each distinguished basis determines the monodromy
by the formula

Mh = s�1 � . . . � s�µ (4.4)

where

s� : Ml(f)!Ml(f),

s�(b) := b� (�1)n(n+1)/2 · I(�, b) · �, (4.5)

is the Picard-Lefschetz transformation of a vanishing cycle �, a reflection for even n and a
symplectic transvection for odd n.

The matrix of the Seifert form with respect to a distinguished basis is lower triangular with
(�1)(n+1)(n+2)/2 on the diagonal. This motivates two definitions, the normalized Seifert form

L
hnor := (�1)(n+1)(n+2)/2 · L, (4.6)

and the Stokes matrix S of the distinguished basis with

S := (�1)(n+1)(n+2)/2 · L(�t, �)t = L
hnor(�t, �)t. (4.7)

S is an upper triangular matrix in GL(µ,Z) with 1’s on the diagonal.
The Coxeter-Dynkin diagram (short: CDD) of a distinguished basis encodes S in a geometric

way. It has µ vertices which are numbered from 1 to µ. Between two vertices i and j with i < j

one draws
no edge if Sij = 0,
|Sij | edges if Sij < 0,
Sij dotted edges if Sij > 0.

Coxeter-Dynkin diagrams for the 8 bimodal series will be given in section 5, following [Eb81].
A result of Thom and Sebastiani compares the Milnor lattices and monodromies of the singu-

larities f = f(x0, . . . , xn), g = g(y0, . . . , ym) and f + g = f(x0, . . . , xn) + g(xn+1, . . . , xm+n+1).
There are extensions by Deligne for the Seifert form and by Gabrielov for distinguished bases.
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All results are in [AGV88, I.2.7]. They are restated here. There is a canonical isomorphism

� : Ml(f + g)
⇠=�! Ml(f)⌦Ml(g), (4.8)

with Mh(f + g) ⇠= Mh(f)⌦Mh(g) (4.9)

and L
hnor(f + g) ⇠= L

hnor(f)⌦ L
hnor(g). (4.10)

If � = (�1, . . . , �µ(f)) and � = (�1, . . . , �µ(g)) are distinguished bases of f and g with Stokes
matrices S(f) and S(g), then

��1(�1 ⌦ �1, . . . , �1 ⌦ �µ(g), �2 ⌦ �1, . . . , �2 ⌦ �µ(g), . . . , �µ(f) ⌦ �1, . . . , �µ(f) ⌦ �µ(g))

is a distinguished basis of Ml(f + g), that means, one takes the vanishing cycles ��1(�i⌦ �j) in
the lexicographic order. Then by (4.7) and (4.10), the matrix

S(f + g) = S(f)⌦ S(g) (4.11)

(where the tensor product is defined so that it fits to the lexicographic order) is the Stokes matrix
of this distinguished basis.

In the special case g = x
2
n+1, the function germ f + g = f(x0, . . . , xn) + x

2
n+1 2 OCn+2,0 is

called stabilization or suspension of f . As there are only two isomorphisms Ml(x2
n+1)! Z, and

they di↵er by a sign, there are two equally canonical isomorphisms Ml(f) ! Ml(f + x
2
n+1),

and they di↵er just by a sign. Therefore automorphisms and bilinear forms on Ml(f) can be
identified with automorphisms and bilinear forms on Ml(f +x

2
n+1). In this sense [AGV88, I.2.7]

L
hnor(f + x

2
n+1) = L

hnor(f), (4.12)

M(f + x
2
n+1) = �M(f), (4.13)

GZ(f + x
2
n+1) = GZ(f). (4.14)

The image in Ml(f + x
2
n+1) of a distinguished basis in Ml(f) under either of the both iso-

morphisms Ml(f) ! Ml(f + x
2
n+1) is again a distinguished basis, and it has the same Stokes

matrix.
Denote by H

1
C the µ-dimensional vector space of global flat multi-valued sections in the flat

cohomology bundle
S

⌧2�0 H
n(f�1(⌧),C) (reduced cohomology for n = 0). It comes equipped

with a Z-lattice H
1
Z , a real subspace H

1
R , a monodromy which is also denoted by Mh, and

the dual Lnor of the normalized Seifert form L
hnor. It is a unimodular form on H

1
Z , and the

analogue of (4.1),

L
nor(Mha, b) = (�1)n+1

L
nor(b, a)for a, b 2 H

1
Z , (4.15)

holds.
We apply the notations 2.1 (a) to Ml(f) and to H

1
Z and extend them slightly:

Ml(f)� := ker(Mh � � id)µ : Ml(f)C !Ml(f)C, (4.16)

Ml(f) 6=1 :=
M

� 6=1

Ml(f)�,Ml(f) 6=�1 :=
M

� 6=�1

Ml(f)�,

Ml(f)p :=
M

�: p(�)=0

Ml(f)�,Ml(f)p,Z := Ml(f)p \Ml(f).

H
1
�
, H1

6=1, H
1
6=�1, H

1
p

and H
1
p,Z are defined analogously.

There are a natural Hodge filtration F
•
St

on H
1
C and a weight filtration W• on H

1
Q

such that (H1
6=1, H

1
6=1,Z, F

•
St
,W•,�N,S) is a polarized mixed Hodge structure of weight n and

(H1
1 , H

1
1,Z, F

•
St
,W•,�N,S) is a polarized mixed Hodge structure of weight n+1 [He02, Theorem

10.30].
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In the case of a singularity with semisimple monodromy, so N = 0, the weight filtrations
become trivial, and the polarized mixed Hodge structures are polarized pure Hodge structures.
This holds for all bimodal singularities. Therefore we do not care here about the weight filtra-
tion. We will define the Hodge filtration using the Brieskorn lattice in theorem 7.7 (following
Varchenko, Scherk&Steenbrink and M. Saito).

The pure Hodge structure of weight n on H
1
6=1 for any singularity with semisimple monodromy

has the following properties. The Hodge filtration is Ms-invariant and satisfies

H
1
�

=
M

p2Z
H

p,n�p

�
for � 6= 1, (4.17)

where H
p,n�p

�
:= F

p
H

1
�
\ Fn�pH

1
�
, () H

n�p,p

�
= H

p,n�p

�
, )

equivalently H
1
�

= F
p
H

1
�
� Fn+1�pH

1
�
.

The polarizing form carries an isotropy and a positivity condition,

S(Hp,n�p

�
, H

q,n�q

�
) = 0if p+ q 6= 0, (4.18)

i
p�(n�p) · S(a, a) > 0 for a 2 H

p,n�p

�
� {0}. (4.19)

The pure Hodge structure of weight n+ 1 on H
1
1 has analogous properties, with n replaced by

n+ 1.
The polarizing form S : H1

Q ⇥H
1
Q ! Q is defined by [He02, 10.6].

S(a, b) := �Lnor(a, ⌫b) (4.20)

where ⌫ : H1
Q ! H

1
Q is the Mh-invariant automorphism

⌫ :=

⇢ 1
Mh�id on H

1
6=1,

�N

Mh�id on H
1
1 ,

(4.21)

S is nondegenerate and Mh-invariant. It is (�1)n-symmetric on H
1
6=1 and (�1)n+1-symmetric

on H
1
1 . The restriction to H

1
6=1 is (�1)n(n+1)/2 · I_, where I

_ on H
1
6=1 is dual to I (which is

nondegenerate on Ml(f) 6=1).

5. The group GZ for the bimodal series singularities

The normal forms from [AGV85, §13] for the eight bimodal series will be listed below in section
9. The following table gives their names, the Milnor numbers, certain polynomials b1, b2 or,
in the case of the series Z1,p, polynomials b1, b2, b3 such that b1b2 respectively b1b2b3 is the
characteristic polynomial of the surface singularities, and two important numbers m and rI . In
the series p 2 Z�1.

series µ b1 b2 b3 m rI

W
]

1,p 15 + p �12 (t12+p � 1)/�1 � 12 1

S
]

1,p 14 + p �10�2 (t10+p � 1)/�1 � 10 1
U1,p 14 + p �9 (t9+p � 1)/�1 � 9 1
E3,p 16 + p �18�2 t

9+p + 1 � 18 2
Z1,p 15 + p �14�2 t

7+p + 1 �2 14 2
Q2,p 14 + p �12�4�3 t

6+p + 1 � 12 2
W1,p 15 + p �12�6�3�2 t

6+p + 1 � 12 2
S1,p 14 + p �10�5�2 t

5+p + 1 � 10 2

(5.1)
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The following theorem on the group GZ will be proved in two steps. Directly after the
theorem, the arguments and properties which hold for all eight series will be given. Then in
eight subsections, one for each series, the corresponding objects will be made explicit and some
specific details will be given. For each series, denote ⇣ := e

2⇡i/m 2 S
1 ⇢ C.

Theorem 5.1. For any surface singularity f in any of the eight bimodal series, the following
holds.

(a) (See definition 2.3 for the notion Orlik block) For all series except Z1,p, there are Orlik
blocks B1, B2 ⇢ Ml(f), and for the series Z1,p, there are Orlik blocks B1, B2, B3 ⇢ Ml(f) with
the following properties. The characteristic polynomial pBj

of the monodromy on Bj is bj. The
sum

P
j�1 Bj is a direct sum

L
j�1 Bj, and it is a sublattice of Ml(f) of full rank µ and of

index rI . Define

eB1 :=

⇢
B1 for all series except Z1,p,

B1 �B3 for the series Z1,p.
(5.2)

Then

L( eB1, B2) = 0 = L(B2,
eB1) for all series, (5.3)

GZ = Aut(
M

j�1

Bj , L) for all series except S1,10. (5.4)

In the case S1,10, a substitute for (5.4) is

g 2 GZ with g((B1)�10) = (B1)�10 ) g(Bj) = Bj for j = 1, 2. (5.5)

(b) �m 6 | b2 () m 6 | p. In that case

GZ = {(±M
k1
h
| eB1

)⇥ (±M
k2
h
|B2) | k1, k2 2 Z}. (5.6)

(c) In the case of the subseries with m|p, the eigenspace Ml(f)⇣ ⇢Ml(f)C is 2-dimensional.
The hermitian form h⇣ on it from lemma 2.2 (a) with h⇣(a, b) :=

p
�⇣ ·L(a, b) for a, b 2Ml(f)⇣

is nondegenerate and indefinite, so P(Ml(f)⇣) ⇠= P
1 contains a half-plane

H⇣ := {C · a | a 2Ml(f)⇣ with h⇣(a, a) < 0} ⇢ P(Ml(f)⇣). (5.7)

Therefore the group Aut(Ml(f)⇣ , h⇣)/S1 · id is isomorphic to PSL(2,R). The homomorphism

 : GZ ! Aut(Ml(f)⇣ , h⇣)/S
1 · id, g 7! g|Ml(f)⇣modS1 · id, (5.8)

is well-defined.  (GZ) is an infinite Fuchsian group acting on the half-plane H⇣ . And

ker = {±M
k

h
| k 2 Z}. (5.9)

Proof: Here we explain the common arguments of the proof, which hold for all eight series.
We will announce definitions and properties of several objects. In the following eight subsections,
one for each series, the objects will be defined, and their properties will be shown.

(a) For each of the eight series of surface singularities, a distinguished basis e1, . . . , eµ with
the Coxeter-Dynkin diagram in the corresponding figure will be given in the subsections 5.1 to
5.8. The distinguished basis is the one in [Eb81, Tabelle 6 & Abb. 16], with a small change
in the cases W1,1 and S1,1. They are exceptional in [Eb81]. With the actions of the braids
↵1, . . . ,↵µ�1 (see [Eb07, 5.7] for these braids and their actions) and a sign change, we arrive
at a new numbering of the same unnumbered diagram, such that W1,1 and S1,1 are no longer
exceptional (i.e. the top vertex has the number p+ q+ r+ 3 in the notation of [Eb81, Abb. 16]
even for W1,1 and S1,1). We thank Wolfgang Ebeling for the explanation how to arrive at this
numbering.
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Recall that for a surface singularity (then n = 2) the reflection along a vanishing cycle � is

s�(b) = b+ I(�, b) · � for any b 2Ml(f).

The Coxeter-Dynkin diagram has between the vertices i and j with i < j no edge if Sij = 0,
|Sij | edges if Sij < 0 and Sij dotted edges if Sij > 0. Here for i < j

I(ei, ej) = I(ej , ei) = �Sij , I(ei, ei) = �2,
L(ei, ej) = 0, L(ej , ei) = Sij , L(ei, ei) = 1.

(5.10)

The monodromy can be calculated fairly e�ciently by hand (one should write down some inter-
mediate steps) with the formula

Mh = se1 � . . . � seµ . (5.11)

The cyclic sublattices Bj ⇢Ml(f) are chosen by choosing the generating lattice vectors �j with

Bj :=
X

i�0

Z ·M i

h
(�j). (5.12)

The following table gives them.

series �1 �2 �3

W
]

1,p e3 e8 �
S
]

1,p e8 e9 �
U1,p e8 e10 �
E3,p e3 e10 �
Z1,p e8 e11 e3 � e4 � e9

Q2,p e8 e11 �
W1,p e3 + e9 + e11 e16 �
S1,p �e8 + e13 e15 �

(5.13)

We will write down the action of the powers of the monodromy,

�j 7!Mh(�j) 7!M
2
h
(�j) 7! . . . 7!M

deg bj

h
(�j), (5.14)

in the subsections. Verifying bj(Mh)(�j) = 0 will show that the characteristic polynomial of Mh

on Bj is bj . We will also write down nice generators of Bj . This will show that Bj is a primitive
sublattice of Ml(f), that

P
j�1 Bj =

L
j�1 Bj is a direct sum and that it is a sublattice of full

rank and of index rI in Ml(f). In all cases except W1,p and S1,p, the index rI is obvious from
the nice generators, in the two cases W1,p and S1,p, it requires the calculation of a determinant.

The left and right L-orthogonality of eB1 and B2 in (5.3) will be proved now. eµ is a cyclic

generator for B2 in all eight series. The nice generators for eB1 show eB1 ⇢
L

µ�2
j=1 Z·ej for all cases

except W1,1 and S1,1. This and L(ei, eµ) = 0 for i < µ show L( eB1, eµ) = 0, thus L( eB1, B2) = 0.
From the CDD one sees easily L(eµ, ei) = 0 for i  µ� 2 for all cases except W1,1 and S1,1, thus

L(eµ, eB1) = 0 and L(B2,
eB1) = 0. For the cases W1,1 and S1,1, L(B1, eµ) = 0 = L(eµ, B1) and

thus L(B1, B2) = 0 = L(B2, B1) hold also.
(5.5) for S1,10 will be shown in subsection 5.8. With respect to part (a), it rests to show (5.4).

It is trivial for the 3 series with rI = 1. It will be shown in subsection 5.6 for the series Q2,p and
in subsection 5.7 for the subseries W1,6s�3 (s 2 Z�1) of the series W1,p. For all other series, it

will be shown below. It requires a study of smaller Orlik blocks. �2|b1 holds in the series S]

1,p,
E3,p, Z1,p, W1,p and S1,p. In these cases define (see (2.16) for the notion v(�1,�1))

�1 := v(�1,�1) :=
b1

�2
(Mh)(�1) (5.15)
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and calculate L(�1, �1) using (2.17): L(�1, �1) =
b1
�2

(�1) · L(�1,�1).

series �1 L(�1, �1)

S
]

1,p �10(Mh)(e8) = 2e1 + e2 � e4 � e5 � e6 + e8 5
E3,p �18(Mh)(e3) = �e2 + 2e3 + e6 � e7 + e9 6
Z1,p �14(Mh)(e8)

= e2 + e3 � 3e4 � e6 + e7 � 3e9 � e10 21
W1,p (�12�6�3)(Mh)(e3 + e9 + e11)

= e4 � e5 + e9 + e11 � e13 � e15 6
S1,p (�10�5)(Mh)(�e8 + e13)

= �2e1 + e7 � e8 � e9 � e11 � e12 � e14 10

(5.16)

In the case of the series Z1,p, define �3 := �3 and calculate

L(�3, �3) = 3, L(�1, �3) = L(�3, �1) = 7. (5.17)

�2|b2 holds in certain subseries of the series S
]

1,p, E3,p, Z1,p, W1,p and S1,p. In these cases
define

�2 := v(�2,�1) :=
b2

�2
(Mh)(�2) (5.18)

and calculate L(�2, �2) using (2.17): L(�2, �2) =
b2
�2

(�1) · L(�2,�2).

series Condition for �2|b2 L(�2, �2)

S
]

1,p p ⌘ 0(2) 5 + p

2
E3,p p ⌘ 0(2) 18 + 2p
Z1,p p ⌘ 0(2) 14 + 2p
W1,p p ⌘ 1(2) 12 + 2p
S1,p p ⌘ 0(2) 10 + 2p

(5.19)

In table (5.20), the first line for S]

1,p is the case p ⌘ 0(4), the second line is the case p ⌘ 2(4).

series �2

S
]

1,p �e2 + e4 + e5 + e6 � e7 +
P2+p/4

j=1 (e7+2j + e10+ p

2+2j)

�e4 + e5 +
P(6+p)/4

j=1 (�e8+2j + e11+ p

2+2j)

E3,p �e2 + 2e5 + e6 � e7 + e9 + 2
P4+p/2

j=1 e8+2j

Z1,p �e2 + 2e5 + e6 � e7 + e10 + 2
P3+p/2

j=1 e9+2j

W1,p �2e3 + e4 + e5 + e9 + e11 + e13 + e15 + 2
P(1+p)/2

j=1 e14+2j

S1,p 2(�e1 � e2 + e4 + e5 + e6)� e7 � e8

+e9 + e11 + e12 + e14 � 2
P

p/2
j=1 e14+2j

(5.20)

In the subseries of E3,p,W1,p and S1,p with �2|b2, one sees

e�2 :=
1

2
(�1 + �2)

!
2Ml(f). (5.21)

In the subseries of Z1,p with �2|b2, one sees

e�2 :=
1

2
(�1 + �2 � 3�3)

!
2Ml(f). (5.22)
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Together with [Ml(f) : B1 �B2] = 2 for these subseries, this shows

Ml(f)�2 = Z�1 � Ze�2 for E3,2q,W1,2q�1, S1,2q, (5.23)

Ml(f)�2 = Z(�1 � 2�3)� Ze�2 � Z�3 for Z1,2q. (5.24)

For S]

1,2q, Ml(f) = B1 � B2 gives Ml(f)�2 = Z�1 � Z�2. The matrices of L for these bases
of Ml(f)�2 in these cases are

S
]

1,2q E3,2q Z1,2q
✓
5 0
0 5 + q

◆ ✓
6 3
3 6 + q

◆ 0

@
5 2 1
2 5 + q �1
1 �1 3

1

A

W1,2q�1 S1,2q✓
6 3
3 4 + q

◆ ✓
10 5
5 5 + q

◆
(5.25)

These matrices are positive definite. The corresponding quadratic forms (x1 x2)(matrix)

✓
x1

x2

◆

respectively (x1 x2 x3)(matrix)

0

@
x1

x2

x3

1

A are

5x2
1 + (5 + q)x2

2 for S]

1,2q

3x2
1 + 3(x1 + x2)

2 + (3 + q)x2
2 for E3,2q

(2x1 + x2)
2 + (x1 + x3)

2

+(x2 � x3)
2 + (3 + q)x2

2 + x
2
3 for Z1,2q (5.26)

3x2
1 + 3(x1 + x2)

2 + (1 + q)x2
2 for W1,2q�1

5x2
1 + 5(x1 + x2)

2 + qx
2
2 for S1,2q

This shows

{a 2Ml(f)�2 |L(a, a) = L(�1, �1)} = {±�1}. (5.27)

for W1,2q�1 with q 6= 2, for S1,2q with q 6= 5, and for all S]

1,2q and E3,2q. It shows for Z1,2q

{a 2Ml(f)�2 |L(a, a) = 3} = {±�3}, (5.28)

{a 2Ml(f)�2 |L(a, a) = 5} = {±(�1 � 2�3)}. (5.29)

All this implies

Aut(Ml(f)�2 , L) = {± id |Z�1}⇥ {± id |Z�2} for S]

1,2q,

for E3,2q, for S1,2q with q 6= 5,

and for W1,2q�1 with q 6= 2, (5.30)

Aut(Ml(f)�2 , L) = {± id |Z�1�Z�3}⇥ {± id |Z�2} for Z1,2q. (5.31)

In the cases S]

1,2q�1, E3,2q�1, Z1,2q�1, W1,2q and S1,2q�1 with �2 6 | b2,

Ml(f)�2 = ( eB1)�2andAut(Ml(f)�2 , L) = {± id}. (5.32)

Define

�4 :=

⇢
�1 for E3,p,W1,p, S1,p

�1 � 3�3 for Z1,p.
(5.33)
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Then for E3,p, W1,p with p 6= 3, S1,p with p 6= 10, Z1,p

g(�4) = ±�4 for g 2 GZ, (5.34)

and for E3,p, W1,p (including p = 3), S1,p (including p = 10), Z1,p

eB1 �B2 = {a 2Ml(f) |L(a, �4) ⌘ 0(2)}. (5.35)

Here ⇢ in (5.35) follows from

L(B2, �4) = 0 and L(�1, �4) ⌘ 0(2)

and in the case of Z1,p L(�3, �4) = 4. Now = in (5.35) follows from L(Ml(f), �4) = Z and

[Ml(f) : eB1 �B2] = 2. Together (5.34) and (5.35) show that any g 2 GZ respects eB1 �B2, so

GZ ⇢ Aut( eB1 �B2, L) (5.36)

for E3,p, W1,p with p 6= 3, S1,p with p 6= 10 and Z1,p. We claim that (5.34) and thus (5.36) hold
also for W1,3. That will be proved in the subsection 5.7.

It rests to show Aut( eB1 � B2, L) ⇢ GZ for the series E3,p, Z1,p, W1,p, S1,p. We will extend

the definition of e�2 in such a way to the cases with �2 6 |b2 that ( eB1�B2)+Z ·e�2 = Ml(f). And
we will show g(e�2) 2 Ml(f) for any g 2 Aut( eB1 � B2, L). This implies Aut( eB1 � B2, L) ⇢ GZ.
The proof of g(e�2) 2Ml(f) requires a better control of Aut( eB1 �B2, L).

Consider all eight series and define

b4 :=
gcd(b1, b2)

gcd(b1, b2,�m)
= gcd(

b1

�m

, b2) 2 Z[t]. (5.37)

Then

b4 =

8
>>>><

>>>>:

1 for W ]

1,p, S
]

1,2q�1, U1,p, E3,2q�1, Z1,2q�1,

Q2,p with p 6⌘ 0(4),W1,2q, S1,2q�1,

�2 for S]

1,2q, E3,2q, Z1,2q,W1,2q�1 with q 6⌘ 2(3), S1,2q,

�4 for Q2,4s,

�6�2 for W1,6s�3.

(5.38)

We claim that in all cases except S1,10, any g 2 GZ [ Aut( eB1 � B2, L) maps ( eB1)b4 to ( eB1)b4
and (B2)b4 to (B2)b4 . In the cases with b4 = 1 this is an empty statement as then

( eB1)b4 = {0} = (B2)b4 .

In the cases Q2,p with p ⌘ 0(4) and W1,6s�3, this will be shown in the subsections 5.6 and 5.7.
In all other cases b4 = �2 and (B2)b4 = Z · �2 and

( eB1)b4 =

⇢
Z · (�1 � 2�3)� Z · �3 for Z1,2q,

Z · �1 else.
(5.39)

Because ( eB1 �B2)�2 ⇢Ml(f)�2 , (5.27)–(5.29) hold also with ( eB1 �B2)�2 instead of Ml(f)�2 .
They characterize ( eB1)�2 within Ml(f)�2 and within ( eB1 �B2)�2 . Thus any

g 2 GZ [Aut( eB1 �B2, L)

maps ( eB1)�2 to itself, and then it maps also the L-orthogonal sublattice (B2)�2 to itself.
For all eight series except S1,10, this implies the following. For any g 2 GZ [Aut( eB1�B2, L)

g : eB1 ! eB1 and B2 ! B2 if m 6 | p, (5.40)

g : ( eB1)b1/�m
! ( eB1)b1/�m

g : (B2)b2/�m
! (B2)b2/�m

�
if m|p and the

type is not S1,10.
(5.41)



146 FALKO GAUSS AND CLAUS HERTLING

Now we want to apply lemma 2.8 to these Orlik blocks. One checks easily that all hypotheses
are satisfied. Therefore

Aut( eB1 �B2, L) (5.42)

= {±M
k

h
| eB1

| k 2 Z}⇥ {±M
k

h
|B2 | k 2 Z} if m 6 | p,

and if m| p and the type is not S1,10, then Aut( eB1 �B2, L) projects to a subgroup of

Aut(( eB1)b1/�m
, L)⇥Aut((B2)b2/�m

, L) (5.43)

= {±M
k

h
|( eB1)b1/�m

| k 2 Z}⇥ {±M
k

h
|(B2)b2/�m

| k 2 Z}.

The group Aut( eB1 �B2, L) for m 6 |p is generated by

Mh,� id, Mh| eB1
⇥ id |B2 , and (� id | eB1

)⇥ id |B2 ,

and analogously for the group in (5.43) if m| p.
Now we extend the definition of �2. For E3,2q�1, Z1,2q�1 and S1,2q�1 define it as follows:

�2 := e2 � e6 + e7 + e9for E3,2q�1, (5.44)

�2 := e2 � e6 + e7 + e10for Z1,2q�1,

�2 := 2(�e1 � e2 +
X

j2{4,5,6}

ej)� e7 � e8 +
X

j2{9,11,12,14}

ejfor S1,2q�1.

(5.105), (5.110) and (5.162) show �2 2 B2. For W1,2q (so p = 2q) define

�2 := (tp(t+ 1)�12 +
p�1X

j=0

t
j)(Mh)(e16) (5.45)

= (tp(1 + t� t
2 � t

3 + t
4 + t

5) +
p�1X

j=0

t
j)(Mh)(e16)

= �2e2 + 2e6 � 2e7 + e4 + e5 + e9 � e11 + e13 � e15.

Observe that in the case 12|p, �12 divides
P

p�1
j=0 t

j so that then �2 2 �12(Mh)(B2) = (B2)b2/�12
.

In all four cases 1
2 (�4 + �2) 2Ml(f).

Now for the series E3,p, Z1,p,W1,p and S1,p

�4 2 (B1)�2 ,

⇢
�2 2 B2 if m 6 | p,
�2 2 (B2)b2/�m

if m| p, (5.46)

e�2 :=
1

2
(�4 + �2)

!
2Ml(f), (5.47)

Ml(f) = ( eB1 �B2) + Ze�2, (5.48)

(Mh| eB1
⇥ id |B2)(e�2) = ((� id | eB1

)⇥ id |B2)(e�2)

=
1

2
(��4 + �2) = ��4 + e�2 2Ml(f). (5.49)

Therefore any g 2 Aut( eB1 � B2, L) maps e�2 to an element of Ml(f). Thus it maps Ml(f) to
Ml(f), thus g 2 GZ. This finishes the proof of (5.4) and of part (a) for all series except Q2,p

and W1,6s�3 and S1,10. For Q2,p and W1,6s�3 and S1,10 see the subsections 5.6, 5.7 and 5.8.

(b) This follows immediately from (5.4) and (5.42). The subsections 5.6 and 5.7 establish
(5.4) and (5.42) also for the series Q2,p and W1,6s�3.



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 147

(c) Now we consider the eight subseries with m|p. Write p = m · r with r 2 Z�1. Recall
⇣ = e

2⇡i/m, and recall that Z[⇣] is a principal ideal domain (lemma 2.11). In the following, ⇠
will be any primitive m-th unit root.

Formula (2.24) in lemma 2.12 (b) applies with ⇤ = Ml(f),⇤(1) = eB1�B2, p = �m, and gives

Ml(f)�m
= ( eB1 �B2)�m

= (B1 �B2)�m
= (B1)�m

� (B2)�m
. (5.50)

Therefore the space

Ml(f)⇠,Z[⇣] := Ml(f)⇠ \Ml(f)Z[⇣] (5.51)

is a free Z[⇣]-module of rank 2 with basis v1,⇠, v2,⇠ with

vj,⇠ := v(�j , ⇠) =
bj

t� ⇠ (Mh)(�j) for j = 1, 2 (5.52)

(see (2.16) for the notion v(�j , ⇠)). Observe v
j,⇠

= vj,⇠.
The proof of part (c) will consist of four steps. Step 1 calculates the values of the hermitian

form h⇠ from lemma 2.2 on a suitable Z[⇣]-basis of Ml(f)⇠,Z[⇣]. Step 2 analyzes what this implies
for automorphisms of the pair (Ml(f)⇠,Z[⇣], L) and thus gives a first approximation to  (GZ).
Step 3 uses (5.5) for S1,10 and (5.41) for all other singularities and the Orlik block structure of
the blocks Bj to control the action of g 2 GZ on all eigenspaces simultaneously. It will prove
(5.9). Step 4 combines the steps 2 and 3 with results from section 3 and shows that  (GZ) is
an infinite Fuchsian group.

Step 1: The form

h⇠ : Ml(f)⇠ ⇥Ml(f)⇠ ! C, (a, b) 7!
p
�⇠ · L(a, b)

from lemma 2.2 is hermitian. In this step it will be calculated with respect to the Z[⇣]-basis
v1,⇠, v2,⇠ of Ml(f)⇠,Z[⇣]. For i 6= j

h⇠(vi,⇠, vj,⇠) =
p
�⇠ · L(vi,⇠, vj,⇠) = 0 (5.53)

because of (5.3). L(vj,⇠, vj,⇠) will be calculated with (2.17),

L(vj,⇠, vj,⇠) =
bj

t� ⇠
(⇠) · L( bj

t� ⇠ (Mh)(�j),�j), (5.54)

first for j = 2, then for j = 1.
One calculates for all eight subseries:

k 0 1 2 · · · deg b2 � 1 deg b2
L(Mk

h
(�2),�2) 1 �1 0 · · · 0 0 if rI = 1, �1 if rI � 2

For the three subseries with rI = 1 (so W
]

1,12r, S
]

1,10r, U1,9r)

b2

t� ⇠ =
t
m+p � 1

(t� ⇠) · �1
= ��1

1 ·
m+p�1X

j=0

⇠
m+p�1�j · tj , (5.55)

b2

t� ⇠
(⇠) = (⇠ � 1)�1 · (m+ p) · ⇠ = m(1 + r)(⇠ � 1)�1 · ⇠, (5.56)

L(
b2

t� ⇠ (Mh)(�2),�2) = (⇠ � 1)�1 · ⇠ · (1� ⇠) = ⇠
2
, (5.57)

h⇠(v2,⇠, v2,⇠) = m(1 + r) · (1� ⇠)�1 ·
p
�⇠ > 0. (5.58)
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For the five subseries with rI = 2

b2

t� ⇠ =
t
m/2+p + 1

t� ⇠ =

m/2+p�1X

j=0

⇠
m/2+p�1�j · tj , (5.59)

b2

t� ⇠
(⇠) = (

m

2
+ p)(�⇠) = m

2
(1 + 2r)(�⇠), (5.60)

L(
b2

t� ⇠ (Mh)(�2),�2) = �⇠(1� ⇠), (5.61)

h⇠(v2,⇠, v2,⇠) =
m

2
(1 + 2r) · (1� ⇠) ·

p
�⇠ > 0. (5.62)

Now we turn to h⇠(v1,⇠, v1,⇠). One calculates for all eight series

k 0 1 2 3 4 5 6 7 8 9 10 11
L(Mk

h
(�1),�1)

for W ]

1,p 1 �1 1 0 0 1

for S]

1,p 1 �1 0 1 0
for U1,p 1 �1 0 0 1 0 �1 0 0
for E3,p 1 �1 1 0 1 0 1 0 1
for Z1,p 1 �1 0 0 1 0 0
for Q2,p 1 �1 0 1 0 0 0 0 0 0 �1 0
for W1,p 3 �3 2 �1 0 1 �1 1 �1 0 1 �2
for S1,p 2 �2 0 1 0 �1 1 0 �1 0

and

for W ]

1,p

b1

t� ⇠ =
�12

t� ⇠ = t
3 + ⇠t

2 + (⇠2 � 1)t+ (⇠3 � ⇠),

for S]

1,p

b1

t� ⇠ =
�10�2

t� ⇠ =
t
5 + 1

t� ⇠ = t
4 + ⇠t

3 + ⇠
2
t
2 + ⇠

3
t+ ⇠

4
,

for U1,p
b1

t� ⇠ =
�9

t� ⇠ =
t
6 + t

3 + 1

t� ⇠
= t

5 + ⇠t
4 + ⇠

2
t
3 + (⇠3 + 1)t2 + (⇠4 + ⇠)t+ (⇠5 + ⇠

2),

for E3,p
b1

t� ⇠ =
�18�2

t� ⇠ =
t
7 + t

6 � t
4 � t

3 + t+ 1

t� ⇠ = t
6 + (⇠ + 1)t5

+(⇠2 + ⇠)t4 + (⇠6 + ⇠
2)t3 + (⇠7 + ⇠

6)t2 + (⇠8 + ⇠
7)t+ ⇠

8
,

for Z1,p
b1

t� ⇠ =
t
7 + 1

t� ⇠ = t
6 + ⇠t

5 + ⇠
2
t
4 + ⇠

3
t
3 + ⇠

4
t
2 + ⇠

5
t+ ⇠

6
,

for Q2,p
b1

t� ⇠ =
�12�4�3

t� ⇠ =
t
8 + t

7 + t
6 + t

2 + t+ 1

t� ⇠
= t

7 + (⇠ + 1)t6 + (⇠2 + ⇠ + 1)t5 + (⇠3 + ⇠
2 + ⇠)t4

+(⇠4 + ⇠
3 + ⇠

2)t3 + (⇠5 + ⇠
4 + ⇠

3)t2 + (⇠5 + ⇠
4)t+ ⇠

5
,
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for W1,p
b1

t� ⇠ =
�12�6�3�2

t� ⇠ =
t
9 + t

8 + t
5 + t

4 + t+ 1

t� ⇠
= t

8 + (⇠ + 1)t7 + (⇠2 + ⇠)t6 + (⇠3 + ⇠
2)t5 + (⇠3 + ⇠

2)t4

+(⇠3 + ⇠
2)t3 + (⇠4 + ⇠

3)t2 + (⇠5 + ⇠
4)t+ ⇠

5
,

for S1,p
b1

t� ⇠ =
�10�5�2

t� ⇠ =

P9
j=0 t

j

t� ⇠
= t

8 + (⇠ + 1)t7 + (⇠2 + ⇠ + 1)t6 + (⇠3 + ⇠
2 + ⇠ + 1)t5

+(⇠4 + ⇠
3 + ⇠

2 + ⇠ + 1)t4 + (⇠4 + ⇠
3 + ⇠

2 + ⇠)t3

+(⇠4 + ⇠
3 + ⇠

2)t2 + (⇠4 + ⇠
3)t+ ⇠

4
.

This table and this list give the following values.
b1

t�⇠
(⇠) L( b1

t�⇠
(Mh)(�1),�1)

W
]

1,p 4⇠
3 � 2⇠ = �2(⇠ + ⇠)⇠2 ⇠

3(1� ⇠)
S
]

1,p 5⇠
4
= �5⇠ �⇠(⇠2 + ⇠

2 � 1)

U1,p 6⇠
5
+ 3⇠

2
= 3⇠(⇠3 � 1) �⇠6(⇠2 + ⇠

2
)

E3,p 3(⇠
6
+ ⇠

5
+ ⇠

9
+ ⇠

8
) = �3(⇠ + 1)(⇠3 + 1) ⇠

2(⇠ + ⇠)(⇠2 + ⇠
2
)

Z1,p 7⇠
6
= �7⇠ ⇠

2(⇠4 + ⇠
4
+ 1)

Q2,p 6(⇠
7
+ ⇠

6
+ ⇠

5
) = �6(⇠ + ⇠ + 1) ⇠

2(⇠ + 1) = (1� ⇠)�1

W1,p 4(⇠
8
+ ⇠

7
+ ⇠

6
+ ⇠

5
) = 4⇠

7
(1 + ⇠)(⇠ + ⇠) ⇠

3(⇠ � 1)(⇠ � 1)

S1,p 5(⇠
8
+ ⇠

7
+ ⇠

6
+ ⇠

5
+ ⇠

4
) �1 + ⇠ + ⇠

2 � 2⇠3 + ⇠
4

With h⇠(v1,⇠, v1,⇠) =
p
�⇠ · L(v1,⇠, v1,⇠) and (5.54) and the information on the rings Z[⇣] in

lemma 2.11, we obtain the following values.

h⇠(v1,⇠, v1,⇠)

W
]

1,p (�2)(⇠ + ⇠) · (1� ⇠)
p
�⇠

S
]

1,p 5(⇠2 + ⇠
2
)(⇠2 + ⇠

2 � 1) · (1� ⇠)�1
p
�⇠

U1,p 3(⇠4 + ⇠
4
+ 1) · (1� ⇠)

p
�⇠

E3,p (�3)(1 + ⇠)(1 + ⇠)(⇠ + ⇠ � 1) · (1� ⇠)�1
p
�⇠

Z1,p (�7)(⇠2 + ⇠
2
) · (1� ⇠)

p
�⇠

Q2,p (�6)(⇠ + ⇠ + 1) · (1� ⇠)�1
p
�⇠

W1,p (�4)(⇠ + ⇠) · (1� ⇠)
p
�⇠

S1,p (�10)(⇠2 + ⇠
2
) · (1� ⇠)

p
�⇠

(5.63)

Here observe that as in (5.58) and (5.62) (1� ⇠)
p
�⇠ > 0 and (1� ⇠)�1

p
�⇠ > 0. In each of the

eight cases we find

h⇠(v1,⇠, v1,⇠) > 0 for ⇠ 62 {⇣, ⇣}, (5.64)

h⇠(v1,⇠, v1,⇠) < 0 for ⇠ 2 {⇣, ⇣}, (5.65)

and

L(v1,⇠,�1) = L(
b1

t� ⇠ (Mh)(�1),�1) 2 Z[⇣]⇤. (5.66)

Step 2: Define for each of the eight series

b5 :=
b1

�m

2 Z[t] unitary. (5.67)
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Then

series W
]

1,p S
]

1,p U1,p E3,p Z1,p Q2,p W1,p S1,p

b5 1 �2 1 �2 �2 �4�3 �6�3�2 �5�2

and

b5(⇠)/b5(⇠) 2 {±⇠k | k 2 Z}. (5.68)

Define for each of the eight subseries with m|p

b6 :=
b2

�m

2 Z[t] unitary (5.69)

and

w(⇠) := �h⇠(v2,⇠, v2,⇠)

h⇠(v1,⇠, v1,⇠)
= �

b2

t�⇠
(⇠) · L(v2,⇠,�2)

b1

t�⇠
(⇠) · L(v1,⇠,�1)

= �b6

b5
(⇠) · L(v2,⇠,�2)

L(v1,⇠,�1)
. (5.70)

Then

b5(⇠)w(⇠) = b6(⇠) ·
L(v2,⇠,�2)

L(v1,⇠,�1)
2 Z[⇣]. (5.71)

It is in Z[⇣] because of (5.66). The following table lists w(⇠).

w(⇠)

W
]

1,p (1 + r)(+6)[(1� ⇠)(1� ⇠)(⇠ + ⇠)]�1

S
]

1,p (1 + r)(�2)[(⇠2 + ⇠
2
)(⇠2 + ⇠

2 � 1)]�1

U1,p (1 + r)(�3)[(1� ⇠)(1� ⇠)(⇠4 + ⇠
4
+ 1)]�1

E3,p (1 + 2r)(+3)(1� ⇠)(1� ⇠)[(1 + ⇠)(1 + ⇠)(⇠ + ⇠ � 1)]�1

Z1,p (1 + 2r)(+1)[⇠2 + ⇠
2
]�1

Q2,p (1 + 2r)(+1)(1� ⇠)(1� ⇠)[⇠ + ⇠ + 1]�1

W1,p (1 + 2r)(+ 3
2 )[⇠ + ⇠]�1

S1,p (1 + 2r)(+ 1
2 )[⇠

2 + ⇠
2
]�1

(5.72)

The inequalities (5.58)(5.62)(5.64)(5.65) give

w(⇠)

⇢
< 0 for ⇠ 62 {⇣, ⇣},
> 0 for ⇠ 2 {⇣, ⇣}. (5.73)

Using the Z[⇣]-basis v1,⇠, v2,⇠ of Ml(f)⇠,Z[⇣], the automorphism group Aut(Ml((f)⇠,Z[⇣], h⇠)
can be identified with the matrix group

{A(⇠) 2 GL(2,Z[⇣]) |
✓
�1 0
0 w(⇠)

◆
= A(⇠)t ·

✓
�1 0
0 w(⇠)

◆
·A(⇠)}. (5.74)

The isomorphism is A(⇠) 7! g with

g(v1,⇠, v2,⇠) = (v1,⇠, v2,⇠) ·A(⇠). (5.75)

The inequalities (5.73) and theorem 3.2 tell that the matrix group in the case of ⇠ = ⇣ projects
to an infinite Fuchsian group. Additionally, 3.2 tells that the elements of the matrix group for
any ⇠ can be represented by triples (a(⇠), c(⇠), �(⇠)) 2 Z[⇣]2 ⇥ {±⇣k | k 2 Z} with

a(⇠)a(⇠)� 1 = w(⇠) · c(⇠)c(⇠), (5.76)
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where

A(⇠) =

✓
a(⇠) w(⇠) · c(⇠) · �(⇠)
c(⇠) a(⇠) · �(⇠)

◆
. (5.77)

This gives a first approximation of  (GZ). It took into account only the eigenspace Ml(f)⇠,Z[⇣]
and the pairing h⇠ which L and complex conjugation induce on it.

Step 3: Now (5.9) will be shown. We will use that the Bj are Orlik blocks and lemma 2.8
and (5.5) for S1,10 and (5.43) for all other singularities.

Let g 2 ker ⇢ GZ, i.e. g|Ml(f)⇣ 2 C
⇤ · id. Then g|Ml(f)⇠ 2 C

⇤ · id for all ⇠ with �m(⇠) = 0,
and

g((Bj)�m
) = (Bj)�m

for j = 1, 2. (5.78)

Now g(Bj) = Bj for j = 1, 2 follows in the case S1,10 from (5.5). For all other singularities
g(Bj) = Bj for j = 1, 2 follows with (5.43) (and (5.32) for B3 in the case Z1,14r).

We want to apply lemma 2.8 to the Orlik blocks B1 and B2. One checks easily that all
hypotheses are satisfied. In the case Z1,14r B3 is glued to B1 by (5.32). Therefore in all cases

g = ("1 ·Mk1
h
)|B1 ⇥ ("2 ·Mk2

h
)|B2 (5.79)

for some "1, "2 2 {±1} and k1, k2 2 Z. Now consider

eg := "2 ·M�k2
h
� g. (5.80)

It satisfies

eg|B1 = "1"2 ·Mk1�k2
h

|B1 , eg|B2 = id, eg|Ml(f)
⇠
2 C

⇤ · id,
thus eg|Ml(f)⇠ = id, eg|Ml(f)�m

= id . (5.81)

Comparison with table (5.1) shows

eg = id for the first 5 series in (5.1),

eg = id or eg = �M
m

2 (1+2r)
h

for the last 3 series in (5.1).

In any case, eg and g are in {±M
k

h
| k 2 Z}, and thus ker = {±M

k

h
| k 2 Z}.

Step 4: By step 2,  (GZ) is a subgroup of an infinite Fuchsian group and therefore itself a
Fuchsian group. It rests to show that it is an infinite group. By step 3, the kernel of

 : GZ !  (GZ)

is {±M
k

h
| k 2 Z}, so it is finite. Therefore it rests to show that GZ is infinite. We will see that

the subgroup of elements g 2 GZ with

g = id on any eigenspace Ml(f)� with �m(�) 6= 0,

i.e. g = id on ( eB1)b5 and on (B2)b6 . (5.82)

is infinite.
Consider an element g 2 GZ with (5.82). For all singularities except S1,10 (5.4) holds. For

S1,10 (5.82) implies g(�4) = ±�4, and then (5.36) gives g 2 Aut(B1 � B2, L). In the case of the
series Z1,14r, the element g maps B1�B2 to itself because (B1�B2)C contains ker�m(Mh). In
any case, lemma 2.7 applies with k = 2,⇤(1) = B1,⇤(2) = B2, e

(1) = �1, e
(2) = �2, p0 = �m. By

(2.20) there are unique polynomials pij 2 Z[t]<deg bi
for i = 1, 2 with

g(�j) = p1j(Mh)(�1) + p2j(Mh)(�2) (5.83)
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and

p11 = 1 + b5 · q11, p12 = b5 · q12,
p21 = b6 · q21, p22 = 1 + b6 · q22

(5.84)

for suitable polynomials qij 2 Z[t]<'(m).
g restricts to an automorphism of the pair (B1�B2)�m

, L). By (2.21), the matrix A(⇠) from
(5.75) in step 2 takes the form

A(⇠) =

✓
1 + b5(⇠)q11(⇠) b6(⇠)q12(⇠)
b5(⇠)q21(⇠) 1 + b6(⇠)q22(⇠)

◆
. (5.85)

By step 2, this matrix A(⇠) satisfies (5.76) and (5.77).
Vice versa, any polynomials qij 2 Z[t]<'(m) for i = 1, 2 such that the matrix in (5.85) satisfies

(5.76) and (5.77), give rise via (5.84) and (5.83) to an element g 2 GZ with (5.82).
We have to prove existence of infinitely many polynomials qij 2 Z[t]<'(m) such that the

matrix in (5.85) satisfies (5.76) and (5.77) and that q12(⇠) 6= 0 and q21(⇠) 6= 0. We start by
defining

w0(⇠) := w(⇠)b5(⇠)b5(⇠) 2 Z[⇣] \ R (5.86)

and asking for infinitely many solutions a(⇠), f(⇠) 2 Z[⇣] \ R of the Pell equation

a(⇠)2 � 1 = w0(⇠) · f(⇠)2 (5.87)

with the additional condition

w0(⇠) | a(⇠)� 1. (5.88)

Such solutions exist due to lemma 3.3. They give rise to the elements

q11(⇠) :=
a(⇠)� 1

b5(⇠)
, q12(⇠) := f(⇠) · w(⇠)b5(⇠)

b6(⇠)
, (5.89)

q21(⇠) := f(⇠), q22(⇠) :=
a(⇠)� 1

b6(⇠)
. (5.90)

Here observe

b6(⇠) |w(⇠)b5(⇠) |w0(⇠) | a(⇠)� 1,

see (5.71), (5.68) and (5.66). These elements come from unique polynomials qij 2 Z[t]<'(m).
These polynomials satisfy all desired properties.

5.1. The series W
]

1,p. Here we only describe the case when p = 2q is even. But one can easily
obtain the odd case p = 2q�1 from that via replacing each e↵+q by e↵�1+q in the following lists.
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3

4 58

11+q resp. 12+q

6

1

2

7

9
10+q resp. 11+q 15+p

Figure 1. The CDD of a distinguished basis e1, . . . , eµ for W ]

1,2q�1 resp. W ]

1,2q

from [Eb81, Tabelle 6 & Abb. 16]

The monodromy acts on the distinguished basis e1, . . . , eµ with the CDD in figure 1 as follows:

e1 7! �e1 � e2 + e3 + e4 + e5 + e6,

e2 7! e1 + e2 + e8 + e12+q,

e3 7! �e1 � e3 � e6 + e7,

e4 7! e2 � e6 + e7 + e8,

e5 7! e2 � e6 + e7 + e12+q,

e6 7! e1 � 2e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! �2e2 + e3 + e4 + e5 + 2e6 � e7,

e7+i 7! e8+i for 1  i  3 + q,

e11+q 7! �e4 � e8 � e9 � . . .� e11+q,

e11+q+i 7! e12+q+i for 1  i  3 + q,

e15+p 7! �e5 � e12+q � . . .� e15+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := e3 and �2 := e8. The
monodromy acts on them as follows:

e3 7! �e1 � e3 � e6 + e7 7! e1 + e2 � e4 � e5 � e6

7! �e1 7! e1 + e2 � e3 � e4 � e5 � e6, (5.91)

e8 7! e9 7! . . . 7! e11+q 7! �e4 � e8 � e9 � . . .� e11+q

7! �e2 + e4 + e6 � e7 7! �e12+q 7! �e13+q 7! . . . 7! �e15+p

7! e5 + e12+q + . . .+ e15+p 7! e2 � e5 � e6 + e7 7! e8. (5.92)
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3

4 59

11+q resp. 12+q

6

1

2

14+p

7

8

10+q resp. 11+q

Figure 2. The CDD of a distinguished basis e1, . . . , eµ for S]

1,2q�1 resp. S
]

1,2q

from [Eb81, Tabelle 6 & Abb. 16]

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = he3, e1, e6 � e7, e2 � e4 � e5 � e6i, (5.93)

B2 = he8, e9, . . . , e15+p; e4, e5,�e2 + e6 � e7i. (5.94)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 � B2 = Ml (f), i.e.
rI = 1.

5.2. The series S
]

1,p. Again we only describe the case when p = 2q is even. But one can easily
obtain the odd case p = 2q�1 from that via replacing each e↵+q by e↵�1+q in the following lists.
The monodromy acts on the distinguished basis e1, . . . , eµ with the CDD in figure 2 as follows:

e1 7! �e1 � e2 + e3 + e4 + e5 + e6,

e2 7! e1 + e2 + e9 + e12+q,

e3 7! �e1 � e6 + e7 + e8,

e4 7! e2 � e6 + e7 + e9,

e5 7! e2 � e6 + e7 + e12+q,

e6 7! e1 � 2e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! �2e2 + e3 + e4 + e5 + 2e6 � e7,

e8 7! �e3 � e8,

e8+i 7! e9+i for 1  i  2 + q,

e11+q 7! �e4 � e9 � e10 � . . .� e11+q,

e11+q+i 7! e12+q+i for 1  i  2 + q,

e14+p 7! �e5 � e12+q � e13+q � . . .� e14+p.
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By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := e8 and �2 := e9. The
monodromy acts on them as follows:

e8 7! �e3 � e8 7! e1 + e3 + e6 � e7

7! �e1 � e2 + e3 + e4 + e5 + e6 + e8

7! �e3 � e6 + e7 7! �e8, (5.95)

e9 7! e10 7! . . . 7! e11+q 7! �e4 � e9 � e10 � . . .� e11+q

7! �e2 + e4 + e6 � e7 7! �e12+q 7! �e13+q 7! . . . 7! �e14+p

7! e5 + e12+q + . . .+ e14+p 7! e2 � e5 � e6 + e7 7! e9. (5.96)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = he8, e3, e6 � e7, e1,�e2 + e4 + e5 + e6i, (5.97)

B2 = he9, e10, . . . , e14+p; e4, e5,�e2 + e6 � e7i. (5.98)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 � B2 = Ml (f) and
rI = 1.

3

4 510 12+q

6

1

2

13+q 14+p

7

8

1111+q

9

Figure 3. The CDD of a distinguished basis e1, . . . , eµ for U1,p from [Eb81,
Tabelle 6 & Abb. 16]

5.3. The series U1,p. Here (and in all series except W ]

1,p and S
]

1,p) the list of the monodromy
action on the distinguished basis e1, . . . , eµ with the CDD in figure 3 includes both cases p = 2q
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and p = 2q � 1. It looks as follows:

e1 7! �e1 � e2 + e3 + e4 + e5 + e6,

e2 7! e1 + e2 + e10 + e12+q,

e3 7! �e1 � e6 + e7 + e8,

e4 7! e2 � e6 + e7 + e10,

e5 7! e2 � e6 + e7 + e12+q,

e6 7! e1 � 2e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! �2e1 + e3 + e4 + e5 + 2e6 � e7,

e8 7! e9,

e9 7! �e3 � e8 � e9,

e9+i 7! e10+i for 1  i  1 + q,

e11+q 7! �e4 � e10 � e11 � . . .� e11+q,

e11+q+i 7! e12+q+i for 1  i  2 + p� q,

e14+p 7! �e5 � e12+q � e13+q � . . .� e14+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := e8 and �2 := e10. The
monodromy acts on them as follows:

e8 7! e9 7! �e3 � e8 � e9 7! e1 + e3 + e6 � e7

7! �e1 � e2 + e3 + e4 + e5 + e6 + e8

7! �e6 + e7 + e8 + e9 7! �e1 � e3 � e6 + e7 � e8, (5.99)

e10 7! e11 7! . . . 7! e11+q 7! �e4 � e10 � e11 � . . .� e11+q

7! �e2 + e4 + e6 � e7 7! �e12+q 7! �e13+q 7! . . . 7! �e14+p

7! e5 + e12+q + . . .+ e14+p 7! e2 � e5 � e6 + e7 7! e10. (5.100)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = he1, e3, e8, e9, e6 � e7,�e2 + e4 + e5 + e6i, (5.101)

B2 = he10, e11, . . . , e14+p; e4, e5,�e2 + e6 � e7i. (5.102)

Again B1 and B2 are primitive sublattices with B1 +B2 = B1 �B2 = Ml (f) and rI = 1.

3

4 58 9

6

1

2

10 11 12 13 14

7

16+p

Figure 4. The CDD of a distinguished basis e1, . . . , eµ for E3,p from [Eb81,
Tabelle 6 & Abb. 16]
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5.4. The series E3,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 4 as follows:

e1 7! e3 + e4 + e5 + e6,

e2 7! e9 + e10,

e3 7! �e1 � e3 � e6 + e7,

e4 7! �e1 � e6 + e7 + e8,

e5 7! �e1 � e6 + e7 + e9,

e6 7! 2e1 � e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! e1 � e2 + e3 + e4 + e5 + 2e6 � e7,

e8 7! �e4 � e8,

e9 7! e1 + e2 + e10,

e9+i 7! e10+i for 1  i  6 + p,

e16+p 7! �e5 � e9 � e10 � . . .� e16+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := e3 and �2 := e10. The
monodromy acts on them as follows:

e3 7! �e1 � e3 � e6 + e7 7! �e4 � e5 � e6

7! e2 � e3 � e4 � e5 � e6 � e8 � e9 7! �e5 � e7

7! e2 � e3 � e4 � e5 � e6 � e9 7! �e4 � e5 � e7 � e8

7! e1 + e2 � e3 � e5 � e7 � e9 7! e3 + e6 � e7

7! �e3, (5.103)

e10 7! e11 7! . . . 7! e16+p 7! �e5 �
16+pX

i=9

ei

7! �e2 + e5 + e6 � e7 7! �e10. (5.104)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = he1, e3, e4, e8, e6 � e7, e5 + e6, e2 � e9i, (5.105)

B2 = he10, e11, . . . , e16+p, e5 + e9, e2 � e6 + e7 + e9i. (5.106)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 � B2. Furthermore
B1 �B2 � {2e2} and B1 +B2 + Z · e2 = Ml(f). This shows [Ml(f) : B1 �B2] = 2 = rI .
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Figure 5. The CDD of a distinguished basis e1, . . . , eµ for Z1,p from [Eb81,
Tabelle 6 & Abb. 16]

5.5. The series Z1,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 5 as follows:

e1 7! e3 + e4 + e5 + e6,

e2 7! e10 + e11,

e3 7! �e1 � e3 � e6 + e7,

e4 7! �e1 � e6 + e7 + e8,

e5 7! �e1 � e6 + e7 + e10,

e6 7! 2e1 � e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! e1 � e2 + e3 + e4 + e5 + 2e6 � e7,

e8 7! e9,

e9 7! �e4 � e8 � e9,

e10 7! e1 + e2 + e11,

e11+i 7! e12+i for 1  i  3 + p,

e15+p 7! �e5 � e10 � e11 � . . .� e15+p.

Here there are three Orlik blocks B1, B2 and B3. By table (5.13) their generators are

�1 := e8, �2 := e11, and �3 := e3 + e4 � e9.

The monodromy acts on them as follows:

e8 7! e9 7! �e4 � e8 � e9 7! e1 + e4 + e6 � e7

7! e3 + e4 + e5 + e6 + e8

7! �e1 � e2 + e4 + e5 + e7 + e8 + e9 + e10

7! �e4 � e6 + e7 7! �e8, (5.107)

e11 7! e12 7! . . . 7! e15+p 7! �e5 �
15+pX

i=10

ei

7! �e2 + e5 + e6 � e7 7! �e11, (5.108)

e3 � e4 � e9 7! �e3 + e4 + e9. (5.109)
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Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = he8, e9, e4, e1, e6 � e7, e3 + e5 + e6,

�e2 + e5 + e7 + e10i, (5.110)

B2 = he11, e12, . . . , e15+p; e5 + e10,�e2 + e5 + e6 � e7i, (5.111)

B3 = he3 � e4 � e9i. (5.112)

This shows that B1, B2 and B3 are primitive sublattices with B1 + B2 + B3 = B1 � B2 � B3.
Furthermore B1 � B2 � B3 � {2e5} and B1 + B2 + B3 + Z · e5 = Ml(f). This shows [Ml(f) :
B1 �B2 �B3] = 2 = rI .
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Figure 6. The CDD of a distinguished basis e1, . . . , eµ for Q2,p from [Eb81,
Tabelle 6 & Abb. 16]

5.6. The series Q2,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 6 as follows:

e1 7! e3 + e4 + e5 + e6,

e2 7! e10 + e11,

e3 7! �e1 � e6 + e7 + e8,

e4 7! �e1 � e6 + e7 + e9,

e5 7! �e1 � e6 + e7 + e10,

e6 7! 2e1 � e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! e1 � e2 + e3 + e4 + e5 + 2e6 � e7,

e8 7! �e3 � e8,

e9 7! �e4 � e9,

e10 7! e1 + e2 + e11,

e10+i 7! e11+i for 1  i  3 + p,

e14+p 7! �e5 � e10 � e11 � . . .� e14+p.
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By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := e8 and �2 := e11. The
monodromy acts on them as follows:

e8 7! �e3 � e8 7! e1 + e3 + e6 � e7 7! e3 + e4 + e5 + e6 + e8

7! �e1 � e2 + e4 + e5 + e7 + e9 + e10 7! �e4 � e6 + e7

7! �e9 7! e4 + e9 7! �e1 � e4 � e6 + e7, (5.113)

e11 7! e12 7! . . . 7! e14+p 7! �e5 �
14+pX

i=10

ei

7! �e2 + e5 + e6 � e7 7! �e11. (5.114)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = he8, e3, e9, e4, e1, e6 � e7,

e5 + e6,�e2 + e5 + e7 + e10i, (5.115)

B2 = he11, e12, . . . , e14+p; e5 + e10,�e2 + e5 + e6 � e7i. (5.116)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 � B2. Furthermore
B1 �B2 � {2e5} and B1 +B2 + Z · e5 = Ml(f). This shows [Ml(f) : B1 �B2] = 2 = rI .

The proof of (5.4) for Q2,p was postponed to this subsection and has to be given now. Recall
the definition (5.37) of b4 and recall b4 = �4 for Q2,4s and b4 = 1 for the other Q2,p. The next
aims are:

(i) For Q2,4s: To show for any g 2 GZ [Aut(B1 �B2, L)

g : (B1)b4 ! (B1)b4 and (B2)b4 ! (B2)b4 . (5.117)

(ii) For all Q2,p: To find an element �4 2 (B1)�4 with

B1 �B2 = {a 2Ml(f) |L(a, �4) ⌘ 0(2)} (5.118)

= {a 2Ml(f) |L(a,Mh(�4)) ⌘ 0(2)},
g(�4) 2 {±�4,±Mh(�4)} for any g 2 GZ. (5.119)

(iii) For all Q2,p: To find an element �5 2Ml(f) with

B1 +B2 + Z · �5 = Ml(f) (5.120)

and g(�5) 2Ml(f) for any g 2 Aut(B1 �B2, L). (5.121)

For all Q2,p define

�1 :=
b1

�4
(Mh)(�1) = (�12�3)(Mh)(e8)

= (t6 + t
5 � t

3 + t+ 1)(Mh)(e8)

= �2e3 � 2e4 � e5 � 2e6 + e7 � e8 � e9. (5.122)

Obviously M
2
h
(�1) = ��1. By remark 2.6 (v), (B1)�4 is an Orlik block with cyclic generator �1,

so (B1)�4 = Z · �1 � Z ·Mh(�1). Calculate

Mh(�1) = 2e1 + e2 � e5 + e6 � 2e7 � e8 � e9 � e10. (5.123)
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For Q2,4s define

�2 :=
b2

�4
(Mh)(�2) =

t
6+4s + 1

t2 + 1
(Mh)(e11)

= (t4+4s � t
2+4s + t

4s � . . .� t
2 + 1)(Mh)(e11)

= �e5 � e10 + (�1)
2+2sX

j=1

e10+2j + (�2)
1+sX

j=1

e9+4j . (5.124)

Obviously M
2
h
(�2) = ��2. By remark 2.6 (v), (B2)�4 is an Orlik block with cyclic generator �2,

so (B2)�4 = Z · �2 � Z ·Mh(�2). Calculate

Mh(�2) = �e2 + e5 + e6 � e7 +
2+2sX

j=1

(�1)j+1
e10+2j . (5.125)

For Q2,4s define

�3 :=
1

2
(�1 +Mh(�1) + �2 +Mh(�2)) (5.126)

and observe

�3 = e1 �
X

j2{3,4,5,7,8,9,10}

ej �
1+sX

j=1

(e9+4j + e10+4j)

!
2 Ml(f). (5.127)

Together with [Ml(f) : B1 � B2] = 2 this shows (5.120) and that �1,Mh(�1), �3,Mh(�3) is
a Z-basis of Ml(f)�4 . We want to calculate the matrices of L with respect to the basis
�1,Mh(�1), �2,Mh(�2) of (B1 � B2)�4 and the basis �1,Mh(�1), �3,Mh(�3) of Ml(f)�4 . Es-
sentially we need to calculate only the values L(�1, �1) and L(�2, �2), because of (5.3) and
because of the identities for any a 2Ml(f)�4 ,

L(a,Mh(a)) = L(Mh(a),M2
h
(a)) = �L(Mh(a), a)

= L(a, a) = L(Mh(a),Mh(a)).
(5.128)

Using M
2
h
(�j) = ��j and calculations similar to (2.17), we find

L(�1, �1) = L(
b1

�4
(�M�1

h
)(�1), e8) = 3 · L(Mh(�1), e8) = 3, (5.129)

L(�2, �2) = L(
b2

�4
(M�1

h
)(�2), e11)

= (3 + 2s) · L(�2, e11) = 3 + 2s, (5.130)
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thus

L(

0

BB@

�1

Mh(�1)
�2

Mh(�2)

1

CCA ,

0

BB@

�1

Mh(�1)
�2

Mh(�2)

1

CCA

t

) =

0

BB@

3 3 0 0
�3 3 0 0
0 0 3 + 2s 3 + 2s
0 0 �(3 + 2s) 3 + 2s

1

CCA (5.131)

and

L(

0

BB@

�1

Mh(�1)
�3

Mh(�3)

1

CCA ,

0

BB@

�1

Mh(�1)
�3

Mh(�3)

1

CCA

t

) =

0

BB@

3 3 3 0
�3 3 0 3
0 3 3 + s 3 + s

�3 0 �(3 + s) 3 + s

1

CCA . (5.132)

The quadratic form associated to the last matrix is

3

2
·
⇥
(x1 + x3)

2 + (x1 � x4)
2 + (x2 + x3)

2 + (x2 + x4)
2
⇤

(5.133)

+s · (x2
3 + x

2
4).

This shows (first for Q2,4s, but in fact for all Q2,p)

{a 2Ml(f)�4 |L(a, a) = 3} = {±�1,±Mh(�1)}, (5.134)

and because of (B1 �B2)�4 ⇢Ml(f)�4

{a 2 (B1 �B2)�4 |L(a, a) = 3} = {±�1,±Mh(�1)}, (5.135)

This implies that any g 2 GZ [Aut(B1�B2, L) maps the set {±�1,±Mh(�1)} to itself and thus
(B1)�4 to itself and thus the L-orthogonal sublattice (B2)�4 to itself. This shows (5.117) and
gives (i).

Define for all Q2,p

�4 := �1 +Mh(�1) (5.136)

= 2e1 + e2 � 2e3 � 2e4 � 2e5 � e6 � e7 � 2e8 � 2e9 � e10.

Observe

Mh(�4) = ��1 +Mh(�1) (5.137)

= �2�1 + �4. (5.138)

(5.134) and (5.137) imply (5.119). (5.138) implies the second equality in (5.118). One calculates

L(e8, �4) = 0. (5.139)

This shows L(e8,Mh(�4)) ⌘ 0(2) (in fact, it is = �2). The Mh-invariance of L and the fact that
e8 is a cyclic generator of the Orlik block B1 give B1 ⇢ {a 2 Ml(f) |L(a, �4) ⌘ 0(2)}. As (5.3)
implies L(B2, �4) = 0, so B1 �B2 ⇢ {a 2Ml(f) |L(a, �4) ⌘ 0(2)}. Now rI = 2 and for example
L(e2, �4) = �1 6⌘ 0(2) show (5.118) and (ii). (ii) implies GZ ⇢ Aut(B1 �B2, L).

(iii) implies Aut(B1 �B2, L) ⇢ GZ, but (iii) has still to be proved.
We continue as in the final part of the proof of part (a) for the other series. (i) holds. Lemma

2.8 can be applied. Therefore (5.42) and (5.43) hold for Q2,p. The group Aut(B1 � B2, L) for
12 6 |p is generated by Mh,� id,Mh|B1 ⇥ id |B2 and (� id)|B1 ⇥ id |B2 , and analogously for the
group in (5.43) if 12|p.
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Figure 7. The CDD of a distinguished basis e1, . . . , eµ for W1,p from [Eb81,
Tabelle 6 & Abb. 16]

For Q2,4s we define �5 := �3. It satisfies (5.120). If 12|4s, it is in (B1)b1/�m
+ (B3)b2/�m

, so
we can work with the group in (5.43). If 12 6 |4s, we work with the group in (5.42). In both cases
�5 satisfies (5.121), because of

(Mh|B1 ⇥ id |B2)(�5) = �5 �Mh(�1) 2Ml(f), (5.140)

((� id)|B1 ⇥ id |B2)(�5) = �5 � (�1 +Mh(�1)) 2Ml(f). (5.141)

For other Q2,p, we choose a di↵erent (rather simple) �5,

�5 := e10 (5.142)

=
1

2
(�e2 + e6 � e7 + e10)�

1

2
(�e2 + e6 � e7 � e10),

with �e2 + e6 � e7 + e10 2 B1,�e2 + e6 � e7 � e10 2 B2.

Then (5.120) holds. And

(Mh|B1 ⇥ id |B2)(�5) = e1 + e2 2Ml(f), (5.143)

((� id)|B1 ⇥ id |B2)(�5) = e2 � e6 + e7 2Ml(f). (5.144)

In any case (5.120) and (5.121) and (iii) hold. Thus Aut(B1 �B2, L) ⇢ GZ, and (5.4) is proved
for Q2,p.
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5.7. The series W1,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 7 as follows:

e1 7! �e1 � e2 + e3 + e4 + e5 + e6,

e2 7! 2e1 + 2e2 + e8 + e12 + e16,

e3 7! �e1 � e3 � e6 + e7,

e4 7! e2 � e6 + e7 + e8,

e5 7! e2 � e6 + e7 + e12,

e6 7! e1 � 2e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! �2e2 + e3 + e4 + e5 + 2e6 � e7,

e8 7! e9,

e9 7! e10,

e10 7! e11,

e11 7! �e4 � e8 � e9 � e10 � e11,

e12 7! e13,

e13 7! e14,

e14 7! e15,

e15 7! �e5 � e12 � e13 � e14 � e15,

e15+i 7! e16+i for 1  i  p� 1,

e15+p 7! �e1 � e2 � e16 � e17 � . . .� e15+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := e3+e9+e11 and �2 := e16.
The monodromy acts on them as follows:

e3 + e9 + e11 7! �e1 � e3 � e4 � e6 + e7 � e8 � e9 � e11

7! e1 � e5 � e7 + e11

7! �e1 � e4 � e8 � e9 � e10 � e11 � e12

7! e1 � e3 � e5 � e7 � e13

7! e3 + e6 � e7 � e12 � e14

7! �e3 � e13 � e15

7! e1 + e3 + e5 + e6 � e7 + e12 + e13 + e15

7! �e1 + e4 + e7 � e15

7! e1 + e5 + e8 + e12 + e13 + e14 + e15 (5.145)

7! �e1 + e3 + e4 + e7 + e9

7! �e3 � e6 + e7 + e8 + e10

7! e3 + e9 + e11,
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e16 7! e17 7! . . . 7! e14+p 7! e15+p

7! �e1 � e2 �
15+pX

i=16

ei

7! �e3 � e4 � e5 � e6 � e8 � e12

7! �e4 � e5 � e7 � e8 � e9 � e12 � e13

7! �e3 � e4 � e5 � e7 � e8 � e9 � e10 � e12 � e13 � e14

7! e1 � e4 � e5 + e6 � 2e7 �
15X

i=8

ei

7! �e2 + e4 + e5 + 2e6 � 2e7 (5.146)

7! �e16.

Thus the characteristic polynomial of Mh on Bj is bj . Here the blocks B1 and B2 are generated
by the first deg b1 respectively deg b2 of the elements above. Here B1 + B2 = B1 � B2 and
[Ml(f) : B1 � B2] = 2 = rI follow by the calculation of the determinant which expresses these
generators of B1 and B2 in the distinguished basis e1, . . . , eµ. Then it also follows that B1 and
B2 are primitive sublattices.

The proof of (5.4) for W1,6s�3 was postponed to this subsection and has to be given here.
But the majority of the arguments was already given in the proof of part (a). It rests to prove
the following two points:

(i) (5.34) holds for W1,3.
(ii) In the case W1,6s�3, any g 2 GZ [ Aut(B1 � B2, L) maps (B1)b4 to itself and (B2)b4 to

itself. Here b4 = �6�2.

For the rest of this subsection we restrict to W6s�3. Define for it

�1 :=
b1

�6�2
(Mh)(�1) = (�12�3)(Mh)(e3 + e9 + e11) (5.147)

= �3(Mh)(e9 � e13) = e9 + e10 + e11 � e13 � e14 � e15,

�2 :=
b2

�6�2
(Mh)(�2) =

t
6+p + 1

t3 + 1
(Mh)(e16) (5.148)

= (t3+p � t
p + . . .� t

3 + 1)(Mh)(e16)

= e1 + e2 �
X

j2{3,4,5,7,8,9,10,12,13,14}

ej +
pX

j=1

e15+j +

p/3�1X

j=0

(�1)je16+3j .

�1 and �2 are cyclic generators of the Orlik blocks (B1)�6�2 and (B2)�6�2 , see remark 2.6 (v).
Thus �i,Mh(�i) and M

2
h
(�i) are a Z-basis of (Bi)�6�2 . One calculates
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Mh(�1) = �e4 � e8 � e9 + e5 + e12 + e13, (5.149)

M
2
h
(�1) = �e8 � e9 � e10 + e12 + e13 + e14, (5.150)

Mh(�2) = e1 + e3 + 2e6 � 2e7 �
X

j=9,10,11,13,14,15

ej

+

p/3�1X

j=0

(�1)je17+3j , (5.151)

M
2
h
(�2) = �e2 + 2e4 + 2e5 + 2e6 � e7 + e8 + e9 + e12 + e13

+

p/3�1X

j=0

(�1)je18+3j . (5.152)

We need to calculate the 6 ⇥ 6 matrix of values of L for the Z-basis
�1,Mh(�1),M2

h
(�1), �2,Mh(�2),M2

h
(�2) of (B1 � B2)�6�2 . Because of (5.3), it is block di-

agonal with two 3 ⇥ 3 blocks. Because L is Mh-invariant and because of the identities for any
a 2Ml(f)�6�2 ,

L(Mh(a), a) = �L(a, a), L(M2
h
(a), a) = �L(a,Mh(a)),

L(a,M2
h
(a)) = L(Mh(a),M

3
h
(a)) = �L(Mh(a), a) = L(a, a),

each 3⇥ 3 matrix is determined by two values. The matrices are

L(M i

h
(�1),M

j

h
(�1))i,j=0,1,2 =

0

@
2 2 2
�2 2 2
�2 �2 2

1

A , (5.153)

L(M i

h
(�2),M

j

h
(�2))i,j=0,1,2 =

0

@
1 + 2s 0 1 + 2s
�1� 2s 1 + 2s 0

0 �1� 2s 1 + 2s

1

A . (5.154)

Recall the definition e�2 := 1
2 (�1 + �2) in (5.21), and recall

Ml(f)�2 = Z�1 � Ze�2
2:1
� Z�1 � Z�2 = (B1 �B2)�2 . (5.155)

Thus also

Ml(f)�6�2 = h�1,Mh(�1),M
2
h
(�1), �2,Mh(�2), e�2i

2:1
� (B1 �B2)�6�2 , (5.156)

where

e�2 =
1

2
(�1 + �2) =

1

2
(�1 �Mh(�1) +M

2
h
(�1) + �2 �Mh(�2) +M

2
h
(�2)).

The matrix of L for the Z-basis �1,Mh(�1),M2
h
(�1), �2,Mh(�2), e�2 of Ml(f)�6�2 is

0

BBBBBB@

2 2 2 0 0 1
�2 2 2 0 0 �1
�2 �2 2 0 0 1
0 0 0 1 + 2s 0 1 + 2s
0 0 0 �1� 2s 1 + 2s �1� 2s
1 �1 1 1 + 2s �1� 2s 3 + 3s

1

CCCCCCA
(5.157)
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The associated quadratic form (x1 . . . x6)(matrix)

0

B@
x1
...
x6

1

CA is

1

2

⇥
(2x1 + x6)

2 + (2x2 � x6)
2 + (2x3 + x6)

2
⇤

(5.158)

+
1

2
(1 + 2s)

⇥
(x4 � x5 + x6)

2 + (x4 + x6)
2 + (x5 � x6)

2
⇤
.

One finds

{a 2Ml(f)�6�2 |L(a, a) = 2} = {±M
j

h
(�1) | j = 0, 1, 2}, (5.159)

and also

{a 2 (B1 �B2)�6�2 |L(a, a) = 2} = {±M
j

h
(�1) | j = 0, 1, 2}. (5.160)

Thus any g 2 GZ [ Aut(B1 � B2, L) maps �1 to an element of {±M
j

h
(�1) | j = 0, 1, 2}. These

are cyclic generators of the Orlik block (B1)�6�2 . Thus any g 2 GZ [ Aut(B1 � B2, L) maps
(B1)�6�2 to itself. As (B2)�6�2 is the L-orthogonal sublattice within Ml(f)�6�2 , such a g maps
also (B2)�6�2 to itself. This shows (ii) above. Especially such a g maps (B1)�2 to itself and its
generator �4 = �1 to ±�4. This shows (i) above.

3

4 59 12

6

1

2

13 14

7

8

1011

15

14+p

Figure 8. The CDD of a distinguished basis e1, . . . , eµ for S1,p from [Eb81,
Tabelle 6 & Abb. 16]
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5.8. The series S1,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 8 as follows:

e1 7! �e1 � e2 + e3 + e4 + e5 + e6,

e2 7! 2e1 + 2e2 + e9 + e12 + e15,

e3 7! �e1 � e6 + e7 + e8,

e4 7! e2 � e6 + e7 + e9,

e5 7! e2 � e6 + e7 + e12,

e6 7! e1 � 2e2 + e3 + e4 + e5 + 3e6 � 2e7,

e7 7! �2e2 + e3 + e4 + e5 + 2e6 � e7,

e8 7! �e3 � e8,

e9 7! e10,

e10 7! e11,

e11 7! �e4 � e9 � e10 � e11,

e12 7! e13,

e13 7! e14,

e14 7! �e5 � e12 � e13 � e14,

e14+i 7! e15+i for 1  i  p� 1,

e14+p 7! �e1 � e2 � e15 � e16 � . . .� e14+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are �1 := �e8 + e13 and �2 := e15.
The monodromy acts on them as follows:

�e8 + e13 7! e3 + e8 + e14

7! �e1 � e3 � e5 � e6 + e7 � e12 � e13 � e14

7! e1 � e3 � e4 � e7 � e8

7! e3 + e6 � e7 � e9

7! e8 � e10

7! �e3 � e8 � e11

7! e1 + e3 + e4 + e6 � e7 + e9 + e10 + e11

7! �e1 + e3 + e5 + e7 + e8

7! �e3 � e6 + e7 + e12 (5.161)

7! �e8 + e13,

e15 7! e16 7! . . . 7! e14+p 7! �e1 � e2 �
14+pX

i=15

ei

7! �e3 � e4 � e5 � e6 � e9 � e12

7! �e3 � e4 � e5 � e7 � e8 � e9 � e10 � e12 � e13

7! e1 � e4 � e5 + e6 � 2e7 �
X

j2{9,10,11,12,13,14}

ej

7! �e2 + e4 + e5 + 2e6 � 2e7 7! �e15. (5.162)



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 169

Thus the characteristic polynomial of Mh on Bj is bj . Here the blocks B1 and B2 are generated
by the first deg b1 respectively deg b2 of the elements above. Here B1 + B2 = B1 � B2 and
[Ml(f) : B1 � B2] = 2 = rI follow by the calculation of the determinant which expresses these
generators of B1 and B2 in the distinguished basis e1, . . . , eµ. Then it also follows that B1 and
B2 are primitive sublattices.

The proof of (5.5) for S1,10 was postponed to this section and has to be given here. From
now on only S1,10 is considered. (5.25) shows that (Ml(f)�2 , L) is an A2-lattice with roots
{±�1,±e�2,±(e�2 � �1)}. Here �1 generates (B1)�2 . We will show that (B1)�10 and ±�1 satisfy
the following special relationship:

h
((B1)�10 + Z · a)Q \Ml(f) : ((B1)�10 + Z · a)

i

=

⇢
5 if a = ±�1,
1 if a 2 {±e�2,±(e�2 � �1)}.

(5.163)

If a = ±�1, then

((B1)�10 + Z · a)Q \Ml(f) = (B1)�10�2 =
4M

j=0

Z · (tj�5)(Mh)(�1),

(B1)�10 + Z · a = (B1)�10 + (B1)�2

=
3M

j=0

Z · (tj�2�5)(Mh)(�1) � Z · (�10�5)(Mh)(�1),

so the index is
2

4
4M

j=0

Z · tj :
3M

j=0

Z · tj�2 � Z · �10

3

5 = 5.

Now recall that (B1)�10 is a primitive sublattice of Ml(f) and that

B1 ⇢
14M

j=1

Z · ej , so (B1)�10 ⇢
14M

j=1

Z · ej .

Observe that

e�2 ⌘ e�2 � �1 ⌘ �
24X

j=15

ej mod
14X

j=1

Z · ej .

Because of the sum �
P24

j=15 ej in e�2 and in e�2 � �1, the sublattices (B1)�10 � Z · e�2 and
(B1)�10 � Z · (e�2 � �1) are primitive in Ml(f), so the index above is 1. This shows (5.163).

Now (5.5) is an easy consequence: Consider an element g 2 GZ with g((B1)�10) = (B1)�10 . It
must map �1 to some root of the A2-lattice (Ml(f)�10 , L). Because of (5.163), the image must
be ±�1, so g((B1)�2) = (B1)�2 . Therefore g((B1)�10�2) = (B1)�10�2 and by its L-orthogonality
also g((B2)�10�2) = (B2)�10�2 .

For S1,10 b1 = �10�5�2 and b2 = �30�10�6�2, so the eigenspaces with eigenvalues di↵erent
from the roots of �10�2 are one-dimensional and are either in (B1)C or in (B2)C. This implies
(5.5) for S1,10.

This finishes the proof of theorem 5.1. ⇤
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6. The group GZ for the quadrangle singularities

The normal forms from [AGV85, §13] for the six families of quadrangle singularities will be listed
below in section 10. The quadrangle singularities can be seen as special 0-th members of the
eight bimodal series, with the two series W ]

1,p and W1,p for W1,0 and the two series S]

1,p and S1,p

for S1,0.
The following table specializes the table (5.1) to the case p = 0. For W1,0 and S1,0, we have

chosen the specialization of the cases W ]

1,p and S
]

1,p, not W1,p and S1,p. The reason is that the

Orlik blocks in theorem 5.1 for W ]

1,p and S
]

1,p work also for W1,0 and S1,0, but those for W1,p and
S1,p work not for W1,0 and S1,0. Again b1b2 respectively b1b2b3 for Z1,0 are the characteristic
polynomials of the surface singularities.

family µ b1 b2 b3 m rI

W1,0 15 �12 �12�6�4�3�2 � 12 1
S1,0 14 �10�2 �10�5�2 � 10 1
U1,0 14 �9 �9�3 � 9 1
E3,0 16 �18�2 �18�6�2 � 18 2
Z1,0 15 �14�2 �14�2 �2 14 2
Q2,0 14 �12�4�3 �12�4 � 12 2

(6.1)

The following theorem on the group GZ has a strong similarity with the analogous theorem
5.1 for the eight bimodal series. And luckily, also large parts of the proof of theorem 5.1 apply
also to the case p = 0. We do not have (5.4) GZ = Aut(

L
j�1 Bj , L) for E3,0, Z1,0, Q2,0. But we

have an analogue of the substitute (5.5) for S1,10, the formula (6.4). Contrary to theorem 5.1,
we need and give a precise description of the induced Fuchsian group. The proof uses theorem
3.6. A part of the proof (a surjectivity) is postponed to section 10. For each family, denote
⇣ := e

2⇡i/m 2 S
1 ⇢ C.

Theorem 6.1. For any surface singularity f in any of the six families of quadrangle singulari-
ties, the following holds.

(a) (See definition 2.3 for the notion Orlik block) For all families except Z1,0, there are
Orlik blocks B1, B2 ⇢ Ml(f), and for Z1,0, there are Orlik blocks B1, B2, B3 ⇢ Ml(f) with the
following properties. The characteristic polynomial pBj

of the monodromy on Bj is bj. The sumP
j�1 Bj is a direct sum

L
j�1 Bj, and it is a sublattice of Ml(f) of full rank µ and of index rI .

Define

eB1 :=

⇢
B1 for all cases except Z1,0,

B1 �B3 for Z1,0.
(6.2)

Then

L( eB1, B2) = 0 = L(B2,
eB1), (6.3)

g 2 GZ with g((B1)�m
) = (B1)�m

) g(Bj) = Bj for j � 1. (6.4)

(b) The eigenspace Ml(f)⇣ ⇢ Ml(f)C is 2-dimensional. The hermitian form h⇣ on it from
lemma 2.2 (a) with h⇣(a, b) :=

p
�⇣ · L(a, b) for a, b 2 Ml(f)⇣ is nondegenerate and indefinite,

so P(Ml(f)⇣) ⇠= P
1 contains a half-plane

H⇣ := {C · a | a 2Ml(f)⇣ with h⇣(a, a) < 0} ⇢ P(Ml(f)⇣). (6.5)

Therefore the group Aut(Ml(f)⇣ , h⇣)/S1 · id is isomorphic to PSL(2,R). The homomorphism

 : GZ ! Aut(Ml(f)⇣ , h⇣)/S
1 · id, g 7! g|Ml(f)⇣modS1 · id, (6.6)
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is well-defined.  (GZ) is an infinite Fuchsian group acting on the half-plane H⇣ . It is a triangle
group of the same type as in theorem 3.6, so of the following type:

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

(2, 12, 12) (2, 10, 10) (2, 3, 18) (2, 3, 14) (2, 3, 12)
(6.7)

And

ker = {±M
k

h
| k 2 Z}. (6.8)

Proof: (a) We choose again (as in section 5) for each of the six cases a distinguished basis
with the Coxeter-Dynkin diagram in [Eb81, Tabelle 6 and Abb. 16].

The diagrams for W ]

1,p and W1,p specialize both to the same diagram for W1,0. Though the

description of the action of the monodromy on the distinguished basis for W ]

1,p in 5.1 specializes
to W1,0, but not the description for W1,p in 5.7. In the latter case e2 7! 2e1+2e2+e8+e12+e16,
but e16 does not exist for W1,0. Therefore we work with the specialization to p = 0 of the

formulas for W ]

1,p in subsection 5.1.
The same applies to S1,0. There we work with the specialization to p = 0 of the formulas for

S
]

1,p in subsection 5.2.
The Orlik blocks B1 and B2 (and B3 for Z1,0) are defined as in the proof of theorem 5.1, there

for p > 0, now for p = 0. By the same arguments, the sum
P

j�1 Bj is a direct sum
L

j�1 Bj

and a sublattice of Ml(f) of full rank µ and index rI , and (6.3) holds.
With respect to part (a), it rests to show (6.4). In the cases W1,0 and U1,0, it is trivial as

rI = 1 and b1 = �m and B1 and B2 are L-orthogonal.
In the cases S1,0, E3,0, Z1,0 and Q2,0, the proof will be similar to the proof of (5.5) for S1,10

in subsection 5.8. First we treat S1,0, E3,0 and Z1,0 together, then we come to Q2,0.
The following formulas in the proof of part (a) of theorem 5.1 specialize to the cases S1,0, E3,0

and Z1,0: (5.10)–(5.26), (5.28), (5.33), (5.35).
The quadratic forms in (5.26) give now the following variants of (5.27) and (5.29):

{a 2Ml(f)�2 |L(a, a) = 5} = {±�1,±�2}for S1,0, (6.9)

{a 2Ml(f)�2 |L(a, a) = 6} = {±�1,±e�2,±(e�2 � �1)}for E3,0,

{a 2Ml(f)�2 |L(a, a) = 5} = {±(�1 � 3�2),

±e�2,±(e�2 � �2)}for Z1,0.

The first element (up to sign) of each of these three sets generates in the corresponding case
(B1)�2 . We claim that (B1)�m

and this first element satisfy the following special relationship.
For a in any of these three sets define

r(a) := [((B1)�m
+ Z · a)Q \Ml(f) : ((B1)�m

+ Z · a)] 2 Z�1. (6.10)

Then we claim:

S1,0 E3,0 Z1,0

a r(a) ±�1 5 ±�1 3 ±(�1 � 2�3) 7
a r(a) ±�2 1 ±e�2,±(e�2 � �1) 1 ±e�2,±(e�2 � �2) 1

(6.11)

The proof is the same as the proof of (5.163) for S1,10 in subsection 5.8. We use that for any
unitary polynomial p(t) 2 Z[t]

2

4
deg pM

j=0

Z · tj :
deg p�1M

j=0

Z · tj�2 � Z · p(t)

3

5 = |p(�1)|, (6.12)
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and

�10(�1) = 5,�18(�1) = 3,�14(�1) = 7. (6.13)

We also use

B1 ⇢
m1X

j=1

Z · ej with m1 := 8, 9, 10 for S1,0, E3,0, Z1,0 (6.14)

and that the elements in the second line of (6.11) are modulo
P

m1

j=1 Z · ej

S1,0 : �2 ⌘ e9 + e11 + e12 + e14, (6.15)

E3,0 : e�2 ⌘ e10 + e12 + e14 + e16, e�2 � �1 ⌘ e�2,
Z1,0 : e�2 ⌘ e11 + e13 + e15, e�2 � �2 ⌘ �e�2.

Therefore (B1)�m
+ Z · a for these elements a is primitive in Ml(f), and thus r(a) = 1.

The derivation of (6.4) from (6.11) and (6.9) for S1,0, E3,0 and Z1,0 is almost the same as the
derivation of (5.5) from (5.163) for S1,10 in subsection 5.8.

The only additional argument concerns B3 = Z · �3 in the case Z1,0. Because of (5.28) any
g 2 GZ maps B3 to itself. Because of L(�1�2�3, �3) = 1 6= 0, B3 and (B1)�2 are glued together:
If g = " · id on (B1)�2 for some " 2 {±1}, then g = " · id on B3.

Now we come to Q2,0. The formulas (5.113)–(5.116), (5.118)–(5.119), (5.122)–(5.133),
(5.136)–(5.139) are also valid for p = 0 respectively s = 0. The quadratic form in (5.133)
now gives the following variant of (5.134):

A := {�1, �3, �1 � �3 +Mh(�3), �1 �Mh(�1) +Mh(�3)}, (6.16)

{b 2Ml(f)�4 |L(b, b) = 3} =
[

a2A

{±a,±Mh(a)}, (6.17)

so these are 16 elements which come in 4 sets of 4 elements such that each set is Mh-invariant.
Recall that M2

h
= � id on Ml(f)�4 . The set {±�1,±Mh(�1)} generates (B1)�4 .

We claim that (B1)�12 and this set satisfy the following special relationship. For a 2 A define
the index

r(a) :=
⇥
((B1)�12 + Z · a+ Z ·Mh(a))Q \Ml(f) (6.18)

: ((B1)�12 + Z · a+ Z ·Mh(a))
⇤
2 Z�1.

Then we claim:

r(a) =

8
<

:

9 for a = �1,

1 for a 2 {�3, �1 �Mh(�1) +Mh(�3)},
1 or 2 for a = �1 � �3 +Mh(�3).

(6.19)

r(�1) = 9 holds because of

((B1)�12 + Z · �1 + Z ·Mh(�1))Q \Ml(f) (6.20)

= (B1)�12�4 =
5M

j=0

Z · (tj�3)(Mh)(�1),

(B1)�12 + Z · �1 + Z ·Mh(�1) (6.21)

=
3M

j=0

Z · (tj�4�3)(Mh)(�1)�
1M

j=0

Z · (tj�12�3)(Mh)(�1),
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and thus

r(�1) =

2

4
5M

j=0

Z · tj :
3M

j=0

Z · tj�4 �
1M

j=0

Z · tj�12

3

5 = 3 · 3. (6.22)

For a 2 A� {�1}, r(a) 2 {1, 2} holds because of

B1 ⇢
10X

j=1

Z · ej , (6.23)

and because the elements a and Mh(a) for a 2 A� {�1} are modulo
P10

j=1 Z · ej

�1 ⌘ �e13 � e14, (6.24)

Mh(�1) ⌘ e12 + e13,

�1 � �3 +Mh(�3) ⌘ e12 + 2e13 + e14,

Mh(�1 � �3 +Mh(�3)) ⌘ �e12 + e14,

�1 �Mh(�1) +Mh(�3) ⌘ e12 + e13,

Mh(�1 �Mh(�1) +Mh(�3)) ⌘ e13 + e14.

The derivation of (6.4) for Q2,0 from (6.17) and (6.19) is a simple variant of the derivation of
(5.5) from (5.163) for S1,10 in subsection 5.8: Consider an element g 2 GZ with

g((B1)�12) = (B1)�12 .

Because of (6.17), it maps the set {±�1,±Mh(�1)} to one of the four sets on the right hand
side of (6.17). Because of (6.19), the image must be the set {±�1,±Mh(�1)} itself. As this set
generates (B1)�4 , g maps (B1)�4 to itself. Then g maps the sets (B1)�12�4 , B1 = (B1)�12�4�3

and B2 = (B2)�12�4 to themselves. This finishes the proof of part (a).

(b) All the formulas and arguments in the proof of part (c) of theorem 5.1 for the cases
W

]

1,12r, S
]

1,10r, U1,9r, E3,18r, Z1,14r and Q2,12r are also valid for r = 0.
In step 3 now (6.4) is used instead of (5.4), just as (5.5) for S1,10. Therefore (6.7) holds and

 (GZ) is an infinite Fuchsian group.
By table (5.72), the remarks 3.5 and theorem 3.6,  (GZ) is a subgroup of a triangle group of

the same type as in theorem 3.6, for each case. The proof of theorem 10.1 will show that it is
the full triangle group. ⇤

7. Gauss-Manin connection and Brieskorn lattice

The Gauss-Manin connection of isolated hypersurface singularities had been considered first by
Brieskorn in 1970 [Br70]. Since then it had been described by many people in many papers (K.
Saito, Greuel, Pham, Varchenko, M. Saito, Hertling, and others). The following presentation
will be short on the D-module foundations. It will be very precise on the relations between
the di↵erent pairings (more precise than anywhere in the literature). And it will emphasize the
computational aspects. Other versions are in [AGV88], [He93], [He95], [Ku98] and [He02].

Throughout most of this section, we consider a fixed isolated hypersurface singularity
f : (Cn+1

, 0)! (C, 0), its flat cohomology bundle
S

⌧2�⇤ H
n(f�1(⌧),C), and the space H

1
C

of global flat multi-valued sections (see section 4 for H1
C ).

First we define the elementary sections es(A,↵), the spaces C↵ which they generate, and the
V -filtration.
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Any global flat multi-valued section A 2 H
1
�

and any choice of ↵ 2 Q with e
�2⇡i↵ = � leads

to a holomorphic univalued section with specific growth condition at 0 2 �, the elementary
section es(A,↵) with

es(A,↵)(⌧) := e
log ⌧(↵� N

2⇡i
) ·A(log ⌧). (7.1)

Recall that N is the nilpotent part of the monodromy Mh. Denote by C
↵ the C-vector space of

all elementary sections with fixed ↵ and �. The map

 ↵ := es(.,↵) : H1
�
! C

↵ (7.2)

is an isomorphism. The space V
mod :=

L
↵2(�1,0] C{⌧}[⌧�1] · C↵ is the space of all germs at 0

of the sheaf of holomorphic sections on the flat cohomology bundle with moderate growth at 0.
The Kashiwara-Malgrange V -filtration is given by the subspaces

V
↵ :=

M

�2[↵,↵+1)

C{⌧} · C�
, V

>↵ :=
M

�2(↵,↵+1]

C{⌧} · C�
. (7.3)

It is a decreasing filtration by free C{⌧}-modules of rank µ with Gr↵
V
= V

↵
/V

>↵ ⇠= C
↵. And

⌧ : C↵ ! C
↵+1 bijective, ⌧ · es(A,↵) = es(A,↵+ 1),

@⌧ : C↵ ! C
↵�1 bijective if ↵ 6= 0, (7.4)

⌧@⌧ � ↵ : C↵ ! C
↵ nilpotent, (⌧@⌧ � ↵)es(A,↵) = es(

�N
2⇡i

A,↵).

Therefore @�1
⌧

: V >�1 ! V
>0 is an isomorphism, and V

>�1 is a free C{{@�1
⌧

}}-module of rank
µ.

With the polarizing form S (see (4.20)), we define a @�1
⌧

-sesquilinear pairing Kf on V
>�1.

Its restriction to the Brieskorn lattice will be the restriction of K. Saito’s higher residue pairings
to the Brieskorn lattice (which he defined on an extension of the Brieskorn lattice to a universal
unfolding).

Lemma 7.1. A unique pairing

Kf : V >�1 ⇥ V
>�1 ! C{{@�1

⌧
}} (7.5)

with the properties in (7.6)–(7.9) exists. In (7.6) and (7.7) A 2 H
1
e�2⇡i↵ , B 2 H

1
e�2⇡i� .

Kf (es(A,↵), es(B,�)) =
1

(2⇡i)n
S(A,B) · @�1

⌧
, (7.6)

for ↵,� 2 (�1, 0),↵+ � = �1,

Kf (es(A,↵), es(B,�)) =
�1

(2⇡i)n+1
S(A,B) · @�2

⌧
, (7.7)

for ↵ = � = 0,

Kf : C↵ ⇥ C
� ! 0 for ↵,� 2 R>�1,↵+ � /2 Z, (7.8)

@
�1
⌧

·Kf (a, b) = Kf (@
�1
⌧

a, b) = Kf (a,�@�1
⌧

b) (7.9)

for a, b 2 V
>�1

.

It satisfies also (for ↵,� 2 R>�1)

Kf : C↵ ⇥ C
� ! C · @�↵���2

⌧
if ↵+ � 2 Z, (7.10)

Kf (⌧a, b)�Kf (a, ⌧b) = [⌧,Kf (a, b)] for a, b 2 V
>�1

, (7.11)

where [⌧, @�k

⌧
] = k@

�k�1
⌧

. If one writes Kf (a, b) =
P

k�1 K
(�k)
f

(a, b) · @�k

⌧
with K

(k)
f

(a, b) 2 C,

then K
(�k)
f

is (�1)k+n+1-symmetric.
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Proof: It is clear that (7.6)–(7.9) define a unique @�1
⌧

-sesquilinear pairing on V
>�1. Its

@
�1
⌧

-sesquilinearity gives (7.10). One checks (7.11) with (7.4) and the infinitesimal N -invariance

of S. The symmetry of the K
(k)
f

follows from the symmetry of S and the @�1
⌧

-sesquilinearity of
Kf . ⇤
Remark 7.2. In the sections 9 and 10, we will prove the global Torelli conjecture for many
families of marked bimodal surface singularities. We want to claim that it follows also for all
suspensions of these families, and also for the curve singularities, if the surface singularities are
themselves suspensions of curve singularities.

The Milnor lattices of f and f + x
2
n+1 are up to a sign uniquely isomorphic. The normalized

Seifert form L
hnor and the group GZ are the same.

But the Brieskorn lattices of f and f +x
2
n+1 are not isomorphic. In [He93], the second author

had a lemma saying that they are su�ciently similar and vary in the same way in µ-constant
families.

Stronger and more elegant is the specialization to f+x
2
n+1 of a Thom-Sebastiani formula. But

that requires to look at a Fourier-Laplace transformation. In the present situation of sections
of moderate growth, this can be done in a nice and explicit way. Lemma 7.3, definition 7.4 and
theorem 7.5 do a good part of the work. Theorem 7.9 gives a Thom-Sebastiani formula for a
Fourier-Laplace transform of the Brieskorn lattice. Theorem 7.7 states well known properties of
the Brieskorn lattice.

The pairing in lemma 7.3 had been considered first by Pham [Ph85], see remark 7.6 (i).

Lemma 7.3. Let ��⇡ : Hn(f�1(z),C)! H
n(f�1(�z),C) (respectively �⇡) be the isomorphism

by flat shift in mathematically negative (respectively positive) direction. Define a pairing

P : Hn(f�1(z),C)⇥H
n(f�1(�z),C)! Cfor z 6= 0 (7.12)

by P (a, b) :=
1

(2⇡i)n+1
· Lnor(a, ��⇡(b)).

It is (�1)n+1-symmetric and nondegenerate and takes values in (2⇡i)�(n+1) · Z on
H

n(f�1(z),Z) ⇥ H
n(f�1(�z),Z). It is flat, i.e. it has constant values on pairs of flat sec-

tions in the cohomology bundle.

Proof: The only property which might not be immediately obvious, is the (�1)n+1-symmetry.
It compares the P in (7.12) with the P where in (7.12) z is replaced by �z. It follows from the
flatness, from Mh��⇡ = �⇡ and (4.15): Let a 2 H

n(f�1(z),Z), b 2 H
n(f�1(�z),Z), then

(2⇡i)n+1 · P (b, a) = L
nor(b, ��⇡a) = (�1)n+1

L
nor(Mh��⇡a, b)

= (�1)n+1
L
nor(�⇡a, b) = (�1)n+1

L
nor(a, ��⇡b)

= (2⇡i)n+1 · (�1)n+1 · P (a, b). (7.13)

⇤
Definition 7.4. [He02, (7.47)] For each ↵ 2 R>0 define the automorphism

G
(↵) : H

1
e�2⇡i↵ ! H

1
e�2⇡i↵ ,

G
(↵) :=

X

k�0

1

k!
�(k)(↵) ·

✓
�N
2⇡i

◆k

= 00�

✓
↵ · id+�N

2⇡i

◆
00
. (7.14)

Here � is the Gamma function, and �(k) is its k-th derivative. Define the automorphism

G :=
X

↵2(0,1]

G
(↵) : H1

C ! H
1
C . (7.15)
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The following theorem was first formulated in [He03, Proposition 7.7]. A detailed proof is in
[BH17, Theorem 5.2]. The most di�cult part is the proof of (7.21).

Theorem 7.5. (a) Let ⌧ and z both be coordinates on C. For ↵ > 0 and A 2 H
1
e�2⇡i↵ , the

Fourier-Laplace transformation FL with

FL(es(A,↵� 1)(⌧))(z) :=

Z 1·z

0
e
�⌧/z · es(A,↵� 1)(⌧)d⌧ (7.16)

is well defined and maps the elementary section es(A,↵� 1)(⌧) in ⌧ to the elementary section

FL(es(A,↵� 1)(⌧))(z) = es(G(↵)
A,↵)(z) (7.17)

in z.

(b) It extends to a well defined isomorphism

FL :
X

↵2(�1,0]

C{@�1
⌧

} · C↵

⌧
! V

>0
z

. (7.18)

Here the indices ⌧ at C↵ and z at V >0 indicate that the coordinate ⌧ respectively z has to be
used. It satisfies for a, b 2

P
↵2(�1,0] C{@�1

⌧
} · C↵

⌧

FL(@�1
⌧

a) = z · FL(a), (7.19)

FL(⌧ · a) = z
2
@zFL(a), (7.20)

P (FL(a), FL(b)) =
X

k�1

ckz
lif Kf (a, b) =

X

k�1

ck@
�k

⌧
. (7.21)

Remarks 7.6. (i) Pham [Ph85] defined the pairing P in lemma 7.3 starting with an intersection
form for Lefschetz thimbles. In our situation, Hn(f�1(z),Z) for z 2 �⇤ is canonically isomorphic
to the Z-module generated by Lefschetz thimbles above the straight path from 0 to z. And it is
easy to see that the pairing

(�1)n(n+1)/2 · Lhnor(., ��⇡) : (7.22)

Hn(f
�1(z),Z)⇥Hn(f

�1(�z),Z)! Z

for z 2 �⇤ is the intersection form for Lefschetz thimbles [He05]. This formula connects lemma
7.3 with Pham’s definition.

(ii) Neither Pham nor K. Saito knew the formulas (7.6) and (7.7) for Kf with the polarizing
form S. Pham had the version of (7.21) with K. Saito’s higher residue pairings [SaK83] instead
of Kf . He did not consider explicitly the automorphisms G(↵) and (7.17).

(iii) Because of (7.19), we have to consider on the left hand side of (7.18) and in (7.19)–(7.21)
the subspace

P
↵2(�1,0] C{@�1

⌧
} · C↵

⌧
of V >�1

⌧
. The convergence condition is stronger.

Now we come to the Brieskorn lattice. It is a free C{⌧}-module H
00
0 (f) ⇢ V

>�1 of rank µ

which had first been studied by Brieskorn [Br70]. The name Brieskorn lattice is due to [SaM89],
the notation H

00
0 (f) is from [Br70]. The Brieskorn lattice is generated by germs of sections s[!]

from holomorphic (n + 1)-forms ! 2 ⌦n+1
X

: Integrating the Gelfand-Leray form !

df
|f�1(⌧) over

cycles in Hn(f�1(⌧),C) gives a holomorphic section s[!] in the cohomology bundle, whose germ
s[!]0 at 0 is in fact in V

>�1 (this was proved first by Malgrange). The following theorem collects
well known properties of the Brieskorn lattice. Afterwards we make comments on their proofs.
See also [He02].



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 177

Theorem 7.7. Algebraic properties:

H
00
0 (f) ⇠= ⌦n+1

Cn+1,0/df ^ d⌦n�1
Cn+1,0, (7.23)

@
�1
⌧

: H 00
0 (f)

⇠=�! H
0
0(f) ⇢ H

00
0 (f)

with H
0
0(f) ⇠= df ^ ⌦n

Cn+1,0/df ^ d⌦n�1
Cn+1,0,

and @⌧ : s[df ^ ⌘]0 7! s[d⌘]0. (7.24)

Compatibility with Kf : Kf is the restriction to H
00
0 (f) of K. Saito’s higher residue pairings. It

satisfies

Kf : H 00
0 (f)⇥H

00
0 (f)! @

�n�1
⌧

· C{{@�1
⌧

}}. (7.25)

The leading part

K
(�n�1)
f

: H 00
0 (f)/H

0
0(f)⇥H

00
0 (f)/H

0
0(f)! C (7.26)

is symmetric (lemma 7.2) and nondegenerate. It is Grothendieck’s residue pairing on
⌦n+1

Cn+1,0/df ^ ⌦
n

Cn+1,0.

Relation to Steenbrink’s Hodge filtration F
•
H

1
C : For � = e

�2⇡i↵ with ↵ 2 (�1, 0],

F
p

St
H

1
�

=  
�1
↵

⇣
@
n�p

⌧
Grn�p+↵

V
H

00
0 (f)

⌘
. (7.27)

Define the unordered tuple Sp(f) =
P

µ

i=1(↵i) =
P

↵2Q d(↵) · (↵) 2 Z�0[Q] of spectral numbers
↵1, . . . ,↵µ 2 Q by

d(↵) := dimGr↵
V
H

00
0 � dimGr↵

V
H

0
0. (7.28)

Number them such that ↵1  . . .  ↵µ. Then they satisfy the symmetry

↵i + ↵µ+1�i = n� 1 (7.29)

and

�1 < ↵1  . . .  ↵µ < n, (7.30)

V
>�1 � H

00
0 � V

n�1
,

0 = F
n+1

H
1
, F

0
H

1
6=1 = H

1
6=1, F

1
H

1
1 = H

1
1 .

The algebraic properties had been proved by Brieskorn [Br70] with some help by Sebastiani.
That Kf is the restriction to H

00
0 (f) of K. Saito’s higher residue pairings [SaK83] follows from

(7.21) and Pham’s identification of P with the Fourier-Laplace transform of K. Saito’s higher
residue pairings [Ph85]. See [He02] for an alternative reasoning. Then (7.25) and the properties
of (7.26) follow from K. Saito’s work.

Steenbrink defined the Hodge filtration F
•
St

first using resolution of singularities [St77]. Then
Varchenko [Va80-1] constructed a closely related Hodge filtration F

•
V a

from the Brieskorn lattice
H

00
0 (f). Scherk and Steenbrink [SS85] (and also M. Saito) modified this construction to recover

F
•
St
. This is (7.27). Then (7.29) and (7.30) follow from properties of the Hodge filtration.

Though V
>�1 � H

00
0 was proved before by Malgrange.

Remark 7.8. The Fourier-Laplace transformation FL is defined on any sum of elementary
sections with the stronger convergence condition in (7.17). Therefore it is not defined on arbitrary
elements of H 00

0 . But because of (7.30),

H
00
0 = (H 00

0 \
M

�1<↵<n�1

C
↵

⌧
)� V

n�1
⌧

, (7.31)
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and the elements of the first summand are finite sums of elementary sections. Therefore the
space

FL(H 00
0 \

M

�1<↵<n�1

C
↵

⌧
)� V

n

z
(7.32)

is a well-defined free C{z}-module of rank µ. For simplicity we call it FL(H 00
0 ), although that is

not completely correct. It satisfies

z
2
@z : FL(H 00

0 ) ! FL(H 00
0 ), (7.33)

and P : FL(H 00
0 )⇥ FL(H 00

0 ) ! z
n+1 · C{z}, (7.34)

and the leading part of P is a symmetric and nondegenerate pairing on FL(H 00
0 )/z · FL(H 00

0 ),
all of this because of (7.19)–(7.21), (7.24)–(7.26). It thus satisfies all properties of a TERP-
structure [He02, definition 2.12]. Because of the Z-lattice H

1
Z and the Z-lattice bundle in the

cohomology, we can even call it a TEZP-structure. More precisely, we denote as TEZP structure
the following tuple.

TEZP (f) := (H1
Z , L

nor
, V

mod

z
, P, FL(H 00

0 ))(f). (7.35)

Here V
mod

z
comes equipped with the actions of z, @�1

z
and z@z. We formulated theorem 7.5 and

introduced FL(H 00
0 ) because of the following Thom-Sebastiani result.

Theorem 7.9. [SS85][BH17, Theorem 6.4] Consider besides f(x0, . . . , xn) a second singularity
g(xn+1, . . . , xn+m+1). Then

TEZP (f + g) ⇠= TEZP (f)⌦ TEZP (g). (7.36)

Remarks 7.10. (i) The isomorphism for the data (H1
Z , L

nor) is the classical Thom-Sebastiani
result in (4.8) and (4.10). The isomorphism for P follows from its definition with L

nor. The
isomorphism for V mod

z
is trivial. The isomorphism for H 00

0 was essentially proved in [SS85, (8.7)
Lemma]. Though Scherk and Steenbrink did not make the compatibility with the topological
Thom-Sebastiani isomorphism between the cohomology bundles precise, and they avoided the
use of the Fourier-Laplace transformation. They obtained a @�1

⌧
-linear isomorphism

H
00
0 (f + g) ⇠= H

00
0 (f)⌦H

00
0 (g).

(ii) They applied this isomorphism to obtain a Thom-Sebastiani formula for F
•
St

in [SS85,
Theorems (8.2) and (8.11)]. Though their Thom-Sebastiani formula is wrong if N 6= 0. In the
application of the isomorphism, they had mixed @�1

⌧
-linearity and ⌧ -linearity and went with this

isomorphism directly into the defining formula (7.27) of F •
St
. But the true Thom-Sebastiani

formula is quite close [BH17, Corollary 6.5]. One has to replace in [SS85, Theorems (8.2) and
(8.11)] F •

St
by G(F •

St
). This follows immediately from (7.27) and (7.36). Of course, in the case

N = 0, the isomorphism G in definition 7.4 is just a rescaling, and then G(F •
St
) = F

•
St
, so then

their Thom-Sebastiani formula is correct.

(iii) As a corollary of theorem 7.9, we obtain for a suspension of f

TEZP (f + x
2
n+1) ⇠= TEZP (f)⌦ TEZP (x2

n+1). (7.37)

This allows us to consider in the sections 9 and 10 only the surface singularities. More generally,
it implies the corollary 8.14. This corollary is the reason why we introduced FL(H 00

0 (f)). Formula
(7.36) and this corollary are more elegant and general than the arguments with which suspensions
were treated in [He93], [He95], [He11] and [GH17].

(iv) The Thom-Sebastiani formula for F •
St

expresses in the case of a suspension F
•
St
(f +x

2
n+1)

in terms of F •
St
(f). It is made explicit in [BH17, Theorem 4.6]. It can be seen as a square
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root of a Tate twist, because F
•
St
(f) and F

•
St
(f + x

2
n+1 + x

2
n+2) are simply related by a Tate

twist. f and f + x
2
n+1 + x

2
n+2 have the same polarizing form S by (4.20) and (4.21), because

Mh(f) = Mh(f + x
2
n+1 + x

2
n+2). But the polarizing form of f + x

2
n+1 is quite di↵erent, because

of Mh(f + x
2
n+1) = �Mh(f) and (4.20) and (4.21). The formula in [BH17, Theorem 4.6] which

expresses F •
St
(f+x

2
n+1) in terms of F •

St
(f) involves the G(↵) from definition 7.4 and is compatible

with the isotropy condition (4.18) and (the generalization in the case N 6= 0 of) the positivity
condition (4.19).

Fix for a moment a reference singularity f0. In [He99] a classifying space DPMHS(f0) and a
classifying space DBL(f0) are constructed. DPMHS is a classifying space for Ms-invariant Hodge
filtrations F

• on H
1
C (f0) such that (H1

6=1, H
1
6=1,Z, F

•
,W,�N,S) and (H1

1 , H
1
1,Z, F

•
,W,�N,S)

are polarized mixed Hodge structures of weight n respectively n+1 with the same Hodge numbers
as F •

St
(f0).

DBL is a classifying space for subspaces L0 ⇢ V
>�1
⌧

with the following properties:

(↵) L0 is a free C{⌧}-module of rank µ.
(�) L0 is a free C{{@�1

⌧
}}-module of rank µ.

(�) The filtration F
• in H

1
C (f0) which is constructed by formula (7.27) with L0 instead of

H
00
0 (f0) is in DPMHS .

(�) It satisfies Kf (L0,L0) ⇢ @�n�1
⌧

· C{{@�1
⌧

}}.

Theorem 7.11. Fix a reference singularity f0(x0, . . . , xn).
(a) [He99, ch. 2] DPMHS(f0) is a real homogeneous space and a complex manifold. It is a

locally trivial bundle over a product DPHS of classifying spaces for pure polarized Hodge struc-
tures. The fibers carry an a�ne algebraic structure and are isomorphic to C

NPMHS for some
NPMHS 2 Z�0. The group GZ(f0) acts properly discontinuously on DPMHS.

(b) [He99, ch. 5] DBL(f0) is a complex manifold and a locally trivial bundle over DPMHS.
The fibers have a natural C⇤-action with negative weights and are a�ne algebraic manifolds and
are isomorphic to C

NBL for some NBL 2 Z�0. The group GZ(f0) acts properly discontinuously
on DBL.

(c) DPMHS(f0) and DPMHS(f0 + x
2
n+1) are canonically isomorphic. DBL(f0) and

DBL(f0 + x
2
n+1) are canonically isomorphic.

Part (c) is not formulated in [He99]. The isomorphism DBL(f0)! DBL(f0 + x
2
n+1) is given

by the generalization of (7.36), namely the map

L0 7! FL
�1
⇣
FL(L0)⌦ FL(H 00

0 (x
2
n+1))

⌘
. (7.38)

The isomorphism DPMHS(f0) ! DPMHS(f0 + x
2
n+1) is obtained by applying Gr•

V
. It follows

also from [BH17, Theorem 4.6].

In the sections 9 and 10, µ-constant families of singularities in two parameters will be studied.
The following definition and theorem treat a more general situation. It had been considered
especially in [Va80-2] [AGV88] [SaM91] [He93] [Ku98].

Definition 7.12. A holomorphic µ-constant family of singularities consists of a number µ 2 Z�1,
a connected complex manifold T , an open neighborhood X ⇢ C

n+1 ⇥ T of {0} ⇥ T and a
holomorphic function F : X ! C such that Ft := F |Xt

with Xt := X \Cn+1⇥ {t} for any t 2 T

has an isolated singularity at 0 with Milnor number µ.

Theorem 7.13. Consider a holomorphic µ-constant family as in definition 7.12.
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(a) The Milnor lattices (Ml(Ft), L) with Seifert forms for t 2 T are locally canonically iso-
morphic. They glue to a local system

S
t2T

Ml(Ft) of free Z-modules of rank µ.

(b) Therefore also the spaces C
↵(Ft), V

mod

⌧
(Ft), V

↵

⌧
(Ft) are locally canonically isomorphic

and glue to local systems.

(c) But the Brieskorn lattices H
00
0 (Ft) ⇢ V

>�1
⌧

(Ft) vary holomorphically. For ! 2 ⌦n+1
X/T

,

s[!]0(t) := s[!|Xt
]0 2 H

00
0 (Ft). Let ⇠ be a holomorphic vector field on T . Its canonical lifts to

C⇥ T (with coordinate ⌧ on C) and X are also denoted ⇠. The covariant derivative of s[!]0(t)
by ⇠ is

⇠ s[!]0(t) = s[Lie⇠ !]0(t) + (�@⌧ )s[⇠(F ) · !]0(t). (7.39)

(d) All germs Ft have the same spectrum.

Remarks 7.14. (i) Part (a) is less trivial than one might expect, as it is not clear whether
"(t) and �(t) in the definition of a Milnor fibration Ft : X("(t), �(t)) ! ��(t) can be chosen as
continuous functions in t. But lemma 2.2 in [LR73] saves the situation. See [Va80-2] [He93]
[Ku98] [He11] for details.

(ii) Part (b) follows from part (a). Formula (7.39) is well known, see e.g. [Va80-2] [AGV88]
[He93] [Ku98]. Part (d) is proved in [Va82].

(iii) The bundle
S

t2T
H

00
0 (Ft) ⇢

S
t2T

V
>�1
⌧

(Ft) can be seen as a germ along {0} ⇥ T on
(C, 0)⇥ T of a holomorphic rank µ bundle.

s[!]0 for ! 2 ⌦n+1
X/T

is a holomorphic section in this bundle.

But in theorem 9.6 and theorem 10.6 we will be imprecise and consider s[!]0 as a possibly
multi-valued holomorphic map s[!]0 : T ! V

>�1
⌧

(Ft0) for a reference singularity Ft0 .

(iv) s[!]0 is a sum s[!]0 =
P

↵>�1 s(!,↵) of holomorphic families s(!,↵)(t) 2 C
↵(Ft), t 2 T ,

of elementary sections. For each t 2 T ,

↵(s[!]0(t)) := ↵(!|Xt
) := min(↵ | s(!,↵)(t) 6= 0) (7.40)

is the order of s[!]0(t), and s(!,↵(!|Xt
))(t) is its principal part. The order is upper semicontin-

uous in t.

(v) A notation: !0 := dx0 . . . dxn.

All bimodal series singularities in table (9.1) except W ]

1,p (see remark 9.5 for W ]

1,p) are Newton
nondegenerate. All quadrangle singularities in table (10.1) are semiquasihomogeneous. For such
singularities there are useful results for the computation of the order ↵(!|Xt

), which we describe
in the following. We start with a definition of Kouchnirenko.

Definition 7.15. Let f : (Cn+1
, 0)! (C, 0) be a singularity.

(a) [Ko76] Write f =
P

i2Zn+1
�0

aix
i and define

supp(f) := {i 2 Z
n+1
�0 | ai 6= 0}, (7.41)

�+(f) :=
⇣
convex hull of

[

i2supp(f)

(i+ R
n+1
�0 )

⌘
⇢ R

n+1
,

�com(f) := {� |� is a compact face of �+(f)},
�com,n(f) := {� 2 �com(f) | dim� = n},

l� : R
n+1 ! R for � 2 �com,n(f)

as the linear function with � ⇢ l
�1
�

(1).
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(b) [SaM88][KV85] The Newton order ⌫ : C{x0, . . . , xn}! Q�0 [ {1} is

⌫(
X

i

bix
i) := min(l�(i) | all i with bi 6= 0, all � 2 �com,n(f)). (7.42)

The Newton order ⌫ : ⌦n+1
Cn+1,0 ! Q>0 [ {1} is

⌫((
X

i

bix
i) · !0) := ⌫((

X

i

bix
i)x0 . . . xn). (7.43)

The Newton order ⌫ : H 00
0 (f)! Q>0 [ {1} is

⌫ := max(⌫(⌘) | ⌘ ⌘ ! mod df ^ d⌦n�1
Cn+1,0). (7.44)

(c) [Ko76] For � 2 �com(f) define f� :=
P

i2�
aix

i. The singularity f is Newton nondegenerate
if for each � 2 �com(f) the Jacobi ideal J(f�) of f� has no zero in (C⇤)n+1. It is convenient if
f contains for each index j 2 {0, . . . , n} a monomial x

mj

j
for some mj � 2.

The following theorem was proved in 1983 by M. Saito [SaM88]. The proof shortly afterwards
by Khovanskii and Varchenko [KV85] is completely di↵erent.

Theorem 7.16. Let f be a Newton nondegenerate and convenient singularity. For any
! 2 ⌦n+1

Cn+1,0, its order ↵(!) (defined in remark 7.14 (iv)) is ↵(!) = ⌫(!)� 1.

The following corollary is an easy consequence. It is proved in [He93, Satz 1.10].

Corollary 7.17. Let f be a Newton nondegenerate and convenient singularity. Define

s(f) := min

✓
⌫(
@f

@xj

· !0)� 1 | j 2 {0, . . . , n}
◆

> 0, (7.45)

I(f) := {i 2 Z
n+1
�0 | ⌫(xi

!0)� 1 < s(f)}. (7.46)

Then for i 2 I(f)

↵(xi
!0) = ⌫(xi

!0)� 1, (7.47)

the numbers ↵(xi
!0), i 2 I(f), are the spectral numbers in the interval (�1, s(f)), and

↵((
X

i

bix
i) · !0) =

8
<

:

min(↵(xi
!0) | i 2 I(f), bi 6= 0)

if an i 2 I(f) with bi 6= 0 exists,
� s(f) else.

(7.48)

Remarks 7.18. (i) We expect that theorem 7.16 holds also without the condition that f is
convenient. This would be desirable as many normal forms of singularities are Newton nonde-
generate, but not convenient.

(ii) A singularity is (µ + 1)-determined, i.e. f + g ⇠R f for any g 2 mµ+1, where m is the
maximal ideal in C{x} [Ma68]. If f is Newton nondegenerate, then f+

P
n

j=0 cjx
mj

j
for arbitrary

mj � µ+ 1 and su�ciently generic cj 2 C
⇤ is Newton nondegenerate and convenient and right

equivalent to f .
Furthermore, because of mµ ⇢ J(f) and the Artin approximation theorem, one can choose

a coordinate change ' with f +
P

n

j=0 cjx
mj

j
= f � ' such that all 'j � xj 2 mmin(mk)�µ.

Unfortunately, this is not su�cient for a generalization of theorem 7.16 to the case where f is
not convenient.

(iii) We claim that the calculations in the proof of theorem 9.6 can be carried out with almost
no change (but with additional terms) for f +

P
n

j=0 cjx
mj

j
with large mj and that they give

essentially the same results. With this claim, we justify that we calculate in the proof of theorem
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9.6 with the normal forms f in table (9.1) which are almost all not convenient, but that we apply
theorem 7.16 and corollary 7.17.

(iv) Theorem 7.16 holds without the condition that f is convenient if f is semiquasihomoge-
neous. That is the case when there is only one compact face of dimension n.

Definition 7.19. (a) A singularity f is semiquasihomogeneous with weights w0, . . . , wn 2 Q>0

if

f =
X

i2Zn+1
�0

aix
i with deg

w
x
i � 1 for all i with ai 6= 0, (7.49)

and the quasihomogeneous polynomial

fqh :=
X

i: deg
w

xi=1

aix
i (7.50)

has an isolated singularity at 0.

(b) A singularity f is quasihomogeneous if it is semiquasihomogeneous with f = fqh.

A quasihomogeneous singularity f satisfies the Euler equation

f =
nX

j=0

wjxj

@f

@xj

. (7.51)

This equation and (7.24) and elementary calculations in [Br70] imply part (a) of the following
lemma.

Lemma 7.20. (a) Let f be a quasihomogeneous singularity with weights (w0, . . . , wn). If
! = x

i
!0 is a monomial di↵erential form then

either s[!]0 = 0

or ↵(!) = deg
w
(xi

x0 . . . xn)� 1 and s[!]0 = s(!,↵(!)). (7.52)

(b) Let f be a semiquasihomogeneous singularity with weights (w0, . . . , wn) and f 6= fqh. The
1-parameter family fqh+t·(f�fqh) is a µ-constant family. If ! = x

i
!0 is a monomial di↵erential

form then

↵(!) � deg
w
(xi

x0 . . . xn)� 1, (7.53)

s(! , deg
w
(xi

x0 . . . xn)� 1)(t) = s[!]0(0),

s(!,↵)(t) =
X

k�0

1

k!
· tk · (�@⌧ )ks((f � fqh)

k · !,↵+ k)(0).

The last expression is polynomial in t because ↵((f � fqh)k!) > ↵+ k for large k.

Proof of part (b): In [AGV85, ch. 12] it is shown that fqh + t(f � fqh) is a µ-constant
family. The other assertions follow with theorem 7.13 (c) and part (a) of lemma 7.20. ⇤

8. Review on marked singularities, their moduli spaces, µ-constant monodromy

groups and Torelli conjectures

This paper and the paper [GH17] complete the study of the data in the title of this section for
the singularities of modality  2. These data were introduced in [He11]. Here we review them.
We start with the notions marked singularity and strongly marked singularity.
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Definition 8.1. Fix one reference singularity f0.
(a) Then a strong marking for any singularity f in the µ-homotopy class of f0 (i.e. there is a

family of singularities with constant Milnor number and parameter space [0, 1] which connects
f0 and f) is an isomorphism ⇢ : (Ml(f), L)! (Ml(f0), L).

(b) The pair (f, ⇢) is a strongly marked singularity. Two strongly marked singularities (f1, ⇢1)
and (f2, ⇢2) are right equivalent (notation: ⇠R) if a coordinate change ' : (Cn+1

, 0)! (Cn+1
, 0)

with
f1 = f2 � 'and⇢1 = ⇢2 � 'hom

exists, where 'hom : (Ml(f1), L)! (Ml(f2), L) is the induced isomorphism.
(c) The notion of a marked singularity is slightly weaker. If f and ⇢ are as above, then the

pair (f,±⇢) is a marked singularity (writing ±⇢, the set {⇢,�⇢} is meant, neither ⇢ nor �⇢ is
preferred).

(d) Two marked singularities (f1,±⇢1) and (f2,±⇢2) are right equivalent (notation: ⇠R) if a
coordinate change ' with

f1 = f2 � 'and⇢1 = "⇢2 � 'hom for some " 2 {±1}
exists.

Remarks 8.2. (i) The notion of a marked singularity behaves better than the notion of a
strongly marked singularity, because it is not known whether all µ-homotopy families of singu-
larities satisfy one of the following two properties:

Assumption (8.1): Any singularity in the µ-homotopy (8.1)

class of f0 has multiplicity � 3.

Assumption (8.2): Any singularity in the µ-homotopy (8.2)

class of f0 has multiplicity 2.

We expect that always one of two assumptions holds. For curve singularities and singularities
right equivalent to semiquasihomogeneous singularities and all singularities with modality  2
this is true, but in general it is not known. In a µ-homotopy family where neither of the two
assumptions holds, strong marking behaves badly, see (ii).

(ii) If mult(f) = 2 then (f, ⇢) ⇠R (f,�⇢), which is easy to see. If mult(f) � 3, then
(f, ⇢) 6⇠R (f,�⇢), whose proof in [He11] is quite intricate. These properties imply that the
moduli space for strongly marked singularities discussed below is not Hausdor↵ in the case of a
µ-homotopy class which satisfies neither one of the assumptions (8.1) or (8.2).

In [He02] a moduli space Mµ(f0) was constructed for the µ-homotopy class of any singularity
f0. As a set it is simply the set of right equivalence classes of singularities in the µ-homotopy
class of f0. But in [He02] it is constructed as an analytic geometric quotient, and it is shown
that it is locally isomorphic to the µ-constant stratum of a singularity modulo the action of a
finite group. The µ-constant stratum of a singularity is the germ (Sµ, 0) ⇢ (M, 0) within the
germ of the base space of a universal unfolding F of f , such that for a suitable representative

Sµ = {t 2M |Ft has only one singularity x0 and Ft(x0) = 0}. (8.3)

It comes equipped with a canonical complex structure, and Mµ inherits a canonical complex
structure, see the chapters 12 and 13 in [He02].

In [He11] analogous results for marked singularities were proved. A better property is that
M

mar

µ
is locally isomorphic to a µ-constant stratum without dividing out a finite group ac-

tion. Therefore one can consider it as a global µ-constant stratum or as a Teichmüller space for
singularities. The following theorem collects results from [He11, theorem 4.3].
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Theorem 8.3. Fix one reference singularity f0. Define the sets

M
smar

µ
(f0) := {strongly marked (f, ⇢) | (8.4)

f in the µ-homotopy class of f0}/ ⇠R,

M
mar

µ
(f0) := {marked (f,±⇢) | (8.5)

f in the µ-homotopy class of f0}/ ⇠R .

(a) M
mar

µ
(f0) carries a natural canonical complex structure. It can be constructed with the

underlying reduced complex structure as an analytic geometric quotient (see [He11, theorem 4.3]
for details).

(b) The germ (Mmar

µ
(f0), [(f,±⇢)]) with its canonical complex structure is isomorphic to the

µ-constant stratum of f with its canonical complex structure (see [He02, chapter 12] for the
definition of that).

(c) For any  2 GZ(f0) =: GZ, the map

 mar : Mmar

µ
!M

mar

µ
, [(f,±⇢)]! [(f,± � ⇢)]

is an automorphism of Mmar

µ
. The action

GZ ⇥M
mar

µ
!M

mar

µ
, ( , [(f,±⇢)] 7!  mar([(f,±⇢)])

is a group action from the left.
(d) The action of GZ on M

mar

µ
is properly discontinuous. The quotient M

mar

µ
/GZ is the

moduli space Mµ for right equivalence classes in the µ-homotopy class of f0, with its canonical
complex structure. Especially, [(f1,±⇢1)] and [(f2,±⇢2)] are in one GZ-orbit if and only if f1
and f2 are right equivalent.

(e) If assumption (8.1) or (8.2) holds then (a) to (d) are also true for M
smar

µ
and  smar

with  smar([(f, ⇢)]) := [(f, � ⇢)]. If neither (8.1) nor (8.2) holds then the natural topology on
M

smar

µ
is not Hausdor↵.

We stick to the situation in theorem 8.3 and define two subgroups of GZ(f0). The definitions
in [He11, definition 3.1] are di↵erent, they use µ-constant families. The following definitions are
a part of theorem 4.4 in [He11].

Definition 8.4. Let (Mmar

µ
)0 be the topological component of Mmar

µ
(with its reduced complex

structure) which contains [(f0,± id)]. Then

G
mar(f0) := { 2 GZ | maps (Mmar

µ
)0 to itself} ⇢ GZ(f0). (8.6)

If assumption (8.1) or (8.2) holds, (Msmar

µ
)0 and G

smar(f0) ⇢ GZ(f0) are defined analogously.

The following theorem is also proved in [He11].

Theorem 8.5. (a) In the situation above, the map

GZ/G
mar(f0) ! {topological components of Mmar

µ
}

 ·Gmar(f0) 7! the component  mar((M
mar

µ
)0)

is a bijection.
(b) If assumption (8.1) or (8.2) holds then (a) is also true for M

smar

µ
and G

smar(f0).
(c) � id 2 GZ acts trivially on M

mar

µ
(f0). Suppose that assumption (8.2) holds and that

f0 = g0(x0, . . . , xn�1) + x
2
n
. Then � id acts trivially on M

smar

µ
(f0) and

M
smar

µ
(f0) = M

mar

µ
(f0) = M

mar

µ
(g0),

G
smar(f0) = G

mar(f0) = G
mar(g0).

(8.7)
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Suppose additionally that assumption (8.1) holds for g0 (instead of f0). Then {± id} acts freely
on M

smar

µ
(g0), and the quotient map

M
smar

µ
(g0)

/{± id}�! M
mar

µ
(g0), [(f, ⇢)] 7! [(f,±⇢)]

is a double covering.

The following conjecture was formulated as conjecture 3.2 in [He11].

Conjecture 8.6. [He11, Conjecture 3.2] (a) Fix a singularity f0. Then M
mar

µ
is connected.

Equivalently (in view of theorem 8.5 (a)): G
mar(f0) = GZ.

(b) If the µ-homotopy class of f0 satisfies assumption (8.1), then � id /2 G
smar(f0).

The study of the singularities with modality  2 in [He11][GH17] and this paper gives: Part
(b) is true for all singularities with modality  2. Part (a) is true for almost all singularities
with modality  2, but not for all. The exceptions are the subseries for p = m · r of the eight
bimodal series. This is a part of theorem 9.1. Now we expect that part (a) will be wrong for
many singularities.

Using the other definition of Gmar in [He11], part (a) says that up to ± id, any element of GZ
can be realized as transversal monodromy of a µ-constant family with parameter space S

1. As
it is wrong for some singularities and probably for many more, part (a) of conjecture 8.6 has to
be replaced now by the question whether the subgroup G

mar of GZ can be described in a nice
conceptual way.

In order to understand the stabilizers StabGZ([(f, ⇢)]) and StabGZ([(f,±⇢)]) of points
[(f, ⇢)] 2M

smar

µ
(f0) and [(f,±⇢)] 2M

mar

µ
(f0),

we have to look at the symmetries of a single singularity. These had been discussed in [He02,
chapter 13.2]. The discussion had been taken up again in [He11].

Definition 8.7. Let f0 = f0(x0, . . . , xn) be a reference singularity and let f be any singularity
in the µ-homotopy class of f0. If ⇢ is a marking, then GZ(f) = ⇢

�1 �GZ � ⇢.
We define

R := {' : (Cn+1
, 0)! (Cn+1

, 0) biholomorphic}, (8.8)

Rf := {' 2 R| f � ' = f}, (8.9)

Rf := j1Rf
/(j1Rf )0, (8.10)

G
smar

R (f) := {'hom |' 2 Rf} ⇢ GZ(f), (8.11)

G
mar

R (f) := {± | 2 G
smar

R (f)}, (8.12)

G
smar,gen

R (f0) :=
\

[(f,⇢)]2Msmar
µ

⇢
�1 �Gsmar

R (f) � ⇢ ⇢ GZ. (8.13)

Again, the definition of Gsmar

R is di↵erent from the definition in [He11, definition 3.1]. The
characterization in (8.11) is [He11, theorem 3.3. (e)]. Rf is the finite group of components of
the group j1Rf of 1-jets of coordinate changes which leave f invariant. The following theorem
collects results from several theorems in [He11].

Theorem 8.8. Consider the data in definition 8.7.
(a) If mult(f) � 3 then j1Rf = Rf .
(b) The homomorphism ()hom : Rf ! GZ(f) factors through Rf . Its image is

(Rf )hom = G
smar

R (f) ⇢ GZ(f).

(c) The homomorphism ()hom : Rf ! G
smar

R (f) is an isomorphism.
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(d)

� id /2 G
smar

R (f) () mult f � 3. (8.14)

Equivalently: G
mar

R (f) = G
smar

R (f) if mult f = 2, and G
mar

R (f) = G
smar

R (f) ⇥ {± id}
if mult f � 3.

(e) G
mar

R (f) = G
mar

R (f + x
2
n+1).

(f) Mh 2 G
smar(f). If f is quasihomogeneous then Mh 2 G

smar

R (f).
(g) For any [(f, ⇢)] 2M

smar

µ

StabGZ([(f, ⇢)]) = ⇢ �Gsmar

R (f) � ⇢�1
, (8.15)

StabGZ([(f,±⇢)]) = ⇢ �Gmar

R (f) � ⇢�1
. (8.16)

( (8.15) does not require assumption (8.1) or (8.2)). As GZ acts properly discontinuously on
M

mar

µ
(f0), Gsmar

R (f) and G
mar

R (f) are finite. (But this follows already from the finiteness of Rf

and (b).)

The group G
smar,gen

R (f0) in (8.13) had not been considered in [He11]. Usually it is very small.
It is useful because of the following elementary fact.

Lemma 8.9. Let T be the parameter space of a µ-constant family as in definition 7.12. The
transversal monodromy of it is the representation ⇡1(T, t0) ! GZ(Ft0) which comes from the
local system

S
t2T

Ml(Ft).
If its image is in G

smar,gen

R (Ft0), then there is a natural map T !M
smar

µ
(Ft0).

Proof: The trivial strong marking + id for Ft0 induces along any path strong markings of
other singularities Ft. Two paths which meet at a point t, might not induce the same strong
marking of Ft, but the two markings di↵er only by an element of Gsmar

R (Ft). Therefore they
induce the same right equivalence class of a marked singularity. ⇤

Finally, we come to the Brieskorn lattices of marked singularities and Torelli problems. After
fixing a reference singularity f0, a marked singularity (f,±⇢) comes equipped with a marked
Brieskorn lattice BL(f,±⇢). The classifying space DBL(f0) in theorem 7.11 is a classifying
space for marked Brieskorn lattices. Theorem 7.13 implies part (a) of the following theorem.

Theorem 8.10. Fix one reference singularity f0.
(a) There is a natural holomorphic period map

BL : Mmar

µ
(f0)! DBL(f0). (8.17)

It is GZ-equivariant.
(b) [He02, theorem 12.8] It is an immersion, here the reduced complex structure on M

mar

µ
(f0)

is considered.

The second author conjectured part (b) of the following global Torelli conjecture in [He93],
part (c) in [He02] and part (a) in [He11].

Conjecture 8.11. Fix one reference singularity f0.
(a) The period map BL : Mmar

µ
! DBL is injective.

(b) The period map LBL : Mµ = M
mar

µ
/GZ ! DBL/GZ is injective.

(c) For any singularity f in the µ-homotopy class of f0 and any marking ⇢,

StabGZ([(f,±⇢)]) = StabGZ(BL([(f,±⇢)])) (8.18)

(only ⇢ and the finiteness of both groups are clear).
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The second author has a long-going project on Torelli type conjectures. Already in [He93], part
(b) was proved for all simple and unimodal singularities and almost all bimodal singularities (all
except 3 subseries of the 8 bimodal series). This was possible without the general construction
of Mµ and DBL, which came later in [He02] and [He99]. In the concrete cases considered in
[He93], it is easy to identify a posteriori the spaces Mµ and DBL.

The following lemma from [He11] clarifies the logic between the parts (a), (b) and (c) of
conjecture 8.11.

Lemma 8.12. In conjecture 8.11, (a) () (b) and (c).

Part (a) of conjecture 8.11 was proved in [He11] for the simple and those 22 of the 28 ex-
ceptional unimodal and bimodal singularities, where all eigenvalues of the monodromy have
multiplicity one. In [GH17] part (a) was proved for the remaining unimodal and the remain-
ing exceptional bimodal singularities. In the sections 9 and 10, part (a) will be proved for
the remaining bimodal singularities, namely the bimodal series singularities and the quadrangle
singularities.

As part (b) had been proved for almost all singularities with modality  2, the main work in
[GH17] and here is the good control of the group GZ. But that is surprisingly di�cult. In the
case of the bimodal singularities in this paper, also the control of the Gauss-Manin connection
side had to be improved: We provide better information on the transversal monodromy of the
studied families than in [He93]. Due to this improvement, also the annoying gap of 3 subseries
of the 8 bimodal series, where part (b) was not proved in [He93], could be closed here.

Remark 8.13. In the sections 9 and 10, we will restrict to consider surface singularities, i.e.
singularities in 3 variables. This is justified by the following corollary. It is an application
for suspensions of the Thom-Sebastiani formula for the Fourier-Laplace transforms of Brieskorn
lattices in theorem 7.9. This is elegant, but the preparations in section 7 were heavy. In the
earlier papers [He93][He11][GH17], we had dealt with this problem in a less conceptual, but
leaner way, sometimes with extra calculations for curve singularities.

Corollary 8.14. Consider the µ-homotopy class of a reference singularity f0(x0, . . . , xn) which
satisfies assumption (8.1) and such that for any m � 1 the µ-homotopy class of f0 +

P
n+m

j=n+1 x
2
j

satisfies assumption (8.2).
Fix a number m � 1. The global Torelli conjecture 8.11 (a) holds for f0 if any only if it holds

for the reference singularity f0 +
P

n+m

j=n+1 x
2
j

Proof: By (8.7), M
mar

µ
(f0) and M

mar

µ
(f0 +

P
n+m

j=n+1 x
2
j
) are canonically isomorphic. By

theorem 7.11 (c), the classifying spaces DBL(f0) and DBL(f0 +
P

n+m

j=n+1 x
2
j
) are canonically

isomorphic. It rests to see that these isomorphisms are compatible with the period maps BL

for f0 and for f0 +
P

n+m

j=n+1 x
2
j
. This is also rather clear from the formula (7.37) for the TEZP-

structure of a suspension. ⇤

9. Period maps and Torelli results for the bimodal series and GZ % G
mar

for

the subseries

In this section we will prove for the bimodal series the strong global Torelli conjecture 8.11 (a),
the conjecture 8.6 (b) � id /2 G

smar and for the singularities with m 6 |p the conjecture 8.6
(a) GZ = G

mar. But for the singularities in the subseries with m|p, we will see GZ % G
mar,

|GZ| =1, |Gmar| <1. Theorem 9.1 states these results in more detail.
The singularities in the eight bimodal series W ]

1,p, S
]

1,p, U1,p, E3,p, Z1,p, Q2,p, W1,p and S1,p

have as surface singularities the normal forms in table (9.1) [AGV85, 15.1]. Here p � 1 and
q � 1, and the parameters (t1, t2) are in T := (C� {0})⇥ C.
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W
]

1,2q�1 (x2 + y
3)2 + (t1 + t2y)xy4+q + z

2

W
]

1,2q (x2 + y
3)2 + (t1 + t2y)x2

y
3+q + z

2

S
]

1,2q�1 x
2
z + y

3
z + yz

2 + (t1 + t2y)xy3+q

S
]

1,2q x
2
z + y

3
z + yz

2 + (t1 + t2y)x2
y
2+q

U1,2q�1 x
3 + xz

2 + xy
3 + (t1 + t2y)y1+q

z
2

U1,2q x
3 + xz

2 + xy
3 + (t1 + t2y)y3+q

z

E3,p x
3 + x

2
y
3 + (t1 + t2y)y9+p + z

2

Z1,p x
3
y + x

2
y
3 + (t1 + t2y)y7+p + z

2

Q2,p x
3 + yz

2 + x
2
y
2 + (t1 + t2y)y6+p

W1,p x
4 + x

2
y
3 + (t1 + t2y)y6+p + z

2

S1,p x
2
z + yz

2 + x
2
y
2 + (t1 + t2y)y5+p

(9.1)

Recall that table (5.1) lists for these singularities the Milnor number µ, the characteristic
polynomials bj , j � 1, of the monodromy on the Orlik blocks Bj in theorem 5.1, the order m of
the monodromy on B1 and the index rI = [Ml(f) :

L
j�1 Bj ]. The order of the monodromy on

B2 is

m+ rI · p =: m2. (9.2)

We will need the space T
cov := (C� {0})⇥ C and the m2-fold covering

cT : T cov ! T, (⌧1, t2) 7! (⌧m2
1 , t2). (9.3)

For each 2-parameter family of singularities in table (9.1), we choose f0 := f(1,0) as reference
singularity. In the following, we will write M

mar

µ
, (Mmar

µ
)0, GZ, Gmar, Ml, H1 and C

↵ for
M

mar

µ
(f0),(Mmar

µ
(f0))0, GZ(f0), Gmar(f0), Ml(f0), H1(f0) and C

↵(f0).
We denote by MT 2 GZ the monodromy of the homology bundle

S
(t1,t2)2T

Ml(f(t1,t2))! T

along the cycle {(e2⇡is, 0) | s 2 [0, 1]}. We call MT the transversal monodromy. By the other
definition of Gmar in [He11], MT 2 G

mar. As always, ⇣ := e
2⇡i/m.

Theorem 9.1. Consider a family of bimodal series singularities in table (9.1).
(a) M

m2
T

= id. Therefore the pull back to T
cov with cT of the family of singularities over T

has trivial transversal monodromy. Thus the strong marking + id for f(1,0) induces a well defined
strong marking for each singularity of this family over T cov. This gives a map T

cov ! (Msmar

µ
)0

and a map T
cov ! (Mmar

µ
)0.

(b) Both maps are isomorphisms. And � id /2 G
smar, where G

smar is the group for the
singularities of multiplicity � 3, namely the curve singularities W

]

1,p, E3,p, Z1,p,W1,p and the

surface singularities S
]

1,p, U1,p, Q2,p, S1,p. So, conjecture 8.6 (b) is true.

(c) The period map BL : M
mar

µ
! DBL is an embedding. So, the strong global Torelli

conjecture 8.11 (a) is true.

(d) If m 6 |p then GZ = G
mar. So, here conjecture 8.6 (a) is true.

(e) In the case of the subseries with m|p, GZ % G
mar. So, here conjecture 8.6 (a) is wrong.

More precisely, G
mar and GZ are as follows. MT has on the 2-dimensional C-vector space

Ml⇣ the eigenvalues 1 and ⇣. Let Ml⇣,1 be the 1-dimensional eigenspace of MT on Ml⇣ with
eigenvalue 1. Then |GZ| =1 and |Gmar| <1 and

G
mar = {g 2 GZ | g(Ml⇣,1) = Ml⇣,1}. (9.4)
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 (GZ) is an infinite Fuchsian group by theorem 5.1 (c).  (Gmar) is the finite subgroup of
elliptic elements which fix the point [Ml⇣,1] 2 H⇣ (H⇣ was defined in (5.7)). And M

mar

µ
consists

of infinitely many copies of T cov.

Theorem 9.1 will be proved in this section in several steps. It builds on two hard results.
The first and more di�cult one is theorem 5.1 on GZ. The second one is easier, but still rather
technical. It is the calculation of the multi-valued period map T ! DBL. The results are fixed
in theorem 9.6.

But we prefer to present the nice geometry before the technical details. Therefore we will
now explain everything what can be understood without going into the details of the Gauss-
Manin connection and theorem 9.6. Afterwards we will come to the Gauss-Manin connection
and theorem 9.6.

Define

↵1 :=
�1
m

< �1 :=
�1
m2

< 0 < ↵2 :=
1

m2
< �2 :=

1

m
(9.5)

and recall that  ↵ : H1 ! C
↵, A 7! es(A,↵), is an isomorphism. Therefore and because of

table (5.1)

dimC
�1 = dimC

↵2 = 1, (9.6)

dimC
↵1 = dimC

�2 =

⇢
1 if m 6 |p,
2 if m|p.

For the cases with m 6 |p, define the 2-dimensional space

D
sub

BL
:= {C · (v1 + v2 + v4) | v1 2 C

↵1 � {0}, v2 2 C
�1 � {0}, v4 2 C

�2}
= {C · (v01 + ⇢1v

0
2 + ⇢2v

0
4) | (⇢1, ⇢2) 2 (C� {0})⇥ C} (9.7)

for some generators v01 , v
0
2 , v

0
4 of C↵1 , C

�1 , C
�2

⇠= (C� {0})⇥ C.

For the cases with m|p, the polarizing form S defines an indefinite hermitian form

((a, b) 7! S(a, b))

on H
1
⇣
. This follows from the corresponding statement for h⇣ on Ml⇣ in theorem 5.1, from

lemma 2.2 (b) and from the relation between Seifert form L and polarizing form S, see (4.20).
Thus we get a half-plane

H(C↵1) := {C · v | v 2 C
↵1 with S( �1

↵1
(v), �1

↵1 (v)) < 0}
⇢ P(C↵). (9.8)

Now define for the cases with m|p the 3-dimensional space

D
sub

BL
:= {C · (v1 + v2 + v4) | v1 2 C

↵1 � {0} with [C · v1] 2 H(C↵1),

v2 2 C
�1 � {0}, v4 2 C ·  �2( 

�1
↵1 (v1)) ⇢ C

�2} (9.9)
⇠= H(C↵1)⇥ (C� {0})⇥ C.

Theorem 9.2. (a) D
sub

BL
embeds canonically into DBL.

(b) For suitable v
0
1 2 C

↵1 � {0}, v02 2 C
�1 � {0} and for v

0
4 :=  �2( 

�1
↵1 (v

0
1)) 2 C

�2 � {0}, the
multi-valued period map BLT : T ! DBL has its image in D

sub

BL
and takes the form

(t1, t2) 7! C ·
✓
v
0
1 + t

1/m2

1 · v02 +
✓
t2

t1
+ r(t1)

◆
v
0
4ß

◆
(9.10)
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with

r(t1) =

8
>>>>>><

>>>>>>:

0 in the cases (rI = 1 & p � 3),
the cases (rI = 2 & p � 2)
and the case U1,2,

cT · t1 in the cases (rI = 2 & p = 1)
and the cases W ]

1,2 and S
]

1,2,

cT · t21 in the cases (rI = 1 & p = 1),

(9.11)

for a suitable constant cT 2 C. In the cases with m|p, the transversal monodromy MT has on
C

↵1 the eigenvalues 1 and ⇣, and C · v01 is the eigenspace with eigenvalue 1. The class [C · v01 ] is
in H(C↵1).

(c) The induced period map BLT cov : T
cov ! D

sub

BL
is an isomorphism if m 6 |p and an

isomorphism to the fiber above [C · v01 ] 2 H(C↵1) of the projection D
sub

BL
! H(C↵1) if m|p.

(d) In the case of the subseries U1,9r, Gmar contains an element g3 such that  (g3) is elliptic
of order 18 (for all subseries with p = m · r,  (MT ) is elliptic of order m, for U1,9r m = 9).

(e) f(t1,t2) and f(et1,et2) are right equivalent

()

8
>><

>>:

9 k 2 Z with (et1,et2) = (⇣rIpk · t1, ⇣(rIp+2)k · t2)
for all 8 series except U1,2q,

9 k 2 Z and " 2 {±1} with
(et1,et2) = ("⇣rIpk · t1, "⇣(rIp+2)k · t2) for U1,2q.

(9.12)

The parts (a), (b) and (d) of theorem 9.2 will be proved after theorem 9.6.

Proof of theorem 9.2 (c) and (e):
(c) This follows immediately from (9.10).
(e) First we prove (. We give explicit coordinate changes. A case by case comparison with

the normal forms in table (9.1) shows that the following equality (9.13) holds. Here (�1, �2, �3)
are as in table (9.14), and k 2 Z.

f(t1,t2)(x · ⇣�1·k, y · ⇣�2·k, z · ⇣�3·k) = f(t1·⇣rIpk
,t2·⇣(rIp+2)k)(x, y, z). (9.13)

�1 �2 �3

W
]

1,p and W1,p 3 2 0

S
]

1,p and S1,p 3 2 4
U1,p 3 2 3
E3,p 6 2 0
Z1,0 4 2 0
Q2,p 4 2 5

(9.14)

In the case U1,2q we have additionally

f(t1,t2)(x, y,�z) = f(�t1,�t2)(x, y, z). (9.15)

This shows (.
Now we prove). Let f(t1,t2) and f(et1,et2) be right equivalent. ThenBLT (t1, t2) andBLT (et1,et2)

are isomorphic, so a g 2 GZ with g(BLT (t1, t2)) = BLT (et1,et2) exists. We claim that v
0
1 , v

0
2

and v
0
4 are eigenvectors of g with some eigenvalues �1,�2 and �1. For v

0
2 this is trivial as
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dimC
�1 = 1, for v01 in the case m 6 |p also. In the case m|p, it follows for v01 from (9.10). For v04

use v
0
4 =  �2( 

�1
↵1 (v

0
1)). We claim also

�1 2 Eiw(⇣),�2 2 Eiw(e2⇡i/m2). (9.16)

For �2 this is a consequence of the following three facts and of theorem 2.9 (a)&(b).

(i) The 1-dimensional eigenspace Ml
e2⇡i/m2 is already defined over Q(e2⇡i/m2). Therefore

�2 2 Q(e2⇡i/m2).
(ii) |�2| = 1 because L pairs Ml

e2⇡i/m2 and Ml
e�2⇡i/m2 .

(iii) �2 is an algebraic integer because g 2 GZ.

If m 6 |p, the same reasoning applies also to �1. Suppose for a moment m|p.
By part (b), the transversal monodromy MT acts on C

↵1 and on H
1
⇣

with eigenvalues 1 and

⇣, and the 1-dimensional eigenspaces with eigenvalue 1 are C · v01 and C ·  �1
↵1

(v01). Therefore
C ·  �1

↵1
(v01) is already defined over Q(⇣), i.e. C ·  �1

↵1
(v01) \H1

Q(⇣) is a 1-dimensional Q(⇣)-vector

space. This implies (i) �1 2 Q(⇣). (ii) |�1| = 1 holds because v
0
1 2 H(C↵1). And (iii) (�1 is

an algebraic integer) holds anyway. Again with theorem 2.9 (a)&(b) we conclude �1 2 Eiw(⇣).
Now (9.16) is proved in all cases.

The equality g(BLT (t1, t2)) = BLT (et1,et2) becomes

C ·
✓
�1 · v01 + �2 · t1/m2

1 · v02 + �1

✓
t2

t1
+ r(t1)

◆
· v04
◆

= C ·
 
v
0
1 + et

1/m2

1 · v02 +
 
et2
et1

+ r(et1)
!

· v04

!
,

so et1/m2

1 = �2�1 · t1/m2

1 ,

et2
et1

+ r(et1) = �1
2
✓
t2

t1
+ r(t1)

◆
,

so et1 = �
m2
2 �1

m2 · t1,

and et2 = �1
2 ·
et1
t1

· t2 + et1 · (�1
2 · r(t1)� r(et1)). (9.17)

Because of (9.16), we can write �1 and �2 as follows, here k, l 2 Z and "1, "2 2 {±1}.

�1 �2

All cases with m ⌘ 0(2), m2 ⌘ 0(2) ⇣
k

e
2⇡il/m2

The cases W ]

1,2q�1 and S
]

1,2q�1 "2 · ⇣
k

"2 · e2⇡il/m2

The cases U1,2q�1 "1 · ⇣
k

e
2⇡il/m2

The cases U1,2q "1 · ⇣
k

"2 · e2⇡il/m2

(9.18)

One checks that (9.17) boils down to

et1 = ⇣
rIpk · t1,et2 = ⇣

(rIp+2)k · t2, (9.19)

in all cases except U1,2q. In the cases U1,2q, it boils down to

et1 = "1"2 · ⇣pk · t1,et2 = "1"2 · ⇣(p+2)k
. (9.20)

This finishes the proof of ) and the proof of theorem 9.2 (e). ⇤

The statements in theorem 9.1 on the transversal monodromy (Mm2
T

= id, MT has the
eigenvalues 1 and ⇣ on Ml⇣) will be proved after theorem 9.6. The rest of theorem 9.1 will be
proved now.
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Proof of theorem 9.1 (without the statements on MT ):
(a) This is clear.
(b) Consider the maps

T
cov //

⇠=
✏✏

(Msmar

µ
)0

BL

✏✏
D

sub

BL

� � // DBL

(9.21)

As T cov
,! D

sub

BL
,! DBL is an embedding, T cov ! (Msmar

µ
)0 is an embedding.

Both spaces T cov and (Msmar

µ
)0 are locally µ-constant strata of universal unfoldings and are

therefore smooth of dimension 2. Dsub

BL
is almost closed in DBL. Its closure consists of itself and

the space {C · (v1 + v4) | v1 and v4 as in (9.7) or (9.9)} (so v2 = 0). No g 2 GZ maps a point of
this space to a point of Dsub

BL
. And T

cov contains representatives of any right equivalence class in
the µ-homotopy family. Therefore the image of (Msmar

µ
)0 in DBL cannot be bigger than D

sub

BL
.

Thus T cov ⇠= (Msmar

µ
)0.

In the case of singularities of multiplicity 2, Msmar

µ
⇠= M

mar

µ
holds anyway by theorem 8.5

(c), and then also (Msmar

µ
)0 ⇠= (Mmar

µ
)0 holds.

Consider the case of singularities of multiplicity � 3. Then � id 2 GZ acts nontrivially
on M

smar

µ
by theorem 8.5 (c). It acts trivially on DBL. The map (Msmar

µ
)0 ! DBL is an

embedding. Therefore � id 2 GZ does not act on (Msmar

µ
)0, therefore � id /2 G

smar. Then
(Msmar

µ
)0 ! (Mmar

µ
)0 is an isomorphism by theorem 8.5 (c).

(c) for m 6 |p and (d): (Mmar

µ
)0

⇠=�! T
cov

⇠=�! D
sub

BL
,! DBL is an embedding. GZ = G

mar

would imply M
mar

µ
= (Mmar

µ
)0. Therefore it is su�cient to prove GZ = G

mar.

Let g1 2 GZ. It acts on D
sub

BL
. By the proof of theorem 9.2 (e), the map

(Mmar

µ
)0/Gmar ! D

sub

BL
/GZ (9.22)

is an isomorphism. Therefore an element g2 2 G
mar exists which acts in the same way on D

sub

BL

as g1. Consider g3 := g1 � g�1
2 . It acts trivially on D

sub

BL
. It has eigenvalues �1, �2 and �1 on

C
↵1 , C

�1 and C
�2 . Therefore

C(v1 + v2 + v4) = C(�1 · v1 + �2 · v2 + �1 · v4)
for any C(v1 + v2 + v4) 2 D

sub

BL
,

thus �2�1 = 1,�1
2
= id, so �1 = �2 2 {±1},

and g3 = �1 · id on Ml⇣ �Ml
e2⇡i/m2 . (9.23)

GZ was determined in theorem 5.1 (b). It contains very few automorphisms g3 with (9.23).
Formula (5.6) and table (5.1) show that the group {g 2 GZ | g = ± id on Ml⇣ �Ml

e2⇡i/m2 } is as
follows:

{± id} in the cases W ]

1,2q�1, S
]

1,2q�1, U1,2q, E3,p, Z1,p, (9.24)

{± id,±(id |B1 ⇥ (�Mm2/2
h

)|B2)}in the cases W ]

1,2q, S
]

1,2q, U1,2q�1,

{± id,±((�Mm/2
h

)|B1 ⇥ id |B2)} in the cases Q2,p,W1,p, S1,p.

Claim:

{g 2 GZ | g = ± id on Ml⇣ �Ml
e2⇡i/m2 } = G

mar

R . (9.25)
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This claim shows g3 2 G
mar

R and g1 2 G
mar, so that GZ = G

mar.
The inclusion � in (9.25) holds because of the following: Any element of Gmar

R = G
mar

R (f(1,0))
acts on D

sub

BL
with BLT (1, 0) as fixed point. The proof of theorem 9.2 (e) shows that it acts then

trivially on D
sub

BL
.

The group G
mar

R contains ± id. In order to prove equality in (9.25) for the cases in the second
and third line of (9.24), it is su�cient to show that G

mar

R contains more elements than ± id.
Equivalent is that Gsmar

R (f) for a generic singularity f with multiplicity � 3 contains one other
element than + id. The following table lists coordinate changes which give such an element.

W
]

1,2q (x, y) 7! (�x, y)
S
]

1,2q (x, y, z) 7! (�x, y, z)
U1,2q�1 (x, y, z) 7! (x, y,�z)
Q2,p (x, y, z) 7! (x, y,�z)
W1,p (x, y) 7! (�x, y)
S1,p (x, y, z) 7! (�x, y, z)

(9.26)

This proves the claim and finishes the proof of (c) for m 6 |p and (d).

(c) for m|p and (e): First we prove (9.4).
 (MT ) is an elliptic element with fixed point [Ml⇣,1] 2 H⇣ and angle 2⇡

m
= arg( ⇣1 ). All

elements of Gmar, including MT , act on H(C↵1) as elliptic elements with fixed point [C · v01 ],
because all elements in G

mar act on (Mmar

µ
)0 and on its image BLT cov ((Mmar

µ
)0) ⇢ D

sub

BL
.

Therefore all elements of Gmar act on H⇣ as elliptic elements with fixed point [Ml⇣,1]. This
shows ⇢ in (9.4).

Now let g1 2 {g 2 GZ | g(Ml⇣,1) = Ml⇣,1}. It has an eigenvalue �1 on Ml⇣,1 and an eigenvalue
�2 on the other eigenspace within Ml⇣ (which is the h⇣-orthogonal subspace of Ml⇣). By (9.16)
�1 and �2 2 Eiw(⇣). Therefore  (g1) is an elliptic element with fixed point [Ml⇣,1] 2 H⇣ and
angle arg �2

�1
.

In all cases except possibly U1,9r, the product g2 = g1 �Mk

T
for a suitable k 2 Z acts trivially

on H⇣ . In the cases U1,9r, the product g2 = g1 � gk3 for g3 2 G
mar as in theorem 9.2 (d) does the

same.
Formula (5.9) in theorem 5.1 (c) applies to g2 and shows g2 2 {±M

k

h
| k 2 Z}. Therefore

g2 2 G
mar and g1 2 G

mar. This shows � in (9.4), so (9.4) is now proved.
Especially,  (Gmar) and G

mar are finite. By theorem 5.1 (c),  (GZ) and GZ are infinite.
Therefore GZ % G

mar.
By theorem 8.5 (a), Mmar

µ
consists of infinitely many copies of (Mmar

µ
)0.

If two di↵erent copies would have intersecting images in DBL under the period map BL,
the images would coincide, and there would be a copy di↵erent from (Mmar

µ
)0 with the same

image in DBL as (Mmar

µ
)0. An element g3 2 GZ which maps (Mmar

µ
)0 to this copy would be in

{g 2 GZ | g(Ml⇣,1) = Ml⇣,1} � G
mar = ;, a contradiction. Therefore BL : Mmar

µ
! D

sub

BL
is an

embedding. ⇤
Remarks 9.3. (i) The arithmetic triangle group of type (2, 3, 14) for Z1,0 in theorem 3.6 contains
elliptic elements of order 3 although arg ⇣ = 2⇡

14 and the matrices defining these elliptic elements
are in GL(2,Z[⇣]). The eigenspaces in M(2⇥ 1,C) of these matrices are not defined over Q(⇣),
but only over Q(e2⇡i/3, ⇣). This example shows that (9.16) in the case m|p and the arguments
proving it are nontrivial.

(ii) In 1993, the second author worked on the Torelli conjecture for the unmarked bimodal
series singularities. He missed to consider MT carefully and thus was not sure which elliptic
elements fix [C · v01 ] 2 H(C↵1). Therefore he could not prove the Torelli conjecture for the
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unmarked singularities in the subseries S
]

1,10r, S1,10r and Z1,14r. Now theorem 9.1 gives the
marked and unmarked Torelli theorem for all bimodal series singularities.

Now we come to the spectral numbers and the classifying space DBL.

Lemma 9.4. Consider a family of bimodal series singularities in table (9.1).
(a) The spectral numbers ↵1, ...,↵µ with ↵1  ...  ↵µ satisfy

↵1 =
�1
m

< ↵2 =
1

m2
< ↵3  ...  ↵µ�2 (9.27)

< ↵µ�1 = 1� 1

m2
< ↵µ = 1 +

1

m

and are uniquely determined by this and the characteristic polynomial
Q

j�1 bj of the monodromy
with bj as in table (5.1).

(b) Recall from (9.5) �1 = �1
m2

= �↵2 and �2 = 1
m

= �↵1. Then

dimC
↵1 =

⇢
1 if m 6 |p,
2 if m|p, (9.28)

dimC
� =

8
<

:

1 for � 2 (↵1,�2) \ 1
m2

(Z� {0}) if rI = 1,
and for � 2 (↵1,�2) \ ( 1

m2
+ 2

m2
Z) if rI = 2,

0 for other � 2 (↵1,�2).
(9.29)

The following two pictures illustrate this for 2m < p < 3m, the first for rI = 1, the second for
rI = 2.

↵1 = �1
m

�1 = �1
m2

↵4↵3 �2 = 1
m

↵2 = 1
m2

0

↵1 = �1
m

�1 = �1
m2

↵4↵3 �2 = 1
m

↵2 = 1
m2

0

(c) Denote by (⇤) the condition

(⇤) : � 2 (↵1, 0) with C
� 6= {0}(then dimC

� = 1).

If m 6 |p the classfying space DBL in [He99] is

DBL = {C · (v1 +
X

�:(⇤)

v(�) + v2) | (9.30)

v1 2 C
↵1 � {0}, v(�) 2 C

�
, v2 2 C

�2}
⇠= C

NBL with NBL := |{� : (⇤)}|+ 1.

In (9.8) H(C↵1) was defined for m|p. If m|p then DBL is

DBL = {C · (v1 +
X

�:(⇤)

v(�) + v2) | (9.31)

v1 2 C
↵1 � {0} with [C · v1] 2 H(C↵1),

v(�) 2 C
�
, v2 2 C ·  �2( 

�1
↵1 (v1)) ⇢ C

�2}
⇠= H(C↵1)⇥ C

NBL with NBL := |{� : (⇤)}|+ 1.
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Proof: (a) The spectral numbers are well known [AGV88, 13.3.4, p. 389]. They also follow
from corollary 7.17 and the proof of theorem 9.6.

(b) (9.28) follows from dimC
↵1 = dimMl⇣ and �m 6 |b2 () m 6 |p. (9.29) follows from the

values of bj in table (5.1).
(c) The spectral numbers and the numbers � with C

� 6= {0} give for each L0 2 DBL

L0 = C · �1 � L0 \
M

�:↵2��2

C
� � V

>�2 (9.32)

where

↵(�1) = ↵1,�1 2 C
↵1 �

M

�:(⇤)

C
� � C

�2 . (9.33)

Here observe that for � with ↵2  � < �2 and C
� 6= {0}, the space C

� is one-dimensional and
is generated by the principal part of a section in L0.

If m 6 |p then dimC
�2 = 1 and C

�2 is not generated by the principal part of a section in L0.
If m|p then dimC

�2 = 2 and the one-dimensional subspace

{v 2 C
�2 |K(�2)

f
(v, s(�1,↵1)) = 0} ⇢ C

�2

is in L0, because then �2 is a spectral number with multiplicity 1. And then the principal part
s(�1,↵1) must be compatible with a polarized Hodge structure of weight 2 on H

1
⇣
�H

1
⇣
. This

amounts to [C · s(�1,↵1)] 2 H(C↵1). Especially then

C
�2 = C ·  �2( 

�1
↵1 s(�1,↵1))� {v 2 C

�2 |K(�2)
f

(v, s(�1,↵1)) = 0}, (9.34)

and �1 can be chosen with

↵(�1) = ↵1,�1 2 C
↵1 �

M

�:(⇤)

C
� � C ·  �2( 

�1
↵1 s(�1,↵1)). (9.35)

�1 is (up to rescaling) uniquely determined by (9.33) if m 6 |p and by (9.35) if m|p. And it can
be chosen freely with (9.33) respectively with (9.35) and [C · s(�1,↵1)] 2 H(C↵1). The condition

(�) K(�2)
f

(L0,L0) = 0 on DBL directly before theorem 7.11 implies that L0 \
L

↵2��2
C

� is
uniquely determined by �1. Therefore L0 is uniquely determined by �1. Therefore DBL is as
stated in (9.30) and (9.31). ⇤

Remarks 9.5. (i) All the normal forms in table (9.1) except W
]

1,p are Newton nondegener-

ate. But also the normal form fp(x, y, ez) for W
]

1,p in table (9.1) can be made easily Newton
nondegenerate with the coordinate change ez = z + i(x2 + y

3). Then

fp(x, y, z + i(x2 + y
3)) = z

2 + 2ix2
z + 2iy3z (9.36)

+

⇢
(t1 + t2y)xy4+q if p = 2q � 1,
(t1 + t2y)x2

y
3+q if p = 2q.

(ii) The Newton boundaries of the normal forms in table (9.1) except for W
]

1,p and of the

normal form in (9.36) for W
]

1,p have each two compact n-dimensional faces �1 and �2. The
following table lists the corresponding linear forms l�j

and the value s(f) from corollary 7.17. A
linear form is encoded by the values (l�j

(x), l�j
(y), l�j

(z)).
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W
]

1,p �1 : 1
12 (3, 2, 6) �2 : 1

12+p
(3, 2, 6 + p) 5

12+p

S
]

1,p �1 : 1
10 (3, 2, 4) �2 : 1

10+p
(3, 2, 4 + p) 5

10+p

U1,p �1 : 1
9 (3, 2, 3) �2 : 1

9+p
(3 + p, 2, 3) 5

9+p

E3,p �1 : 1
18 (6, 2, 9) �2 : 1

2(9+p) (6 + p, 2, 9 + p) 4
9

Z1,p �1 : 1
14 (4, 2, 7) �2 : 1

2(7+p) (4 + p, 2, 7 + p) 3
7

Q2,p �1 : 1
12 (4, 2, 5) �2 : 1

2(6+p) (4 + p, 2, 5 + p) 1
2

W1,p �1 : 1
12 (3, 2, 6) �2 : 1

2(6+p) (3 + p, 2, 6 + p) 5
12

S1,p �1 : 1
10 (3, 2, 4) �2 : 1

2(5+p) (3 + p, 2, 4 + p) 1
2

(9.37)

Theorem 9.6. Consider the normal form in (9.36) for W
]

1,p and the normal forms in table
(9.1) for the other seven series. Recall the notation !0 := dxdydz from remark 7.14 (v). Define

b1 := s(!0,↵1)(1, 0) 2 C
↵1 ,

b2 := s(!0,�1)(1, 0) 2 C
�1 ,

b3 := s(y!0,↵2)(1, 0) 2 C
↵2 ,

b4 := s(y!0,�2)(1, 0) 2 C
�2 .

If m|p, choose b5 2 C
�2 with C · b5 = {v 2 C

�2 |K(�2)
f

(b1, v) = 0}.

(a) All bj 6= 0. And K
(�2)
f

(b1 + b2, b3 + b4) = 0. If m|p then C
�2 = C · b4 � C · b5.

(b) We write t = (t1, t2). Recall the notation ↵(s[!]0(t)) = min(↵ | s(!,↵)(t) 6= 0) from
remark 7.14 (iv).

↵(s[!0]0(t)) = ↵1, (9.38)

s(!0,↵1)(t) = b1, (9.39)

s(!0,�)(t) = 0for ↵1 < � < �1, (9.40)

s(!0,�1)(t) = t
1/m2

1 · b2, (9.41)

s(!0,↵2)(t) =
t2

t1
· �1
m2

· t�1/m2

1 · b3 + s(!,↵2)(t1, 0), (9.42)

s(!0,�2)(t)

⇢
= s(!0,�2)(t1, 0) if m 6 |p,
2 s(!0,�2)(t1, 0) + C · b5 if m|p, (9.43)

with

s(!0,↵2)(t1, 0) s(!0,�2)(t1, 0)
(rI = 2& p � 2) or
(rI = 1& p � 3) or U1,2 0 0

W
]

1,1, S
]

1,1, U1,1 c1 · t2�1/m2

1 · b3 c2 · t21 · b4
W

]

1,2, S
]

1,2, E3,1

Z1,1, Q2,1,W1,1, S1,1 c1 · t1�1/m2

1 · b3 c2 · t1 · b4

(9.44)

for some values c1, c2 2 C.

↵(s[y!0]0(t) = ↵2, (9.45)

s(y!0,↵2)(t) = t
�1/m2

1 · b3, (9.46)

s(y!0,�2)(t)

⇢
= b4 if m 6 |p or t2 = 0,
2 b4 + C · b5 if m|p, (9.47)
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s(�,�2)(t)

⇢
= 0 if m 6 |p
2 C · b5 if m|p (9.48)

for � 2 H
00
0 (ft) with ↵(�) > ↵2.

(c) In the five series with rI = 2 (see table (5.1)) for b 2 Z�0

↵(s[yb+1
!0]0(t)) = ↵2 +

2b

m2
=

2b+ 1

m2
, (9.49)

s(yb+1
!0,

2b+ 1

m2
)(t) = t

�(2b+1)/m2

1 · s(yb+1
!0,

2b+ 1

m2
)(1, 0). (9.50)

Especially, if p = mr then 2r+1
m2

= 1
m

= �2, b5 can be chosen as b5 = s(yr+1
!0,�2)(1, 0), and

s(yr+1
!0,�2)(t) = t

�1/m
1 · b5. (9.51)

(d) In the three subseries W ]

1,12r, S
]

1,10r, U1,9r (i.e. the subseries with rI = 1 and m|p), b5 can
be chosen such that b5 and ! in the following table (9.54) satisfy

↵(s[!]0(t)) = �2 =
1

m
, (9.52)

s(!,�2 + 1)(t) = t
�1/m
1 · b5. (9.53)

!

W
]

1,12+24r, S
]

1,10+20r xy
r
!0

U1,9+18r y
r
z!0

W
]

1,24r, S
]

1,20r, U1,18r y
r+1

!0

(9.54)

Proof: (a) Observe ⌫(!0)� 1 = ↵1 < s(f) and ⌫(y!0)� 1 = ↵2 < s(f). This, theorem 7.16
and corollary 7.17 show (9.38), (9.45), b1 6= 0 and b3 6= 0. b2 6= 0 will be shown below. (9.40)

(which will also be shown below) and K
(�2)
f

(H 00
0 (ft), H

00
0 (ft)) = 0 give especially

0 = K
(�2)
f

(s[!0]0(1, 0), s[y!0]0(1, 0)) = K
(�2)
f

(b1 + b2, b3 + b4).

As K(�2)
f

(b2, b3) 6= 0, also K
(�2)
f

(b1, b4) 6= 0 and b4 6= 0 and in the case m|p C
�2 = C · b4�C · b5.

(b)–(d) We restrict to the series E3,p. The calculations for the series Z1,p, Q2,p,W1,p and S1,p

are very similar. The calculations for the series W ]

1,p, S
]

1,p and U1,p are similar, but require more
case discussions.

The two compact faces �1 and �2 (remark 9.5) of the Newton boundary give rise to the
following two relations

1

3
xfx +

1

9
yfy +

1

2
zfz �

p

9
t1y

9+p � p+ 1

9
t2y

10+p = f, (9.55)

6 + p

2(9 + p)
xfx +

2

2(9 + p)
yfy +

1

2
zfz

� p

2(9 + p)
x
3 � 1

9 + p
t2y

10+p = f. (9.56)
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These relations and (7.24) give the following two values for @⌧ ⌧s[xa
y
b
!0]0(t):

@⌧ ⌧s[x
a
y
b
!0]0(t)

= l�1(a+ 1, b+ 1, 1) · s[xa
y
b
!0]0(t) (9.57)

�p

9
t1@⌧s[x

a
y
b+9+p

!0]0(t)�
p+ 1

9
t2@⌧s[x

a
y
b+10+p

!0]0(t),

= l�2(a+ 1, b+ 1, 1) · s[xa
y
b
!0]0(t) (9.58)

� p

2(9 + p)
@⌧s[x

a+3
y
b
!0]0(t) �

1

9 + p
t2@⌧s[x

a
y
b+10+p

!0]0(t).

This gives for any � with dimC
� 6= 0

(� + 1� l�1(a+ 1, b+ 1, 1))s(xa
y
b
!0,�)(t)

= �p

9
t1@⌧s(x

a
y
b+9+p

!0,� + 1)(t)

�p+ 1

9
t2@⌧s(x

a
y
b+10+p

!0,� + 1)(t), (9.59)

(� + 1� l�2(a+ 1, b+ 1, 1))s(xa
y
b
!0,�)(t)

= � p

2(9 + p)
@⌧s(x

a+3
y
b
!0,� + 1)(t

� 1

9 + p
t2@⌧s(x

a
y
b+10+p

!0,� + 1)(t). (9.60)

Furthermore, (7.39) gives

@t1s[x
a
y
b
!0]0(t) = (�@⌧ )s[xa

y
b+9+p

!0]0(t), (9.61)

@t2s[x
a
y
b
!0]0(t) = (�@⌧ )s[xa

y
b+10+p

!0]0(t)

= @t1s[x
a
y
b+1

!0]0(t). (9.62)

(9.59)–(9.62) give

⇣
p

9
t1@t1 +

p+ 1

9
t2@t2 � (� + 1) + l�1(a+ 1, b+ 1, 1)

⌘

s(xa
y
b
!0,�)(t) = 0, (9.63)

⇣ 1

9 + p
t2@t2 � (� + 1) + l�2(a+ 1, b+ 1, 1)

⌘
s(xa

y
b
!0,�)(t)

=
p

2(9 + p)
@⌧s(x

a+3
y
b
!0,� + 1)(t). (9.64)

(9.63) gives for t2 = 0

s(xa
y
b
!0,�)(t1, 0) = t

9
p
(�+1�l�1 (a+1,b+1,1))

1 · s(xa
y
b
!0,�)(1, 0). (9.65)

The following eight equations are special cases of (9.65).

s(!0,↵1)(t1, 0) = b1, (9.66)

s(!0,�1)(t1, 0) = t
1/m2

1 · b2, (9.67)

s(!0,↵2)(t1, 0) = t
�1/m2+1/p
1 · s(!0,↵2)(1, 0), (9.68)

s(!0,�2)(t1, 0) = t
1/p
1 · s(!0,�2)(1, 0), (9.69)
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s(yb+1
!0,

2b+ 1

m2
)(t1, 0) = t

�(2b+1)/m2

1 · s(yb+1
!0,

2b+ 1

m2
)(1, 0), (9.70)

s(y!0,↵2)(t1, 0) = t
�↵2
1 · b3 = t

�1/m2

1 · b3, (9.71)

s(y!0,�2)(t1, 0) = b4, (9.72)

s(yr+1
!0,�2)(t1, 0) = t

�1/m2

1 · s(yr+1
!0,�2)(1, 0)if p = 18r. (9.73)

Claim: Fix some b 2 Z�0.

(i) ⌫(yb+1
!0) = ↵2 +

b

9+p
= 2b+1

m2
.

(ii) Any (n + 1)-form df ^ d⌘ which contains y
b+1

!0 as a summand, contains a summand
g · !0 with g a monomial (times a nonzero scalar) with ⌫(g · !0)  ⌫(yb+1

!0).
(iii) ⌫(yb+1

!0) =
2b+1
m2

.

Proof of the claim: (i) Trivial. (iii) follows from (i) and (ii).
(ii) The only monomial di↵erential (n� 1)-forms ⌘ such that df ^ d⌘ contains fy · yc · !0 are

⌘1 = �xycdz and ⌘2 = y
c
zdx, and

df ^ d⌘1 = fy · yc · !0 � fx · c · xyc�1 · !0,

df ^ d⌘2 = fy · yc · !0 � fz · c · yc�1
z · !0.

These (n+ 1)-forms contain (3� 2c)x2
y
c+2

!0 respectively 3x2
y
c+2

!0, and

⌫(x2
y
c+2

!0)  ⌫(yc+8+p
!0).

(⇤)

The claim and theorem 7.16 imply

↵(s[yb+1
!0]0(t)) =

2b+ 1

m2
, (9.74)

s(yb+1
!0,

2b+ 1

m2
)(t) 6= 0. (9.75)

Especially, b3 6= 0, and if p = 18r also s(yr+1
!0,�2)(t) 6= 0. In this case p = 18r, the vanishing

K
(�2)
f

(s[!0]0(1, 0), s[y
r+1

!0]0(1, 0)) = 0

gives K(�2)
f

(b1, s(yr+1
!0,�2)(1, 0)) = 0. Therefore in this case we can choose

b5 = s(yr+1
!0,�2)(1, 0).

The elementary sections s(yb+1
!0,

2b+1
m2

)(t) are independent of t2 because (9.62) gives

@t2s(y
b+1

!0,
2b+ 1

m2
)(t) = @t1s(y

b+2
!0,

2b+ 1

m2
)(t) = 0.

Now part (c), i.e. (9.49)–(9.51), and (9.46) are proved.
(9.62) gives also

@t2s[!0]0(t) = @t1s[y!0]0(t), (9.76)

so s(!0,�)(t) = s(!0,�)(t1, 0) for ↵1  � < ↵2.

With (9.66) and (9.59) and (9.75) we obtain

s(!0,�)(t1, 0) =

8
><

>:

b1 if � = ↵1,
�p

9(��↵1)
t1@⌧s(y9+p

!0,� + 1)(t1, 0) = 0 if ↵1 < � < �1,

�p

9(�1�↵1)
t1@⌧s(y9+p

!0,�1 + 1)(t1, 0) 6= 0 if � = �1.
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This gives b2 6= 0 and (together with (9.66) and (9.67)) (9.39)–(9.41).

The argument in the proof of part (a) with K
(�2)
f

(H 00
0 (ft), H

00
0 (ft)) = 0 gives b4 6= 0 and (9.47)

and (9.48).
It rests to show (9.42)–(9.44). From (9.76), (9.46) and (9.47) we obtain

@t2s(!0,↵2)(t) = @t1s(y!0,↵2)(t) = @t1(t
�1/m2

1 · b3),

@t2s(!0,�2)(t) = @t1s(y!0,�2)(t)

⇢
= 0 if m 6 |p,
2 C · b5 if m|p,

which gives (9.42) and (9.43).
For (9.44) observe the following. The sections

s(y!0,↵2)(t1, 0) = t
�1/m2

1 · b3,
s(y!0,�2)(t1, 0) = b4,

and in the case m|ps(yr+1
!0,�2)(t1, 0) = t

�1/m
1 · b5

are univalued nowhere vanishing sections in the bundles
S

t12T
C

↵2(t1, 0) and
S

t12T
C

�2(t1, 0),
and they generate these bundles. Also s(!0,↵2)(t1, 0) and s(!0,�2)(t1, 0) are univalued sections
in these bundles. (9.68) and (9.69) show for p � 2 that they are everywhere vanishing. For p = 1
they give the statement for E3,1 in the last line of table (9.44). This finishes the proof of the
parts (b) and (c) for the series E3,p. ⇤

Proof of Mm2
T

= id:
By theorem 9.6, the following sections in the bundles

S
t12T

C
�(t1, 0) for � as in table (9.77)

are univalued nowhere vanishing sections and generate these bundles (in the case � = ↵1 only if
m 6 |p).

section b1 t
1/m2

1 · b2 t
�1/m2

1 · b3 b4 t
�1/m
1 · b5 if m|p

� ↵1 �1 ↵2 �2 �2

eigenvalue of 1 e
�2⇡i/m2 e

2⇡i/m2 1 e
2⇡i/m

MT on C · bj

(9.77)

Therefore b1 and b4 are univalued, and b2 and b3 (and b5 if m|p) are multivalued flat sections
with eigenvalues of MT as in the table. Thus Mm2

T
is on C

↵1 , C
�1 , C

↵2 , C
�2 ,Ml⇣ and Ml

e2⇡i/m2

the identity. We will show that it is the identity on all of Ml.
Consider firstly the case m 6 |p. Then by (9.24) Mm2

T
is in

{id} in the cases W ]

1,2q�1, S
]

1,2q�1, U1,2q, E3,p, Z1,p, (9.78)

{id, id |B1 ⇥ (�Mm2/2
h

)|B2}in the cases W ]

1,2q, S
]

1,2q, U1,2q�1,

{id, (�Mm/2
h

)|B1 ⇥ id |B2} in the cases Q2,p,W1,p, S1,p.

On the other hand, in the cases in the second and third line of (9.78), m2 = m + rIp is even,
and MT itself is in GZ which is given by (5.6) in theorem 5.1. Thus Mm2

T
= id also in the second

and third line of (9.78).
Consider secondly the case m|p, so p = mr. By (5.9) in theorem 5.1, Mm2

T
= " ·Mk

h
for some

" 2 {±1} and some k 2 Z. Then " · ⇣k = 1 and " · e2⇡ik/m2 = 1. If " = 1, then the two conditions
boil down to m|k and m2|k, so to m2|k. Then M

m2
T

= id. If " = �1, we will come below to a
contradiction. Then the two conditions require m even and m2 even.

For each eigenvalue � of Mh on Ml with dimMl� = 1, an eigenvector in Ml�,Z[�] exists.
Then MT has an eigenvalue in Eiw(�) on this eigenvector, and M

m2
T

has the eigenvalue 1 on
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this eigenvector. Here m2 even is used. Therefore M
m2
T

= id on Ml� for each

� 2 {⇣, e2⇡i/m2} [ {e� | dimMle� = 1}.

Comparison with table (5.1) shows that no k 2 Z with ��k = 1 for all these � exists. This gives
a contradiction. The case " = �1 is impossible. Mm2

T
= id is proved in all cases. ⇤

Proof that MT has the eigenvalues 1 and ⇣ on Ml⇣ and on C
↵1 :

By table (9.77), MT has on C
�2 and on H

1
e�2⇡i�2

= H
1
⇣

the eigenvalues 1 and ⇣. As Ml⇣ is

dual to H
1
⇣

and H
1
⇣

is complex conjugate to H
1
⇣
, Mt has on Ml⇣ , H1

⇣
= H

1
e�2⇡i↵1

and C
↵1

the eigenvalues 1 and ⇣. ⇤

Proof of theorem 9.2 (a)+(b)+(d):
(a) This follows immediately from (9.7), (9.9) and lemma (9.4) (c).
(b) All of this follows by carefully putting together the results in theorem 9.6. Here v

0
1 = b1,

v
0
2 = b2, v04 2 C

⇤ · b4 suitable, and the section in the brackets on the right hand side of (9.10) is

s[!0]0(t) +

0

@ 1

m

t2

t1
+

8
<

:

0
�c1 · t21
�c1 · t1

9
=

;

1

A · s[y!0]0(t) (9.79)

mod
M

↵2<�<�2

C
� � C · b5 � V

>�2 .

The three cases in {...} correspond to the three lines in (9.44). The linear combination is chosen

such that it has no part in C
↵2 . This section and the fact K(�2)

f
(H 00

0 (ft), H
00
0 (ft)) = 0 determine

H
00
0 (ft). By table (9.77), MT has on v

0
1 = b4 the eigenvalue 1.

(c) Consider the coordinate change

' : (C3
, 0)! (C3

, 0), (x, y, z) 7! (x, y,�z). (9.80)

We treat the cases U1,9+18r and U1,18r separately.
The case U1,9+18r: Then ' 2 G

smar,gen

R ⇢ G
smar, and

'
⇤(!0) = �!0,'

⇤(yrz!0) = y
r
z!0. (9.81)

Now compare (9.39) and (9.54). ' induces an automorphism (')coh on C
↵1 and C

�2 with

(')coh(b1) = �b1, (')coh(b4) = �b4, (')coh(b5) = b5. (9.82)

One can choose g3 = �MT � (')hom 2 G
mar.

The case U1,18r: Because of (9.54) and (9.77), instead of (9.81) the identities

'
⇤(!0) = �!0,'

⇤(yr+1
!0) = �yr+1

!0 (9.83)

are relevant. Now (')coh is because of (9.15) an isomorphism

H
00
0 (f(t1,0))! H

00
0 (f(�t1,0)), C

�2(t1, 0)! C
�2(�t1, 0).

The composition

(� id) � (math. pos. flat shift from C
�2(�t1, 0) to C

�2(t1, 0)) � (')coh
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acts on C
�2(t1, 0) and has because of (9.76) the eigenvectors b4 and b5 with the eigenvalues 1

and e
⇡i/9:

b4 t
�1/9
1 b5 C

�2(t1, 0)
# # (')coh #
�b4 �(e�⇡i

t1)�1/9
b5 C

�2(�t1, 0)
# # shift #
�b4 �e⇡i/9t�1/9

1 b5 C
�2(t1, 0)

# # � id #
b4 e

⇡i/9
t
�1/9
1 b5 C

�2(t1, 0)

The corresponding composition

(� id) � (math. pos. flat shift from Ml(f(�t1,0)) to Ml(f(t1,0))) � (')hom

is in G
mar and can be chosen as g3. ⇤

10. Period maps and Torelli results for the quadrangle singularities

In this section we will prove for the quadrangle singularities the strong global Torelli conjecture
8.11 (a), the conjectures 8.6 (b) � id /2 G

smar and (a) GZ = G
mar. The Torelli conjecture for the

unmarked singularities had been proved in [He93] (and the proof had been sketched in [He95]).
The main new ingredient for the Torelli result for marked singularities is a much stronger control
of the group GZ, in theorem 6.1. But we will also recall the old ingredients from [He93], the
space DBL and a period map for which we need calculations of the Gauss-Manin connection.

The six bimodal families of quadrangle singularities have as surface singularities the normal
forms f(t1,t2) in table (10.1). These are not the normal forms in [AGV85, 15.1]. We will justify
the normal forms and explain their properties after theorem 10.1. The parameters (t1, t2) are
in T

(5) := (C� {0, 1})⇥ C. Table (10.1) lists additionally weights (wx, wy, wz) such that f(t1,0)
is quasihomogeneous of weighted degree 1 and two numbers m0 and m1 We set m1 := m0.
Observe wy = 2

m
< wx  wz.

(wx, wy, wz) m0 m1
W1,0 x

4 + (4t1 � 2)x2
y
3 + y

6 + t2x
2
y
4 + z

2 ( 14 ,
1
6 ,

1
2 ) 12 6

S1,0 x
2
z + y

3
z + yz

2 + t1x
2
y
2 + t2x

2
y
3 ( 3

10 ,
2
10 ,

4
10 ) 10 5

U1,0 xz(x� z) + y
3(x� t1z) + t2y

4
z ( 13 ,

2
9 ,

1
3 ) 9 9

E3,0 x(x� y
3)(x� t1y

3) + t2x
2
y
4 + z

2 ( 13 ,
1
9 ,

1
2 ) 9 9

Z1,0 xy(x� y
2)(x� t1y

2) + t2x
2
y
4 + z

2 ( 27 ,
1
7 ,

1
2 ) 7 7

Q2,0 x(x� y
2)(x� t1y

2) + yz
2 + t2xz

2 ( 13 ,
1
6 ,

5
12 ) 6 6

(10.1)

Recall that table (6.1) lists for these singularities the Milnor number µ, the characteristic
polynomials bj , j � 1, of the monodromy on the Orlik blocks Bj in theorem 5.1, the order m of
the monodromy and the index rI .

For each 2-parameter family in table (10.1), we choose f0 := f(i,0) as reference singularity.
And as in section 9, Mmar

µ
, (Mmar

µ
)0, GZ, Gmar, Ml, H1 and C

↵ mean the objects for f0. As

always, ⇣ := e
2⇡i/m.

We will construct branched coverings c(2) and c
(6) and unbranched coverings c(1) and c

(5) as
follows.
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T
(3)

c
(1)

✏✏

⇢ T
(4) := H

c
(2)

✏✏
T

(1) := C� {0, 1} ⇢ T
(2) := P

1
C

(10.2)

T
(7) := T

(3) ⇥ C

c
(5):=c

(1)⇥id
✏✏

⇢ T
(8) := T

(4) ⇥ C

c
(6):=c

(2)⇥id
✏✏

T
(5) = T

(1) ⇥ C ⇢ T
(6) := T

(2) ⇥ C

Let � ⇢ PGL(2,R) be a triangle group of type ( 1
m0

,
1

m1
,

1
m1

). The quotient H/� is an
orbifold with three orbifold points of orders m0,m1 and m1. They are the images of the elliptic
fixed points of � on T

(4) = H of orders m0,m1 and m1. As a manifold H/� ⇠= P
1
C. Choose

coordinates on H/� such that 0 and 1 are orbifold points of order m0 = m1 and1 is an orbifold
point of order m1. Denote by

c
(2) : T (4) = H! T

(2) = P
1
C (10.3)

the quotient map. It is a branched covering. Denote

T
(3) := T

(4) � (c(2))�1({0, 1,1}),
andc(1) := c

(2)|T (4) : T (3) ! T
(1)

. (10.4)

It is a covering.

Theorem 10.1. Consider a bimodal family of quadrangle surface singularities in table (10.1).
(a) There are canonical isomorphisms

T
(7) ! (Msmar

µ
)0 ! (Mmar

µ
)0. (10.5)

(b) � id /2 G
smar, where Gsmar is the group for the singularities of multiplicity � 3, namely the

curve singularities W1,0, E3,0, Z1,0 and the surface singularities S1,0, U1,0, Q2,0. So, conjecture
8.6 (b) is true.

(c) GZ = G
mar. So, Mmar

µ
= (Mmar

µ
)0, and conjecture 8.6 (a) is true.

(d) The period map BL : M
mar

µ
! DBL is an embedding. So, the strong global Torelli

conjecture 8.11 (a) is true.

The Torelli result for unmarked singularities (the period map M
mar

µ
/GZ ! DBL/GZ is an

embedding) was proved already in [He93], and also that there is a well defined period map
T

(7) ! DBL and that it is an embedding. But we prefer to give an independent account and
recover these results. The hardest part is in any case new. It is the precise control of GZ in
theorem 6.1.

First we discuss the normal forms in table (10.1) and the right equivalence classes in them.
Each bimodal family of quadrangle surface singularities contains a 1-parameter subfamily of

quasihomogeneous singularities. The exceptional set of the minimal good resolution of such
a singularity consists of 5 smooth rational curves. One, the central curve, intersects each of
the other 4, the branches, in one point. The right equivalence class of one quasihomogeneous



204 FALKO GAUSS AND CLAUS HERTLING

surface singularity is determined by the central curve with the 4 intersection points and the self
intersection numbers of the 4 branches. Table (10.6) lists these self intersection numbers.

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

(2, 2, 3, 3) (2, 2, 3, 4) (2, 3, 3, 3) (2, 2, 2, 3) (2, 2, 2, 4) (2, 2, 2, 5)
(10.6)

In table (10.1), the singularities with t2 = 0 are quasihomogeneous. Their normal forms are
not taken from [AGV85, 15.1], but from [Bi92, Anhang A2, p. 191]. They are chosen such that

the cross ratio of the 4 intersection points on the central curve has j-invariant j = 4
27

(t21�t1+1)3

t
2
1(1�t1)2

.

This fact implies that the families in table (10.1) contain representatives of all right equivalence
classes in one µ-homotopy class.

From the weights (or the spectral numbers, see below theorem 10.6) one deduces easily that
any monomial basis of the Jacobi algebra of one quasihomogeneous surface singularity ft1,0

contains precisely one monomial p>1 of weighted degree > 1 and that

deg
w
p>1 = 1 +

2

m
= 1 + wy.

[AGV85, 12.6 Theorem] says here that any semiquasihomogeneous singularity with quasihomo-
geneous part ft1,0 is right equivalent to ft1,0 + t2 · p>1 for some t2 2 C. In table (10.1) we have
chosen the monomial p>1 such that it is part of a monomial basis of the Jacobi algebra of ft1,0
for any t1 2 T

(1).

Remarks 10.2. It is nontrivial (and slightly surprising) that such a monomial p>1 exists si-
multaneously for all t1 2 T

(1). In [He93][He95] the second author had overlooked this problem
and had chosen in the four cases S1,0, E3,0, Z1,0, Q2,0 a monomial which does not work for spe-
cial parameters t1 2 T

(1). The following table (10.8) lists for all 6 families all monomials ep of
weighted degree 1 + 2

m
and for each of them the function q(t1) with

ep ⌘ q(t1) · p>1 mod (Jacobi ideal of ft1,0), (10.7)

where p>1 =
@f(t1,t2)

@t2
is the monomial chosen in table (10.1).

p>1 ep : q(t1) ep : q(t1) ep : q(t1)
W1,0 x

2
y
4

x
4
y : 1� 2t1 y

7 : 1� 2t1 x
2
yz : 0

y
4
z : 0 yz

2 : 0
S1,0 x

2
y
3

x
2
yz : �t1 y

4
z : �t1 y

2
z
2 : t1

y
6 : 2t1 � 1 x

4 : 2t1 � 1 z
3 : t1(2t1 � 3)

U1,0 y
4
z x

2
yz : �t1 xyz

2 : �t1 xy
4 : t1

x
3
y : t1(t1 � 2) yz

3 : 1� 2t1

E3,0 x
2
y
4

x
3
y : t1+1

2 xy
7 : t1+1

2t1
y
10 : t

2
1�t1+1

t
2
1

yz
2 : 0

Z1,0 x
2
y
4

x
3
y
2 : t1+1

2 xy
6 : t1+1

2t1
y
8 : t

2
1�t1+1

t
2
1

x
4 : 3

2 t
2
1 � 2t1 +

3
2 yz

2 : 0
Q2,0 xz

2
x
2
y
3 : 1

(1�t1)2
x
3
y : t1+1

2(1�t1)2
xy

5 : t1+1
2t1(1�t1)2

y
7 : t

2
1�t1+1

t
2
1(1�t1)2

y
2
z
2 : 0

(10.8)

Thus p>1 could be replaced in the normal form in table (10.1) by any of the following monomials:

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

� x
2
yz, y

4
z, y

2
z
2

x
2
yz, xyz

2
, xy

4 � � x
2
y
3 (10.9)
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We denote by G3 and G2 ⇢ G3 the groups of automorphisms of T (2) = P
1
C

G3 := {t1 7! t1, 1� t1,
1
t1
,

t1
t1�1 ,

1
1�t1

,
t1�1
t1

} ⇠= S3 as a group,
G2 := {t1 7! t1, 1� t1} ⇢ G3

⇠= S2 as a group.
(10.10)

They act also on T
(1) = C� {0, 1}.

Theorem 10.3. Consider a bimodal family of quadrangle surface singularities in table (10.1).
A function

 : G2 ⇥ T
(1) ! C

⇤ for W1,0, S1,0, (10.11)

 : G3 ⇥ T
(1) ! C

⇤ for U1,0, E3,0, Z1,0, Q2,0,

with the following properties exists.

f(t1,t2) ⇠R f(et1,et2) () 9 g 2
⇢

G2 for W1,0, S1,0,

G3 for U1,0, E3,0, Z1,0, Q2,0,

with et1 = g(t1),etm1
2 = (g, t1) · tm1

2 , (10.12)

(id, t1) = 1, (10.13)

(g2g1, t1) = (g1, t1) · (g2, g1(t1)). (10.14)

Table (10.15) lists (g, t1) for generators g of the group.

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

t1 7! 1� t1 1 �1 1
⇣

1�t1
t1

⌘18 ⇣
1�t1
t1

⌘14
�1

t1 7! t
�1
1 � � �t�3

1 t
�12
1 t

�10
1 t

3
1

(10.15)

Proof: (10.13)–(10.15) are consistent (to check this is nontrivial only for E3,0 and Z1,0) and
define a unique function  as in (10.11). We will show now that it satisfies ( in (10.12). We
postpone the proof of ) in (10.12) to the end of this section.

The equality

f(t1,t2)(x · e2⇡iwx , y · e2⇡iwy , z · e2⇡iwz ) = f(t1,t2·e2⇡i2/m) (10.16)

gives ( in (10.12) for g = id and (id, t1) = 1 (for U1,0 m = m1 = 9, in the other cases
m1 = m

2 ). We list now coordinate changes (x, y, z) 7! '
(1)(x, y, z) and (x, y, z) 7! '

(2)(x, y, z)
with

f(t1,t2)('
(1)(x, y, z)) = f(1�t1,0) + t2 · p(1)(t1, x, y, z)

for all 6 cases, (10.17)

f(t1,t2)('
(2)(x, y, z)) = f(t�1

1 ,0)(x, y, z) + t2 · p(2)(t1, x, y, z)
for U1,0, E3,0, Z1,0, Q2,0 (10.18)

for certain quasihomogeneous polynomials p(1) and p
(2) in x, y, z with

deg
w
p
(1) = deg

w
p
(2) = 1 +

2

m
.
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'
(1)(x, y, z) '

(2)(x, y, z)
W1,0 (x,�y, z) �
S1,0 (ix, y,�z � y

2) �
U1,0 (�x+ z,�y, z) (�z, t�1/3

1 y,�x)
E3,0 (x� y

3
,�y, z) (x, t�1/3

1 y, z)

Z1,0 (e�2⇡i/14(x� y
2), i · e�2⇡i/28

y, z) (t1/71 x, t
�3/7
1 y, z)

Q2,0 (x� y
2
, iy, e

�2⇡i/8
z) (x, t�1/2

1 y, t
1/4
1 z)

(10.19)

One can calculate p
(1) and p

(2) easily. The proof of [AGV85, 12.6 Lemma] implies here

f(et1,0) + t2 · ep ⇠R f(et1,et2)

where t2 · ep ⌘ et2 · p>1 mod (Jacobi ideal of f(et1,0)). (10.20)

With table (10.8) one finds et2 with (10.20) for ep = p
(1) and for ep = p

(2). Then one verifies table
(10.15). ⇤
Remarks 10.4. (i) For the quasihomogeneous singularities, (10.12) becomes

f(t1,0) ⇠R f(et1,0) () 9 g 2 G2 resp. G3 with et1 = g(t1).

This is proved in [Bi92, Satz 1.5.2] using the minimal good resolution. Our proof of) in (10.12)
for all singularities at the end of this section will be di↵erent.

(ii) The right equivalence classes in T
(5) are the orbits of a group action on T

(5) in the cases
W1,0 and S1,0. There the group is a central extension of G2 by a cyclic group of order m1 = m

2 ,

1!
✓

cyclic group
of order m

◆
! (group acting on T

(5))! G2 ! 1.

In the other cases U1,0, E3,0, Z1,0 and Q2,0, an m-th root of (t1 ! t
�1
1 , .) : T (1) ! C

⇤ is not
uni-valued, but multi-valued. There one has only a groupoid acting on T

(5), whose orbits are
the right equivalence classes in T

(5).

(iii) In any case, the space Mmar

µ
= (Mmar

µ
)0 ⇠= T

(7) (by theorem 10.1) will be more canonical

than T
(5), and there the right equivalence classes are the orbits of the action of the group

GZ = G
mar.

Now we come to the spectral numbers and the classifying space DBL.

Lemma 10.5. Consider a bimodal family of quadrangle surface singularities in table (10.1).
Denote !0 := dxdydz.

(a) The spectral numbers ↵1, . . . ,↵µ with ↵1  . . .  ↵µ satisfy

↵1 =
�1
m

< ↵2 =
1

m
< ↵3  . . .  ↵µ�2 (10.21)

< ↵µ�1 = 1� 1

m
< ↵µ = 1 +

1

m
,

dimC
↵1 = dimC

↵2 = 2. (10.22)

The following picture illustrates this.

↵1 ↵2 ↵µ↵µ�1

1/20 1
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We also have

V
↵1(f(t1,t2)) � H

00
0 (f(t1,t2) � V

>↵2(f(t1,t2)), (10.23)

H
00
0 (f(t1,t2)) = C · (s(!0,↵1)(t1, t2) + s(!0,↵2)(t1, t2))

+ C · s(y!0,↵2)(t1, t2) + V
>↵2(f(t1,t2)). (10.24)

(b) The polarizing form S defines an indefinite form ((a, b) 7! S(a, b)) on H
1
⇣
. We get a

half-plane

H(C↵1) := {C · v | v 2 C
↵1 with S( �1

↵1
(v), �1

↵1 (v)) < 0} (10.25)

⇢ P
1(C↵1).

(c)

DBL = {C · (v1 + v2) | v1 2 C
↵1 � {0} with [C · v1] 2 H(C↵1),

v2 2 C ·  ↵2( 
�1
↵1 (v1)) ⇢ C

↵2} (10.26)
⇠= H(C↵1)⇥ C.

Proof: (a) The spectral numbers are well known [AGV88, 13.3.4, p. 389] and can be calcu-
lated in the semiquasihomogeneous cases for example with the generating series (here m = 2,
(w0, w1, w2) = (wx, wy, wz))

mY

j=0

t� t
wj

twj � 1
=

µX

i=1

t
↵i+1

. (10.27)

(10.22) and (10.23) are obvious. (10.24) follows from lemma 7.20 and

deg
w
(!0) = ↵1 + 1, deg

w
(y!0) = ↵2 + 1, and deg

w
(xi

y
j
z
k
!0) > ↵2 + 1

for any other monomial xi
y
j
z
k, because wy < wx  wz.

(b) This follows as in section 9 before theorem 9.2. It follows also from the fact that
Gr•

V
H

00
0 (f(t1,t2)) and S induce as in (7.27) a polarized Hodge structure of weight 2 on

H
1(f(t1,t2)). Especially,

a1(t1, t2) :=  
�1
↵1

s(!0,↵1)(t1, t2) 2 H
1(f(t1,t2))⇣ , (10.28)

a2(t1, t2) :=  
�1
↵2

s(y!0,↵2)(t1, t2) 2 H
1(f(t1,t2))⇣

satisfy

on H
1(f(t1,t2))⇣ : C · a1 = H

2,0 = F
2 ⇢ H

1(f(t1,t2))⇣ (10.29)

= F
1 = H

2,0 �H
1,1 = C · a1 � C · a2,

on H
1(f(t1,t2))⇣ : C · a2 = H

1,1 = F
1 ⇢ H

1(f(t1,t2))⇣ (10.30)

= F
0 = H

1,1 �H
0,2 = C · a2 � C · a1,

0 < i
2�0

S(a1, a1), 0 < i
1�1

S(a2, a2), 0 = S(a1, a2). (10.31)

(c) This follows as in lemma 9.4 (c) in the case m|p. ⇤

The multi-valued period map BLT (5) : T (5) ! DBL had been calculated in [He93]. We recall
the result and sketch the proof. In part (e) of theorem 10.6 we add a formula for the case S1,0

which will be useful for the determination of a transversal monodromy in theorem 10.7.
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Theorem 10.6. Consider a bimodal family of quadrangle surface singularities in table (10.1).

(a) s(!0,↵1)(t1, t2) = s(!0,↵1)(t1, 0) = s[!0](t1, 0) is independent of t2 and satisfies the
hypergeometric di↵erential equation

0 =
⇣
t1(1� t1)@

2
t1
+ (c� (a+ b+ 1)t1)@t1 � ab

⌘
s[!0](t1, 0) (10.32)

with (1� c, c� a� b, a� b) = ( 1
m0

,
1

m1
,

1
m1

).

(b) The multi-valued period map

BLT (1) : T (1) ! H(C↵1), t1 7! C · s[!0](t1, 0), (10.33)

lifts to a uni-valued period map

BLT (3) : T (3) ! H(C↵1) (10.34)

which is an open embedding and extends to an isomorphism

BLT (4) : T (4) ! H(C↵1). (10.35)

(c)

s(!0,↵2)(t1, t2) = t2 · (�@⌧ )s[p>1!0](t1, 0), (10.36)

C
↵2 = C · s[y!0](t1, 0)� C · @⌧s[p>1!0](t1, 0). (10.37)

(d) The multi-valued period map

BLT (5) : T (5) ! DBL (10.38)

is locally in T
(1) and H(C↵1) an isomorphism of line bundles and lifts to an open embedding of

line bundles

BLT (7) : T (7) ! DBL. (10.39)

(We do not know whether this extends to an isomorphism of line bundles T
(8) ! DBL, but we

do not expect it.)

(e) In the case of S1,0

@t1s[x!0](t1, 0) =
2t1 � 1

5t1(1� t1)
· s[x!0](t1, 0). (10.40)

Proof: (a) We just sketch the ansatz for the calculations which prove (10.32). f(t1,0) and
@t1f(t1,0) are quasihomogeneous of weighted degree 1. List all monomials d1, . . . , dl in x, y, z

which turn up in f
2
(t1,0)

, f(t1,0) · @t1f(t1,0) and (@t1f(t1,0))
2, find l � 2 independent linear combi-

nations of d1!0, . . . , dl!0 in df(t1,0) ^ d⌦1
C3 , and determine an equation

p1 · (@t1f(t1,0))2 · !0 + p2 · f(t1,0) · @t1f(t1,0) · !0 + p3 · f2
(t1,0)

· !0

⌘ 0 mod df(t1,0) ^ d⌦1
C3 (10.41)

with p1, p2, p3 2 Q[t1]. Then
�
p1@

2
t1
� (↵1 + 2)p2@t1 + (↵1 + 2)(↵1 + 1)p3

�
s[!0](t1, 0). (10.42)

Because of corollary 8.14 one can work in the cases W1,0, E3,0, Z1,0 with the curve singulari-
ties. There the number l of monomials is l = 5. In the other cases, the surfaces singularities
S1,0, U1,0, Q2,0, it is l = 9.

(b) The period map BLT (1) is not constant because s[!0](t1, 0) and

@t1s[!0](t1, 0) = (�@⌧ )s[@t1f(t1,0) · !0](t1, 0)
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are linearly independent because @t1f(t1,0) is not in the Jacobi ideal. Therefore the multi-valued
coe�cient functions f1(t1) and f2(t1) with

s[!0](t1, 0) = f1(t1) · v01 + f2(t1) · v02 (10.43)

for an arbitrary basis v
0
1 , v

0
2 of C↵1 are linearly independent scalar solutions of the same hy-

pergeometric di↵erential equation. Their quotient (t1 7! f1(t1)
f2(t1)

) is a Schwarzian function [Fo51,

sec. 113+114], which maps the closure of the upper half-plane to a hyperbolic triangle with
angles ⇡

m0
,

⇡

m1
,

⇡

m1
. The vertices are the images of 0, 1,1. Therefore the multi-valued map

BLT (1) : T (1) ! H(C↵1) is an inverse of the quotient map c
(1) : T (3) ! T

(1). This shows (10.34)
and (10.35).

(c) s(!0,↵2)(t1, 0) = 0 because of formula (7.52) in lemma 7.20 (a).

@t2s(!0,↵2)(t1, t2) = (�@⌧ )s(p>1!0,↵2 + 1)(t1, t2)

= (�@⌧ )s[p>1!0](t1, 0)

thus s(!0,↵2)(t1, t2) = t2 · (�@⌧ )s[p>1!0](t1, 0)

⌘ t2 · v2 mod C · s[y!0](t1, 0) (10.44)

with a suitable v2 2  
�1
↵2

( ↵1(s[!0](t1, 0)))� {0}.
Here v2 6= 0 follows from (10.37) which is a consequence of the fact that p>1 is not in the Jacobi
ideal of f(t1,0).

(d) This follows from (10.34) and part (c).

(e) The proof is similar to the calculations which prove part (a), but simpler.

@t1s[x!0](t1, 0)

= (�@⌧ )s[@t1f(t1,0) · x!0](t1, 0) = (�@⌧ )s[x3
y
2
!0](t1, 0)

(⇤)
=

2t1 � 1

6t1(t1 � 1)
(�@⌧ )s[f(t1,0) · x!0](t1, 0)

=
2t1 � 1

6t1(t1 � 1)
(�@⌧ ⌧)s[x!0](t1, 0) =

2t1 � 1

6t1(t1 � 1)
(�6

5
)s[x!0](t1, 0)

=
2t1 � 1

5t1(1� t1)
s[x!0](t1, 0).

For
(⇤)
= one has to find 3 relations in df(t1,0) ^ d⌦1

C3 between the monomial di↵erential forms
x
3
y
2
!0, xy

3
z!0, xyz

2
!0 and x

3
z!0 in f(t1,0) · x!0 and x

3
y
2
!0. ⇤

The last step before the proof of theorem 10.1 is the following result on a transversal mon-
odromy group. Its proof uses formula (6.8) in theorem 6.1.

Theorem 10.7. Consider a bimodal family of quadrangle surface singularities in table (10.1).
The pull back to T

(3) with c
(1) of the homology group

S
t12T (1) Ml(f(t1,0))! T

(1) comes equipped

with a monodromy representation ⇡(3) : ⇡1(T (3)
, ⌧

(3))! GZ (with c
(1)(⌧ (3)) = i) which is called

transversal monodromy group.

(a) The following table lists the local monodromies around elliptic fixed points in (c(2))�1(0),
(c(2))�1(1) and (c(2))�1(1).

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

(c(2))�1({0, 1}) id id id id id id
(c(2))�1(1) id M

5
h

id id id M
6
h

(10.45)
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Therefore Im(⇡(3)) = {id} for W1,0, U1,0, E3,0, Z1,0, and Im(⇡(3)) = {id,Mm1
h

} for S1,0 and
Q2,0.

(b)

{g 2 GZ | g acts trivially on DBL}
= {g 2 GZ | g = ± id on Ml⇣}
= {± id,±M

m1
h

}

=

⇢
{± id} for U1,0, E3,0, Z1,0

{± id,±M
m1
h

} for W1,0, S1,0, Q2,0.
(10.46)

(c) G
smar,gen

R is here the group in (8.13) for the singularities of multiplicity � 3, namely the
curve singularities W1,0, E3,0, Z1,0 and the surface singularities S1,0, U1,0, Q2,0.

G
smar,gen

R =

⇢
{id} for U1,0, E3,0, Z1,0,

{id,Mm1
h

} for W1,0, S1,0, Q2,0.
(10.47)

Proof: We start with part (b). Suppose that g 2 GZ acts trivially on DBL. Then it acts
trivially on H(C↵1), so g = � · id on Ml⇣ for some � 2 C

⇤. And C · (v1+ v2) = C · (�v1+�v2), so
� = � 2 {±1}. This together with formula (6.8) and the set of eigenvalues of Mh gives (10.46).

(a) The Papperitz-Riemann symbol
8
<

:

0 1 1
0 0 a z

1� c c� a� b b

9
=

; (10.48)

encodes the local behaviour near 0, 1 and 1 of scalar solutions of the hypergeometric equation.
Locally suitable solutions have the following form (h.o.t. = higher order terms):

near 0 : t
0
1 + h.o.t. and t

1�c

1 + h.o.t.,
near 1 : (t1 � 1)0 + h.o.t. and (t1 � 1)c�a�b + h.o.t.,
near 1 : t

�a

1 + h.o.t. and t
�b

1 + h.o.t.
(10.49)

Especially, the local monodromy of the space of solutions has the eigenvalues

around 0 : 1 and e
2⇡i(1�c)

,

around 1 : 1 and e
2⇡i(c�a�b)

,

around 1 : e
�2⇡ia and e

�2⇡ib
.

(10.50)

In our situation (1� c, c� a� b, a� b) = ( 1
m0

,
1

m1
,

1
m1

),

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

a
1
2

1
2

4
9

4
9

3
7

5
12

b
1
3

3
10

1
3

1
3

2
7

1
4

c
11
12

9
10

8
9

8
9

6
7

5
6

(10.51)

The branched covering c
(2) : T (4) ! T

(2) has at elliptic fixed points the orders m0,m1,m1.
Therefore the local monodromies of the pull back to T

(3) of the solutions on

T
(1) = C� {0, 1} ⇢ T

(2) = P
1
C

become + id except around the elliptic fixed points in (c(2))�1(1) in the cases S1,0 and Q2,0

where they become � id.
The same holds for the restrictions to Ml⇣ of the local monodromies in ⇡(3).
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With (6.8) we obtain (10.45) for U1,0, E3,0, Z1,0 and the following approximation of (10.45)
for W1,0, S1,0, Q2,0.

W1,0 S1,0 Q2,0

(c(2))�1({0, 1}) id or �M
6
h

id or �M
5
h

id or �M
6
h

(c(2))�1(1) id or �M
6
h
� id or M5

h
� id or M6

h

(10.52)

The case W1,0: The sublattice Ml�1,Z has rank 1. Therefore the local transversal mon-
odromies of the homology bundle on T

(1) around 0, 1 and 1 have on Ml�1,Z eigenvalues in
{±1}. The branched covering T

(4) ! T
(2) is at the elliptic fixed points of even order. Thus ⇡(3)

restricts to the trivial monodromy on Ml�1,Z. This excludes �M6
h
in (10.52).

The case S1,0: The local transversal monodromies of the homology bundle on T
(1) around

0, 1 and 1 have on Mle�2⇡i/5 eigenvalues in Eiw(⇣). The branched covering is at the elliptic
fixed points in (c(2))�1({0, 1}) of order 10. Thus the local monodromies of ⇡(3) around points
in (c(2))�1({0, 1}) are trivial on Mle�2⇡i/5 . This excludes �M5

h
in the first line of (10.52). The

branched covering is at the elliptic fixed points in (c(2))�1(1) of order 5. Formula (10.40) in
theorem 10.6 gives near 1

s[x!0](t1, 0) = (t�2/5
1 + h.o.t.) · (a flat multi-valued section). (10.53)

Therefore also the local monodromy of ⇡(3) around points in (c(2))�1(1) is trivial. This excludes
� id in the second line of (10.52).

The case Q2,0: The local transversal monodromies of the homology bundle on T
(1) around 0,

1 and 1 have on Mle�2⇡i/3 eigenvalues in Eiw(e2⇡i/6). The branched covering T
(4) ! T

(2) is at
the elliptic fixed points of order 6. Thus ⇡(3) restricts to the trivial monodromy on Mle�2⇡i/3 .
This excludes �M6

h
in the first line and � id in the second line of (10.52).

(c) � id /2 G
smar,gen

R by theorem 8.8 (d). Gsmar,gen

R fixes BL(f,±⇢) for any (f,±⇢) 2M
mar

µ
.

Because T (7) ! DBL is an open embedding, Gsmar,gen

R fixes DBL. By part (b) Gsmar,gen

R = {id}
for U1,0, E3,0, Z1,0, and G

smar,gen

R = {id} or {id,Mm1
h

} or {id,�Mm1
h

} for W1,0, S1,0, Q2,0. The
coordinate changes ' of the curve singularities W1,0 and the surface singularities S1,0 and Q2,0

in the following table give a nontrivial element of Gsmar,gen

R .

W1,0 S1,0 Q2,0

(x, y) 7! (�x, y) (x, y, z) 7! (�x, y, z) (x, y, z) 7! (x, y,�z) (10.54)

The coordinate change ' maps !0 to �!0 and s[!0](t1, 0) to �s[!0](t1, 0). Therefore
(')hom|Ml⇣

= � id and (')hom = M
m1
h

(and not �Mm1
h

). This shows (10.46) for
W1,0, S1,0, Q2,0. ⇤

Finally we come to the proof of theorem 10.1. Within this proof, we will also finish the proof
of theorem 6.1. After it, we will finish the proof of theorem 10.3.

Proof of theorem 10.1: By theorem 10.7 (a)+(c), the transversal monodromy representa-
tion ⇡(7) of the pull back to T (7) with c

(5) of the homology bundle
S

(t1,t2)2T (5) Ml(f(t1,t2))! T
(5)

is trivial in the cases W1,0, U1,0, E3,0, Z1,0 and has image in G
smar,gen

R = {id,Mm1
h

} in the cases
S1,0 and Q2,0. Thus the strong marking + id on f(i,0) induces for each f(t1,t2) two strong mark-
ings in the same right equivalence class in the cases S1,0 and Q2,0 and one strong marking in the
other cases. In any case, this gives a map T

(7) ! (Msmar

µ
)0.

The composition T
(7) ! (Msmar

µ
)0 ! DBL is an open embedding by theorem 10.6. Also recall

that (Msmar

µ
)0 ! DBL is an immersion and that all three spaces are 2-dimensional manifolds.
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Therefore T
(7) ! (Msmar

µ
)0 and (Msmar

µ
)0 ! DBL are open embeddings. We postpone the

proof that the map T
(7) ! (Msmar

µ
)0 is an isomorphism.

Part (b) follows now easily: Consider the case of singularities of multiplicity � 3. � id 2 GZ
acts trivially on DBL. It acts nontrivially on M

smar

µ
by theorem 8.5 (c). The map

(Msmar

µ
)0 ! DBL

is an embedding. Therefore � id 2 GZ does not act on (Msmar

µ
)0. Therefore � id /2 G

smar. This
shows part (b). In this case (Msmar

µ
)0 ⇠= (Mmar

µ
)0 by theorem 8.5 (c).

In the case of singularities of multiplicity 2, Msmar

µ
= M

mar

µ
and (Msmar

µ
)0 = (Mmar

µ
)0 hold

anyway.
c
(2) : T (4) = H! T

(2) = P
1
C is the branched covering from an action of a triangle group � of

type ( 1
m0

,
1

m1
,

1
m1

) on H. The group � is a normal subgroup of index 2 respectively 6 of a triangle

group �qh of type (2, 2m, 2m) for W1,0 and S1,0 and of type (2, 3, 2m) for U1,0, E3,0, Z1,0 and
Q2,0 such that �qh/� = (G2 respectively G3). The following pictures show hyperbolic triangles
associated to � and �qh. The symbols [0], [1], [1], [ 12 ], [2], [�1], [e

2⇡i/6] at special points indicate

the images of these points under c(2).

The group �qh maps the set of elliptic fixed points (c(2))�1({0, 1,1}) = T
(4) � T

(3) of � to
itself, so it acts on T

(3).
By the proved implication( in (10.12) in theorem 10.3, the orbits of �qh in T

(3) are contained
in the right equivalence classes of quasihomogeneous singularities. By the embedding

T
(3) ! H(C↵1)

in theorem 10.6, �qh acts also on H(C↵1), and the orbits are contained in the orbits of  (Gmar),
because the orbits of Gmar on (Mmar

µ
)0 are the right equivalence classes in (Mmar

µ
)0.

Now compare the actions of �qh and  (Gmar) on H(C↵1). �qh acts as a triangle group of
type (2, 2m, 2m) respectively (2, 3, 2m), and  (Gmar) acts by theorem 6.1 (b) as a subgroup of
a triangle group of the same type. And the orbits of �qh are contained in the orbits of  (Gmar).
Therefore the actions coincide, and  (Gmar) =  (GZ) is a triangle group of the claimed type in
(6.7). This gives the surjectivity in theorem 6.1 and finishes the proof of theorem 6.1.

It also shows that G
mar acts on T

(3). Because T
(3) contains representatives of the right

equivalence classes of all quasihomogeneous singularities in the given µ-homotopy family, the
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marked quasihomogeneous singularities in (Mmar

µ
)0 must all be in T

(3). This proves that the

open embedding T
(7) ! (Mmar

µ
)0 is an isomorphism.

Next we will prove GZ = G
mar. Consider an element g1 2 GZ. Because of  (Gmar) =  (GZ),

we can multiply it with an element g2 2 G
mar such that g3 = g1g2 satisfies  (g3) = id. By

formula (6.8) in theorem 6.1 g3 2 {±M
k

h
| k 2 Z} ⇢ G

mar. This proves GZ = G
mar.

Now M
mar

µ
= (Mmar

µ
)0 holds. Because BL : (Mmar

µ
)0 ! DBL is an embedding, BL :

M
mar

µ
! DBL is an embedding. This finishes the proof of theorem 10.1. ⇤

Proof of ) in (10.12) in theorem 10.3: GZ acts as �qh on H(C↵1) and thus as G2

respectively G3 on T
(1). This shows ) in (10.12) for the quasihomogeneous singularities.

An element g 2 GZ which acts trivially on T
(3) is in {±M

k

h
| k 2 Z} and restricts to � · id on

Ml⇣ for some � 2 Eiw(⇣). Because of

g : C · (v1 + v2) 7! C(� · v1 + � · v2) = C · (v1 + �
2 · v2)

it acts on the fibers of the projection DBL ! H(C↵1) by multiplication with �
2
, and it acts in

the same way on the fibers of the projection T
(7) ! T

(3). But (�
2
)m1 = 1. This shows ) in

(10.12) for all singularities. ⇤
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68131 Mannheim, Germany

Email address: hertling@math.uni-mannheim.de

https://doi.org/10.5802/aif.2789
https://doi.org/10.1007/BF01389769
https://doi.org/10.1090/surv/008
https://doi.org/10.1007/BF02698926
https://doi.org/10.5802/aif.1043
https://doi.org/10.1007/BF01457153
https://doi.org/10.24033/bsmf.2162
https://doi.org/10.1007/BF01456138
https://doi.org/10.2969/jmsj/02740600
https://doi.org/10.2969/jmsj/02910091
https://doi.org/10.1007/BF01081801
https://doi.org/10.1007/978-1-4612-1934-7


Journal of Singularities
Volume 18 (2018), 215-237

Special volume in honor of the life
and mathematics of Egbert Brieskorn

DOI: 10.5427/jsing.2018.18j

PICARD GROUPS FOR LINE BUNDLES WITH CONNECTIONS

HELMUT A. HAMM AND LÊ DŨNG TRÁNG

To the memory of Egbert Brieskorn

Abstract. We study analogues of the usual Picard group for complex manifolds or non-
singular complex algebraic varieties but instead of line bundles we study line bundles with
connections. We choose an approach which works for both cases. We identify obstructions for
the existence of a connection, or a connection which is even integrable or regular (integrable),
and point out where one should be careful when passing from the analytic to the algebraic
case.

Introduction

It was Egbert Brieskorn who brought the authors together already in 1970 when he was
professor at Göttingen. As a result of the first meeting a cooperation started which lasted over
decades up to now, the main subject being theorems of Lefschetz type, we are therefore very
grateful to him! In this context it was natural for us to turn to the Picard group. In the present
paper we consider Picard groups of line bundles with a connection.

In order to be more precise, let X be a reduced complex analytic space. It is known that
the isomorphism classes of line bundles on X define a group, called the analytic Picard group
Pic

an(X) of X.
Remember that one can pass from a line bundle to the invertible sheaf of its sections, after

all we may work with invertible sheaves instead of line bundles because we have an equivalence
of categories.

If X is a complex manifold, it is natural to consider line bundles on the space X with a
connection or with an integrable connection. The isomorphism classes of these line bundles
define groups that we shall denote by Pic

an
c (X) for line bundles with a connection and Pic

an
ci (X)

for line bundles with an integrable connection.
We are going to compare these groups with the original Picard group Pic

an(X) using certain
exact sequences. In particular, these give obstructions for the existence of a connection resp. an
integrable connection. As we will see these results are not really new (in the analytic case) but
the important point is that we use an elementary approach which also goes over to the algebraic
case without problems. It avoids hypercohomology (which is basic for Deligne cohomology) or
the curvature of di↵erentiable connections. But in order to make the results plausible we relate
our approach to one which uses the well-known relation to Deligne cohomology.

An important special case is the one of compact Kähler manifolds. Here we show that we
can avoid to go back to (p,q)-forms explicitly but we can argue with the abstract framework of
Hodge theory. This has the advantage that we can easily pass afterwards to smooth complete
algebraic varieties which might not be projective. We prove that in the compact Kähler (or
complete algebraic) case every connection on a line bundle is automatically integrable - a fact
which may be surprising before seeing the proof (which is easy).

2010 Mathematics Subject Classification. 14C22, 53C05, 14C30, 55N30, 55N05.
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The essential point for us is to pass to the algebraic case. As already said our approach goes
over easily. To work with hypercohomology, similar to Deligne cohomology, requires some care
but we discuss how to argue then. Also, we deal with regular (integrable) connections and study
di↵erent ways to describe the obstructions for their existence. After all we show that an algebraic
line bundle admits a regular integrable connection if and only if its complex first Chern class
vanishes - a result which does not follow from the Riemann-Hilbert correspondence!!

By the way, the theory of D-modules will not be considered here because it is only related to
the integrable case

At the end we discuss some illustrative examples.
Acknowledgement: The authors would like to thank the Deutsche Forschungsgemeinschaft

(SFB 878) for support.

1. Analytic Comparisons

1.1. Pic
an(X) and Pic

an
c (X)

In this section letX be a complex manifold which is paracompact (e.g. Stein or compactifiable;
the condition is not automatically fulfilled, see [4]). A connection on an invertible OX -module
L is a C-linear morphism r : L ! ⌦1

X ⌦OX L such that r(fs) = fr(s) + df ⌦ s, see [5] I Déf.
2.4, p. 7.

If L = OX , a connection is defined by a form ! 2 H
0(X,⌦1

X): r(1) = !, so r(f) = df + f!.
If L is trivial, s a nowhere vanishing section of L and ! 2 H

0(X,⌦1
X), there is a uniquely defined

connection r on L such that r(s) = ! ⌦ s: we say that it is defined by ! with respect to s.
Two line bundles (L,r), (L0

,r
0) are called isomorphic if there is an isomorphism � : L ! L

0

such that the diagram

L
r
! ⌦1

X ⌦OX L

� # id⌦ � #

L
0 r

0
! ⌦1

X ⌦OX L
0

is commutative.
The isomorphism classes of invertible OX -modules with connection form a group Pic

an
c (X).

We have an exact sequence of sheaves:

0 ! C
⇤

X ! O
⇤

X ! dOX ! 0

where C
⇤

X ! O
⇤

X is given by the inclusion and O
⇤

X ! dOX is defined by f 7! df/f .
This latter morphism is surjective, because, if ! 2 dOX,x, there is f 2 OX,x such that ! = df .

Then e
f
2 O

⇤

X,x has its image equal to !. The rest of the sequence is exact because of Poincaré
Lemma.

This exact sequence of sheaves gives an exact sequence of cohomology:

. . . ! H
0(X, dOX) ! H

1(X,C
⇤

X) ! H
1(X,O

⇤

X) ! H
1(X, dOX) ! . . .

Here we only use the mapping H
1(X,O

⇤

X) ! H
1(X, dOX) from the exact sequence (see also the

proof of Theorem 2.2.22 of [3]).

Now we can prove the following exact sequence in an elementary way. We will see that it can
also be obtained easily using hypercohomology (Deligne cohomology).

Theorem 1.1. We have an exact sequence:

H
0(X,O

⇤

X) ! H
0(X,⌦1

X) ! Pic
an
c (X) ! Pic

an(X) ! H
1(X,⌦1

X)
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Proof. The map H
0(X,O

⇤

X) ! H
0(X,⌦1

X) is defined by g 7!
dg
g , H0(X,⌦1

X) ! Pic
an
c (X) by

! 7! (OX ,r(f) = df + f!).
The map Pic

an(X) ! H
1(X,⌦1

X) is the composition of H
1(X,O

⇤

X) ! H
1(X, dOX) (see

above) and the natural map from H
1(X, dOX) to H

1(X,⌦1
X), since Pic

an(X) ' H
1(X,O

⇤

X).
Now, notice that we have a group structure on Pic

an
c (X). According to Deligne in [5] p. 8,

consider the invertible sheaves (i.e. invertible OX -modules) L and L
0 defined by the (si) and

(s0i) on an open covering U , with the connections r and r
0 defined by (↵i) and (↵0

i) on the open
covering U , then L ⌦ L

0 is invertible and defined by (si ⌦ s
0

i), and the connection r0 on this
invertible sheaf is defined by (↵i + ↵

0

i).
(i) Now let us prove the exactness. First, the function g 2 H

0(X,O
⇤

X) is mapped onto
dg
g 2 H

0(X,⌦1
X), and this in turn to the element of Pic

an
c (X) represented by (OX ,r), where

r(f) := df + f
dg
g . This is the inverse image of (OX , d) under the isomorphism ·g : OX ! OX ,

so its class in Pic
an
c (X) is trivial: we have a commutative diagram

H
0(X,OX)

r
! H

0(X,⌦1
X) = H

0(X,⌦1
X ⌦OX)

.g # .g #

H
0(X,OX)

d
! H

0(X,⌦1
X) = H

0(X,⌦1
X ⌦OX)

Suppose now that ! 2 H
0(X,⌦1

X) is mapped onto the trivial element of Pic
an
c (X), which means

that (OX , d) is isomorphic to (OX , f 7! df + !f). The isomorphism gives a mapping from OX

onto itself, which is of the form ·g for some g 2 H
0(X,O

⇤

X). Then, the image of 1 2 H
0(X,OX)

is ! 2 H
0(X,⌦1

X) and by the multiplication by g, it is dg. Therefore ! = dg
g .

(ii) It is obvious that the composition of the two middle arrows gives the trivial mapping.
The kernel of the map Pic

an
c (X) ! Pic

an(X) defined by (L,r) 7! L is given by the pairs
(OX ,r), so it coincides with the image of the morphism H

0(X,⌦1
X) ! Pic

an
c (X) defined by

! 7! (OX ,r(f) = df + f!). So, the middle part of the sequence is exact.
(iii) Now let L be an invertible sheaf which is in the kernel of Pic

an(X) ! H
1(X,⌦1

X). Let
U = (Ui)i2I be a covering of X, such that L|Ui is isomorphic to OX |Ui by a map OX |Ui !

L|Ui which corresponds to 1 7! si. Let gij be the complex analytic transition map defined on
Uij = Ui \ Uj from L|Ui to L|Uj . We have sj = gijsi on Ui \ Uj .

Since sj = gijsi = gijgkisk = gkjsk on Ui \ Uj \ Uk, we have gkj = gijgki on Ui \ Uj \ Uk.
The family (gij) defines a 2-cocycle of H1(X,O

⇤

X), a fact which is well-known. Since

H
1(U ,⌦1

X) ⇢ H
1(X,⌦1

X)

cf. [9] Hilfssatz 12.4, p. 91, the image of L in H
1(X,⌦1

X) being trivial, the 2-cocycle (dgij/gij)
is trivial, i.e. a coboundary. Therefore there are di↵erential forms !i and !j defined respectively
on Ui and Uj , such that:

dgij

gij
= !j � !i

on Ui \ Uj .
Consider for each i the connection r̃i on OX |Ui defined by:

r̃i(f) = df + f!i

This defines on L|Ui a connection:

ri(fsi) = df ⌦ si + f!i ⌦ si,

which gives for f = 1:

ri(si) = !i ⌦ si.
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On Ui \ Uj , we have gijsi = sj . Therefore, on Ui \ Uj :

ri(fgijsi) = d(fgij)⌦ si + fgij!i ⌦ si = gijdf ⌦ si + fdgij ⌦ si + fgij!i ⌦ si,

which implies, with f = 1, on Ui \ Uj :

ri(gijsi) = dgij ⌦ si + gij!i ⌦ si.

Therefore:

ri(sj) = gij(
dgij

gij
+ !i)⌦ si = (

dgij

gij
+ !i)⌦ gijsi = (!j � !i + !i)⌦ sj

which yields:

ri(sj) = rj(sj)

on Ui \ Uj .
Therefore the (ri)i2I define on L a connection r and the class of the element L which lies

in the kernel of the map Pic
an(X) ! H

1(X,⌦1
X) is the image of the class of (L,r).

It remains to prove that the image of (L,r) in H
1(X,⌦1

X) in the above sequence vanishes.

Let (Ui)i2I be an open covering of X such that L|Ui is isomorphic to OX |Ui by a map si 7! 1.
We write rsi = !i ⌦ si. Let (gij) be the cocycle of transition functions such that sj = gijsi.
Then (dgij/gij) is a cocycle which represents an element of H1(X,⌦1

X). Since:

r(sj) = r(gij ⌦ si) = dgij ⌦ si + gij!i ⌦ si = !j ⌦ sj = gij!j ⌦ si,

we obtain:
dgij

gij
= !j � !i.

Therefore the class of the element given by the elements (dgij/gij) vanishes in H
1(X,⌦1

X).
This shows that the above sequence is exact.

We shall give an interpretation of this exact sequence below.

Implicitly we have used:

Lemma 1.2. Let L be an invertible OX-module which is represented by a cocycle (gij) in

C
1(U ,O⇤

X). Then, a connection r on L is represented by an element (!i) in C
0(U ,⌦1

X) which

is mapped by � : C0(U ,⌦1
X) ! C

1(U ,⌦1
X) onto (dgijgij

) 2 C
1(U ,⌦1

X).

Note that (d!i) 2 C
0(U ,⌦2

X) is a cocycle, i.e. defines an element of H0(X,⌦2
X), which is the

curvature of r, see below.

Particularly easy is the case of Stein manifolds. Then H
1(X,⌦1

X) = 0, because of Cartan’s
Theorem B, so from Theorem 1.1 we obtain:

Lemma 1.3. Let L be an invertible OX-module on a Stein manifold X. Then there is a complex

analytic connection on L.

In the following subsection we shall show how our reasoning above is related to the literature
(”Atiyah obstruction”).
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1.2. Atiyah obstruction.

Atiyah ([1] §2) has studied complex analytic connections on a holomorphic principal fibre
bundle P . Whereas di↵erentiable connections always exist there is an obstruction to the existence
of a complex analytic one. In particular, there is an obstruction b(E) to the existence of a
complex analytic connection on the principal fibre bundle which corresponds to a holomorphic
vector bundle E (see [1] p. 194). We call it the Atiyah obstruction. In the case of a line bundle
L we have that b(L) 2 H

1(X,⌦1
X).

Here we use again invertible sheaves L instead of line bundles L. Then a complex analytic
connection on L corresponds to a connection on the sheaf L of holomorphic sections of L.

Let us recall the definition of b(L), see [1] p. 193. Let D(L) be the locally free OX -module
defined as follows:
as a CX -module, D(L) := L� (⌦1

X ⌦OX L), and the OX -module structure is given by:

f · (s,�) := (fs, f� + df ⌦ s),

if f is a section of OX , s a section of L and � is a section of ⌦1
X ⌦OX L.

Then we get an exact sequence of OX -modules

0 ! ⌦1
X ⌦OX L ! D(L) ! L ! 0

where the second arrow is given by � 7! (0,�) and the third one by (s,�) 7! s.
Applying Hom(L, · · · ) we obtain a long exact cohomology sequence

. . . ! H
0(X,Hom(L, D(L)) ! H

0(X,Hom(L,L)) ! H
1(X,Hom(L,⌦1

X ⌦OX L)) ! . . .

Now b(L) is defined as the image of 1 2 H
0(X,OX) in H

1(X,⌦1
X) under the mapping:

H
0(X,OX)

'
! H

0(X,Hom(L,L)) ! H
1(X,Hom(L,⌦1

X ⌦OX L))
'
! H

1(X,⌦1
X)

(so the mapping depends on L !).

Lemma 1.4. b(L) = 0 if and only if L admits a connection.

Proof: A splitting of the first exact sequence above is given by an OX -linear mapping of the
form s 7! (s,r(s)), such that r is a connection on L, and vice versa.

Look at the second exact sequence. The second arrow maps 1 onto b(L), by definition of b(L),
with the identifications made in the definition. The inverse images of 1 with respect to the first
arrow correspond to the splittings of the first exact sequence, i.e. to the connections on L. This
implies our statement.

Lemma 1.5. b(L) is the image of �[L] 2 H
1(X,O

⇤

X) in H
1(X,⌦1

X), i.e. b(L) is represented

by the cocycle �(dgijgij
).

Proof: Let U = (Ui) be an open Stein covering of X such that L|Ui is trivial. Let si be a
nowhere vanishing section of L|Ui. Then, sj = gijsi, where gij are the corresponding transition
functions. Let ri be the connection on L|Ui such that ri(si) = 0. Now, let us describe
H

0(U , Hom(L,L)) ! H
1(U , Hom(L,⌦1

X ⌦OX L)) using the exact sequence of complexes:

0 ! C
·(U , Hom(L,⌦1

X ⌦OX L)) ! C
·(U , Hom(L, D(L)) ! C

·(U , Hom(L,L)) ! 0.

Consider (�i) 2 C
0(U , Hom(L, D(L)), where �i is the homomorphism L|Ui ! D(L)|Ui which

maps si to (si, 0) (note that ri(si) = 0), i.e. sj = gijsi to (sj ,
dgij
gij

⌦ sj). Then (�i) is mapped

to (⌧i) 2 C
0(U , Hom(L,L)) with ⌧i = id : L|Ui ! L|Ui.
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The coboundary of (�i) is given by �j � �i : L|Ui \ Uj ! D(L)|Ui \ Uj :

(�j � �i)(sj) = (0,�
dgij

gij
⌦ sj),

so �j � �i can be identified with �
dgij
gij

2 H
0(Ui \ Uj ,⌦1

X).

Note that the relation established in the preceding lemma is taken up to sign as definition of
the Atiyah class in [18] Def. 4.2.18.

Corollary 1.6. An invertible sheaf L admits a connection if and only if its image in H
1(X,⌦1

X)
is 0.

This corollary is consequence of Lemmas 1.4 and 1.5. This coincides with our result from
Theorem 1.1.

1.3. Pic
an
c (X) and Pic

an
ci (X)

Recall that a connection r is integrable if its curvature vanishes.
When L = OX and r(f) = df + f!, the value of the curvature Rr of the connection r on

L is d! (see I 3.2.2 of [5], p. 23).
More generally, recall that a connection is given by a C-linear morphism:

r
1 : L ! ⌦1

X ⌦ L = ⌦1
X(L)

It defines a C-linear morphism:
r

2 : ⌦1
X(L) ! ⌦2

X(L)

by the formula: r2(! ⌦ s) = d! ⌦ s� ! ^r(s) (see I (2.4) and (2.9) of [5]).

Definition 1.7. The connection r = r
1
is said to be integrable if r

2
� r

1 = 0.

In particular, if s is a global nowhere vanishing section of L and if r is defined by ! with
respect to s we have Rr(s0) = d! ⌦ s

0 for every section of L. So r is integrable if and only if
d! = 0.

Obviously we have, similarly to Lemma 1.2:

Lemma 1.8. Let L be an invertible OX-module which is represented by a cocycle (gij) in

C
1(U ,O⇤

X). Then, an integrable connection r on L is represented by an element (!i) in

C
0(U ,⌦1

X), !j closed, which is mapped by � : C0(U ,⌦1
X) ! C

1(U ,⌦1
X) onto (dgijgij

) 2 C
1(U ,⌦1

X).

In particular the trivial connection d on OX is integrable. As we did for the group Pic
an
c (X),

the isomorphism classes of analytic invertible sheaves with integrable connection form a group
Pic

an
ci (X) in which the neutral element is the class of (OX , d) and the product of the classes of

(L1,r1) and of (L2,r2) is the class of (L1 ⌦ L2,r), where:

r(s1 ⌦ s2) = r1(s1)⌦ s2 + s1 ⌦r2(s2).

One can prove (see [5] using Théorème 2.17 Chap. I p. 12) that, if (L1,r1) and (L2,r2) are
integrable connections, the connection:

(L1 ⌦ L2,r)

is also integrable. One can see this directly, too, using that the sum of closed forms is closed.
The curvature of a connection (L,r) defines an OX -homomorphism:

L ! ⌦2
X ⌦ L
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Now Hom(L,⌦2
X ⌦L) ' H

0(X,Hom(L,⌦2
X ⌦L)) ' H

0(X,⌦2
X), so it is given by an element !

of H0(X,⌦2
X). If this cohomology group vanishes, we have Pic

an
ci (X) ' Pic

an
c (X).

One can prove the following proposition also by Deligne cohomology, see below, but it is much
easier to proceed directly.

Proposition 1.9. Let X be a complex manifold. We have an exact sequence

0 ! Pic
an
ci (X) ! Pic

an
c (X) ! H

0(X,⌦2
X).

Proof. Let (L,r) be an integrable connection.
Assume this connection is isomorphic to the trivial connection (OX , d), the class of the

connection (L,r) is therefore the class of the trivial connection. This means that the map
Pic

an
ci (X) ! Pic

an
c (X) is an injection.

The mapping Pic
an
c (X) ! H

0(X,⌦2
X) associates the curvature of r with the isomorphism

class of (L,r). It is well-defined: if (L,r) and (L0
,r

0) are isomorphic and if we take local
sections of L and L

0 which correspond each other with respect to the isomorphism, the two
connections are defined by the same di↵erential forms with respect to these sections. The
exactness at Pic

an
c (X) is obvious.

In fact the following proposition shows that Pic
an
ci (X) is of topological nature:

Proposition 1.10. We have the isomorphism:

Pic
an
ci (X) ' H

1(X,C
⇤).

Proof. According to Théorème 2.17 in chapter I of [5] there is an equivalence of categories
between the category of local systems of one-dimensional complex vector spaces on X with the
category of line bundles with an integrable connection.

The resulting bijection is compatible with the group structure given by the tensor product.
We can observe that the group H

1(X,C
⇤) classifies the local systems of one dimensional

complex vector spaces on X (see Theorem 3.3 of [23]), up to isomorphism, because the local
transition functions are locally constant. The same is true for Pic

an
ci (X) as mentioned at the

beginning of this paragraph.

Corollary 1.11. Let f : X ! Y be a holomorphic map between two complex manifolds such

that it induces an isomorphism H1(X,Z) ! H1(Y,Z), then:

Pic
an
ci (X) ' Pic

an
ci (Y ).

Proof: Note that
Ext1(H0(X,Z),C⇤) = 0,

because the abelian group H0(X,Z) is free, and the Universal coe�cient formula implies

H
1(X,C

⇤) ' Hom(H1(X,Z),C⇤).

So we get isomorphisms

Hom(H1(X,Z),C⇤) ' H
1(X,C

⇤) ' Pic
an
ci (X)

1.4. Relation to Deligne cohomology. The preceding subsection is closely related to special
cases of Deligne cohomology. We start by recalling the notion of Čech hypercohomology.

Let S
· be a non-negative complex of sheaves of abelian groups on a topological space X. If

U is an open covering of X we can define H
k(U ,S ·) := H

k(C ·(U ,S ·)tot) where (C ·(U ,S ·))tot
is the total (or the simple) complex associated to the bi-graded complex C

·(U ,S ·) (see e.g. [3]
p. 14, p. 28). Taking the direct limit with respect to open coverings U , we get Ȟ

k(X,S
·) :=

lim
!

H
k(U ,S ·), see [3] p. 32. We can proceed in a slightly di↵erent way, similarly to [11] II 5.8
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p.223 in the case of sheaves : we consider only open coverings U = (Ux)x2X with x 2 Ux, put
Č

·(X,S
·) := lim

!
C

·(U ,S ·), then Ȟ
k(X,S

·) = H
k((Č ·(X,S

·))tot).

Now let X be as before and let U = (Ui) be an open covering of X. We assume that the
Ui are Stein, which can be achieved by refinement. Let Pic

an
U be the group of isomorphism

classes of invertible OX -modules which are trivial on the Ui, and let Pic
an
c U be the group of

isomorphism classes of such sheaves with connection. First, Pic
an

U ' H
1(U ,O⇤

X).
Let S · be the non-negative complex:

O
⇤

X

g 7! dg
g

�! ⌦1
X ! 0 ! . . . .

Then we have a description of Pic
an
c X as a (Čech) hypercohomology group:

Lemma 1.12. a) Pic
an
c U ' H

1(U ,S ·).
b) Pic

an
c X ' Ȟ

1(X,S
·) ' H

1(X,S
·) (cf. [3] Theorem 2.2.20, p. 80).

Proof: a) Argue as in the proof of Lemma 1.2 (See 2.2).
b) Take the direct limit with respect to open Stein coverings U . The second isomorphism holds
because X is paracompact (see [3] Theorem 1.3.13, p. 32).

As a consequence, we obtain the exact sequence of Theorem 1.1 again:
We have an exact sequence of complexes:

0 ! C
·+1(U ,⌦1

X) ! (C ·(U ,S ·))tot ! C
·(U ,O⇤

X) ! 0

Note that H1(V,⌦1
X) = 0 for V = Ui0 \ . . .\Uiq because V is Stein: recall that the intersection

of two open Stein subets is Stein, see [19] Prop. 51.7, p. 225. So we have exactness on the right.
This exact sequence induces a long exact cohomology sequence

. . . ! H
k(U ,O⇤

X) ! H
k(U ,⌦1

X) ! H
k+1(U ,S ·) ! H

k+1(U ,O⇤

X) ! . . .

After this take the direct limit and replace Čech (hyper)cohomology by the usual one.
In fact, using Proposition 2.2 below we have an easier proof.

Now let us turn to Deligne cohomology. Let us recall its definition (see [8] p. 45). Put
Z(p) := (2⇡i)pZ ⇢ C. Let Z(p)D be the following non-negative complex:

Z(p)X ! ⌦0
X ! . . . ! ⌦p�1

X ! 0 ! . . .

where the first arrow is the inclusion. Then the Deligne cohomology H
⇤

D
(X,Z(p)) is defined as

the hypercohomology H
⇤(X,Z(p)D).

Looking at the commutative diagram

Z(p)X ! OX ! ⌦1
X ! . . . ! ⌦p�1

X
# # # ·(2⇡i)�p+1

# ·(2⇡i)�p+1

0 ! O
⇤

X

f 7! df
f

! ⌦1
X ! . . . ! ⌦p�1

X

where the second verical arrow is given by f 7! exp((2⇡i)�p+1
f) we see that the complex above

is quasi-isomorphic to

0 ! O
⇤

X

f 7! df
f

! ⌦1
X ! . . . ! ⌦p�1

X ! 0 ! . . .

For p = 1, we obtain that Z(1)D is quasi-isomorphic to O
⇤

X(�1), cf. [2] p. 2038, so
H

1
D
(X,Z(1)) ' H

0(X,O
⇤

X) and H
2
D
(X,Z(1)) ' Pic

an(X).
For p = 2, we get that Z(2)D is quasi-isomorphic to S

·(�1), cf. [8] p. 46, so Pic
an
c (X) '

H
2
D
(X,Z(2)) because of Lemma 1.12 (see the remark of Deligne quoted in [2] at the bottom of

p. 2039).
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For p � dim X + 1 the complex is quasi-isomorphic to 0 ! O
⇤

X ! dOX ! 0 ! . . ., see
beginning of subsection 1.1; by Poincaré Lemma, it is also quasi-isomorphic to

0 ! C
⇤

X ! 0 ! . . . .

So H
2
D
(X,Z(p)) ' H

1(X,C
⇤

X) ' Pic
an
ci (X), using Proposition 1.10.

For p > 2, H2
D
(X,Z(p)) does not depend on p:

Let ⇡ : Z(p + 1)D ! Z(p)D be the projection, then H
k(X, ker ⇡) ' H

k�p�1(X,⌦p
X) = 0,

k  3.

We obtain altogether, cf. [10] p. 156:

Lemma 1.13. a) H
2
D
(X,Z(1)) ' Pic

an(X).
b) H

2
D
(X,Z(2)) ' Pic

an
c (X).

c) H
2
D
(X,Z(p)) ' Pic

an
ci (X) for p > 2.

1.5. Pic
an(X) and Pic

an
ci (X)

The first exact sequence of §1.1 gives a long exact sequence which fits into a commutative
diagram:

Theorem 1.14. We have a commutative diagram with exact rows:

0 ! H
0(X,C

⇤
X) ! H

0(X,O
⇤
X) ! H

0(X, dOX) ! Pic
an
ci (X) ! Pic

an(X) ! H
1(X, dOX)

# # # # # #

0 ! H
0(X,C

⇤
X) ! H

0(X,O
⇤
X) ! H

0(X,⌦1

X) ! Pic
an
c (X) ! Pic

an(X) ! H
1(X,⌦1

X)

Proof. The exactness of the upper line is consequence of Proposition 1.10 and the exactness of
the sequence 0 ! C

⇤

X ! O
⇤

X ! dOX ! 0.
Since the vertical map H

0(X, dOX) ! H
0(X,⌦1

X) is injective we conclude that

0 ! H
0(X,C

⇤

X) ! H
0(X,O

⇤

X) ! H
0(X,⌦1

X)

is exact. Because of Theorem 1.1 we conclude that the lower line is exact, too.

Remark: We may also argue using hypercohomology:
In the upper row compare O

⇤

X ! dOX ! 0 with O
⇤

X ! 0, in the lower row O
⇤

X ! ⌦1
X ! 0

with O
⇤

X ! 0.

In particular, we observe that:

Lemma 1.15. If the complex manifold X is compact with an invertible OX-module L on X and

if r1 and r2 are two connections on L such that (L,r1) ' (L,r2), we must have r1 = r2.

Proof. We have (r1 � r2)(s) = ! ⌦ s where ! 2 H
0(X,⌦1

X) is mapped to 0 2 Pic
an
c (X).

So there is g 2 H
0(X,O

⇤

X) such that ! = dg
g . Since H

0(X,C
⇤) = H

0(X,O
⇤

X) because global
functions on X are locally constant on a compact space, we have that ! = 0.

Now let us drop the compactness condition again.

Lemma 1.16. a) An element x 2 H
2(X,Z) is sent onto 0 in H

2(X,C) if and only if it is the

first Chern class of an invertible OX-module which can be endowed with an integrable connection.

b) If X is Stein, an invertible sheaf L admits an integrable complex analytic connection on X if

and only if the complex first Chern class vanishes.

Proof. a) We have a commutative diagram:

0 ! Z ! C ! C
⇤

! 0
# # #

0 ! Z ! OX ! O
⇤

X ! 0
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with exact rows. This leads to a commutative diagram:

H
1(X,C

⇤

X) ! H
2(X,Z)

# #

H
1(X,O

⇤

X) ! H
2(X,Z)

The lower arrow associates to each invertible sheaf its first Chern class, therefore the upper
arrow associates to each invertible sheaf with an integrable connection the first Chern class of
the invertible sheaf. Now consider the upper row of the first diagram. It leads to an exact
sequence:

H
1(X,C

⇤) ! H
2(X,Z) ! H

2(X,C),

which gives our result.
b) Note that we have H

1(X,O
⇤

X) ' H
2(X,Z), too, because H

k(X,OX) = 0, k = 1, 2.

Remark: We can make Proposition 1.9 more precise: There is an exact sequence

0 ! Pic
an
ci (X) ! Pic

an
c (X) ! H

0(X, d⌦1
X) ! H

2(X,C
⇤

X)

Compare the non-negative complexes O
⇤

X ! dOX ! 0 and O
⇤

X ! ⌦1
X ! 0, see subsection

1.4. The cokernel is quasi-isomorphic to 0 ! ⌦1
X/dOX ! 0, i.e. to 0 ! d⌦1

X ! 0.

1.6. Compact Kähler manifolds. In the case X is a compact Kähler manifold, we can apply
Hodge Theory.

We prefer an approach which can be transferred later on to the case of smooth complete
complex algebraic varieties which might not be Kähler:

We have H
k(X;C) ' H

k(X,⌦·

X), by Poincaré lemma.
Let us look at the Hodge filtration F on ⌦·: let F p⌦· be the subcomplex

0 ! . . . ! 0 ! ⌦p
X ! ⌦p+1

X ! . . .

The corresponding spectral sequence degenerates at E1, cf. [6] p. 28, so H
k�p(X,⌦�p) =

H
k(X,F

p⌦·) can be considered as a subspace F
p
H

k(X;C) of Hk(X;C).
Let F pHk(X;C) be the image of F p

H
k(X;C) under conjugation inH

k(X;C). Assume p+q =
k. Then H

p,q(X) := F
p
H

k(X;C) \ F qHk(X;C) ' F
p
H

k(X;C)/F p+1
H

k(X;C) ' H
q(X,⌦p

X).
In particular, H1,1(X) is a subspace of H2(X;C) which is isomorphic to H

1(X,⌦1
X).

Then the first part of the following Lemma is well-known:

Lemma 1.17. Let X be a compact Kähler manifold, L an invertible sheaf on X.

a) (see [12] Ch. 3.3, p. 417) The complex first Chern class c1(L)C of L is in H
1,1(X).

b) (see [1] Prop. 12, p. 196) With the identifications above, b(L) = �2⇡ic1(L)C.

Proof. We have a commutative diagram with exact rows

0 ! ZX ! OX
f 7!e2⇡if

! O
⇤

X ! 0
# ·2⇡i # ·2⇡i #

0 ! CX ! OX ! dOX ! 0

We get a commutative diagram

H
1(X,O

⇤

X) ! H
2(X;Z)

# # ·2⇡i
H

1(X, dOX) ! H
2(X;C)

#

H
1(X,⌦1

X)
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Note that dOX is quasiisomorphic to ⌦�1
X , hence we may replace H

1(X, dOX) by F
1
H

2(X;C).
In particular, the middle horizontal arrow is injective.

a) Look at the images of (gij).
By [17] Theorem 4.3.1, p. 62, we have that the image in H

2(X;C) is 2⇡ic1(L)C.
The second commutative diagram shows that 2⇡ic1(L)C 2 F

1
H

2(X;C). Since the first Chern
class is real it is invariant under conjugation, so we obtain our statement.

b) By Lemma 1.5, the image of (gij) in H
1(X,⌦1

X) is �b(L). If we identify H
1,1 with

H
1(X,⌦1

X) we obtain our statement because of a).

Note that the proof of b) in [1] loc. cit. works only if dim X = 1 because it uses an exact
sequence of the form

0 ! CX ! OX ! ⌦1
X ! 0

Now in the Kähler case we have a stronger result than Lemma 1.16:

Lemma 1.18. Let X be a compact Kähler manifold, L an invertible sheaf on X. Then the

following conditions are equivalent:

a) L admits an integrable connection,

b) L admits a connection,

c) the first Chern class of L is a torsion element.

For b) ) c) cf. [3] Cor. 2.2.25.

Proof. That the first Chern class is a torsion element means that the complex first Chern class
vanishes, because it is known that the cohomology group H

2(X,Z) is finitely generated when X

is compact, hence triangulable.
a) , c): L admits an integrable connection if and only if the image of L in H

1(X, dOX)
vanishes, by Theorem 1.14.

The composition Pic
an

X ! H
1(X, dOX) ! H

2(X;C) is given by [L] 7! 2⇡ic1(L)C, see the
proof of the preceding lemma.

To prove a) , c) it is therefore su�cient to show that the mapping H
1(X, dOX) ! H

2(X;C)
is injective, which has been done in the preceding proof.

Now b) , c), because we know that b) holds if and only if b(L) = 0 by Lemma 1.4. The rest
follows from the preceding lemma 1.17.

In the preceding Lemma 1.18, i.e. in the case of compact Kähler manifolds, we can sharpen
the fact that a) , b):

Theorem 1.19. If X is a compact Kähler manifold, a connection on an invertible sheaf is

integrable.

Proof. We have another connection r
0 which is integrable, by Lemma 1.18. Then the di↵erence

of the connections is the multiplication by a form ! 2 H
0(X,⌦1

X). By Hodge theory, the Hodge
spectral sequence degenerates at E1, so d! = 0. Hence the two connections have the same
curvature, so the original connection must be integrable, too.

2. Algebraic case

2.1. Suppose now that X is a smooth complex algebraic variety. The underlying analytic space
X

an is a paracompact complex manifold. One has an analogue of Theorem 1.14 but one has to
be careful with the upper row because one has no longer a Poincaré lemma. In fact we have to
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replace the sheaf dOX by the sheaf

c⌦1
X := ker(d : ⌦1

X ! ⌦2
X)

of closed Pfa�an forms on X.

We will always use Zariski topology (even in the case of H0(X,C
⇤

X) below) if we do not write
X

an. However, c1(X) := c1(Xan).
We will see that the following theorem can be proved using an algebraic analogue of Deligne

cohomology, too, i.e. using hypercohomology, but we can proceed in an elementary way:

Theorem 2.1. Let X be a smooth complex algebraic variety. Then we have a commutative

diagram with exact rows

0 ! H
0(X,C

⇤
X) ! H

0(X,O
⇤
X) ! H

0(X,
c⌦1

X) ! Picci(X) ! Pic(X) ! H
1(X,

c⌦1

X)
# # # # # #

0 ! H
0(X,C

⇤
X) ! H

0(X,O
⇤
X) ! H

0(X,⌦1

X) ! Picc(X) ! Pic(X) ! H
1(X,⌦1

X)

Proof. We can no longer use the exact sequence of the beginning of section 1.1. Therefore we
must proceed in a di↵erent way.

Let us check first that the lower row is exact.
Note that the sequence of sheaves: 0 ! C

⇤

X ! O
⇤

X ! ⌦1
X is exact, where O

⇤

X ! ⌦1
X is

defined by h 7!
dh
h . In fact:

Suppose that h 2 O
⇤

X,x, where x is a closed point of X, dh
h = 0: Then h

an
2 O

⇤

Xan,x is
mapped to 0 2 ⌦1

Xan,x, so h
an is constant, which implies that h is constant.

Therefore the sequence:

0 ! H
0(X,C

⇤

X) ! H
0(X,O

⇤

X) ! H
0(X,⌦1

X)

is exact.
The rest goes as in the proof of Theorem 1.1.
The upper row is treated in an analogous way. Note that the connection r on OX :

r(f) = df + f!

is integrable if and only if ! is closed, because the curvature of r is d!.

Note that 0 ! C
⇤

X ! O
⇤

X !
c⌦1

X ! 0 is in general not exact, in contrast to the analytic
case: take X = C

⇤, ! := dz
z 2

c⌦1
X .

Proposition 1.9 has an algebraic counterpart:

Proposition 2.2. Let X be a non-singular complex algebraic variety. We have an exact sequence

0 ! Picci(X) ! Picc(X) ! H
0(X,⌦2

X).

The proof is similar to the one of Proposition 1.9.

2.2. Use of Čech hypercohomology. Similarly as in the analytic case (see §1.4) we can
observe that Picc(X) is isomorphic to the first Čech hypercohomology group Ȟ

1(X,S
·) of the

complex S
·:

O
⇤

X ! ⌦1
X ! 0 ! . . .

on X (but not, up to a shift, of the complex ZX ! OX !
c⌦1

X ! 0 ! . . .).

For Čech hypercohomology, we refer to subsection (1.4).

More precisely:
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Lemma 2.3. If X is a non-singular complex variety, we have:

Picc(X) ' Ȟ
1(X,S

·) ' H
1(X,S

·).

Proof: Let U = (Ui) be a covering ofX by open Zariski subsets ofX. An element of H1(U ,S ·)
is given by an element ((!i), (gij)) 2 C

0(U ,⌦1
X) � C

1(U ,O⇤

X) such that (gij) is a cocycle, i.e.

gij = gikgkj on Ui \ Uj \ Uk, and !j � !i =
dgij
gij

on Ui \ Uj .

Assume now that L is an invertible OX -module on X which is endowed with a connection
r. There is a Zariski open covering U of X such that for each Ui we have a trivialization of
L|Ui. Then L is represented by some cocycle (gij) in C

1(U ,O⇤

X), and r|Ui corresponds to a

connection g 7! dg + g!i on OUi . Then !j � !i =
dgij
gij

on Ui \ Uj , so we obtain an element of

H
1(U ,S ·), hence of Ȟ1(X,S

·).
On the other hand, an element of Ȟ1(X,S

·) comes from an element of H1(U ,S ·) which is
represented by a cocycle (gij) and (!i) for a suitable open Zariski covering U of X. Then (gij)
defines an invertible OX -module L, and (!i) defines a connection on L.

One verifies that one obtains well-defined mappings between Picc(X) and Ȟ
1(X,S

·). We
obtain Picc(X) ' Ȟ

1(X,S
·).

Now in the case of sheaves we have isomorphisms Ȟ
k
! H

k for k = 0, 1, see [11] II 5.9
Corollaire, p. 227 (note that X is not paracompact and that we are not only dealing with co-
herent algebraic sheaves!). This result still holds in the case of hypercohomology, as shown in
the following proposition. So our lemma is proved.

Proposition 2.4. Let X be a topological space and S
·
a non-negative complex of sheaves of

abelian groups on X. Then the homomorphism Ȟ
k(X,S

·) ! H
k(X,S

·) is bijective for k  1
and injective for k = 2.

Proof: (i) First we may reduce to the case that S · is a bounded complex:
Choose p > 0. Let ⇡ : S ·

! S
p�1 be the canonical projection. Then the exact sequence

0 ! ker ⇡ ! S
·
! S

p�1
! 0 of presheaf(!) complexes yields a short exact sequence of double

complexes:
Č

·(X, ker⇡) ! Č
·(X),S ·) ! Č

·(X,S
p�1) ! 0

cf. [11] II Th. 5.8.1, p. 204, hence a long exact sequence

Ȟ
q�1(X,S

p�1) ! Ȟ
q�p(X,S

�p) ! Ȟ
q(X,S

·) ! Ȟ
q(X,S

p�1) ! Ȟ
q�p+1(X,S

�p)

Now put p := 4. Since Ȟq(X,S
�p) = 0 for q < 0 we obtain Ȟ

q(X,S
·) ' Ȟ

q(X,S
p�1) for q  2.

The same holds for H instead of Ȟ.
(ii) So we may assume that S · is a bounded complex. Then we proceed by induction on the

length of the complex, the case where the length is 0 being trivial.
Induction step: We may assume that S0

6= 0. Putting p = 1 we obtain a commutative diagram
with exact rows

Ȟ
q�1(X,S

0) ! Ȟ
q�1(X,S

�1) ! Ȟ
q(X,S

·) ! Ȟ
q(X,S

0) ! Ȟ
q(X,S

�1)
# # # # #

H
q�1(X,S

0) ! H
q�1(X,S

�1) ! H
q(X,S

·) ! H
q(X,S

0) ! H
q(X,S

�1)

Using the fact that the case of a sheaf is established by [11] p. 227, see above, and the Five
Lemma we obtain the induction step.

Remark: The proof of the preceding Theorem gives the following exact sequence:

Ȟ
0(X,O

⇤

X) ! Ȟ
0(X,⌦1

X) ! Ȟ
1(X,S

·) ! Ȟ
1(X,O

⇤

X) ! Ȟ
1(X,⌦1

X)
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This exact sequence can also be obtained as follows:
Look at the exact sequence of presheaf (!) complexes:

0 ! ⌦1
X{1} ! S

·
! O

⇤

X{0} ! 0

where, for any presheaf T , the complex T {k} denotes the complex T
· with T

l = T for l = k

and = 0 otherwise.
This gives the long exact Čech cohomology sequence in question.

We can proceed in the same way to prove the exactness of the upper line of the diagram of
Theorem 2.1 by replacing ⌦1

X by c⌦1
X . See Remark after Theorem 1.14.

We have special cases:

Lemma 2.5. Let X be complete, L an invertible OX-module on X.

a) Pic(X) ' Pic
an(Xan), similarly for Picc, Picci.

b) L admits an integrable connection if and only if c1(L) is a torsion element.

c) Every connection on L is integrable, so Picc(X) ' Picci(X).

Proof: a) This follows from GAGA (see [22] and also [20] p. 152/153) if X is projective. In
general, use [13] Théorème 4.4 instead of [22].

Instead of [20] we can also compare 2.1 and 2.2 with the corresponding analytic statements.
b), c): If X is projective we know that Xan is compact Kähler, so the results follows by GAGA
and Lemma 1.18, Theorem 1.19.

In general we know by [7] §5 that we can still apply Hodge theory to X, so Lemma 1.18 and
Theorem 1.19 still hold. In fact, the Hodge filtration is still defined via ⌦·

X .

For part b) of the lemma it will turn out that the hypothesis thatX is complete is unnecessary,
see Corollary 2.11 below. For c) we must in general restrict to regular connections, see below
(Theorem 2.13).

Remember that compact Kähler manifolds are not automatically algebraic, cf. the case of
complex tori, see [21] Cor. p. 35.

Lemma 2.6. Let X be a�ne. Then every invertible OX-module on X admits a connection.

Proof: Obvious from Theorem 2.1, because H
1(X,⌦1

X) = 0.

2.3. Regularity. It is useful to take the notion of regularity into account.

The regularity has been introduced by P.Deligne in [5] Chap II §4. For the sake of convenience
we define here the regularity of integrable connections on an invertible sheaf:

Definition 2.7. Let L be an invertible OX-module and r an integrable connection on L. Then

r is called regular if there exists a smooth compactification X̄ of X such that D := X̄ \X is a

divisor with normal crossings and that, for all x 2 D, there exists an open Zariski neighbourhood

V of x and there exists s 2 H
0(V, j⇤L), s nowhere vanishing on V

0 := V \D, such that r(s|V 0) =
(↵|V 0)⌦ (s|V 0) with ↵ 2 H

0(V,⌦1
X̄
(log D)). Here j : X ! X̄ is the inclusion.

Note that we can replace:
“there exists s 2 H

0(V, j⇤L), s nowhere vanishing on V
0 = V \ D, such that r(s|V 0) =

(↵|V 0)⌦ s|V
0”

by
“for any s 2 H

0(V, j⇤L), s nowhere vanishing on V
0 = V \D, we haver(s|V 0) = (↵|V 0)⌦s|V

0”.
Here it is important that we deal with invertible sheaves!
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In fact, let s, s0 2 H
0(V, j⇤L), s, s0 nowhere vanishing on V

0 = V \D. Then s
0 = hs, where h

is a rational function on V which has neither zeroes nor poles inside V
0. If r(s|V 0) = (↵|V 0)⌦

(s|V 0) with ↵ 2 H
0(V,⌦1

X̄
(log D)) we get r(s0|V 0) = (↵0

|V
0) ⌦ (s0|V 0) with ↵

0 = dh
h + ↵ 2

H
0(V,⌦1

X̄
(log D)).

As P. Deligne noticed, the notion of regularity does not depend on the compactification of X
such that the divisor at 1 is a normal crossing divisor (see [5] p. 90).

We can define the Picard group PiccirX of regular integrable connections in an obvious way.
Now let us fix a compactification X̄ of X as in the preceding definition.

Lemma 2.8. There is an exact sequence:

H
0(X,O

⇤

X) ! H
0(X̄,

c⌦1
X̄(log D)) ! Piccir(X) ! Pic(X) ! H

1(X̄,
c⌦1

X̄(log D))

Proof: The proof is analogous to the proof of Theorem 1.1.
But first observe that, for any invertible OX -module L, there is a Zariski open covering

U = (Ūi) of X̄ such that the restriction of L to Ui = Ūi \D is trivial.
For this, we may assume that X is connected, hence irreducible. One considers a non-empty

and therefore dense Zariski open subspace U of X on which L is trivial. On U , the restriction
L|U has a nowhere vanishing section s. This section extends to X̄ as a rational section s1 of
L. Let D1 be the divisor of this section - this makes sense because L is locally trivial. Now D1

extends to a divisor D̄1 on X̄. For any x 2 X̄ there is an open a�ne neighbourhood V̄ such that
D̄1|V̄ is a principal divisor, i.e. divisor of some rational function �x. Then �

�1
x s1 is a nowhere

vanishing section of L|V with V := V̄ \D; it gives a trivialization of L|V .
The first arrow is induced by the homomorphism j⇤O

⇤

X !
c⌦1

X̄(log D) which is defined as
follows. Locally, a section g of j⇤O⇤

X is of the form h
�1

g̃, where h, g̃ are regular functions which
do not vanish inside X. Then the image is defined to be dg

g = dg̃
g̃ �

dh
h which is indeed a closed

logarithmic form.
Assume now that g 2 H

0(X,O
⇤

X) is given. Then the image in Piccir(X) is given by OX ,
together with the connection f 7! df + f

dg
g . This is isomorphic to OX , together with the

connection f 7! df , so we have the trivial element of Piccir(X).
On the other hand, suppose that ! 2 H

0(X̄,
c⌦1

X̄(log D)) is mapped onto the trivial element

of Piccir(X). Then there is a g 2 H
0(X,O

⇤

X) such that ! = dg
g .

This shows the exactness at H0(X̄,
c⌦1

X̄(log D)).
Then, an element of Pic X is represented by a cocycle (gij) on a covering U as defined before.

This covering comes from an a�ne covering Ū of X̄, where each gij extends as a rational function

with poles inside D which is a regular and non-vanishing function on Ūi \ Ūj \D. Then dgij
gij

is

a closed logarithmic form on Ūi \ Ūj : After refining U if necessary we may assume that we can
write gij = h

�1
ij g̃ij where hij and g̃ij are regular on Ūi\ Ūj and without zeroes in Ui\Uj . Then:

dgij

gij
=

dg̃ij

g̃ij
�

dhij

hij

is a closed logarithmic form. This defines the map:

PicX ! H
1(X̄,

c⌦1
X̄(log D)).

On the other hand, a regular integrable connection on OX is of the form g 7! dg + g! with
! 2 H

0(X̄,
c ⌦1

X̄
(log D)), and the map from H

0(X̄,
c ⌦1

X̄
(log D)) into Piccir(X) is given by:

! 7! (OX ,r)
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where r(g) = dg + g! . Then, the composition:

H
0(X̄,

c ⌦1
X̄(log D)) ! Piccir(X) ! PicX

is zero. Let (L,r) a regular integrable connection on the invertible OX -module L where L is
isomorphic to OX . The pair (L,r) is isomorphic to (OX ,r0) for some connection r0, and there
is a closed logarithmic form ! 2 H

0(X̄,
c ⌦1

X̄
(log D)), such that r0(g) = dg + g!. This proves

the exactness of the sequence at Piccir(X).
Now fix an element of PicX whose image in H

1(X̄,
c⌦1

X̄(log D)) is trivial. Such an element
is given by an a�ne covering U and a cocycle

(
dgij

gij
)

such that:
dgij

gij
= !j � !i

where !i is a closed form in c⌦1
X̄(log D) over the Zariski open subset Ui of X.

As we did in the proof of Theorem 1.1, the element (!i) defines a regular integrable connection
r on an invertible OX -module L and the image of the isomorphism class of L is the element of
H

1(X̄,
c⌦1

X̄(log D)) given by the cocycle (dgijgij
).

It remains to prove that the composition:

Piccir(X) ! PicX ! H
1(X̄,

c⌦1
X̄(log D))

is zero. As in the proof of Theorem 1.1, an element of Piccir(X) is given by (L|Ui,r|Ui)i such
that (L|Ui,r|Ui) is isomorphic over the Zariski open subspace Ui to (OUi , r̃i) where:

r̃i(f) = df + !if

for some !i 2 H
0(Ui,

c⌦1
X̄(log D)), and, if the element (gij) is the cocycle which defines L, we

have:
dgij

gij
= !j � !i.

Since the forms !i are closed, reasoning as in the proof of Theorem 1.1, we obtain our assertion.

Remarks. 1. In fact, at the beginning we have shown that j⇤L is an invertible j⇤OX -module,
j : X ! X̄ being the inclusion.
2. Again we can prove the lemma by showing that PiccirX ' Ȟ

1(X̄, T
·) ' H

1(X̄, T
·), where

T
· is the non-negative complex

j⇤O
⇤

X

g 7! dg
g

�!
c⌦1

X̄(log D) �! 0 �! . . .

with j : X ! X̄ being the inclusion.

In this context it is useful to have:

Lemma 2.9. PicX ' H
1(X̄, j⇤O

⇤

X).

Proof: It is su�cient to show that R
1
j⇤O

⇤

X = 0. An element of (R1
j⇤O

⇤

X)x is represented by
an element of H1(U \X,O

⇤

X), where U is an open neighbourhood of x, so by a line bundle L

on U \X. After shrinking U if necessary we know that L is trivial, by the proof of Lemma 2.8.
This implies our assertion.

Theorem 2.10. Let L be an invertible OX-module on X. Then L admits a regular integrable

connection if and only if its first Chern class is a torsion element.
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Proof: Since the integral cohomology of X is an abelian group of finite type, the implication
) is proved by Lemma 1.16.

Now, consider the implication (.
Suppose first that c1(L) = 0.
Let X̄ be a smooth compactification of X such that D := X̄ \X is a normal crossing divisor.

Suppose that D has r irreducible components. Then L extends to an algebraic invertible sheaf
L
0 on X̄ with first Chern class c1(L0) = 0.
To prove this, we consider the diagram with exact rows:

Z
r

! Pic X̄ ! PicX ! 0
#' # c1 # c1

H
2(X̄an

, X
an;Z) ! H

2(X̄an;Z) ! H
2(Xan;Z)

Let [L] be the class of L. We have assumed that its first Chern class is c1(L) = 0. Let L1

be a invertible OX̄ -module whose class has its image equal to [L]. The first Chern class of L1

comes from an element of H2(X̄an
, X

an;Z) which corresponds to an element of Zr whose image
in Pic X̄ is L2 which has the same first Chern class as L1. The invertible sheaf L0 := L1 ⌦ L

�1
2

has a first Chern class equal to 0 and it extends L.
On the complete non-singular variety X̄ we have obtained an invertible sheaf L0 which extends

L and has first Chern class c1(L0) = 0. By Lemma 2.5 the invertible sheaf L0 is endowed with a
integral connection r

0. The restriction of r0 to L is a regular integral connection.
If c1(L) = c, c being a torsion element, by Lemma 1.16 there is an analytic invertible sheaf L0

with integrable connection on X
an having c as first Chern class. By Deligne’s existence theorem

(Théorème 5.9 Chap. II of [5] p. 97) we can find an invertible sheaf L1 on X with an integrable
connection such that L

an
1 = L

0, so c1(L1) = c. Now c1(L ⌦ (L1)�1) = 0, so by the preceding
result there is a regular integrable connection on L ⌦ (L1)�1. So we get a regular integrable
connection on L = L1 ⌦ (L0

⌦ (L1)�1), too.
Therefore if the first Chern class of L is a torsion element, the invertible sheaf L admits a

regular integrable connection.

Corollary 2.11. Let L be an invertible OX-module. Then the following conditions are equiva-

lent:

(1) L admits a regular integrable connection;

(2) L admits an integrable connection;

(3) L
an

admits an analytic integrable connection;

(4) the first Chern class c1(L) of L is a torsion element.

2.4. Remark on integrability and regularity. One may define a notion of regularity for
connections which does not suppose that the connection is integrable - at least in the case of
invertible sheaves.

This may seem to be superfluous because we will see that such a connection is automatically
integrable. The situation changes, however, if we generalize the notions of regularity by asking
regularity with respect to a partial compactification only.

Definition 2.12. Let L be an invertible OX-module and r a connection on L. Then r is called

regular if there exists a smooth compactification X̄ of X such that D := X̄ \ X is a divisor

with normal crossings and that, for all x 2 D there exists an a�ne neighbourhood V of x and

there exists s 2 H
0(V, j⇤L) which does not vanish on D, such that r(s|V ) = (↵|V ) ⌦ s|V with

↵ 2 H
0(V,⌦1

X̄
(log D)). Here j : X ! X̄ is the inclusion.
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As in the definition of a regular integrable connection we may again replace ”there exists s...
such that...” by ”for all s... we have...”.

The independence of the compactification will follow from the next theorem.
We can define the group PiccrX of isomorphism classes of invertible OX -modules with a

regular connection in an obvious way.
In fact, such a regular connection is automatically integrable, because we have:

Theorem 2.13. If L is an invertible OX-module, every regular connection on L is integrable.

Proof: We proceed as in the proof of Theorem 1.19.
First we show that the mapping:

PiccirX ! PiccrX

is surjective. In fact, we have the following Lemma:

Lemma 2.14. There is a commutative diagram with exact rows

H
0(X,O

⇤

X) ! H
0(X̄,

c⌦1
X̄(log D)) ! Piccir(X) ! Pic(X) ! H

1(X̄,
c⌦1

X̄(log D))
# # # # #

H
0(X,O

⇤

X) ! H
0(X̄,⌦1

X̄
(log D)) ! Piccr(X) ! Pic(X) ! H

1(X̄,⌦1
X̄
(log D))

Proof: As in Lemma 2.8, the proof is analogous to the proof of Theorem 1.1.
The upper line is exact, as we saw in Lemma 2.8. Concerning the lower row, we define

the map PicX ! H
1(X̄,⌦1

X̄
(log D)) as the composition PicX ! H

1(X̄,
c⌦1

X̄(log D)) !

H
1(X̄,⌦1

X̄
(log D)).

The map H
0(X̄,⌦1

X̄
(log D)) ! Piccr(X) is given by:

! 7! (OX ,r)

where the connection r is defined by r(f) = df + f!. This defines a connection on OX which
is regular since ! 2 H

0(X̄,⌦1
X̄
(log D)). Therefore, the composition:

H
0(X̄,⌦1

X̄(log D)) ! Piccr(X) ! PicX

is zero.
Let (L,r) be an invertible sheaf with a regular connection whose image is zero in Pic(X).

Then L is isomorphic to the trivial invertible sheaf OX and there is a connection r0 on OX such
that (L,r) is isomorphic to (OX ,r0). So r0 is a regular connection. On the other hand there
is a global form ! on X, such that r0(f) = df + f!. If r0 is regular, one can choose the form !

as a global rational form on X̄ in H
0(X̄,⌦1

X̄
(log D)). Then the lower row is exact at Piccr(X).

Now, let us check the exactness at Pic(X). Let Ū = Ūi be an a�ne covering of X̄ as in the
proof of Lemma 2.8, such that (Ui) is a covering of X and (L|Ui,r|Ui = ri) is isomorphic to
(OX |Ui, r̃i), where:

r̃i(f) = df + f!i

with a rational di↵erential form !i defined on Ūi with poles contained in D. On this covering
(Ui) of X, the invertible sheaf L defines the cocycle (gij) and its image in H

1(X̄,⌦1
X̄
(log D)) is

the cocycle dĝij
ĝij

defined by the rational functions on the covering (Ūi) which extend (gij) and,
again:

dĝij

ĝij
= !j � !i.
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If the image of the class of L in H
1(X̄,⌦1

X̄
(log D)) is trivial, we have:

dĝij

ĝij
= !j � !i.

where ĝij is a rational function which extends gij to X̄ and !i is a logarithmic di↵erential form
along D on Ūi. The invertible sheaf L is endowed with a regular connection r locally defined
on Ui by:

r̃i(f) = df + f!i.

This ends the proof of Lemma 2.14.

Then, we have:

Lemma 2.15. H
0(X̄,

c⌦1
X̄(log D)) = H

0(X̄,⌦1
X̄
(log D))

Proof. We know that the spectral sequence E
pq
1 = H

q(X̄,⌦p
X̄
(log D)) ! H

p+q(Xan;C) degen-
erates at E1 (see [6] Corollaire 3.2.13 page 38), so the mapping:

H
0(X̄,⌦1

X̄(log D))
d
! H

0(X̄,⌦2
X̄(log D))

is the zero map which precisely means that the forms in H
0(X̄,⌦1

X̄
(log D)) are closed as stated

in the lemma.
This proves the Lemma.

Proof of Theorem 2.13:
The two preceding lemmas show that Piccir(X) ! Piccr(X) is surjective.
Now let r be a regular connection on L. Because of the surjectivity just mentioned there is

a line bundle L
0 on X and an integrable regular connection r

0 on L
0 such that L0

' L; we may
assume moreover that L0 = L. Then r(s) = r

0(s)+!⌦s with ! 2 H
0(X̄,⌦1

X̄
(log D)). Because

of the last lemma: d! = 0, hence r is integrable, too.

Remark: Since Piccir X = Piccr X we have Piccir X ' H
1(X, T̃

·), where T̃
· is the complex

j⇤O
⇤

X ! ⌦1
X
(log D) ! 0 ! . . ..

So it may seem that discussing regular connections without the hypothesis of integrability was
useless.

What is useful, however, is the lower exact sequence of Lemma 2.14.
Furthermore let us look at the following situation: X ⇢ X̄, X̄ being a smooth complex

algebraic variety which is not assumed to be complete, D := X̄ \X divisor with normal crossings.
Let r be connection on an invertible sheaf on X. Then we may define when r is regular resp.
regular integrable with respect to D in an obvious way. In the case X̄ = X this means that no
regularity condition is imposed at all, so we can no longer expect coincidence of the two notions.

3. Some examples

In the following examples we only consider complex algebraic varieties.

3.1. For the complex projective line, the invertible sheaf O(k) has no connection whenever k 6=
0. ConsiderX = P

1. One knows that Pic(X) = Z. We shall see that Picci(X) ' Picc(X) = {0}.
In fact, as we have proved in the section 2, for any compact connected complex Kähler

manifold X (in particular any complex projective variety without singularities) we have:

Pic
an
ci (X) ' Pic

an
c (X) ' H

1(X,C
⇤).
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For the complex line P
1 the cohomology H

1(Xan
,C

⇤) = 0. By GAGA (see [22], [20]) we have
Picci(X) ' Pic

an
ci (X

an) and Picc(X) ' Pic
an
c (Xan) which yields our result.

3.2. We give an example of an invertible OX -module which has a connection but no integrable
connection.

Let X̄ := {z0z1 � z2z3 = 0} ⇢ P
3. Notice that X̄ is a complex surface isomorphic to P

1
⇥ P

1.
Let D := X̄ \ {z0 + z1 + z2 � z3 = 0}. Let X := X̄ \D.
One verifies that D is a smooth hypersurface of X̄. Using the Lefschetz Theorem on hyper-

plane sections, one shows that D is connected. In fact, D is a non-singular projective plane
curve of degree 2. So D ' P

1. Then H
1(Dan;Z) = 0.

By [14] (p. 75) we have a commutative diagram whose lines are exact:

Z ! Pic X̄ ! PicX ! 0
#' # #

H
2(X̄an

, X
an;Z) ! H

2(X̄an;Z) ! Im� ! 0

where � : H2(X̄an;Z) ! H
2(Xan;Z).

We have (see [16] Chap. III Exercise 12.6, p. 292):

Pic X̄ ' PicP
1
⇥ PicP

1
' Z⇥ Z.

According to Künneth formula, we have:

H
2(X̄an;Z) ' Z� Z.

One verifies that the middle vertical arrow in the diagram above given by the first Chern class is
an isomorphism: one has to compute c1(p⇤i (OP1(n)), i = 1, 2, where p1 and p2 are the projections
of X̄ onto P

1.
By the Five Lemma, the last vertical arrow is an isomorphism.
Moreover the lower line of the diagram gives an exact sequence:

Z ! Z� Z ! Im�

because H
2(X̄an

, X
an;Z) ' H2(Dan;Z) by Lefschetz duality and:

H2(D
an;Z) ' Z

because D ' P
1.

Therefore, there is an element c 2 Im� which is not a torsion element.
The surjectivity of the third vertical arrow gives that there is an invertible sheaf L on X such

that c1(L) = c.
Since X is a�ne, we have:

H
1(X,⌦1

X) = 0.

According to Lemma 2.6 there is a connection on the sheaf L. But according to Lemma 1.16,
there is no integrable connection on L.

3.3. Notice that it is easier to find an example where there are connections which are not
integrable or regular. One may consider X = C

2. In this case both Pic
an(Xan) and Pic(X) are

trivial.
A connection on OX (resp. OXan) is given by a global algebraic (resp. analytic) di↵erential

form !:
r(f) = df + f!.

If one considers ! = dz1, the corresponding connection is integrable but not regular.
If ! = z1dz2, the corresponding connection is not integrable because the form is not closed.
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We can compute Picc(X) and Picci(X) by using the diagram of Theorem 2.1. Then:

Picc(X) ' H
0(X,⌦1

X)

because for X = C
2, the map H

0(X,C
⇤

X) ! H
0(X,O

⇤

X) is an isomorphism.
Similarly, we have:

Picci(X) ' H
0(X,

c⌦1
X).

In the analytic case, we know that:

Pic
an
ci (X

an) ' H
1(Xan

,C
⇤),

so it is trivial.
For Pic

an
c (Xan) the exact sequence of 1.14 gives that Pic

an
c (Xan) is isomorphic to the

group H
0(Xan

, d⌦1
Xan). The elements of Pic

an
c (Xan) are given by their curvature. Note that

H
2(Xan;C⇤) = 0.

3.4. Let X be a non-singular algebraic variety. It may happen that all invertible sheaves on
X admit an integrable connection whereas this is not true for X

an, as shown by the following
example:

Consider the algebraic variety X = C
⇤
⇥ C

⇤.

Notice that for this variety Pic(X) = 0, because X = C
2
\ Z where Z is the closed algebraic

subspace given by the union of the lines C⇥ {0} and {0}⇥C, then using the Proposition 6.5 in
Chapter II of [16] p. 133, we have a surjection:

Pic(C2) ! Pic(X).

Then, Pic(X) = 0.
On the other hand Pic

an(Xan) ' H
2(Xan;Z) = Z because X

an is a Stein space; use the
exact exponential sequence.

Therefore, there are invertible OXan -modules for which the complex first Chern class is 6=
0. According to Lemma 1.16 these sheaves do not have integrable connections. However, by
Theorem 1.1 they have a connection because H

1(Xan
,⌦1

Xan) = 0. But these do not come from
an algebraic invertible sheaf, because the latter ones are trivial.

3.5. Let X be a non-singular complex algebraic variety and L an invertible sheaf on X. By
Corollary 2.11, there is a connection on L (and even an integrable one) as soon as c

1
C(L) = 0.

This is no longer true if we pass to the analytic situation as shown by the following example:
Put X := C

2
\ {0}. Note that Xan is simply connected.

On the other hand, H1(Xan
,OXan) 6= 0: Let U be the open Stein covering by U1 = C ⇥ C

⇤,
U2 = C

⇤
⇥ C. Then H

1(Xan
,OXan) is the cokernel of :

H
0(U1,OU1)�H

0(U2,OU1) ! H
0(U1 \ U2,OU1\U2)

(a, b) 7! r1(a)� r2(b)

where r1, r2 are restrictions, so
H

1(Xan
,OXan) ' V

where V is the vector space of all globally convergent Laurent series in two variables with negative
exponents, so V 6= 0.

As usual, let Pic0(Xan) be the group of isomorphism of line bundles on X
an with trivial first

Chern class. The exact sequence:

0 = H
1(X;Z) ! H

1(Xan
,OXan) ! Pic0(X

an) ! 0
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shows that Pic0(Xan) 6= 0. On the other hand, Pic(X) = Pic(C2) = 0. So there are invert-
ible OXan -modules with first Chern class 0 which are not algebraizable. These cannot admit
a connection: The composition H

1(Xan
,OXan)

'
! Pic(Xan) ! H

1(Xan
,⌦1

Xan) is given by
(fij) 7! (2⇡idfij), so b(L) 6= 0 if (fij) does not represent the trivial element: note that the map-
ping H

1(Xan
,OXan) ! H

1(Xan
,⌦1

Xan) corresponds to the mapping V ! V
2: h 7! ( @h

@z1
,

@h
@z2

)
which is injective.

This shows that there are invertible sheaves on X
an whose first Chern class vanishes and

which do not admit a holomorphic connection. In particular, we cannot improve Lemma 1.16 in
general. On the other hand, cf. Lemma 1.18.

3.6. Let X be a non-singular complex algebraic variety, L an invertible OX -module, r a con-
nection on L.

Then we have:
r regular integrable ) r integrable

This implication is not invertible, as shown by the example X = C
2
,L = OX (see above 3.3).

Note that r is integrable if and only if ran is integrable.
In fact, we can consider the existence of connections on L (resp. Lan):

9r regular integrable , 9r integrable ) 9r

m +

9r analytic integrable ) 9r analytic

For the left upper and the middle vertical equivalence see Corollary 2.11.
Note that there may be no connection at all on L or L

an, as shown by the example X =
P1,L = O(k), k 6= 0.

The right horizontal arrows are not invertible, as shown by the complicated example 3.2.
The right vertical arrow is not invertible if the answer to the following question is positive:
Let X be the Serre example of a non-singular algebraic surface which is not a�ne but the

corresponding complex analytic manifold is Stein (see [15] p. 232 Example 3.2). Is there an
invertible OX -module L on X such that its image in H

1(X,⌦1
X) does not vanish? (Note that

X is not a�ne, so it is possible that H1(X,⌦1
X) 6= 0). Then, L does not admit a connection.

On the other hand, X
an is Stein, so H

1(Xan
,⌦1

Xan) = 0, which implies that there is a
connection on L

an.
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SOME PROPERTIES AND APPLICATIONS OF BRIESKORN LATTICES

CLAUDE SABBAH

Abstract. After reviewing the main properties of the Brieskorn lattice in the framework of
tame regular functions on smooth affine complex varieties, we prove a conjecture of Katzarkov-
Kontsevich-Pantev in the toric case.

1. Introduction

The Brieskorn lattice, introduced by Brieskorn in [Bri70] in order to provide an algebraic
computation of the Milnor monodromy of a germ of complex hypersurface with an isolated
singularity, has also proved central in the Hodge theory for vanishing cycles of such a singularity,
as emphasized by Pham [Pha80, Pha83]. Hodge theory for vanishing cycles, as developed by
Steenbrink [Ste76, Ste77, SS85] and Varchenko [Var82], makes it an analogue of the Hodge
filtration in this context, and fundamental results have been obtained by M. Saito [Sai89] in order
to characterize it among other lattices in the Gauss-Manin system of an isolated singularity of
complex hypersurface. As such, it leads to the definition of a period mapping, as introduced and
studied with much detail by K. Saito for some singularities [Sai83]. It is also a basic constituent of
the period mapping restricted to the µ-constant stratum [Sai91], where a natural Torelli problem
occurs (see [Sai91], [Her99]).

For a holomorphic germ f : (Cn+1
, 0) ! (C, 0) with an isolated singularity, denoting by t the

coordinate on the target space C, the space

(1.1) ⌦n+1
Cn+1,0/df ^ d⌦n�1

Cn+1,0

is naturally endowed with a C{t}-module structure (where t acts as the multiplication by f),
and the Brieskorn lattice is the C{t}-module (see [Bri70, p. 125])

(1.2) 00
H

n
f,0 =

⇣
⌦n+1

Cn+1,0/df ^ d⌦n�1
Cn+1,0

⌘.
C{t}-torsion.

Brieskorn shows that (1.2) is free of finite rank equal to the Milnor number µ(f, 0), and Sebastiani
[Seb70] shows the torsion freeness of (1.1), which can thus also serve as an expression for 00

H
n
f,0.

It is also endowed with a meromorphic connection r having a pole of order at most two at t = 0,
and the C({t})-vector space with connection generated by 00

H
n
f,0 is isomorphic to the Gauss-Manin

connection, which has a regular singularity there. 00
H

n
f,0 is thus a C{t}-lattice of this C({t})-vector

space. While the action of r@t , simply written as @t, introduces a pole, there is a well-defined
action of its inverse @

�1
t that makes 00

H
n
f,0 a module over the ring of C{{@�1

t }} of 1-Gevrey series
(i.e., formal power series

P
n>0 an@

�n
t such that the series

P
n anu

n
/n! converges). It happens

to be also free of rank µ over this ring ([Mal74, Mal75]). The relation between the rings C{t} and
C{{@�1

t }} is called microlocalization. In the global case below, we will use instead the Laplace
transformation. The mathematical richness of this object leads to various generalizations.
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For non-isolated hypersurface singularities, the objects with definition as in (1.2) (but in
various degrees) have been introduced by Hamm in his Habilitationsschrift (see [Ham75, §II.5]),
who proved that they are C{t}-free of finite rank, but do not coincide with (1.1) in general. A
natural C{{@�1

t }}-structure still exists on (1.1), and Barlet and Saito [BS07] have shown that
the C{t}-torsion and the C{{@�1

t }}-torsion coincide, so that 00
H

k
f,0 remains C{{@�1

t }}-free of finite
rank.

The Brieskorn lattice has also a global variant. On the one hand, the Brieskorn lattice for
tame regular functions on smooth affine complex varieties (see Section 2) is a direct analogue
of the case of an isolated singularity, but the double pole of the action of t with respect to the
variable @

�1
t cannot in general be reduced to a simple one by a meromorphic (even formal) gauge

transformation i.e., the Gauss-Manin system with respect to the variable @
�1
t has in general an

irregular singularity. The properties of the Brieskorn module for regular functions on affine
manifolds which are not tame have been considered by Dimca and M. Saito [DS01].

On the other hand, given a projective morphism f : X ! A1 on a smooth quasi-projective va-
riety X, the Brieskorn modules, defined as the hypercohomology C[@�1

t ]-modules of the twisted
de Rham complex (⌦•

X [@�1
t ], d� @

�1
t df), have been shown to be C[@�1

t ]-free (Barannikov-
Kontsevich, see [Sab99b]), and a similar result holds when one replaces ⌦•

X with ⌦•
X(logD)

for some divisor with normal crossings. More generally, one can adapt the definition of the
Brieskorn modules for the twisted de Rham complex attached to a mixed Hodge module, and
the C[@�1

t ]-freeness still holds, so that they can be called Brieskorn lattices (see loc. cit.). This
enables one to use the push-forward operation by the map f and reduce the study to that of
Brieskorn lattices attached to mixed Hodge modules on the affine line, as for example the mixed
Hodge modules that the Gauss-Manin systems of f underlie. In such a way, the Brieskorn
lattice has a purely Hodge-theoretic definition, which does not refer to the underlying geometry,
and can thus be attached, for example, to any polarizable variation of Hodge structure on a
punctured affine line (see [Sab08, §1.d]).

The Brieskorn lattice of tame functions is of particular interest and has been considered in
[Sab06] for example. The Brieskorn lattice for families of such functions, considered in [DS03],
has been investigated with much care for families of Laurent polynomials in relation with mirror
symmetry by Reichelt and Reichelt-Sevenheck [RS15, Rei14, Rei15, RS17].

Lastly, in the global setting as above, the pole of order two of the action of t with respect to
the variable @

�1
t produces in general a truly irregular singularity, and the Brieskorn lattice is an

essential tool to produce the irregular Hodge filtration attached to such a singularity (see [SY15,
Sab17]).

The contents of this article is as follows. In Section 2, we review known results on the
Brieskorn lattice for a tame function. We show in Section 3 how these results enables one to
obtain a simple proof of a conjecture of Katzarkov-Kontsevich-Pantev in the toric case.

Acknowledgements. I thank the referee for his/her careful reading of the manuscript and inter-
esting suggestions and Claus Hertling for pointing out Lemma 2.4.

2. The Brieskorn lattice of a tame function

In this section, we review the main properties of the Brieskorn lattice attached to a tame
function on an affine manifold, following [Sab99a, Sab06, DS03].

Let U be a smooth complex affine variety of dimension n and let f 2 O(U) be a regular
function on U . There are various notions of tameness for such a function, which are not known
to be equivalent, but for what follows they have the same consequences. One of the definitions,
given by Katz in [Kat90, Th. 14.13.3], is that the cone of f!CU ! Rf⇤CU should have constant
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cohomology on A1. We will use the notion of a weakly tame function, as defined in [NS99], that
is, either cohomologically tame or M-tame.

We assume that f is weakly tame. Let ✓ be a new variable. The Brieskorn lattice attached
to f is the C[✓]-module

G0 := ⌦n(U)[✓]
�
(✓d� df)⌦n�1(U)[✓].

An expression like (1.1) also exists if U is the affine space An+1, but the above one is valid for
any smooth affine variety U . The variable ✓ is for @

�1
t . We already notice that

(2.1) G0/✓G0 ' ⌦n(U)/df ^ ⌦n�1(U)

has dimension equal to the sum µ = µ(f) of the Milnor numbers of f at all its critical points
in U . The following properties are known in this setting.

(1) The algebraic Gauss-Manin systems H k
f+OU are isomorphic to powers of the C[t]h@ti-

module (C[t], @t), except for k = 0, so their localized Laplace transforms vanish except
that for k = 0. If we regard the Laplace transform of H 0

f+OU as a C[⌧ ]h@⌧ i-module,
we know that it has finite type as such, and its localized Laplace transform G, that is,
the C[⌧, ⌧�1]-module obtained by localization, is free of rank µ. We have

G = ⌦n(U)[⌧, ⌧�1]
�
(d� ⌧df)⌦n�1(U)[⌧, ⌧�1].

(2) Setting ✓ = ⌧
�1, we write

G = ⌦n(U)[✓, ✓�1]
�
(✓d� df)⌦n�1(U)[✓, ✓�1],

and there is therefore a natural morphism G0 ! G. This morphism is injective, so
that G0 is a free C[✓]-module of rank µ such that C[✓, ✓�1] ⌦C[✓] G0 = G, i.e., G0 is a
C[✓]-lattice of G, on which the restriction of the Gauss-Manin connection has a pole of
order at most two. Moreover, the action of ✓2@✓ on the class [!] of ! 2 ⌦n(U) in G0 is
given by

✓
2
@✓[!] = [f!],

and the action of ✓2@✓ on a polynomial
P

k>0[!k✓
k] is obtained by the usual formulas.

(3) Let V•G be the (increasing) V -filtration of G with respect to the function ⌧ (recall
that G has a regular singularity at ⌧ = 0, while that at infinity is usually irregular).
It is a filtration by free C[⌧ ]-modules of rank µ indexed by Q. The jumping indices of
the induced filtration V•(G0/✓G0), together with their multiplicities (the dimension of
grV� (G0/✓G0)) form the spectrum of f at 1. The jumping indices are contained in the
interval [0, n] \Q and the spectrum is symmetric with respect to n/2.

(4) On the other hand, for ↵ 2 [0, 1) \ Q, the vector space grV↵ G is endowed with the
nilpotent endomorphism N induced by the action of �(⌧@⌧ +↵) and with the increasing
filtration G• grV↵ G naturally induced by the filtration Gp = ✓

�p
G0, i.e.,

Gp gr
V
↵ G = (Gp \ V↵G)/(Gp \ V<↵G),

where the intersections are taken in G. As a consequence, we have isomorphisms

p 2 Z, ↵ 2 [0, 1), grGp grV↵ G
✓
p

���!
⇠

grV↵+p(G0/✓G0).

(5) The C-vector space H 6=1 :=
L

↵2(0,1)\Q grV↵ G, resp. H1 :=grV0 G, endowed with
• the filtration

F
p
H 6=1 :=

L
↵2(0,1)\Q

Gn�1�p gr
V
↵ G resp. F p

H1 = Gn�p gr
V
0 G,

• and the weight filtration W• = M(N)[n � 1] (resp. M(N)[n]), i.e., the monodromy
filtration of N centered at n� 1 (resp. n),
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is part of a mixed Hodge structure. In particular, N strictly shifts by one the filtration
G• grV↵ G and acts on the graded space grG• grV↵ G as the degree-one morphism induced
by �⌧@⌧ . We therefore have a commutative diagram, for any ↵ 2 [0, 1) and p 2 Z,
(see [Var81] and [SS85, §7] in the singularity case):

(2.2)

grGp grV↵ G
✓
p

⇠ //

[N]
✏✏

grV↵+p(⌦
n(U)/df ^ ⌦n�1(U))

[f ]
✏✏

grGp+1 gr
V
↵ G

✓
p+1

⇠ // grV↵+p+1(⌦
n(U)/df ^ ⌦n�1(U)),

by using the relation �⌧@⌧ = ✓@✓.
To see this, write the commutative diagram

grGp grV↵ G
✓
p

⇠ //

✓@✓ � ↵

✏✏

grV↵+p gr
G
0 G

✓@✓ � (↵+ p)
✏✏ ''

grGp+1 gr
V
↵ G

✓
p

⇠ // grV↵+p gr
G
1 G

✓ // grV↵+p+1 gr
G
0 G

and use that in the vertical morphisms, the constant part ↵ or ↵ + p induces the
morphism 0.

(6) Recall that a mixed Hodge structure (HQ, F
•
HC,W•HQ) is said to be of Hodge-Tate type

if
(a) the filtration W• has only even jumping indices
(b) and W2•HC is opposite to F

•
HC.

The description of the mixed Hodge structure given in (5) implies the following criterion.
We will set ⌫ = n � 1 when considering H 6=1 and ⌫ = n when considering H1. We will
then denote by H either H 6=1 or H1.

Corollary 2.3. The mixed Hodge structure that the triple (H,F
•
H,W•H) underlies is

of Hodge-Tate type if and only if, for any integer k such that 0 6 k 6 [⌫/2], the (⌫�2k)th
power of N induces an isomorphism

[N]⌫�2k : grGk H
⇠�! grG⌫�k H.

Proof. We define the filtration W
0
•H indexed by 2Z by the formula W

0
2kH = G⌫�kH, so

that GkH = W
0
2(⌫�k)H. If we set ` = ⌫ � 2k for 0 6 k 6 ⌫/2, we have 0 6 ` 6 ⌫ and

the isomorphism in the corollary is written

[N]` : grW
0

⌫+` H
⇠�! grW

0

⌫�` H.

We can conclude that W
0
•H = W•H if we know that N⌫+1 = 0, that is, grG⌫+1 H = 0.

This is a consequence of the positivity of the spectrum [Sab06, Cor. 13.2], which says
that, if ↵ 2 [0, 1), we have grGk grV↵ G = 0 for k /2 [0, ⌫] \ N. ⇤

The following lemma was pointed out to me by Claus Hertling.

Lemma 2.4. A mixed Hodge structure (HQ, F
•
HC,W•HQ) is Hodge-Tate if and only if

we have, for all p 2 1
2Z,

dimgrpF HC = dimgrW2p HQ.
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Proof. Indeed, one direction is clear. Conversely, if the equality of dimensions holds,
then (6a) holds since F

•
H has only integral jumps; moreover, up to a Tate twist, one

can assume that W<0H = 0, so grkF H = 0 for k < 0. It is enough to prove that
grpF grW2` H = 0 for all p 6= `. We prove this by induction on `. If ` = 0, the result
follows from the property that F

p
H = 0 for p < 0 and Hodge symmetry. Assume the

result up to `. For j 6 ` we thus have dimgrjF grW2j H = dimgrW2j H = dimgrjF H (the
latter equality by the assumption), and therefore grW2i gr

j
F H = 0 for i 6= j. In particular,

taking i = ` + 1, we have grpF grW2(`+1) H = 0 for all p 6 `. By Hodge symmetry, we
obtain grpF grW2(`+1) H = 0 for all p 6= `+ 1, as wanted. ⇤

(7) We now consider the case where U = (C⇤)n, endowed with coordinates x = (x1, . . . , xn).
Let f 2 C[x, x�1] be a Laurent polynomial in n variables, with Newton polyhedron �(f).
We assume that f is nondegenerate with respect to its Newton polyhedron and convenient

(see [Kou76]). In particular, 0 belongs to the interior of its Newton polyhedron. It is
known that such a function is M-tame.

For any face � of dimension n�1 of the boundary @�(f), we denote by L� the linear
form with coefficients in Q such that L� ⌘ 1 on �. For g 2 C[x, x�1], we set deg�(g) =
maxm L�(m), where the max is taken on the exponents of monomials xm appearing in g,
and deg

�*(g) = max� deg�(g). We denote the volume form dx1/x1 ^ · · ·^ dxn/xn by !,
giving rise to an identification C[x, x�1]

⇠�! ⌦n(U) and C[x, x�1]/(@f)
⇠�! G0/✓G0

(see (2.1)).
The Newton increasing filtration N•⌦n(U) indexed by Q is defined by

N�⌦
n(U) := {g! 2 ⌦n(U) | deg

�*(g) 6 �}.

We have N�⌦n(U) = 0 for � < 0 and N0⌦n(U) = C ·!. We can extend this filtration to
⌦n(U)[✓] by setting

N�⌦
n(U)[✓] := N�⌦

n(U) + ✓N��1⌦
n(U) + · · ·+ ✓

kN��k⌦
n(U) + · · ·

and then naturally induce this filtration on G0, to obtain a filtration N•G0 and then on
G0/✓G0. We have

(2.5) N•G0 = V•G \G0 and N•(G0/✓G0) = V•(G0/✓G0).

Corollary 2.3 now reads, according to (2.2) and by using the above identification through
multiplication by !:

Corollary 2.6. The mixed Hodge structure that the triple (H,F
•
H,W•H) underlies is

of Hodge-Tate type if and only if, for any integer k such that 0 6 k 6 [⌫/2] (⌫ = n� 1,
resp. n), we have isomorphisms

grN↵+k

�
C[x, x�1]/(@f)

� [f ]n�1�2k

�������!⇠ grN↵+n�1�k

�
C[x, x�1]/(@f)

�
8↵ 2 (0, 1),

grNk
�
C[x, x�1]/(@f)

� [f ]n�2k

������!⇠ grNn�k

�
C[x, x�1]/(@f)

�
.resp.

3. On a conjecture of Katzarkov-Kontsevich-Pantev

In this section we use the algebraic Brieskorn lattice of a convenient nondegenerate Laurent
polynomial to solve the toric case of the part “fp,q = h

p,q” of Conjecture 3.6 in [KKP17] (the
other equality “hp,q = i

p,q” is obviously not true by simply considering the case of the standard
Laurent polynomial mirror to the projective space Pn, see also another counter-example in
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[LP18]). We refer to [LP18, Har17, Sha17] for further discussion and positive results on this
conjecture.

3.a. The Brieskorn lattice and the conjecture of Katzarkov-Kontsevich-Pantev.

Given a smooth quasi-projective variety U and a morphism f : U!A1, every twisted de Rham
cohomology H

k
DR(U, d + df), i.e., the kth hypercohomology of the twisted de Rham com-

plex (⌦•
U , d + df), is endowed with a decreasing filtration F

•
YuH

k
DR(U, d + df) indexed by Q

(see [Yu14]). For ↵ 2 [0, 1), the filtration indexed by Z defined by F
p
Yu,↵ = F

p�↵
Yu can also

be computed in terms of the Kontsevich complex ⌦•
f (↵) together with its stupid filtration

(see [ESY17, Cor. 1.4.5]). The irregular Hodge numbers h
p,q
↵ (f) are defined as

(3.1) h
p,q
↵ (f) := dimgrp�↵

FYu
H

p+q
DR (U, d + df).

It is well-known that dimH
k
DR(U, d + df) = dimH

k(U, f�1(t)) for |t| � 0. This space is
endowed with a monodromy operator (around t = 1), and we will consider the case where this
monodromy operator is unipotent. In such a case, the filtration F

•
YuH

p+q
DR (U, d + df) is known

to jump at integers only, and in (3.1) only ↵ = 0 occurs. We then simply denote this number by
h
p,q(f), so that, in such a case,

h
p,q(f) := dimgrpFYu

H
p+q
DR (U, d + df).

Let W• be the monodromy filtration on H
k(U, f�1(t)) centered at k. The conjecture of [KKP17]

that we consider is the possible equality (see [LP18, Har17, Sha17])

(3.2) h
p,q(f) = dimgrW2p H

p+q(U, f�1(t)).

If moreover U is affine and f is weakly tame, so that H
p+q
DR (U, d + df) = 0 unless p+ q = n,

[SY15, Cor. 8.19] gives, using the notation of Section 2:1

h
p,q(f) =

(
dimgrVn�p(G0(f)/✓G0(f)) = dimgrpF grV0 G if p+ q = n,

0 if p+ q 6= n,

and this is the number denoted by f
p,q in [KKP17]. In such a case, we have H = H1 in the

notation of Section 2(5).
The following criterion has been obtained, with a different approach of the irregular Hodge

filtration, by Y. Shamoto.

Proposition 3.3 ([Sha17]). Assume U affine and f weakly tame with unipotent monodromy

operator at infinty. Then (3.2) holds true if and only if the mixed Hodge structure of Section

2(5) on H = H1 is of Hodge-Tate type.

Proof. According to Lemma 2.4, proving the result amounts to identifying the space grV0 G

endowed with its nilpotent operator N with the space H
n(U, f�1(t)) endowed with the nilpotent

part of the (unipotent) monodromy (up to a nonzero constant). Choosing an extension F :
X ! P1 of f as a projective morphism on a smooth variety X such that Xr U is a divisor, and
setting F = Rj⇤CU (j : U ,! X), we identify the dimension of Hk(U, f�1(t)) with that of the
kth-hypercohomology on X of the Beilinson extension ⌅FF. Then the desired identification is
given by [Sab97, Cor. 1.13]. ⇤

1The definition of �� in [SY15] should read dimgrV� (G0(f)/uG0(f)).
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3.b. The toric case of the conjecture of Katzarkov-Kontsevich-Pantev, first part. As
usual in toric geometry, we denote by M the lattice Zn in Cn and by N its dual lattice. We
fix a reflexive simplicial polyhedron � ⇢ R⌦M with vertices in M and having 0 in its interior
(it is then the unique integral point in its interior), see [Bat94, §4.1]. We denote by �* the dual
polyhedron with vertices in N , which is also simplicial reflexive and has 0 in its only interior
point, and by ⌃ ⇢ N the fan dual to �, which is also the cone on �* with apex 0. We assume
that ⌃ is the fan of nonsingular toric variety X of dimension n, that is, each set of vertices of
the same (n� 1)-dimensional face of @�* is a Z-basis of N . We know that

• X is Fano ([Bat94, Th. 4.1.9]),
• the Chow ring A

⇤(X) ' H
2⇤(X,Z) is generated by the divisor classes Dv corresponding

to vertices v 2 V (�*) of �*, i.e., primitive elements on the rays of ⌃ (see [Ful93, p. 101]),
• we have c1(TX) = c1(K_

X) =
P

v2V (�*) Dv in H
2⇤(X,Z) (see [Ful93, p. 109]), which

satisfies Hard Lefschetz on H
2⇤(X,Q), by ampleness of K_

X .
Let us fix coordinates x = (x1, . . . , xn) such that Q[N ] = Q[x, x�1]. We use the notation

of Section 2(7). Due to the reflexivity of �*, L� has coefficients in Z (it corresponds to a
vertex of �). For g 2 C[x, x�1], the �-degree deg�(g) = maxm L�(m) and the �*-degree
deg

�*(g) = max� deg�(g) are thus nonnegative integers.

Proposition 3.4. The case “f
p,q = h

p,q
” of [KKP17, Conj. 3.6] holds true if f is the Laurent

polynomial

f(x) =
X

v2V (�*)

x
v 2 Q[x, x�1].

The idea of the proof is to notice that the property for the second morphism in Corollary 2.6
to be an isomorphism is exactly the property that c1(TX) satisfies the Hard Lefschetz property,
and thus to identify its source and target as the cohomology of X in suitable degree.

Lemma 3.5. For � as above, any Laurent polynomial

fa(x) =
X

v2V (�*)

avx
v 2 C[x, x�1], a = (av2V ) 2 (C⇤)V (�⇤)

.

is convenient and non-degenerate in the sense of Kouchnirenko.

Proof. The Newton polyhedron of fa is equal to �*, and 0 belongs to its interior. In order to
prove the non-degeneracy, we note that the vertices of any (n � 1)-dimensional face � of @�*

form a Z-basis. It follows that, in suitable toric coordinates y1, . . . , yn, the restriction fa|� can
be written as y1 + · · ·+ yn, and the non-degeneracy is then obvious. ⇤

Proof of Proposition 3.4. Note that deg
�*(f) = 1, as well as deg

�*(xi@f/@xi) = 1. The Jacobian
ring Q[x, x�1]/(@f) is endowed with the Newton filtration N• induced by the �*-degree deg

�* ,
and corresponds to N•(G0/✓G0) by multiplication by !. In the present setting, [BCS05, Th. 1.1]
identifies the graded ring A

⇤(X)Q with the graded ring

grN•
�
Q[x, x�1]/(@f)

�
.

By applying Hard Lefschetz to c1(TX), we deduce that, for every k 2 N such that 0 6 k 6 [n/2],
multiplication by the (n� 2k)th power of the N-class [f ] of f induces an isomorphism

[f ]n�2k : grNk
�
Q[x, x�1]/(@f)

� ⇠�! grNn�k

�
Q[x, x�1]/(@f)

�
.

By Corollary 2.6 for H = H1, we deduce the assertion of the proposition from Proposition
3.3. ⇤
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3.c. The toric case of the conjecture of Katzarkov-Kontsevich-Pantev, second part.

We now prove the main result of this note.

Theorem 3.6. The case “f
p,q = h

p,q
” of [KKP17, Conj. 3.6] holds true for any Laurent polyno-

mial

fa(x) =
X

v2V (�*)

avx
v 2 C[x, x�1], a = (av2V ) 2 (C⇤)V (�⇤)

.

Remark 3.7. The case where n = 3 was already proved differently by Y. Shamoto [Sha17, §4.2].

Proof. Let us set H(fa) = H1(fa) = grV0 G(fa), where G(fa) is the localized Laplace trans-
form of the Gauss-Manin system for fa as in Section 2(2). By Lemma 3.5, we can apply the
results of Section 2 to fa for any a 2 (C⇤)V (�⇤). We will prove that, for fixed p, both terms
dimgrGn�p H(fa) and dimgrW2p H(fa) in Lemma 2.4 are independent of a. Since they are equal
if a = (1, . . . , 1), after Proposition 3.4, they are equal for any a 2 (C⇤)V (�⇤), as wanted.

(1) For the first term, we will use [NS99]. We have denoted there dimgrGp H(fa) by ⌫p(fa)
and, since grV↵ G = 0 for ↵ /2 Z, it is also equal to the number denoted there by ⌃p�1(fa).
By the theorem in [NS99] and Lemma 3.5, ⌃p�1(fa) depends semi-continuously on a. On
the other hand, according to [Kou76], dimH(fa) is independent of a and is computed
only in terms of �*. Since dimH(fa) =

P
p ⌃p�1(fa), each term in this sum is also

constant with respect to a.
(2) We will prove the local constancy of dimgrW2p H(fa) near any ao 2 (C⇤)V (�⇤). As noticed

in [DS03, §4], we can apply the results of Section 2 of loc. cit. to fao . We fix a Stein open
set Bo adapted to fao as in [DS03, §2a], and fix a neighbourhood X of ao so that it is also
adapted to any fa for a in this neighbourhood. By construction, all the critical points
of fao are contained in the interior of Bo if X is chosen small enough, and since µ(fa)
is constant, the same property holds for a 2 X. By using successively Theorem 2.9,
Remark 2.11 and Proposition 1.20(1) in [DS03], we deduce that, when a varies in X, the
localized partial Laplace transformed Gauss-Manin systems G(fa) form an OX [⌧, ⌧�1]-
free module with integrable connection and regular singularity along ⌧ = 0, which is
compatible with base change with respect to X. As a consequence, the monodromy of
each G(fa) around ⌧ = 0 is constant, and the assertion follows. ⇤

Remark 3.8 (suggested by the referee). If we relax the condition in Section 3.b that the toric
Fano variety X is nonsingular, then we have to consider the orbifold Chow ring of X as in
[BCS05], or the Chen-Ruan orbifold cohomology of X. For the cohomology of the untwisted
sector (i.e., the usual cohomology), the Hard Lefschetz theorem is still valid (see [Ste77]) and
Proposition 3.4 still holds, i.e., (3.2) holds for f . Moreover, Part (2) of the proof of Theorem 3.6
also extends to this setting. However, the semicontinuity result of [NS99] used in Part (1) of the
proof is not enough to imply the constancy (with respect to a) of ⌫p(fa).

On the other hand, one can also consider the various h
p,q
↵ (f) for ↵ 2 (0, 1) \ Q and, cor-

respondingly, the twisted sectors of the orbifold X. In such a case, Hard Lefschetz for f may
already give trouble (see [Fer06]).
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Abstract. We give a simple proof of the uniqueness of extensions of good sections for formal
Brieskorn lattices, which can be used in a paper of C. Li, S. Li, and K. Saito for the proof
of convergence in the non-quasihomogeneous polynomial case. Our proof uses an exponential
operator argument as in their paper, although we do not use polyvector fields nor smooth
di↵erential forms. We also present an apparently simpler algorithm for an inductive calculation
of the coe�cients of primitive forms in the Brieskorn-Pham polynomial case. In a previous
paper on the structure of Brieskorn lattices, there were some points which were not yet very
clear, and we give some explanations about these, e.g. on the existence and the uniqueness
of primitive forms associated with good sections, where we present some rather interesting
examples. In Appendix we prove the uniqueness up to a nonzero constant multiple of the
higher residue pairings in some formal setting which is di↵erent from the one in the main
theorem. This is questioned by D. Shklyarov.

Introduction

Let f : (X, 0) ! (�, 0) be a holomorphic function on a complex manifold, where � is an open

disk with coordinate t. Assume X0 := f
�1

(0) has an isolated singularity at 0. We have the

associated Gauss-Manin system Gf and the Brieskorn lattice H
00
f
⇢ Gf , where Gf is a regular

holonomic D�,0-module on which the action of @t is bijective, and H
00
f

is a finite submodule over

C{t} and also over C{{@�1

t
}} (the latter comes from the theory of microdi↵erential operators

[SKK]), see [Br], [Ph], [ScSt], [Sa3], etc. There is a surjection

pr0 : H
00
f
!!H

00
f
/@

�1

t
H

00
f
⇠= ⌦f

�
:= ⌦

n+1

X,0
/df ^ ⌦

n

X,0
⇠= C{x}/(@f)

�
,

where (@f) ⇢ C{x} is the Jacobian ideal generated by the partial derivatives @xif with

x = (x0, . . . , xn) a local coordinate system of (X, 0), and n := dimX0 = dimX � 1.

For a C-linear section �0 of pr0, set I0 := Im�0. We say that �0 is good in this paper if

(0.1) tI0 ⇢ I0 + @
�1

t
I0, i.e. t�0 = �0A0 + @

�1

t
�0A1

�
A0, A1 2 EndC

�
⌦f

��
.

Let V be the filtration of Kashiwara [Ka] and Malgrange [Ma1] on Gf indexed decreasingly by

Q so that the action of @tt � ↵ on Gr
↵

V
Gf is nilpotent. It induces the filtration V on H

00
f

and

⌦f . A good section is called very good in this paper if it is strictly compatible with V . (It is

called good in [Sa3].) In the weighted homogeneous polynomial case, every good section is very

good (see Proposition 3.1 below) although it does not hold in general. The eigenvalues of A1,

which are called the exponents associated with a good section, do not necessarily coincide with

the usual exponents defined as in [St] unless the section is very good (see Example 4.1 below).

Note that A1 is not necessarily semisimple in general (see [Sa3]). This causes a certain problem

when we have to take an eigenvector of A1 which generates the Jacobian ring over C{x}. It is

needed to construct a primitive form associated with a good section satisfying the orthogonality

condition for the canonical pairing.

http://dx.doi.org/10.5427/jsing.2018.18l
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The existence of a very good section is proved in [Sa3] by using Deligne’s canonical splitting

of the mixed Hodge structure [De] (which is applied to the canonical mixed Hodge structure on

the vanishing cohomology [St]) together with the relation with the Brieskorn lattice as in [ScSt].

Note that very good sections correspond to opposite filtrations to the Hodge filtration on the

vanishing cohomology which are stable by the action of N := log Tu where Tu is the unipotent

part of the monodromy (see [Sa3, Theorem 3.6]). In the weighted homogeneous polynomial

case, N vanishes and the existence of very good sections is trivial so that we do not need to

use the above arguments at all. The orthogonality condition for the higher residue pairings in

[SK1], [SK2] follows from the orthogonality of the corresponding splitting of the Hodge filtration

with respect to the canonical self-pairing of the vanishing cohomology, since the pairings can be

identified with this self-pairing, see [Sa3]. Using the extension argument as below, we can get a

unique primitive form associated with a very good section satisfying the orthogonality condition,

see Remark 3.7 below. However, the existence and the uniqueness of the associated primitive

form do not hold in general unless a good section is very good, see Examples 4.3 and 4.4 below.

Let F : Y ! � be a deformation of f with Y = X ⇥ S, S = �
m
, and F |X⇥{0} = f . Here we

assume that the singular locus C of (F, pr) : Y ! �⇥S is proper over S. Then the calculation of

the Gauss-Manin system and the Brieskorn lattice can be reduced to the case C\(X⇥{0}) = {0}

by shrinking S and restricting to an open neighborhood of each connected component of C. We

have the Gauss-Manin system GF,S and the Brieskorn lattice H
00
F,S
⇢ GF,S , where GF,S is a

regular holonomic D�⇥S,0-module on which the action of @t is bijective, and H
00
F,S

is a finite

submodule over C{t, s} and also over C{s}{{u}} (see (1.1.1) for the latter). Here u := @
�1

t
, and

s = (s1, . . . , sm) is the coordinate system of �
m
⇢ Cm

. Let m0 ⇢ C{s} := C{s1, . . . , sm} be the

maximal ideal generated by the si. There is a surjection

pr
S
: H

00
F,S
!!H

00
F,S

/@
�1

t
H

00
F,S
⇠= ⌦F,S

�
:= ⌦

n+1

Y/S,0

�
dF ^ ⌦

n

Y/S,0

�
,

together with the canonical isomorphisms

GF,S |0 = Gf , H
00
F,S

|0 = H
00
f
, ⌦F,S |0 = ⌦f ,

where GF,S |0 := GF,S

�
m0 GF,S , etc. For a C{s}-linear section �S of pr

S
, set IS := Im�S . We

say that �S is good if

(0.2) tIS ⇢ IS + @
�1

t
IS , @siIS ⇢ IS + @tIS .

It is shown by B. Malgrange (see [Ma2], [Ma3]) that any good section �0 of pr0 can be uniquely

extended to a good C{s}-linear section �S of pr
S
by solving Birkho↵’s Riemann-Hilbert problem

in this case, see also [SK2], [He], [Sab], etc. (Here the orthogonality condition for the higher

residue pairings can be reduced easily to the case S = pt.)

We can also consider the formal Gauss-Manin system bGf and the formal Brieskorn lattice bH 00
f
,

which are free modules of rank µ over C((u)) and C[[u]] respectively (where u = @
�1

t
). They

can be obtained by taking the u-adic completion of Gf and H
00
f

as in [Sa2]. There is a natural

projection

bpr0 : bH 00
f
!! bH 00

f
/@

�1

t
bH 00
f
⇠= ⌦f ,

where the last isomorphism follows from the u-adic completion argument.

We also have the formal Gauss-Manin system bG
F,bS and the formal Brieskorn lattice bH 00

F,bS
,

which are free modules of rank µ over C((u))[[s]] and C[[u, s]] := C[[u, s1, . . . , sm]] respectively.

There is a natural projection

bprbS : bH 00
F,bS!!

bH 00
F,bS/@

�1

t
bH 00
F,bS
⇠= ⌦

F,bS ,
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where ⌦
F,bS is the m0-adic completion of ⌦F,S so that ⌦

F,bS := ⌦F,S⌦C{s}C[[s]]. We can define the

notion of good sections b�0, b�bS in the same way as in the convergent case by using the analogues

of conditions (0.1) and (0.2) where I0 is defined by Im b�0, and IS is replaced by IbS := Im b�bS .

We have the following.

Theorem 1. Any good C-linear section b�0 of bpr0 satisfying (0.1) can be extended uniquely to a
good C[[s]]-linear section b�bS of bprbS satisfying (0.2) with IS replaced by IbS := Im b�bS.

In fact, this easily follows from an assertion which is irrelevant to the action of t, see Theo-

rem 1.4 below. Theorem 1 does not seem to be stated explicitly in [LLS], although it seems to be

used there in an essential way for the proof of the coincidence with the Malgrange’s construction

[Ma2], [Ma3], which gives the convergence of their extensions of good sections. Here it seems

rather di�cult to prove directly the convergent version of Theorem 1 by using the exponential

operator argument without using Malgrange’s result in the convergent case. The advantage of

this method seems to be that one can calculate step by step the coe�cients of the Taylor expan-

sion of primitive forms explicitly (see (2.3) below for a special case). However, it is not very clear

how much it is useful for the original purpose of the primitive form, i.e. the associated period

mapping, since the radius of convergence, for instance, does not seem to be calculated easily.

It might be rather di�cult to expect it theoretically since the partial Fourier transformation is

used in an essential way.

It seems that Theorem 1 is proved in [LLS] provided that “uniquely” is replaced by “canon-

ically” in the statement. In a more recent version of it, they seem to show the uniqueness

statement in terms of primitive forms together with a rather complicated proof in the weighted

homogeneous case. Actually Theorem 1 can be proved more easily as is shown in the proof of

Theorem 1.4 below by using an exponential operator argument given in [LLS]. However, the

latter argument is a rather amazing one for many complex geometers and their paper is not

necessarily easy to read for non-specialists of mathematical physics. So we present in this paper

a possibly simpler proof without using polyvector fields nor C
1

di↵erential forms and by using

a hopefully more precise argument than [LLS].

As a corollary of the exponential operator argument, we also present an algorithm for an

inductive calculation of the coe�cients of primitive forms for Brieskorn-Pham polynomials, which

seems simpler than the one in [LLS] in case of these polynomials. By using it, we can calculate

the coe�cients of the first few terms of the Taylor expansion of the primitive forms without

computers in this case, see (2.3) below. (The argument in this paper cannot be applied to the

situation of [DoSa] where the Brieskorn lattices are stable by @
�1

t
, but the V -filtration is stable

by @t, instead of @
�1

t
, in their case.)

In Appendix we prove the uniqueness up to a nonzero constant multiple of the higher residue

pairings in some formal setting which is di↵erent from the one in Theorem 1 because of the

di↵erence between C((u))[[s]] and C[[s]]((u)). It is written to answer a question of Dmytro

Shklyarov. This uniqueness does not hold for the formal Gauss-Manin systems as in Theorem 1

because of the isomorphism in Proposition 1.3 below which is obtained by using the exponential

operator argument. This shows a clear di↵erence between the two kinds of formal Gauss-Manin

systems.

We thank C. Hertling for useful comments about this paper, D. Shklyarov for a good question

which became a source of Appendix, and C. Li for a good question that led us to a correct

formulation of an algorithm for the inductive calculation of the coe�cients of primitive forms.

This work is partially supported by Kakenhi 24540039.
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In Section 1 we review formal Gauss-Manin systems and Brieskorn lattices, and explain an

exponential operator argument as in [LLS]. In Section 2 we present an algorithm for an inductive

computation of the coe�cients of the Taylor expansion of primitive forms in the Brieskorn-Pham

polynomial case, which is apparently simpler in this case than the one in [LLS]. In Section 3 we

give some remarks related to good sections and very good sections in the sense of this paper. In

Section 4 we present some interesting examples. In Appendix we show the uniqueness up to a

nonzero constant multiple of the higher residue pairings in some formal setting.

1. Formal Gauss-Manin systems and Brieskorn lattices

In this section we review formal Gauss-Manin systems and Brieskorn lattices, and explain an

exponential operator argument as in [LLS] without using polyvector fields nor C
1

di↵erential

forms, but using more precise arguments.

Notation 1.1. Let f : X ! �, and F : Y ! � be as in the introduction, where Y = X ⇥ S

with S = �
m
. We have the microlocal Gauss-Manin system defined by

GF,S := H
n+1

C
•
F,Y

with C
•
F,Y

:=
�
⌦

•
Y/S,0

{{u}}[u
�1

], ud� dF^
�
,

where u = @
�1

t
, and n = dimX � 1. Here ⌦

•
Y/S,0

{{u}} can be defined by using

(1.1.1) C{y}{{u}} :=
�P

⌫,k
a⌫,k y

⌫
u
k
2 C[[y, u]]

��P
⌫,k

|a⌫,k| r
|⌫|+k

/k! <1 (9 r > 0)
 
,

where y = (y0, . . . , yn+m) is a local coordinate system of Y with y
⌫
:=
Q

i
y
⌫i
i

and |⌫| :=
P

i
⌫i

for ⌫ = (⌫0, . . . , ⌫n+m) 2 Nn+m+1
.

The Brieskorn lattice is defined by

H
00
F,S

:= H
n+1

C
(0),•
F,Y

with C
(0),•
F,Y

:=
�
⌦

•
Y/S,0

{{u}}, ud� dF^
�
.

These are obtained by the microlocalization of the usual Gauss-Manin systems and Brieskorn

lattices, see [Ph], [Sa3], etc. (Note that GF,S and H
00
F,S

are finite free modules of rank µ over

C{s}{{u}}[u�1
] and C{s}{{u}} respectively although it is not used in this paper.)

The action of @xj , @si can be defined by using the canonical generator �(t� F ) which is not

explicitly written in C
•
F,Y

to simplify the notation (see also [Sa3]). More precisely �(t� F ) is a

generator of an E-module CF which is the microlocalization of a D-module BF , and the latter

is the direct image of OY by the graph embedding of F as a D-module. Here E is the ring of

microdi↵erential operators (see [SKK]). This generator satisfies the relations

(1.1.2)

t �(t� F ) = F �(t� F ),

@xj�(t� F ) = �(@F/@xj) @t �(t� F ),

@si�(t� F ) = �(@F/@si) @t �(t� F ).

Note that the second relation is compatible with the di↵erential ud�dF^ of the complex C
•
F,Y

(up

to the multiplication by u), and the latter can be identified with the relative de Rham complex

DRY/S(CF ) up to a shift of complex. These are compatible with the theory of Gauss-Manin

connections on Brieskorn lattices as in [Gre].

We have the formal Gauss-Manin system defined by

bGF,S := H
n+1 bC•

F,Y
with bC•

F,Y
:=
�
⌦

•
Y/S,0

((u)), ud� dF^
�
,

see also [SaSa], etc. for the case S = pt. It has the formal Brieskorn lattice defined by

bH 00
F,S

:= H
n+1 bC(0),•

F,Y
with bC(0),•

F,Y
:=
�
⌦

•
Y/S,0

[[u]], ud� dF^
�
.
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We also have the bi-formal Gauss-Manin system defined by

bG
F,bS := H

n+1 bC•

F,bY with bC•

F,bY :=
�
⌦

•
X,0

((u))[[s]], ud� dF^
�
,

with [[s]] := [[s1, . . . , sµ]], and similarly for bH 00
F,bS

and bC(0),•

F,bY
with ((u)) replaced by [[u]].

We can define similarly

Gf,S ,
bGf,S ,

bG
f,bS , H

00
f,S

, bH 00
f,S

, bH 00
f,bS ,

by replacing F with f in the above definitions, where f is viewed as a trivial deformation.

We also have bGf ,
bH 00
f

by replacing ⌦
•
Y/S,0

with ⌦
•
X,0

in the definition of bGf,S ,
bH 00
f,S

. There are

canonical isomorphisms

(1.1.3) bG
F,bS
��
0
= bGf ,

bH 00
F,bS

��
0
= bH 00

f
,

and similar isomorphisms with F replaced by f . Here we set for any C[[s]]-module N

(1.1.4) N |0 := N/m0N = N ⌦C[[s]] C,
where m0 is the maximal ideal of C[[s]]. We also have a canonical injection

(1.1.5) ◆ : bGf ,! bG
f,bS .

There are natural isomorphisms

⌦
F,bS = bH 00

F,bS/@
�1

t
bH 00
F,bS , ⌦

f,bS = bH 00
f,bS/@

�1

t
bH 00
f,bS , ⌦f = bH 00

f
/@

�1

t
bH 00
f
,

where ⌦
F,bS , ⌦f are as in the introduction, and ⌦

f,bS = ⌦f [[s]]. We have the canonical isomor-

phisms

(1.1.6) ⌦
F,bS
��
0
= ⌦f , ⌦

f,bS
��
0
= ⌦f .

Proposition 1.2. With the above notation, bG
F,bS and bH 00

F,bS
are finite free modules of rank µ

over C((u))[[s]] and C[[u, s]] = C[[u, s1, . . . , sm]] respectively, where µ is the Milnor number of
f . We have a similar assertion with F replaced by f .

Proof. It is enough to show the assertion for F since the assertion for f is the special case of a

trivial deformation.

Let U
•
be the m0-adic filtration on bC•

F,Y
, bC•

F,bY
, i.e.

U
k bC•

F,Y
= mk

0
bC•
F,Y

, etc.

Then bC•

F,bY
is the m0-adic completion of bC•

F,Y
so that

(1.2.1) bC•

F,bY =

k
 
lim bC•

F,bY /m
k

0
bC•

F,bY =

k
 
lim bC•

F,Y
/mk

0
bC•
F,Y

.

Moreover the filtration U induces a strict filtration on the complexes, and the induced filtration

U on the cohomology groups coincides with the m0-adic filtration on these C[[s]]-modules so that

(1.2.2) bG
F,bS =

k
 
lim bG

F,bS/m
k

0
bG
F,bS =

k
 
lim bGF,S/m

k

0
bGF,S ,

(and a similar assertion holds for the corresponding Brieskorn lattices). These are shown by an

argument similar to [Sa1], [Sa2] using the acyclicity of the complexes Gr
k

U
bC•
F,Y

except for the

highest degree together with the Mittag-Le✏er condition [Gro]. Here the acyclicity follows from

the canonical isomorphisms

(1.2.3) Gr
0

U
bC•
F,Y
⌦C Gr

k

U
C[[s]] ⇠

�! Gr
k

U
bC•
F,Y

.
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Taking the cohomology of the last isomorphism and using the strictness of the filtration U ,

we then get the isomorphisms

(1.2.4) Gr
0

U
bGF,S ⌦C Gr

k

U
C[[s]] ⇠

�! Gr
k

U
bGF,S (= Gr

k

U
bG
F,bS).

This implies that bG
F,bS is free of rank µ over C((u))[[s]] since Gr

0

U
bGF,S = bGf is free of rank µ

over C((u)). The argument is similar for bH 00
F,bS

. This finishes the proof of Proposition 1.2.

Proposition 1.3 (compare to [LLS]). We have the exponential operator

(1.3.1)  := e
(F�f)/u

: bG
f,bS !

bG
F,bS ,

which is an isomorphism of finite free C((u))[[s]]-modules with inverse given by

(1.3.2) � := e
(f�F )/u

: bG
F,bS !

bG
f,bS .

Moreover, these are compatible with the actions of t and @si .

Proof. Since F � f 2 m0OY,0, we can verify that  and � induce C((u))[[s]]-linear morphisms

between the complexes bC•

F,bY
and bC•

f,bY
, and these are inverse of each other. Moreover they

are compatible with the actions of t and @si which are defined by using (1.1.2). (For t, set

v := u
�1

= @t, which gives the Fourier transform of t, i.e. t is identified with �@v.) This finishes

the proof of Proposition 1.3.

Theorem 1.4. Let �bS : ⌦
F,bS !

bH 00
F,bS

be a C[[s]]-linear section of the canonical projection

p
F,bS : bH 00

F,bS
! ⌦

F,bS satisfying the condition

(1.4.1) @siIbS ⇢ IbS + u
�1

IbS with IbS := Im�bS .

Such a section of p
F,bS is uniquely determined by I0 := IbS

��
0
⇢ bGf so that

(1.4.2) IbS = bH 00
F,bS \ 

�
◆
�
I0[u

�1
]
�
[[s]]
�
.

Proof. By the isomorphism (1.3.1), the assertion is equivalent to

(1.4.3) �(IbS) = �
� bH 00

F,bS

�
\ ◆
�
I0[u

�1
]
�
[[s]] in bG

f,bS .

We will show the inclusion ⇢ together with the assertion that the right-hand side of (1.4.3) is

isomorphic to �
�
⌦

F,bS
�
by the projection �(p

F,bS) so that it also gives a section of �(p
F,bS).

By Propositions 1.2 and 1.3, bH 00
F,bS

and �( bH 00
F,bS

) are free C[[u, s]]-submodules of bG
F,bS and bG

f,bS
respectively with rank µ. We have moreover

(1.4.4) mk

0
�( bH 00

F,bS) = �(
bH 00
F,bS) \mk

0
bG
f,bS ,

i.e. the inclusion �( bH 00
F,bS

) ,! bG
f,bS is strictly compatible with the m0-adic filtration. This follows

from the injective morphism of short exact sequences

0 ! mk

0
�( bH 00

F,bS
) ! �( bH 00

F,bS
) ! �( bH 00

F,bS
)/mk

0
�( bH 00

F,bS
) ! 0

\ \ \

0 ! mk

0
bG
f,bS ! bG

f,bS ! bG
f,bS/m

k

0
bG
f,bS ! 0

Here the injectivity of the last vertical morphism is reduced to the case k = 1 by using the

graded quotients Gr
j

U
of the m0-adic filtration U together with isomorphisms similar to (1.2.4)

(which hold also for �( bH 00
F,bS

) since it is a finite free C[[u, s]]-module).
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Using again the graded quotients Gr
j

U
together with (1.4.4) and isomorphism similar to (1.2.4),

we then get

(1.4.5) bG
f,bS = �( bH 00

F,bS)� ◆
�
u
�1

I0[u
�1

]
�
[[s]],

since

bGf = bH 00
f
� u

�1
I0[u

�1
] and �( bH 00

F,bS)/m0�(
bH 00
F,bS) =

bH 00
f
.

By (1.4.5) we get the isomorphism between the right-hand side of (1.4.3) and �
�
⌦

F,bS
�
.

It now remains to show

(1.4.6) �(IbS) ⇢ ◆
�
I0[u

�1
]
�
[[s]].

But this follows immediately from condition (1.4.1). In fact, bG
f,bS is identified with bGf [[s]] so

that any element of bG
f,bS has a Taylor expansion in s, and moreover, the above identification

and � are compatible with the iterated actions of the @si and also with the restriction to s = 0.

This finishes the proof of Theorem 1.4.

Remarks 1.5. (i) Formal Gauss-Manin systems and formal Brieskorn lattices are treated also

in [LLS] where the use of polyvector fields does not seem to be quite essential for them.

(ii) The commutativity of the projective limit and the cohomology does not seem to be

explained in [LLS]. Here the Mittag-Le✏er condition as in [Gro] is usually needed. This point

is not completely trivial even if we have the acyclicity of the complex except for the top degree.

For instance, it is not quite clear whether any surjective morphism of projective systems induces

a surjective morphism by passing to the projective limit, unless we know that the Mittag-Le✏er

condition is satisfied for the projective system defined by the kernel, see [Gro]. This might

be applied to the surjection from the top term of the complex to the cohomology, where the

strictness of the last di↵erential is related.

(iii) The construction in [LLS] is slightly di↵erent from the one in earlier papers [SK1], [SK2],

where the deformation F of f was defined over a space of dimension µ� 1, instead of µ, and the

value of F together with the natural projection is used in order to define a morphism to a space

S of dimension µ. Note also that one gets a formal Gauss-Manin system of µ + 1 variables in

[LLS], where the relative critical locus C is finite and flat over S, although the image of C in S

is the discriminant locus in [SK1], [SK2], since F is used for the morphism to S.

(iv) It seems to be quite di�cult to prove the convergent version of Theorem 1. Even in case

f = x
a
+ y

b
with 1/a + 1/b < 1/2, for instance, the convergence of the image of a monomial

in x, y by  seems to be quite non-trivial. (Note that, even if we get a divergent power series

by this, it does not contradict the result of Malgrange since the procedure of extending good

sections is not so simple.) Here the calculation seems easier for �. It may be possible to show the

convergence in s for each fixed degree part for the variable u provided that we take a standard

representative of the versal deformation of f (i.e. F = f +
P

i
gisi with gi monomial generators

of the Jacobian ring).

(v) It does not seem to be very clear what kind of argument is used for the proof of the

coincidence of the new construction of the higher residue pairings in [LLS] with the old one. It

could be shown, for instance, by using the uniqueness (up to a constant multiple) of the pairing

in the versal unfolding case by generalizing an argument in [Sa3, 2.7] about the duality of simple

holonomic E-modules to the bE-module case and using the compatibility with the base change by

{0} ,! S for the one variable case. Here it does not seem easy to conclude it only by using the

coincidence after taking the graded quotients of the Hodge filtration, since an automorphism of

a filtered Gauss-Manin system of one variable is not necessarily the identity even if it induces the
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identity by taking the graded quotients. (Note that a non-degenerate pairing can be identified

with an isomorphism with the dual up to a shift of filtration. If there are two non-degenerate

pairings, then we can compose one isomorphism with the inverse of the other so that we get an

automorphism.)

(vi) If polyvector fields are used in the theory of primitive forms as in [LLS], one may have

to divide a representative of a primitive form by a holomorphic relative di↵erential form of the

highest degree ⌦Z/S in order to get a representative in the polyvector fields. In this case one

might get a “primitive function” rather than a primitive form (and this may be more natural for

the product structure). In the simple singularity case, it is a constant function, and this seems

always possible provided that one can take the relative di↵erential form ⌦Z/S to be the primitive

form in the usual sense.

2. Some explicit calculations

In this section we present an algorithm for an inductive computation of the coe�cients of the

Taylor expansion of primitive forms in the Brieskorn-Pham polynomial case, which is apparently

simpler in this case than the one in [LLS].

2.1. Primitive forms. In the notation of the introduction, assume F is a miniversal deformation

of f as in [LLS] so that

dimS = µ (:= dimOX,0/(@f)).

Let �0 : ⌦f ,! H
00
f

be a good section of pr0 : H
00
f
! ⌦f in (0.1) satisfying

(2.1.1) SK(!,!
0
) ⇢ Cu

n+1
for !,!

0
2 Im�0.

Here u := @
�1

t
, and we denote in this paper the higher residue pairings by

(2.1.2) SK : Gf ⇥Gf ! K := C{{u}}[u�1
].

Note that

(2.1.3) SK(!,!
0
) ⇢ C{{u}}un+1

for any !,!
0
2 H

00
f
.

This implies a rather strong restriction on H
00
f
.

By Malgrange’s theory on Birkho↵’s Riemann-Hilbert problem (see [Ma2], [Ma3]), any good

section �0 of pr0 : H
00
f
!!H

00
f
/@

�1

t
H

00
f
⇠= ⌦f in (0.1) can be uniquely extended to a good C{s}-

linear section

�S : ⌦F,S ,! H
00
F,S

of

pr
S
: H

00
F,S
!!H

00
F,S

/@
�1

t
H

00
F,S
⇠= ⌦F,S ,

as is explained in the introduction. Moreover the good section �0 is uniquely lifted to a C-linear
morphism

�
r
S

: ⌦f ,! H
00
F,S

,

so that

(2.1.4) Im�
r
S
⇢ Im�S , @sj (Im�

r
S
) ⇢ @t (Im�S).

In fact, the second condition of (0.2) in the introduction implies an integrable connection on ⌦S

(by considering the action of @sj on IS mod @tIS), and �
r
S

is defined by using the flat sections

of this connection so that only the component of the second term @tIS in the second condition

of (0.2) remains (see [SK1], [SK2]). Thus the second condition of (2.1.4) holds. Here (2.1.1) is

also extended to the case of �
r
S
. Note that, by the uniqueness of the extension in Theorem 1.4,

these constructions are compatible with the formal completion and we have similarly �
r
bS
, etc.
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Assume there is ⇣0 2 ⌦f which is an eigenvector of A1 in (0.1), and generates ⌦f over C{x}.
Set

⇣0 := �0(⇣0) 2 H
00
f
.

In the weighted homogeneous polynomial case, we have up to a nonzero constant multiple

(2.1.5) ⇣0 = [dx0 ^ · · · ^ dxn],

where x0, . . . , xn are coordinates such that
P

i
wixi@xif = f with wi 2 Q>0. (This follows from

Proposition 3.1 below.)

The primitive form ⇣S associated with �0 and ⇣0 is then defined by

⇣S := �
r
S
(⇣0) 2 H

00
F,S

.

Similarly the formal primitive form ⇣bS associated with �0 and ⇣0 is defined by

⇣bS := �
r
bS (⇣0) 2

bH 00
F,bS .

The latter coincides with the image of ⇣S in bH 00
F,bS

by Theorem 1.4 together with a remark after

(2.1.4).

2.2. Relation with the exponential operators  and �. In the notation of (2.1) and

Proposition 1.3, the formal primitive form ⇣bS is the unique element of bH 00
F,bS

satisfying

(2.2.1) �(⇣bS) = ◆(⇣0) mod ◆
�
u
�1

I0[u
�1

]
�
[[s]],

where I0 := Im�0, u := @
�1

t
, and ◆ is as in (1.1.5). In fact, the uniqueness of ⇣bS follows from

the direct sum decomposition (1.4.5), and (2.2.1) holds since

�(⇣bS)
��
0
= ⇣bS

��
0
= ⇣0, @sj�(⇣bS) = �(@sj⇣bS) 2 ◆

�
u
�1

I0[u
�1

]
�
[[s]],

where the last assertion follows from the proof of Theorem 1.4 together with the second condition

of (2.1.4).

This characterization of formal primitive forms is compatible with the construction in [LLS],

since (2.2.1) is equivalent to

(2.2.2) ⇣bS =  
�
◆(⇣0)

�
mod  

�
◆
�
u
�1

I0[u
�1

]
�
[[s]]
�
.

2.3. Case of Brieskorn-Pham polynomials. Assume

f :=
P

n

i=0
x
mi
i

(mi > 2),

i.e. f is a Brieskorn-Pham polynomial. In this case we can calculate the first few terms of the

coe�cients of the Taylor expansion of ⇣bS without using a computer program as follows.

Set

� := Nn+1
\
Q

n

i=0
[0,mi � 2],

so that

#� =
Q

n

i=0
(mi � 1) = µ.

We have the natural coordinates s⌫ of S = Cµ
for ⌫ = (⌫1, . . . , ⌫n) 2 �. We may assume

(2.3.1) F = f +
P

⌫2�
g⌫s⌫ with g⌫ = x

⌫
:=
Q

i
x
⌫i
i

(⌫ 2 �).

Moreover we have the canonical good section �0 such that

I0 (:= Im�0) =
P

⌫2�
C [g⌫!0] ⇢ H

00
f

with !0 := dx0 ^ · · · ^ dxn.
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In the Brieskorn-Pham polynomial case we have for any ⌫ = (⌫0, . . . , ⌫n) 2 Nn+1

(2.3.2) @t [x
⌫
!0] =

⌫i �mi + 1

mi

[x
⌫
x
�mi
i

!0] if ⌫i > mi � 1.

This implies

(2.3.3) [x
⌫
!0] = 0 in H

00
f

if ⌫i + 1 2 miN for some i.

(These become more complicated in the general weighted homogeneous polynomial case.)

Let ⇣S,k be the image of ⇣S in H
00
F,S

/mk+1

0
H

00
F,S

, where m0 is the maximal ideal of OS,0, and k

is a positive integer (which may be determined by the computational ability). Set

Ak :=
�
a = (a⌫) 2 N�

�� |a| 6 k
 

with |a| :=
P

⌫2�
a⌫ .

For a = (a⌫) 2 N�
, define

p(a) =
�
p(a)0, . . . , p(a)n

�
2 Nn+1

by p(a)i :=
P

⌫2�
⌫ia⌫ ,

so that

g
a
:=
Q

⌫
g
a⌫
⌫

=
Q

i,⌫
x
⌫ia⌫
i

=
Q

i
x
p(a)i

i
=: x

p(a)
.

Define further

q(a) =
�
q(a)0, . . . , r(a)n

�
, r(a) =

�
r(a)0, . . . , r(a)n

�
in Nn+1

,

by the condition

p(a)i = q(a)i mi + r(a)i with 0 6 r(a)i < mi (8 i 2 [0, n]).

In particular, we have

(2.3.4) q(a)i =

�
p(a)i

mi

⌫
.

(Note that b↵c := max{k 2 Z | k 6 ↵} for ↵ 2 R.) Set

ea =
P

n

i=0
q(a)i � |a|,

and

A
0
k
:=
�
a 2 Ak

�� ea > 0, r(a) 2 �
 
.

Note that the last condition r(a) 2 � is equivalent to that r(a)i 6= mi � 1 (8i).

Using the characterization of ⇣S,k in (2.2.1), we then get the following Taylor expansion in s

by increasing induction on |⌫| :=
P

i
⌫i 6 k :

(2.3.5) ⇣S,k =

X

a2A
0
k

ca @
�ea
t

[ gr(a) s
a
!0 ]

F
2 H

00
F,S

/mk+1

0
H

00
F,S

,

with ca 2 C, sa :=
Q

⌫2�
s
a⌫
⌫
, and gr(a) = x

r(a)
by definition. Here [⌘]

F
for ⌘ 2 ⌦

n+1

Y/S
denotes its

class in H
00
F,S

(mod mk+1

0
). For ! 2 ⌦

n+1

X,0
, its class in H

00
f

is simply denoted by [!]. We have

[s
⌫
⌘]

F
= s

⌫
[⌘]

F
,

since the di↵erential of the Gauss-Manin complex is OS-linear. Note, however, that

[s
⌫
!]

F
6= s

⌫
[!]

�
i.e., [!]

F
6= [!]

�
for ! 2 ⌦

n+1

X,0
.

In fact, they belong to di↵erent groups H
00
F,S

and H
00
f,S

or H
00
f
. (This is related with a question of

C. Li. It is a source of an error in a previous version where the formula was too much simplified.)

By the characterization (2.2.1) the summation in (2.3.5) is actually taken over

A
00
k
:=
�
a 2 Ak

�� @|a|
t

[g
a
!0] /2 @tI0[@t]

 
.
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In the Brieskorn-Pham polynomial case we have

(2.3.6) @
|a|
t

[g
a
!0] /2 @tI0[@t] () @

|a|
t

[g
a
!0] 2 H

00
f
\ {0},

by (2.3.2) and (2.3.3). Using the last two formulas again, we then get

A
0
k
= A

00
k
,

together with the Taylor expansion (2.3.5) inductively.

The coe�cients ca for a 2 A
0
k
are inductively determined by comparing the coe�cients of

both sides of (2.2.1). Since

(2.3.7) e
(f�F )@t = e

�
P

⌫2� g⌫s⌫@t =
Q

⌫2�
e
�g⌫s⌫@t ,

we get by using (2.3.2)

(2.3.8) ca = �

X

06b<a

 
(�1)

|a�b| cb

(a� b)!

nY

i=0

q(a,b)iY

ki=1

r(b)i + p(a� b)i � kimi + 1

mi

!
,

with

q(a, b)i :=

�
r(b)i + p(a� b)i

mi

⌫
.

Here b⇤c is as in a remark after (2.3.4), (a� b)! :=
Q

⌫2�
(a⌫ � b⌫)!, and we have by definition

b 6 a () b⌫ 6 a⌫ (8 ⌫ 2 �), and b < a () b 6 a and b 6= a.

2.4. Example. Assume f = x
7
1
+ x

3
2
and k = 6. Then the s

a
=
Q

⌫
s
a⌫
⌫

for a 2 A
0
k
\ {0} are

(2.4.1) s
3

(5,1)
, s(4,1)s

2

(5,1)
, s

6

(5,1)
, s(4,1)s

5

(5,1)
, s

2

(4,1)
s
4

(5,1)
, s(3,1)s

5

(5,1)
.

The corresponding gr(a) = x
r(a)

in (2.3.5) are respectively

(2.4.2) x1, 1, x
2

1
, x1, 1, 1,

and we have ea = 0 for a 2 A
0
k
in this case. We denote the corresponding coe�cients ca by

(2.4.3) c(1), . . . , c(6).

Using (2.3.8), we first get

c(1) =
1

3!
·
9·2
72·3 =

1

72
,

c(2) =
1

2!
·

8

72·3 =
2
2

72·3 ,

and then verify that c(3), . . . , c(6) are respectively equal to

�
1

6!
·
24·17·10·3·4

74·32 +
1

3!
·
1

72
·
10·3
72·3 = �

17·22

74·32 +
5

74·3 =
�68+15

74·32 = �
53

74·32 ,

�
1

5!
·
23·16·9·2·4

74·32 +
1

2!
·
1

72
·
9·2
72·3 +

1

3!
·

2
2

72·3 ·
9·2
72·3 = �

23·24

74·5·3 +
3

74
+

2
2

74·3 =
�368+45+20

74·5·3 = �
101

74·5 ,

�
1

4!·2! ·
22·15·8·4
74·32 +

1

2!
·
1

72
·

8

72·3 +
1

2!
·

2
2

72·3 ·
8

72·3 = �
11·5·22

74·32 +
2
2

74·3 +
2
4

74·32 =
(�55+3+4)2

2

74·32 = �
2
6

74·3 ,

�
1

5!
·
22·15·8·4
74·32 +

1

2!
·
1

72
·

8

72·3 = �
11·23

74·32 +
2
2

74·3 =
(�22+3)2

2

74·32 = �
19·22

74·32 .

The conclusion agrees with a calculation in [LLS] using a di↵erent algorithm together with a

computer program.

3. Good sections and very good sections

In this section we give some remarks related to good sections and very good sections in the sense

of this paper.
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Proposition 3.1. In the notation of the introduction, any good section of pr0 is very good, if f
is a weighted homogeneous polynomial.

Proof. By definition (see (1.1.2)), A0 in (0.1) is identified with the action of f on the Jacobian

ring C{x}/(@f), and it vanishes in the weighted homogeneous case. Hence the image of the

section is stable by the action of @tt which is identified with A1. So the assertion follows.

The following proposition implies a formula for the dimension of the parameter space of

very good sections satisfying the orthogonality condition for the self-duality in the case N = 0

(including the weighted homogeneous polynomial case), see Corollary (3.3) below.

Proposition 3.2. Let H be a finite dimensional C-vector space with a finite filtration F . Let
S be a self-pairing of H such that S(F

p
H,F

q
H) = 0 for p + q = m + 1, and the induced

pairing of Gr
p

F
H and Gr

q

F
H is non-degenerate for p + q = m, where m 2 Z is a fixed number.

Assume S is (�1)
m-symmetric, i.e. S(u, v) = (�1)

m
S(v, u). Set ep := dimGr

p

F
H. Then

splittings H =
L

k
G

k of the filtration F (i.e. F
P
H =

L
k>p

G
k
) satisfying the condition

S(G
p
, G

q
) = 0 (p+ q 6= m) are parametrized by C d(H,F,S) with

(3.2.1) d(H,F, S) :=

(P
p<q<m�p

epeq +
P

p<m/2

�
ep

2

�
if m is even,

P
p<q<m�p

epeq +
P

p<m/2

�
ep +1

2

�
if m is odd.

Proof. Let S denote the induced pairing of Gr
p

F
H ⇥ Gr

m�p

F
H. We have ep = em�p since S is

non-degenerate. Take bases (vp,i)i2[1,ep]
of Gr

p

F
H (p 2 Z) satisfying

S(vp,i, vm�p,j) = "p �i,j with "p = ±1,

where �i,j = 1 if i = j, and 0 otherwise. Since S(u, v) is (�1)
m
-symmetric, we have

(3.2.2) "p = (�1)
m
"m�p.

We can lift vp,i to vp,i 2 F
p
H ⇢ H so that

(3.2.3) S(vp,i, vq,j) = "p �p,m�q �i,j (with "p as above).

This will be shown in Lemma 3.4 below. (In the case of polarized Hodge structures as in the

case of Corollary (3.3) below, this easily follows from the Hodge decomposition.)

Set

I :=
�
(p, i) 2 Z2

| i 2 [1, ep]
 
,

where [1, ep] = ; if ep = 0. Set

J :=
�
((p, i), (q, j)) 2 I

2
| p < q

 
⇢ I

2
.

Then any splitting of the filtration F is expressed by

(✓(p,i),(q,j)) 2 CJ
,

since it defines a lift wp,i 2 F
p
H of vp,i 2 Gr

p

F
H for each (p, i) by

wp,i := vp,i +
P

(q,j)2I, q>p
✓(p,i),(q,j) vq,j 2 F

p
H,

which is the image of vp,i by the splitting of the canonical surjection

F
p
H ! Gr

p

F
H.

Note that the ambiguity of the splitting is given by the vector space

(3.2.4) Hom(Gr
p

F
H,F

p+1
H),

and its dimension is
P

q>p
epeq for each p.
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The orthogonality condition of the splitting for the pairing S is given by the relations

S(wp,i, wq,j) = 0 for ((p, i), (q, j)) 2 R,

with

R :=

(�
((p, i), (q, j)) 2 I

2
| p+ q < m, (p, i) 6 (q, j)

 
if m is even,�

((p, i), (q, j)) 2 I
2
| p+ q < m, (p, i) < (q, j)

 
if m is odd.

Here we use the lexicographic order on I, i.e. (p, i) < (q, j) () p < q or p = q, i < j.

By (3.2.3) we have

S(wp,i, wq,j) =

(
0 if p+ q > m,

"p �i,j if p+ q = m,

and S(wp,i, wq,j) for p+ q < m is given by

(3.2.5)

S(wp,i, wq,j) = "m�q ✓(p,i),(m�q,j) + "p ✓(q,j),(m�p,i)

+
P

(r,k)2I, p<r<m�q
"r ✓(p,i),(r,k) ✓(q,j),(m�r,k).

Here note that we have by (3.2.2)

(3.2.6) "m�q + "p 6= 0 in the case where (p, i) = (q, j) and m is even.

Consider the map

� : R ,! J ((p, i), (q, j)) 7! ((p, i), (m� q, j)).

We say that ✓�((p,i),(q,j)) = ✓(p,i),(m�q,j) is the depending parameter of the relation

S(wp,i, wq,j) = 0 for ((p, i), (q, j)) 2 R.

By (3.2.5), ✓(p,i),(m�q,j) appears in S(wp,i, wq,j) as a linear term with a nonzero coe�cient, where

(3.2.6) is used in the case (p, i) = (q, j) and m is even. Moreover ✓(p0,i0),(m�q0,j0) appearing in

the relation S(wp,i, wq,j) = 0 must satisfy the inequality

p
0
+ q

0 > p+ q.

(In fact, (p
0
, i

0
) must coincide with (p, i) or (q, j), and the inequality follows from (3.2.5).) This

implies that ✓(p,i),(m�q,j) does not appear in the relations

S(wp0,i0 , wq0,j0) with p
0
+ q

0
> p+ q.

We can now prove by induction on p + q and using (3.2.5) that the values of the depending

parameters are given as polynomials of the remaining parameters

✓(p,i),(q,j) with ((p, i), (q, j)) 2 J \ �(R),

which are called independent parameters. Thus splittings of the filtration F , which are orthog-

onal to each other with respect to the pairing S, are parametrized by

CJ\�(R)
.

Moreover we have

d(H,F, S) = #
�
J \ �(R)

�
.

So the assertion follows.

Corollary 3.3 Let f : (X, 0) ! (�, 0) be as in the introduction. Let n = dimX0. Assume
the Milnor monodromy is semisimple. Let n↵ be the multiplicity of the exponents of f for
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↵ 2 Q \ (0, n) as is defined in [St]. Then very good sections of pr0 in the introduction are
parametrized by C df with df =

P
|�|=1, Im�>0

df,� and

df,� :=

8
>>>>>><

>>>>>>:

P
p<q<n+1�p

npnq +
P

p<(n+1)/2

�
np

2

�
if � = 1 and n is odd,

P
p<q<n+1�p

npnq +
P

p<(n+1)/2

�
np +1

2

�
if � = 1 and n is even.

P
p<q<n�p

np+↵nq+↵ +
P

p<n/2

�
np+↵

2

�
if � = �1 and n is even,

P
p<q<n�p

np+↵nq+↵ +
P

p<n/2

�
np+↵ +1

2

�
if � = �1 and n is odd.

P
p<q

np+↵nq+↵ if |�| = 1 and Im� > 0,

where p, q 2 Z, and � = e
2⇡i↵ with ↵ 2 [0,

1

2
].

Proof. By [St] there is a canonical mixed Hodge structure on the vanishing cohomologyH
n
(Ff,0,C),

where Ff,0 is the Milnor fiber of f around 0 2 X, and the Hodge filtration F is compatible with

the direct sum decomposition by the eigenvalues of the monodromy T

H
n
(Ff,0,C) =

L
�2C⇤ H�.

Moreover there are canonical non-degenerate pairings of mixed Hodge structures

(3.3.1) S : H 6=1 ⌦H 6=1 ! C(�n), S : H1 ⌦H1 ! C(�n� 1),

where H 6=1 :=
L

� 6=1
H�, and these are compatible with the action of the monodromy T , i.e.

(3.3.2) S(Tu, Tv) = S(u, v).

So the assumption on S in Proposition 3.2 is satisfied for H 6=1 and H1 with m = n and n + 1

respectively. The multiplicities n↵ of the Steenbrink exponents can be defined by

(3.3.3) n↵ := dimGr
p

F
H� with p = [↵], � = e

2⇡i↵
,

where we use the symmetry of the exponents in [St] i.e.

(3.3.4) n↵ = n� if ↵+ � = n+ 1.

For � = ±1, the assertion of Corollary (3.3) then follows from Proposition 3.2. If � 6= ±1, we

get the assertion by using the remark around (3.2.4) together with the duality isomorphism

(3.3.5)
�
H

�
, F [n]

�
= D(H�, F ) := HomC

�
(H�, F ),C

�
,

which follows from the first non-degenerate pairing in (3.3.1). (In fact, the latter implies that any

splitting of F on H� determines uniquely its dual splitting of F on H
�
by using the orthogonality

condition with respect to S.) This finishes the proof of Corollary (3.3).

Lemma 3.4 With the notation in the proof of Proposition 3.2, the vp,i can be lifted to vp,i 2 F
p
H

so that (3.2.3) holds.

Proof. We show the assertion by induction on

max{p | Gr
p

F
H 6= 0}�min{p | Gr

p

F
H 6= 0}.

Set a := min{p | Gr
p

F
H 6= 0}, b := max{p | Gr

p

F
H 6= 0}, and

H
0
= F

a+1
H/F

b
H.

Let S
0
be the induced pairing on H

0
. By inductive hypothesis, vp,i for p 2 [a+ 1, b� 1] can be

lifted to v
0
p,i
2 F

p
H

0
⇢ H

0
so that

S
0
(v

0
p,i
, v

0
q,j

) = "p �p,m�q �i,j (p, q 2 [a+ 1, b� 1]).

We can lift va,i to va,i 2 H by induction on i so that

S(va,i, va,j) = 0 (i, j 2 [1, ea]).
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Note that vb,i is identified with vb,i 2 F
b
H = Gr

b

F
H, and we have

S(va,i, vb,j) = S(va,i, vb,j) = "a �i,j .

Then we can lift v
0
p,i

to vp,i 2 F
p
H for p 2 [a+ 1, b� 1] so that

S(vp,i, va,j) = 0 (p 2 [a+ 1, b� 1]).

Here we have

S(vp,i, vq,j) = S
0
(v

0
p,i
, v

0
q,j

) = "p �p,m�q �i,j (p, q 2 [a+ 1, b� 1]).

So (3.2.3) follows (since S(vp,i, vb,j) = 0 for p > a). This finishes the proof of Lemma 3.4.

Remark 3.5. In the weighted homogeneous polynomial case, it seems that the formula in

Corollary (3.3) is essentially equivalent to a formula for the parameter space of primitive forms

in [LLS]. (Its verification is left to the reader.) Condition (3.2.3) does not seem to be absolutely

necessary for the argument in the proof of Proposition 3.2, since it seems to be enough to assume

(3.2.3) for p+ q > m (which trivially holds) although (3.2.5) becomes more complicated without

assuming condition (3.2.3) for p + q < m, see also [LLS]. Note, however, that the parameter

space does not necessarily coincide with the origin in the case it is 0-dimensional, since it would

imply (3.2.3) also for p+ q < m.

Remark 3.6. We have in general

(3.6.1) V
>↵µ�1

H
00
f

= V
>↵µ�1

Gf ,

where ↵µ is the maximal exponent. In fact, setting F
p
H

00
f

:= @
�p

t
H

00
f
, we have

(3.6.2) Gr
p

F
Gr

↵

V
H

00
f

= 0 for ↵ > ↵µ + p,

(in particular, for ↵ > ↵µ � 1 and p 6 �1).
Remark 3.7. It is known that the minimal exponent ↵1 in the usual sense (i.e. as is defined

in (3.3.3)) has multiplicity 1, and moreover V
>↵1⌦f ⇢ ⌦f is identified with the maximal ideal

of the Jacobian ring C{x}/(@f), see [DiSa, 4.11] (and also [Sa4], Remark 3.11). Here the

theories of mixed Hodge modules [Sa1] and microlocal b-functions [Sa5] are used. We need the

commutativity of taking the graded quotients Gr
p

F
, Gr

↵

V
and the cohomology functor H

n+1
in

an essential way, since there is no canonical OX -module structure if one takes the cohomology

functor first. (In case ↵1 < 1, the assertion may also follow from [Va].)

The above assertion implies that there is a unique primitive form associated with any very

good section (in the sense of this paper) satisfying the orthogonality condition for the higher

residue pairings (which follows from the orthogonality condition as in [Sa3, Lemma 2.8]). How-

ever, A1 in (0.1) is not necessarily semisimple as is seen in Example 4.2 below, and there is

not always a primitive form associated with any good section satisfying the orthogonality con-

dition unless the section is very good, see Example 4.3 below. We also have a problem about

the uniqueness of the associated primitive form, see Example 4.4 below. If we assume that the

eigenvalue of the Euler vector field is the minimal exponent, then this may make the existence

of the associated primitive form more di�cult in general.

4. Examples.

In this section we present some interesting examples.

Example 4.1. If f is not a weighted homogeneous polynomial, it may be possible that there is

a good section of pr0 which is not very good, see [Sa3]. For instance, consider the case

f = x
a
+ y

b
+ x

a�2
y
b�2

(1/a+ 1/b < 1/2),
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where we have a good section such that the eigenvalues of A1 in (0.1) are

(4.1.1) ↵
0
1
:= ↵1 + 1, ↵

0
µ
:= ↵µ � 1, ↵

0
k
:= ↵k (k 2 [2, µ� 1]).

Here ↵1 6 · · · 6 ↵µ are the exponents of f as is defined in [St] (see also (3.3.3) above), which

can be expressed in this case by

(4.1.2)
P

k
t
↵k =

P
0<i<a, 0<j<b

t
i/a+j/b

,

with µ = (a� 1)(b� 1). (Note that ↵
0
i
6 ↵

0
i+1

does not hold for i = 1 and µ� 1.)

To show (4.1.1), set

(4.1.3) R := C{{@�1

t
}}, K := C{{@�1

t
}}[@t].

Put

!
(i,j)

= x
i�1

y
j�1

dx ^ dy.

By using (1.1.2) restricted to X ⇥ {0}, we get

(4.1.4)

t [!
(i,j)

]� ↵
(i,j)

@
�1

t
[!

(i,j)
] = c

(i,j)
[!

(i+a�2,j+b�2)
] in H

00
f
,

with ↵
(i,j)

= deg(a,b) !
(i,j)

:= i/a+ j/b, c
(i,j)
2 C⇤

.

These imply that we have free generators vk (k 2 [1, µ]) of the Gauss-Manin system Gf over K

satisfying

(4.1.5) @tt vk = ↵kvk (k 2 [1, µ]),

and we have the following free generators of the Brieskorn lattice H
00
f

over R :

(4.1.6) v1 + e @tvµ, vk (k 2 [2, µ]) with e 2 C⇤
.

More precisely the above calculation implies that

(4.1.7) [!
(i,j)

] = vk mod V
↵k+2�2↵1Gf ,

where k is determined by (i, j) 2 [1, a � 1] ⇥ [1, b � 1] with condition i/a + j/b = ↵k satisfied.

Here V is the filtration of Kashiwara and Malgrange on the Gauss-Manin system Gf as in the

introduction. This is closely related with the modified degree deg(a,b) !
(i,j)

defined above, and

we have

(4.1.8) deg(a,b) !
(i,j) 6 max

�
↵ 2 Q

�� [!(i,j)
] 2 V

↵
H

00
f

 
,

where the equality holds if (i, j) 2 [1, a� 1]⇥ [1, b� 1]. In fact, we have by [Sa2]

Gr
↵k
V

!
(i,j)
6= 0 for (i, j) 2 [1, a� 1]⇥ [1, b� 1] with ↵k := i/a+ j/b.

(Here we can also use the µ-constant deformation fs = x
a
+ y

b
+ s x

a�2
y
b�2

(s 2 �
⇤
) together

with the graded quotients of the decreasing filtration defined by deg(a,b) ! > ↵ for ! 2 ⌦
2

X
.)

Take a good section whose image is spanned by

(4.1.9) v
0
1
:= @

�1

t
v1, v

0
µ
:=

1

e
v1 + @t vµ, v

0
k
:= vk (k 2 [2, µ� 1]),

where e 2 C⇤
is as above. Then the eigenvalues of the associated A1 are as in (4.1.1).

Note that the image of v
0
µ
=

1

e
v1 + @t vµ in the Jacobian ring modulo the maximal ideal does

not vanish (i.e., it generates the Jacobian ring over it), and the other images vanish, where ⌦
2

X

is trivialized by dx ^ dy. So r in [SK1], [SK2] seems to be ↵
0
µ
= ↵µ � 1 (instead of ↵1) which

may be bigger than ↵2 in general. It will be shown in Examples 4.3 and 4.4 below that this can

cause serious problems related with the existence and the uniqueness of the associated primitive

form.
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Example 4.2. It is not very di�cult to construct an abstract example of a Brieskorn lattice H
00
f

with a good section such that A1 in (0.1) is non-semi-simple. (The following argument seems to

be easier than the one in [Sa3], Remark after 3.10, where it seems rather di�cult to determine

the structure of the Brieskorn lattice for geometric examples.)

Let (H
0
, F ) be the underlying filtered C-vector space of a mixed R-Hodge structure endowed

with the self-duality pairing S, an automorphism Ts of finite order, and a nilpotent endomor-

phism N of type (�1,�1), satisfying the usual conditions

S(Tsu, Tsv) = S(u, v), S(Nu, v) + S(u,Nv) = 0, TsN = NTs.

We have the eigenvalue decomposition (H
0
, F ) =

L
�
(H

0
�
, F ) by the action of Ts. Assume for

simplicity

(H
0
, F ) = (H

0
�
, F )� (H

0
�
, F ),

for some � 6= 1,�1. Then (H
0
�
, F ) is the dual of (H

0
�
, F ) up to a shift of filtration by S. Assume

further

(4.2.1) dimGr
p

F
H

0
�
=

8
><

>:

1 if p = 1

2 if p = 2,

0 otherwise,

dimGr
p

F
H

0
�
=

8
><

>:

2 if p = 1,

1 if p = 2,

0 otherwise,

together with the non-vanishing (i.e. the surjectivity and the injectivity) of the morphisms

N : Gr
2

F
H

0
�
!!Gr

1

F
H

0
�
, N : Gr

2

F
H

0
�
,! Gr

1

F
H

0
�
.

Then we have a splitting of the short exact sequence

(4.2.2) 0! Gr
2

F
H

0
�
! H

0
�
! Gr

1

F
H

0
�
! 0,

such that the image of Gr
1

F
H

0
�

in H
0
�

by the splitting is contained in KerN , but does not

coincide with ImN . For H
0
�
, we take the dual splitting by using S. We will show that this

splitting leads to an example of a good section of an abstract Brieskorn lattice G
0 (0)
f

such that

A1 is non-semisimple.

By the above decompositions of H
0
, we have a decomposition of regular holonomic DS,0-

modules

(4.2.3) G
0
= G

0
�
�G

0
�
.

Here G
0
is actually defined by the above isomorphism, and G

0
�
, G

0
�
are unique regular holonomic

DS,0-modules of rank 3 over K together with isomorphisms

(4.2.4) Gr
�+k

V
G

0
�
= H

0
�
, Gr

�
0
+k

V
G

0
�
= H

0
�
,

in a compatible way with the actions of @tt � � � k, @tt � �
0
� k, and (2⇡i)

�1
N , where

�,�
0
2 Q \ (1, 2) with � = e

�2⇡i�
, � = e

�2⇡i�
0
, and the action of @

�1

t
is used for the above

identification. Then there are unique R-submodules G
0 (0)
�

, G
0 (0)
�

of G
0
�
, G

0
�
satisfying

(4.2.5) Gr
�+p

V
G

0 (0)
�

= F
2�p

H
0
�
, Gr

�
0
+p

V
G

0 (0)
�

= F
2�p

H
0
�

(8 p 2 Z),

where R,K are as in (4.1.3). Moreover G
0 (0)
�

has free generators e1, e2, e3 over R satisfying

(4.2.6) (@tt� �) e1 = @t e3, (@tt� �) e2 = 0, (@tt� � � 1) e3 = 0.

(In fact, this follows from the vanishing of Gr
↵

V
G

0 (0)
�

for ↵ 6= �,� + 1.)
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The above choice of the splitting of (4.2.2) then gives free generators ee1, ee2, ee3 of G
0 (0)
�

over

R defined by

(4.2.7) ee1 := e1, ee2 := e2, ee3 := e3 � c @
�1

t
e2,

where c 2 C⇤
. Then we have

(4.2.8) (@tt� �) ee1 = @t ee3 + c ee2, (@tt� �) ee2 = 0, (@tt� � � 1) ee3 = 0.

So the action of t on the generators ee1, ee2, ee3 is expressed as in (0.1) by using the matrices

(4.2.9) A0 =

0

@
0 0 0

0 0 0

1 0 0

1

A A1 =

0

@
� 0 0

c � 0

0 0 � + 1

1

A

and A1 is non-semi-simple.

Example 4.3. It seems rather complicated to construct an example as in Example 4.2 above

in a geometric way, and we need some more calculations as follows. Here the Thom-Sebastiani

type theorem as in [ScSt] seems quite useful. For instance, set

f = g + h with g = x
10

+ y
3
+ x

2
y
2
, h = z

6
+ w

5
+ z

4
w

3
.

Let Gf , H
00
f

denote the Gauss-Manin system and the Brieskorn lattice associated to f , and

similarly with f replaced by g, h. Let ↵f,i be the exponents of f , and similarly for ↵g,i, ↵h,i.

Then H
00
g
has a basis ui over R (with R as in (4.1.3)) satisfying

(4.3.1) (@tt� ↵g,1)ui =

(
@t u14 if i = 1,

0 if i 6= 1,

where µg = 14, and we assume ↵g,i 6 ↵g,i+1. In this case the ↵g,i are given by

P
14

i=1
t
↵g,i = t

1/2
+ t+ t

3/2
+
P

9

k=1
t
1/2+k/10

+
P

2

k=1
t
1/2+k/3

.

In fact, this equality together with the non-triviality of the action of N on H�1 follows from

a result in [St] for functions with non-degenerate Newton boundary. Then (4.3.1) follows from

[ScSt] together with Remark 3.6, since

(4.3.2) ↵g,µg � ↵g,1 = 1.

As for H
00
h
, we have a basis (v1, . . . , v20) of Gh over K and free generators v

0
1
, . . . , v

0
20

of H
00
h

over R satisfying (4.1.5) and (4.1.9) as in Example 4.1, where µh = 20, and R,K are as in

(4.1.3). We will denote ↵j , ↵
0
j
in (4.1.1) by ↵h,j , ↵

0
h,j

here.

We can actually take any h in Example 4.1 satisfying the following condition:

(4.3.3) ↵g,i + ↵h,j = ↵g,µg + ↵h,µh � 2 for some i, j > 2,

where g may be replaced by x
a
0
+ y

b
0
+ x

2
y
2
with 1/a

0
+ 1/b

0
< 1/2. In the case of the above g

and h, condition (4.3.3) holds for (i, j) = (2, 2) as is shown later.

By the Thom-Sebastiani type theorem as in [ScSt], there are canonical isomorphisms

(4.3.4) Gf = Gg ⌦K Gh, H
00
f

= H
00
g
⌦R H

00
h
,

such that the action of t on the left-hand side is identified with t⌦ id+ id⌦ t on the right-hand

side. Let wi,j and w
0
i,j

be respectively the element of Gf corresponding to ui⌦ vj and ui⌦ v
0
j
in

Gg ⌦K Gh under the isomorphism (4.3.4). Set

G
0
f
:= G

0
f,�
�G

0
f,�
⇢ Gf ,
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with

G
0
f,�

: = K w1,20 �K w2,2 �K w14,20,

G
0
f,�

: = K w1,1 �K w13,19 �K w14,1,

where � = exp(�2⇡i(2/15)), and � = 17/15 in the notation of Example 4.2. In fact, we have

↵g,1 = 15/30, ↵g,2 = 18/30, ↵g,13 = 42/30, ↵g,14 = 45/30,

↵h,1 = 11/30, ↵h,2 = 16/30, ↵h,19 = 44/30, ↵h,20 = 49/30,

hence

↵1,20 = 32/15, ↵2,2 = 17/15, ↵14,20 = 47/15,

↵1,1 = 13/15, ↵13,19 = 43/15, ↵14,1 = 28/15,

and

↵
0
1,20

= 17/15, ↵
0
2,2

= 17/15, ↵
0
14,20

= 32/15,

↵
0
1,1

= 28/15, ↵
0
13,19

= 43/15, ↵
0
14,1

= 43/15,

where ↵i,j := ↵g,i + ↵h,j , ↵
0
i,j

:= ↵g,i + ↵
0
h,j

. Note that

(@tt� ↵i,j)
k
wi,j = 0,

with k = 2 if i = 1, and k = 1 otherwise.

If we consider the image of

Rw
0
1,20
�Rw

0
2,2
�Rw

0
14,20

,

by the natural projection G
0
f
!!G

0
f,�

, then it coincides with

R @tw1,20 �Rw2,2 �R @tw14,20.

So the situation is quite close to the one in Example 4.2.

Set

ew0
i,j

:=

8
><

>:

w
0
14,20

� c @
�1

t
w

0
2,2

if (i, j) = (14, 20)

w
0
13,19

+ c
0
@
�1

t
w

0
1,1

if (i, j) = (13, 19)

w
0
i,j

otherwise.

Here c, c
0
2 C⇤

are chosen appropriately so that ew0
14.20

and ew0
13,19

are orthogonal to each other.

Then ew0
i,j

and ew0
i0,j0 are orthogonal to each other unless (i, j) = (15 � i

0
, 21 � j

0
). Here we use

the compatibility of the Thom-Sebastiani type isomorphism with the self-duality (i.e. with the

higher residue pairings) up to a constant multiplication. (This can be shown by using the fact

that the discriminant of a deformation of the form F := f +
P

i
xisi is reduced.)

Let G
00
f
be the orthogonal complement of G

0
f
⇢ Gf by the self-duality (i.e. the higher residue

pairings). Then the decomposition Gf = G
0
f
�G

00
f
is compatible with the Brieskorn lattice, and

induces the decomposition

H
00
f

= G
0 (0)
f
�G

00 (0)
f

.

In fact, we have the direct sum decompositions

Gg = G
0
g
�G

00
g

with G
0
g
:= K u1 �K u14, G

00
g
:=
L

26i613
K ui,

Gh = G
0
h
�G

00
h

with G
0
h
:= K v1 �K v20, G

00
h
:=
L

26i619
K vi,

which are compatible with the Brieskorn lattices. They induce the decomposition compatible

with the Brieskorn lattice

Gg ⌦K Gh = (G
0
g
⌦K G

0
h
)� (G

00
g
⌦K G

00
h
)� (G

0
g
⌦K G

00
h
)� (G

00
g
⌦K G

0
h
).

Then G
0 (0)
f

is identified with the direct sum of

G
0
g
⌦K G

0
h

and a direct factor of G
00
g
⌦K G

00
h
,
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via the isomorphism (4.3.4) in a compatible way with the Brieskorn lattice.

By a calculation similar to (4.2.8), the action of t on the free generators

ew0
1,20

, ew0
2,2

, ew0
14,20

, ew0
1,1

, ew0
13,19

, ew0
14,1

of G
0 (0)
f

over R can be expressed as in (0.1) by using the matrices

(4.3.5) A0 =

0

BBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

� 0 0 0 0 0

0 0 0 0 0 0

0 0 � 1 0 0

1

CCCCCCA
A1 =

0

BBBBBB@

� 0 0 0 0 0

c � 0 0 0 0

0 0 � + 1 0 0 0

0 0 0 �
0

0 0

0 0 0 0 �
0
+ 1 0

0 0 0 0 c
0

�
0
+ 1

1

CCCCCCA

where � = 17/15, �
0
= 28/15, and � 2 C⇤

. In this case it is rather di�cult to get an associated

primitive form. In fact, ew0
1,20

is the unique member of the generators whose class in the Jacobian

ring OX,0/(@f) generates the ring over it, where ⌦
2

X
is trivialized by dx ^ dy. However, ew0

1,20
is

annihilated only by (A1 � �)
2
, and the kernel of A1 � � in the Jacobian ring is generated over

C by the class of ew0
2,2

= w2,2 which is contained in the maximal ideal. (The details are left to

the reader.)

Example 4.4. We first consider an abstract example. LetG be a regular holonomicDS,0-module

which is a free K-module of rank 4 with generators ui (i 2 [1, 4]) satisfying

@tt ui = �iui,

with

(4.4.1) 0 < �1 < �k < �4 < 1 (k = 2, 3).

Assume ui and uj are orthogonal to each other by the self-duality pairing (i.e. the higher residue

pairings) SK in (2.1.2) unless i+ j = 5. More precisely, assume

SK(ui, uj) = "i �i,5�j @
�1

t
,

with "i 2 C⇤
satisfying "1 = "2 = �"3 = �"4. Note that the above condition implies

�i + �5�i = 1.

Let c, c
0
2 C⇤

. Put

u
0
i
:=

8
><

>:

u1 + cu3 + c
0
u4 if i = 1,

u2 + cu4 if i = 2,

@
�1

t
ui if i = 3, 4.

Then

SK(u
0
i
, u

0
j
) = "

0
i
�i,5�j @

�2

t
("

0
i
2 C⇤

).

Set c
00
:= c

0
/c. Define

w1 : = @
�1

t
u1,

w2 : = u
0
1
� c

00
u
0
2
= u1 � c

00
u2 + cu3,

w3 : = @
�1

t
u3,

w4 : = u
0
1
= u1 + cu3 + c

0
u4.

Then we have

H
00
f

:=
P

4

i=1
Ru

0
i
=
P

4

i=1
Rwi,
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and moreover

SK(wi, wj) = "
00
i
�i,5�j @

�2

t
("

00
i
2 C⇤

).

In this case the action of t on the generators w1, . . . , w4 can be expressed as in (0.1) by using

the matrices

(4.4.2) A0 =

0

BB@

0 ⇤ 0 ⇤

0 0 0 0

0 ⇤ 0 ⇤

0 0 0 0

1

CCA A1 =

0

BB@

�1 + 1 0 0 0

0 �2 0 0

0 0 �3 + 1 0

0 0 0 �4

1

CCA

This abstract example can be realized as a direct factor of the Brieskorn lattice associated

with

f = x
a
+ y

b
+ x

a�3
y
b�2

+ x
a�2

y
b�2

,

if a > b and 3/a+ 2/b < 1 (where the last condition corresponds to (4.4.1)). In fact, setting

g1 := 1, g2 := x, g3 := x
a�3

y
b�2

, g4 := x
a�2

y
b�2

,

we have

[gi dx ^ dy] = ui mod V
�i+2��1��2Gf (i = 1, 2),

@t [gi dx ^ dy] = ui mod V
�i+1��1��2Gf (i = 3, 4),

where

�1 = 1/a+ 1/b, �2 = 2/a+ 1/b, �3 = 1� 2/a� 1/b, �4 = 1� 1/a� 1/b.

The argument is similar to the proof of (4.1.7). (The details are left to the reader.) In this

case, both w2 and w4 can be a primitive form associated with the good section whose image is

spanned by the wi.

Appendix: Uniqueness of higher residue pairings in some formal setting

This Appendix is written to answer a question of Dmytro Shklyarov.

Let R = C[[s]] with s = (s1, . . . , sm), and u := @
�1

t
. Let bGR and bH 00

R
respectively denote the

‘formal’ Gauss-Manin system and the ‘formal’ Brieskorn lattice associated with a deformation

F = f+
P

m

i=1
gisi of f 2 C{x} with an isolated singularity. Here ‘formal’ means that bGR and bH 00

R

are finite free modules of rank r over R((u)) and R[[u]] respectively. They are endowed with the

actions of t and @si or u@si satisfying the usual relations. (Note that the uniqueness of the higher

residue pairings does not hold over C((u))[[s]] because of the isomorphism in Proposition 1.3. In

fact, C((u))[[s]] is much bigger than R((u)), and has much larger flexibility as is shown by the

proposition.)

The dual of bGR can be defined by

D( bGR) := HomR((u))

� bGR, R((u))
�
,

where the actions of R((u)), t, and @si are given appropriately as usual, see e.g. [Sa3]. Then the

self-duality pairing (i.e. the higher residue pairings) can be identified with an isomorphism of

R((u))h@si , ti-modules

bGR ' D( bGR).

So the uniqueness up to a nonzero constant multiple of the higher residue pairings in this formal

setting is equivalent to

(A.1) EndR((u))h@si ,ti(
bGR) = C,
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under the assumption that the discriminant is reduced, e.g. if F is a miniversal deformation

of f . Here the discriminant D is a divisor on (C ⇥ Cm
, 0) having the coordinates t, s1, . . . , sm,

and D is the image of the relative critical locus defined by the @xiF . We can also get D by

using the graded quotients of the filtration on the usual Gauss-Manin system defined by the

usual Brieskorn lattice shifted by the action of @
�i

t
, where the latter is a coherent sheaf on

(C⇥Cm
, 0). Passing to the completion by the maximal ideal of C{s}, we get the isomorphisms

of R[t]-modules

(A.2) bH 00
R
/@

�k

t
bH 00
R
⇠= R[t]/(h)

k
,

where h 2 C{s}[t] is a defining function of the discriminant D, and ⌦
n+1

X
is trivialized by

dx0 ^ · · · ^ dxn.

There is a divisor ⌃ on (Cm
, 0) such that D ⇢ C ⇥ Cm

is etale over the complement of ⌃

by the projection C ⇥ Cm
! Cm

. By Hironaka’s resolution of singularities using blowing-ups

with smooth centers, the assertion can be reduced to the case where ⌃ is a divisor with normal

crossings. In fact, the pull-back induces an injective morphism of local rings under smooth center

blow-ups of Cm
, and we still have the injectivity after taking the formal completion for si and

u. Then, changing the coordinates si appropriately, we may assume that the discriminant D is

defined in (C⇥ Cm
, 0) by the function

(A.3) h := t
r
� s

a1
1

· · · s
am
m

.

Here we can forget the relation with f, F from now on.

We take the ramified covering

⇢ : (Cm
, 0) 3 (esi) 7! (si) := (es bi

i
) 2 (Cm

, 0),

where bi := r/GCD(r, ai). Set ci := ai/GCD(r, ai). Then rci = aibi, and the pull-back of the

equation (A.3) under ⇢ is given by

eh := t
r
� (es c1

1
· · · es cm

m
)
r
.

We now pass to the localization eRes := eR[1/es1 · · · esm] of eR := C[[es1, . . . , esm]]. This is a finite

etale Galois extension of Rs := R[1/s1 · · · sm] with Galois group G =
Q

m

i=1
µbi , where µbi is the

group of roots of 1 of order bi in C. Let bG eRes
be the pull-back of bGRs := Rs ⌦R

bGR by ⇢. This

can be defined by eRes ⌦Rs
bGRs since eRes is finite over Rs. We have the canonical decomposition

(A.4) bG eRes
=
L

�2µr
bG eRes,�

,

where µr := {� 2 C | �
r
= 1}. In fact, let F be the decreasing filtration on bG eRes

defined by

u
j bH 00

eRes
where bH 00

eRes
is the localization by es1 · · · esn of the pull-back by ⇢ of the formal Brieskorn

lattice. Then we can get the decomposition by taking the inductive limit by p of the projective

limit by q of the canonical decompositions

(A.5) (F
p
/F

q
) bG eRes

=
L

�2µr
(F

p
/F

q
) bG eRes,�

,

which can be defined by setting

(A.6) (F
p
/F

q
) bG eRes,�

= Ker
�
(t� � es c1

1
· · · es cm

m
)
q�p

: (F
p
/F

q
) bG eRes

! (F
p
/F

q
) bG eRes

�
,

since the discriminant is reduced. In fact, there is a canonical direct sum decomposition

C
⇥
t, es1, . . . , esm,

1

es1···esm

⇤��
t
r
� (es c1

1
· · · es cm

m
)
r
�q�p

=
L

�2µr
C
⇥
t, es1, . . . , esm,

1

es1···esm

⇤��
t� � es c1

1
· · · es cm

m

�q�p

.
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Taking its tensor product with eR = C[[es1, . . . , esm]] over C[es1, . . . , esm], we then get

(A.7)

(F
p
/F

q
) bG eRes

⇠= eR
⇥
t,

1

es1···esm

⇤��
t
r
� (es c1

1
· · · es cm

m
)
r
�q�p

=
L

�2µr
eR
⇥
t,

1

es1···esm

⇤��
t� � es c1

1
· · · es cm

m

�q�p

,

where the first isomorphism follows from (A.2). (In fact, ⇢ is flat and the pull-back is an exact

functor.) This implies that the decomposition (A.5) can be obtained by (A.6). (Note that F

cannot be exhaustive if we use the formal Gauss-Manin system as in Theorem 1.)

For ✓ 2 EndR((u))h@si ,ti(
bGR), its pull-back e✓ := ⇢

⇤
✓ is an endomorphism of bG eRes

preserving

the decomposition (A.4). (In fact, e✓ preserves the filtration F up to a shift by some integer k,

i.e., e✓(F p bG eRes
) ⇢ F

p�k bG eRes
for any p.) Moreover e✓ is compatible with the action of G (since it is

the pull-back of ✓ by ⇢), and G acts on the direct factors of the decomposition (A.4) transitively.

Thus the assertion is reduced to

(A.8) End eRes((u))h@esi ,ti
( bG eRes,�

) = C.

We can verify (A.8) easily since bG eRes,�
is a free eR((u))

⇥
1

es1···esm

⇤
-module of rank 1 by (A.7). So

(A.1) follows.
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Progr. Math. 37, Birkhäuser, Boston, MA, 1983, 353–379.
[Ma3] Malgrange, B., Deformations of di↵erential systems, II, J. Ramanujan Math. Soc. 1 (1986), 3–15.
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Abstract. Kyoji Saito’s notion of a free divisor was generalized by the first author to reduced
Gorenstein spaces and by Delphine Pol to reduced Cohen–Macaulay spaces. Starting point
is the Aleksandrov–Terao theorem: A hypersurface is free if and only if its Jacobian ideal is
maximal Cohen–Macaulay. Pol obtains a generalized Jacobian ideal as a cokernel by dualizing
Aleksandrov’s multi-logarithmic residue sequence. Notably it is essentially a suitably chosen
complete intersection ideal that is used for dualizing. Pol shows that this generalized Jacobian
ideal is maximal Cohen–Macaulay if and only if the module of Aleksandrov’s multi-logarithmic
differential k-forms has (minimal) projective dimension k � 1, where k is the codimension in
a smooth ambient space. This equivalent characterization reduces to Saito’s definition of
freeness in case k = 1. In this article we translate Pol’s duality result in terms of general
commutative algebra. It yields a more conceptual proof of Pol’s result and a generalization
involving higher multi-logarithmic forms and generalized Jacobian modules.

1. Introduction

Logarithmic differential forms along hypersurfaces and their residues were introduced by
Kyoji Saito (see [22]). They are part of his theory of primitive forms and period mappings
where the hypersurface is the discriminant of a universal unfolding of a function with isolated
critical point (see [23, 24]). The special case of normal crossing divisors appeared earlier in
Deligne’s construction of mixed Hodge structures (see [8]). Here the logarithmic differential
1-forms form a locally free sheaf. In general a divisor with this property is called a free divisor.
Further examples include plane curves (see [22, (1.7)]), unitary reflection arrangements and their
discriminants (see [29, Thm. C]) and discriminants of versal deformations of isolated complete
intersection singularities and space curves (see [17, (6.13)] and [30]). Free divisors also occur as
discriminants in prehomogeneous vector spaces (see [10]). In case of hyperplane arrangements
the study of freeness attracted a lot of attention (see [31]).

Let D be a germ of reduced hypersurface in Y ⇠= (Cn
, 0) defined by h 2 OY . The OY -

modules ⌦q
(logD) of logarithmic differential q-forms along D and the OD-modules !p

D
of regular

meromorphic differential p-forms on D fit into a short exact logarithmic residue sequence (see
[22, §2] and [2, §4])

0 // ⌦
q

Y
// ⌦

q
(logD)

res
q
D
// !

q�1

D
// 0.

Denoting by ⌫D : eD ! D the normalization of D, (⌫D)⇤O eD ✓ !
0

D
(see [22, (2.8)]). For plane

curves Saito showed that equality holds exactly for normal crossing curves (see [22, (2.11)]).

2010 Mathematics Subject Classification. Primary 13H10; Secondary 13C14, 32A27.
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Granger and the first author (see [11]) generalized this fact and thus extended the Lê–Saito
Theorem (see [16]) by an equivalent algebraic property. They showed that (⌫D)⇤O eD = !

0

D
if

and only if D is normal crossing in codimension one, that is, outside of an analytic subset of Y
of codimension at least 3. The proof uses the short exact sequence

0 JD
oo ⇥Y

h�,dhi
oo Der(� logD)oo 0oo

obtained as the OY -dual of the logarithmic residue sequence. It involves the Jacobian ideal
JD of D, the OY -module ⇥Y := DerC(OY )

⇠= (⌦
1

Y
)
⇤ of vector fields on Y and its submodule

Der(� logD) ⇠= ⌦
1
(logD)

⇤ of logarithmic vector fields along D. It is shown that !0

D
= J ⇤

D

and that JD = (!
0

D
)
⇤ if D is a free divisor. In fact freeness of D is equivalent to JD being a

Cohen–Macaulay ideal by the Aleksandrov–Terao theorem (see [2, §2] and [28, §2]).
As observed by first author (see [27]) the inclusion (⌫D)⇤O eD ✓ !

0

D
can be seen as

(⌫D)⇤!
0

eD ,! !
0

D
.

He showed that (⌫X)⇤!
0

eX
= !

0

X
is equivalent to X being normal crossing in codimension one

for reduced equidimensional spaces X which are free in codimension one. Here freeness means
Gorenstein with Cohen–Macaulay !-Jacobian ideal. As the latter coincides with the Jacobian
ideal for complete intersections (see [19, Prop. 1]), this generalizes the classical freeness of divisors
which holds true in codimension one.

Multi-logarithmic differential forms generalize Saito’s logarithmic differential forms replacing
hypersurfaces D ✓ Y by subspaces X ✓ Y of codimension k � 2. They were first introduced
with meromorphic poles along reduced complete intersections by Aleksandrov and Tsikh (see
[5, 6]), later with simple poles by Aleksandrov (see [3, §3]) and recently along reduced Cohen–
Macaulay and reduced equidimensional spaces by Aleksandrov (see [4, §10]) and by Pol (see [21,
§4.1]). The precise relation of the forms with simple and meromorphic poles was clarified by Pol
(see [21, Prop. 3.1.33]). Here we consider only multi-logarithmic forms with simple poles.

The OY -modules ⌦
q
(logX/C) of multi-logarithmic q-forms on Y along X depend on the

choice of divisors D1, . . . , Dk defining a reduced complete intersection C = D1 \ · · · \Dk ✓ Y

such that X ✓ C. Consider the divisor D = D1 [ · · · [Dk defined by h = h1 · · ·hk 2 OY . Due
to Aleksandrov and Pol there is a multi-logarithmic residue sequence

(1.1) 0 // ⌃⌦
q

Y
// ⌦

q
(logX/C)

res
q
X/C
// !

q�k

X
// 0

where ⌃ = IC(D) is obtained from the ideal IC of C ✓ Y and !
p

X
is the OX -module of

regular meromorphic p-forms on X (see [4, §10] and [21, §4.1.3]). Pol introduced an OY -module
Der

k
(� logX/C) of logarithmic k-vector fields on Y along X and a kind of Jacobian ideal JX/C

of X that fit into the short exact sequence dual to (1.1) for q = k

(1.2) 0 JX/C
oo ⇥

k

Y

h�,↵Xi
oo Der

k
(� logX/C)oo 0oo

where ⇥
q

Y
=
V

q

OY
⇥Y and


↵X

h1, . . . , hk

�
2 !0

X
is a fundamental form of X (see [21, §4.2.2-3]).

Notably the duality applied here is �⌃
= HomOY (�,⌃). Pol showed that Cohen–Macaulayness

of JX/C serves as a further generalization of freeness. In fact the property is independent of C
(see [21, Prop. 4.2.21]) and JX/C coincides with the !-Jacobian ideal in case X is Gorenstein
(see [21, §4.2.5]). By relating ⌃- and OY -duality Pol established the following major result (see
[21, Thm. 4.2.22] or [20]). In particular it generalizes Saito’s original definition of freeness to the
case k > 1.



274 M. SCHULZE AND L. TOZZO

Theorem 1.1 (Pol). Let X ✓ C ✓ Y ⇠= (Cn
, 0) where X is a reduced Cohen–Macaulay germ

and C a complete intersection germ, both of codimension k � 1 in Y . Then

pdim(⌦
k
(logX/C)) � k � 1

with equality equivalent to freeness of X.

In §2 we pursue the main objective of this article: a translation of Theorem 1.1 in terms of
general commutative algebra. The role of OY ⇣ OC = OY /IC is played by a map of Gorenstein
rings R! R = R/I of codimension k � 2. For dualizing we use

�I
= HomR(�, I), �_

= HomR(�,!R), �_
= Hom

R
(�,!R)

where !R is a canonical module for R and !R = R⌦R!R, which is a canonical module for R due
to the Gorenstein hypothesis (see Notation 2.1). Modelled after the multi-logarithmic residue
sequence (1.1) along X = C we define an I-free approximation of a finitely generated R-module
M as a short exact sequence

0 // IF
◆
// M // W // 0

where F is free and W is an R-module. More precisely M plays the role of ⌦q
(logX/C)(�D)

which, as opposed to ⌦
q
(logX/C), is independent of the choice of D. The I-dual sequence

0 Voo F
_↵

oo M
I�

oo 0oo

plays the role of the ⌃-dual sequence (1.2) for X = C. In Proposition 2.13 we show that M is
I-reflexive if and only if W is the R-dual of V . Our main result is

Theorem 1.2. Let R be a Gorenstein local ring and let I be an ideal of R of height k � 2 such
that R = R/I is Gorenstein. Consider an I-free approximation

0 // IF
◆
// M

⇢
// W // 0

of an I-reflexive finitely generated R-module M with W 6= 0 and the corresponding I-dual

0 Voo F
_↵

oo M
I�

oo 0.oo

Then W = V
_ and V is a maximal Cohen–Macaulay R-module if and only if G-dim(M)  k�1.

In this latter case V = W
_ is (!R-)reflexive. Unless ↵ := R⌦↵ is injective, G-dim(M) � k�1.

Due to the Gorenstein hypothesis, Theorem 1.2 applies to the complete intersection ring
R = OC , but in general not to R = OX . In §2.5 we describe a construction to restrict the support
of an I-free approximation to the locus defined by an ideal JER with I ✓ J . Lemma 3.15 shows
that it is made in a way such that the multi-logarithmic residue sequence along X is obtained
from that along C by restricting with J = IX . Corollary 2.29 extends Theorem 1.2 to this
generalized setup.

In §3 we apply our results to multi-logarithmic forms. We define OY -submodules

Der
q
(� logX) ✓ ⇥

q

Y

of logarithmic q-vector fields on Y along X independent of C and show that

Der
k
(� logX) = Der

k
(� logX/C).

We further define Jacobian OX -modules J n�q

X
✓ OX ⌦OY ⇥

q�k

Y
of X independent of C and Y

such that J dimX

X
= JX/C . The ⌃-dual of the multi-logarithmic residue sequence reads

0 J n�q

X
oo ⇥

q

Y

↵
X

oo Der
q
(� logX)oo 0oo
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where ↵X is contraction by ↵X . As a consequence of Corollary 2.29 we obtain the following
result which is due to Pol in case q = k (see [21, Prop. 4.2.17, Thm. 4.2.22]).

Theorem 1.3. Let X ✓ C ✓ Y ⇠= (Cn
, 0) where X is a reduced Cohen–Macaulay germ

and C a complete intersection germ, both of codimension k � 2 in Y . For k  q < n,
!
q�k

X
= HomOX (J n�q

X
,!X) where !X = HomOC (OX ,OC)(D) and pdim(⌦

q
(logX/C)) � k � 1.

Equality holds if and only if J n�q

X
is maximal Cohen–Macaulay. In this latter case J n�q

X
=

HomOX (!
q�k

X
,!X) is !X-reflexive.

The analogy with the hypersurface case (see [22, (1.8)]) now raises the question whether J n�q

X

being maximal Cohen–Macaulay for q = k implies the same for all q > k. An explicit description
of the Jacobian modules is given in Remark 3.25.

Acknowledgments. We thank Delphine Pol and the anonymous referee for helpful comments.

2. Residual duality over Gorenstein rings

For this section we fix a Cohen–Macaulay local ring R with n := dim(R) and an ideal I ER

with k := height(I) � 2 defining a Cohen–Macaulay factor ring R := R/I. These fit into a short
exact sequence

(2.1) 0 // I // R
⇡
// R // 0.

Note that (see [7, Thm. 2.1.2.(b), Cor. 2.1.4])

n� dim(R) = grade(I) = height(I) = k � 2.

In particular I is a regular ideal of R and hence any R-module is R-torsion.
We assume further that R admits a canonical module !R. Then also R admits a canonical

module !
R

(see [7, Thm. 3.3.7]).

Notation 2.1. Abbreviating !R := R⌦R !R we deal with the following functors

�⇤
:= HomR(�, R), �_

:= HomR(�,!R),

�I
:= HomR(�, I!R), �_

:= HomR(�,!R).

In general !R 6⇠= !
R

and �_ is not the duality of R-modules. For an R-module N ,

N
⇤
= Hom

R
(N,R)

but N_ means either HomR(N,!R) or Hom
R
(N,!

R
), depending on the context. For R-modules

M and N , we denote the canonical evaluation map by

�M,N : M ! HomR(HomR(M,N), N), m 7! (' 7! '(m)).

Whenever applicable we use an analogous notation for R-modules. We denote canonical isomor-
phisms as equalities.

Lemma 2.2. Let N be an R-module. Then Ext
i

R
(N,!R) = 0 for i < k and N

I
= 0.

Proof. The first vanishing is due to Ischebeck’s Lemma (see [12, Satz 1.9]), the second holds
because !R and hence I!R is torsion free (see [7, Thm. 2.1.2.(c)]) whereas N is torsion. ⇤
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2.1. I-duality and I-free approximation.

Lemma 2.3. There is a canonical identification !R = I
I and a canonical inclusion I ,! !

I

R
.

They combine to the map �I,I!R : I ! I
II which is an isomorphism if R is Gorenstein.

Proof. Applying �_ to (2.1) and HomR(I,�) to I!R ,! !R yields an exact sequence with a
commutative triangle

(2.2) Ext
1

R
(R,!R) I

_
oo !R

µ

~~

oo R
_

oo 0oo

I
I
.

?�

OO

The diagonal map sends " 2 !R to the multiplication map µ(") : I ! I!R, x 7! x · ". With
Lemma 2.2 it follows that !R = I

_
= I

I .
There is an isomorphism R ⇠= EndR(!R) sending each element to the corresponding multiplica-

tion map (see [7, Thm. 3.3.4.(d))]). Applying HomR(!R,�) to I!R ,! !R yields a commutative
square

(2.3) R ⇠=
// EndR(!R)

I
?�

OO

�
0
// !

I

R
.

?�

OO

If R is Gorenstein, then !I

R
= HomR(R, I) = I and �0 is an isomorphism.

Combined with the above identification !R = I
I , �0 defines a map � : I ! I

II . Since

�(x)(µ(")) = �
0
(x)(") = x · " = µ(")(x) = �I,I!R(x)(µ("))

for all x 2 I and " 2 !R, in fact � = �I,I!R . ⇤

Definition 2.4. If F is a free R-module, then we call IF = I ⌦R F an I-free module. An
R-module M is called I-reflexive if �M,I!R : M !M

II is an isomorphism.

Proposition 2.5. Let F be a free R-module F . Then F
_
= (IF )

I by restriction. The adjunction
map IF ! F

_I is induced by the isomorphism �F,!R and identifies with �IF,I!R . In case R is
Gorenstein, IF is I-reflexive.

Proof. Applying HomR(F,�) to µ in (2.2) yields F
_
= (IF )

I by Hom-tensor adjunction.
Applying F ⌦R � to (2.3) yields a commutative square

F
�F,!R

⇠=
// F

__

IF
?�

OO

// F
_I
?�

OO
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where the bottom row is adjunction. In fact, using Lemma 2.3,

IF = I ⌦R F ! F ⌦R !
I

R
= F ⌦R HomR(!R, I!R)

= HomR(F ⌦R !R, I!R)

= HomR(F ⌦R HomR(R,!R), I!R)

= HomR(HomR(F ⌦R R,!R), I!R)

= HomR(HomR(F,!R), I!R) = F
_I
,

x · e 7! ( 7! x ·  (e)).

Identifying F
_
= (IF )

I using Lemma 2.3 yields with the map µ in diagram (2.2)

" =  (e)$ µ(") =) x ·  (e) = x · " = µ(")(x).

Adjunction thus becomes identified with �IF,I!R . The last claim is due to Lemma 2.3. ⇤

Definition 2.6. Let M be a finitely generated R-module. We call a short exact sequence

(2.4) 0 // IF
◆
// M

⇢
// W // 0

where F is free and IW = 0 an I-free approximation of M with support Supp(W ). We consider
W as an R-module. The inclusion map ◆ : IF ,! F = M defines the trivial I-free approximation

0 // IF // F // F/IF // 0.

A morphism of I-free approximations is a morphism of short exact sequences.

Lemma 2.7. For any I-free approximation (2.4), ◆ fits into a unique commutative triangle

(2.5) F

IF

.
�

==

� � ◆
// M.



OO

If ◆�1 denotes the choice of any preimage under ◆, then (m) = ◆
�1

(xm)/x for any x 2 I \Rreg.
If M is maximal Cohen–Macaulay, then  is surjective. In particular, (2.4) becomes trivial if in
addition  injective.

Proof. Applying HomR(�, F ) to (2.4) yields

Ext
1

R
(W,F ) HomR(IF, F )oo HomR(M,F )

◆
⇤

oo HomR(W,F )oo 0.oo

By Ischebeck’s Lemma (see [12, Satz 1.9]), Ext
1

R
(W,F ) = 0 = HomR(W,F ) making ◆

⇤ an
isomorphism. Then  is the preimage of the canonical inclusion IF ,! F under ◆⇤. The formula
for  follows immediately.

Since coker() is a homomorphic image of F/IF , dim(coker())  n�k  n�2. If M is max-
imal Cohen–Macaulay, then depth(coker()) � n�1 by the Depth Lemma (see [7, Prop. 1.2.9]).
This forces coker() = 0 (see [7, Prop. 1.2.13]) and makes  surjective. ⇤
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By functoriality of the cokernel, any ' 2 F
_ gives rise to a commutative diagram

(2.6) 0 // I!R
// !R

⇡!
// !R

// 0

F

'

OO

0 // IF

'|IF

OO

-
�

<<

◆
// M



OO

⇢
// W

'

OO

// 0

with top exact row induced by (2.1) and bottom row (2.4). This defines a map

(2.7) W
_

F
_

oo

' '.
�

oo

Applying HomR(F,�) to the upper row of (2.6) yields a short exact sequence

(2.8) 0 // F
I

// F
_

// F
_

// 0.

By Lemma 2.2 applying �I to (2.4) and (2.5) yields the exact diagonal sequence and the triangle
of inclusions with vertex F

I in the following commutative diagram.

(2.9) 0 Voo F
_↵

oo M
I
/F

I�
oo 0oo

||

0 Voo � _

✏✏

F
_↵

oo

OO

OO

M
I�

oo

◆
I

zz

OO

OO

0oo

(IF )
I

xx

F
I? _oo

?�


I

OO

Ext
1

R
(W, I!R)

By Proposition 2.5, the identification F
_
= (IF )

I in diagram (2.9) is given by

'$ '|IF = ' �  � ◆
in diagram (2.6). It defines the map � with cokernel ↵. For  2M

I , �( ) is defined by

�( )|IF =  � ◆.
With Ext

1

R
(W, I!R) also V is an R-module. Using (2.8) the Snake Lemma yields the short exact

upper row of (2.9). By Lemma 2.2 the commutative square HomR(IF ,!M, I!R ,! !R) reads

(IF )
I

� _

✏✏

M
I◆

I
oo � _

✏✏

(IF )
_

M
_
.

◆
_

⇠=
oo

This allows one to check equalities of maps M ! !R after precomposing with ◆. It follows that

(2.10) ' �  2M
I () ' 2 �(M I

) =) ' = �(' � )
for any ' 2 F

_.
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Definition 2.8. We call the middle row

(2.11) 0 Voo F
_↵

oo M
I�

oo 0oo

of diagram (2.9) the I-dual of the I-free approximation (2.4). We set

(2.12) W
0
:= Ext

1

R
(V, I!R).

Lemma 2.9. For any I-free approximation (2.4) the map (2.7) factors through the map ↵ in
(2.9) defining an inclusion ⌫ : V !W

_, that is,

W
_

V?
_⌫

oo F
_
,

↵
oooo

' '.
�

oo

Proof. By diagrams (2.6) and (2.9), equivalence (2.10) and exactness properties of Hom,

' = 0 () ' � ⇢ = 0 () ' �  2M
I () ' 2 �(M I

) () ↵(') = 0. ⇤

Remark 2.10. By Lemma 2.2 applying HomR(W,�) to the upper row of diagram (2.6) yields

W
_
= cokerHomR(W,⇡!)

⇠= Ext
1

R
(W, I!R).

The inclusion of V in the latter in diagram (2.9) uses coker ◆
I
,! Ext

1

R
(W, I!R). The relation

with the inclusion ⌫ in Lemma 2.9 is clarified by the double complex obtained by applying
HomR(�,�) to (2.4) and the upper row of (2.6). By Lemma 2.2 it expands to a commutative
diagram with exact rows and columns

0

✏✏

0

✏✏

Ext
1

R
(W, I!R)

✏✏

(IF )
I

oo

✏✏

M
I◆

I
oo

✏✏

0oo

✏✏

0 (IF )
_

oo

✏✏

M
_◆

_
oo

✏✏

0oo

HomR(W,⇡!)

✏✏

(IF )
_

M
_

oo W
_

oo

⇠=
✏✏

0oo

Ext
1

R
(W, I!R).

An element ↵(') 2 V with ' 2 F
_ maps to '|IF 2 (IF )

I , to ' �  2M
_ and to ' 2W

_.

2.2. I-reflexivity over Gorenstein rings. In this subsection we assume that R is Gorenstein
and study I-reflexivity of modules M in terms of an I-free approximation (2.4). With the
Gorenstein hypothesis F

_ is free and hence

(2.13) Ext
1

R
(F

_
,�) = 0.
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Proposition 2.11. Assume that R is Gorenstein. For any I-free approximation (2.4) and W
0

as in (2.12) there is a commutative square

M

�M,I!R

✏✏

⇢
// // W

�

✏✏

M
II

⇢
0
// // W

0

and � is an isomorphism if and only if M is I-reflexive.

Proof. Consider the following commutative diagram whose rows are (2.4) and obtained by ap-
plying �I to the triangle with vertex F

_ in diagram (2.9).

(2.14) F

⇠= �F,!R

rr

0 // IF

,
�

::

�IF,I!R
⇠=
✏✏

◆
// M



OO

�M,I!R

✏✏

⇢
// W //

�

✏✏

0

0 // (IF )
II ◆

II
// M

II
⇢
0
// W

0
// 0

F
_I �
�

//

�
I

::

F
__

.

The latter is a short exact sequence by Lemma 2.2 and (2.13). The commutative squares in
diagram (2.14) are due to functoriality of � and the cokernel. The claimed equivalence then
follows from the Snake Lemma. Proposition 2.5 yields the part of diagram (2.14) involving
�F,!R . This part is just added for clarification but not needed for the proof. ⇤

Lemma 2.12. Assume that R is Gorenstein and consider an I-free approximation (2.4). Then
the maps ⌫ from Lemma 2.9 and � from Proposition 2.11 fit into a commutative square

W

�

✏✏

�W,!R
// W

__

⌫
_

✏✏

W
0

V
_
.

⇠

⇠=
oo

Proof. Consider the double complex obtained by applying HomR(�,�) to the middle and top
rows of diagrams (2.9) and (2.6). By Lemma 2.2 and (2.13) it expands to a commutative diagram
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with exact rows and columns

0

✏✏

0

✏✏

0 //

✏✏

F
_I �

I
//

✏✏

M
II

⇢
0
//

✏✏

W
0

//

✏✏

0

0 //

✏✏

F
__ �

_
//

(⇡!)⇤

✏✏

M
I_

//

✏✏

0

0 // V
_ ↵

_
// F

__ �
_
//

✏✏

M
I_

0.

The Snake Lemma yields an isomorphism ⇠ : V
_ !W

0. Attaching the square of Proposition 2.11,
the relation �(w) = ⇠( e ) is given by the diagram chase

m_

✏✏

�
// w_

✏✏

�M,I!R(m)
_

✏✏

�
// �(w)

 
_

✏✏

�
//  � � = �M,I!R(m)

e �
//
e � ↵ = ⇡! �  .

Using implication (2.10), diagram (2.6) and Lemma 2.9, one deduces that, with x 2 I \Rreg and
v = ↵('),

x' �  2M
I

=) x' = �(x' � )
=) x (') =  (x') = ( � �)(x' � )

= �M,I!R(m)(x' � ) = x(' � )(m)

=)  (') = (' � )(m)

=) e (v) = ( e � ↵)(') = (⇡! �  )(') = (⇡! � ' � )(m) = '(w)

= (⌫ � ↵)(')(w) = ⌫(↵('))(w) = ⌫(v)(w)

= �W,!R(w)(⌫(v)) = ⌫
_
(�W,!R(w))(v) = (⌫

_ � �W,!R)(w)(v)

=) e = (⌫
_ � �W,!R)(w)

=) �(w) = ⇠( e ) = (⇠ � ⌫_ � �W,!R)(w)

=) � = ⇠ � ⌫_ � �W,!R . ⇤
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Proposition 2.13. Assume that R is Gorenstein and consider an I-free approximation (2.4).
Then M is I-reflexive if and only if the map ⌫

_ � �W,!R with ⌫ from Lemma 2.9 identifies
W = V

_.

Proof. The claim follows from Proposition 2.11 and Lemma 2.12. ⇤
Lemma 2.14. Assume that R is Gorenstein and consider an I-free approximation (2.4). Then
the map ⌫ from Lemma 2.9 fits into a commutative diagram

W
_

V

�V,!R

✏✏

⌫
oo

W
___

�
_
W,!R

OO

V
__

.
⌫
__

oo

(⌫
_��W,!R

)
_

gg

Proof. For any v 2 V and w 2W we have

(�
_
W,!R

� ⌫__ � �V,!R)(v)(w) = �
_
W,!R

(⌫
__

(�V,!R(v)))(w)

= �
_
W,!R

(�V,!R(v) � ⌫_)(w)

= (�V,!R(v) � ⌫_)(�W,!R(w))

= �V,!R(v)(�W,!R(w) � ⌫)
= �W,!R(w)(⌫(v))

= ⌫(v)(w)

and hence ⌫ = �
_
W,!R

� ⌫__ � �V,!R as claimed. ⇤

Corollary 2.15. Assume that R is Gorenstein and consider an I-free approximation (2.4) of an
I-reflexive R-module M . Then V in diagram (2.9) is (!R-)reflexive if and only if ⌫ in Lemma 2.9
identifies V = W

_.

Proof. The claim follows from Proposition 2.13 and Lemma 2.14. ⇤
2.3. R-dual I-free approximation. In this subsection we consider the R-dual of an I-free
approximation (2.4). The interesting part of the long exact Ext-sequence of �_ applied to (2.4)
turns out to be

(2.15) 0 Ext
k

R
(M,!R)

oo Ext
k

R
(W,!R)

oo Ext
k�1

R
(IF,!R)

�
oo Ext

k�1

R
(M,!R)

oo 0.oo

In fact, applying �_ to (2.1) yields (see Lemma 2.17 and [7, Thm. 3.3.10.(c).(ii)])

Ext
i

R
(IF,!R) = F

⇤ ⌦R Ext
i

R
(I,!R) = F

⇤ ⌦R Ext
i+1

R
(R,!R) = 0 for i 6= 0, k � 1.

In case both R and R are Gorenstein, we will identify the map � to its image with the map ↵

in (2.9) (see Corollary 2.21). In §2.4 this fact will serve to relate the Gorenstein dimension of
M to the depth of V .

In order to describe the map � in (2.15) we fix a canonical module !R of R with an injective
resolution (E

•
, @

•
),

0 // !R
// E

0 @
0
// E

1 @
1
// E

2 @
2
// · · · .

We use it to fix representatives

Ext
i

R
(�,!R) := H

i
HomR(�, E•

).
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Then (see [7, Thms. 3.3.7.(b), 3.3.10.(c).(ii)])

(2.16) H
i
AnnE•(I) = H

i
Hom(R,E

•
) = Ext

i

R
(R,!R) = �i,k · !

R

where
!
R
:= H

k
AnnE•(I)

is a canonical module of R.
In the sequel we explicit the maps of the following commutative diagram

(2.17) Ext
k

R
(W,!R)

� ⇠=

✏✏

Ext
k�1

R
(IF,!R)

�
oo

F
⇤ ⌦R Ext

k�1

R
(I,!R)

�⇠=

OO

F
⇤ ⌦R H

k�1
(E

•
/AnnE•(I))

F
⇤⌦H

k�1
(⌧

•
)⇠=

OO

F
⇤⌦⇣⇠=
✏✏

Hom
R
(W,!

R
) =W

_
V

0? _⌫
0

oo F
⇤ ⌦R !R

↵
0

oooo

which defines the map ⌫
0 � ↵0 and its image V

0. The maps ⌧•, �, ⇣, � and ↵
0 are described in

Lemmas 2.16, 2.17, 2.18, 2.19 and Proposition 2.20 respectively.

Lemma 2.16. For any injective R-module E there is a canonical isomorphism

⌧ : E/AnnE(I)! HomR(I, E), e 7! � · e = (x 7! x · e).

In particular, there is a canonical isomorphism ⌧
•
: E

•
/AnnE•(I)! HomR(I, E

•
).

Proof. Applying the exact functor HomR(�, E) to (2.1) yields a short exact sequence

0 HomR(I, E) HomR(R,E) HomR(R,E) 0.

Identifying E = HomR(R,E), e 7! � · e, and hence

(2.18) HomR(R,E) = AnnE(I)

yields the claim. ⇤

Lemma 2.17. For any i 2 N there is a canonical isomorphism

F
⇤ ⌦R Ext

i

R
(I,!R) ⇠=

�i
// Ext

i

R
(IF,!R)

F
⇤ ⌦R H

i
HomR(I, E

•
) // H

i
HomR(IF,E

•
)

'⌦ [ ]
�

// ['|IF · e (1)] = [( � ◆)⇤(') · e (1)]

where e 2 HomR(R,E
•
) extends  2 HomR(I, E

•
). We set � := �k�1.

Proof. For any i 2 N there is a sequence of canonical isomorphisms

F
⇤ ⌦R H

i
HomR(I, E

•
) = HomR(F,H

i
HomR(I, E

•
))

= H
i
HomR(F,HomR(I, E

•
))

= H
i
HomR(IF,E

•
),
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the latter one being Hom-tensor adjunction, sending
'⌦ [ ] 7! (f 7! '(f) · [ ] = ['(f) ·  ])

7! [f 7! '(f) ·  ]

7! [x · f 7! '(f) ·  (x) = '(x · f) · e (1)] = ['|IF · e (1)]
where x 2 I and f 2 F . ⇤
Lemma 2.18. There is a connecting isomorphism

⇣ : H
k�1

(E
•
/AnnE•(I))! H

k
AnnE•(I) = !

R
,

[e] 7! [@
k�1

(e)].

Proof. The connecting homomorphism ⇣ in degree k of the short exact sequence
0! AnnE•(I)! E

• ! E
•
/AnnE•(I)! 0

is an isomorphism since E
• is a resolution and hence H

i
(E

•
) = 0 for i � k � 1 � 1. ⇤

Lemma 2.19. For any R-module N there is a canonical isomorphism
� : H

k
HomR(N,E

•
)! Hom

R
(N,H

k
AnnE•(I)) = N

_
,

[�] 7! (n 7! [�(n)]).

Proof. Fix an R-projective resolution (P?, �?) of N and consider the double complex

A
?,•

:= HomR(P?, E
•
) = Hom

R
(P?,HomR(R,E

•
)) = Hom

R
(P?,AnnE•(I))

whose alternate representation is due to Hom-tensor adjunction and (2.18). It yields two spectral
sequences with the same limit. By exactness of Hom

R
(P?,�) and (2.16) and using the alternate

representation the E2-page of the first spectral sequence identifies with
0
E

p,q

2
= H

p
(H

?,q
(A

?,•
)) = H

p
Hom

R
(P?, H

q
AnnE•(I)) = �k,q ·Hp

Hom
R
(P?,!R

).

By exactness of HomR(�, E•
) the E2-page of the second spectral sequence reads

00
E

p,q

2
= H

q
(H

p,•
(A

?,•
)) = H

q
HomR(H

p
P?, E

•
) = �p,0 ·Hq

HomR(N,E
•
).

So both spectral sequences degenerate. The resulting isomorphism 00
E

0,k

2
! 0

E
0,k

2
is �. ⇤

Proposition 2.20. Assume that R is Gorenstein and consider an I-free approximation (2.4).
Then the map ↵0 in diagram (2.17) is induced by

⌫
0 � ↵0

: F
⇤ ⌦R !R

= F
⇤ ⌦R H

k
AnnE•(I)! Hom

R
(W,H

k
AnnE•(I)) = W

_
,

'⌦ [a] 7! ' · [a],

where ' 7! ' is (2.7) with !R = R. In particular, Extk
R
(M,R) = 0 if ⌫0 is surjective.

Proof. The proof is done by chasing diagram (2.17) and the diagram

0 // HomR(W,E
k�1

)
⇢
⇤
//

(@
k�1

)⇤
✏✏

HomR(M,E
k�1

)
◆
⇤
//

(@
k�1

)⇤
✏✏

HomR(IF,E
k�1

) //

(@
k�1

)⇤
✏✏

0

0 // HomR(W,E
k
)

⇢
⇤
// HomR(M,E

k
)

◆
⇤
// HomR(IF,E

k
) // 0.

This latter defines the connecting homomorphism � in (2.15) on representatives as

(⇢
⇤
)
�1 � (@k�1

)⇤ � (◆⇤)�1
,

where (◆
⇤
)
�1 denotes the choice of any preimage under ◆⇤.
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Let ' ⌦ [e] 2 F
⇤ ⌦R H

k�1
(E

•
/AnnE•(I)). Then by Lemmas 2.16, 2.17, 2.18 and 2.19, and

diagram (2.6) with !R = R

[
⇤
(') · e] �

H
k�1

(◆
⇤
)
//

_

✏✏

[(◆
⇤ � ⇤)(') · e]

[((⇢
�1

)
⇤ � ⇤)(') · @k�1

(e)]
_

�

✏✏

� H
k
(⇢

⇤
)
// [

⇤
(') · @k�1

(e)] '⌦ [� · e]
_

�

OO

'⌦ [e]

_

F
⇤⌦H

k�1
(⌧

•
)

OO

_

F
⇤⌦⇣

✏✏

(⇡ � ' �  � ⇢�1
) · [@k�1

(e)] = ' · [@k�1
(e)] '⌦ [@

k�1
(e)]

�⌫
0�↵0

oo

where ⇢
�1 denotes the choice of any preimage under ⇢. By diagram (2.6) and Lemma 2.18

the ambiguity of this choice is cancelled when multiplying (⇢
�1

)
⇤ � ⇤(') = ' �  � ⇢�1 with

@
k�1

(e) 2 AnnE•(I).
The particular claim follows from diagram (2.17) and the exact sequence (2.15). ⇤

Corollary 2.21. Assume that both R and R are Gorenstein and consider an I-free approxima-
tion (2.4). Then identifying !R = !

R
(see diagrams (2.9) and (2.17)) makes

↵
0
= ↵, V

0
= V, Ext

k�1

R
(M,R) ⇠= ker(↵) = M

I
/F

I
.

In particular, if M is I-reflexive, then Ext
k

R
(M,R) = 0 if and only if V is (!R-)reflexive.

Proof. Let ' 7! ' be (2.7) with !R = R. Pick free generators " 2 !R and e" 2 !
R

inducing the
identification !R = !

R
by sending " = ⇡!(") 7! e". Then

F
_ ⌦R R = F

⇤ ⌦R !R = F
⇤ ⌦R !R

, W
_
= W

_
,

(' · ")⌦ 1$ '⌦ "$ '⌦ e", ' · "$ ' · e".

By diagram (2.6) and Lemma 2.9 the map F
_ ⌦R R!W

_ induced by ⌫ � ↵ sends

(' · ")⌦ 1 7! ' · " = ⇡! � ((' �  � ⇢�1
) · ") = (⇡ � ' �  � ⇢�1

) · ⇡!(") = ' · ".

By Proposition 2.20 this map coincides with ⌫
0 � ↵0 subject to the above identifications. This

shows that ↵0
= ↵ and V

0
= V . By the exact sequence (2.15), the commutative diagram (2.17)

and the exact upper row of diagram (2.9),

Ext
k�1

R
(M,R) = ker(�) ⇠= ker(↵

0
) = ker(↵) = M

I
/F

I
,

Ext
k

R
(M,R) = coker(�) ⇠= coker(⌫

0
) = W

_
/⌫

0
(V

0
).

In particular Extk
R
(M,R) = 0 if and only if ⌫0 identifies V 0

= W
_ or, equivalently, if ⌫ identifies

V = W
_. The particular claim now follows with Corollary 2.15. ⇤
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2.4. Projective dimension and residual depth. Assume that R is Gorenstein. Then ev-
ery finitely generated R-module M has finite Gorenstein dimension G-dim(M) < 1 (see [18,
Thm. 17]). Recall that if M has finite projective dimension pdim(M) <1, then

G-dim(M) = pdim(M)

(see [18, Cor. 21]). Consider an I-free approximation (2.4) of an R-module M . In the following
we relate the case of minimal Gorenstein dimension of M to Cohen–Macaulayness of V , proving
our main result.

Lemma 2.22. Assume that R is Gorenstein and consider an I-free approximation (2.4) with
W 6= 0. Then W is a maximal Cohen–Macaulay R-module if and only if G-dim(M)  k.
In this case G-dim(M)  k � 1 if and only if Ext

k

R
(M,R) = 0. If R is Gorenstein, then

G-dim(M) � k � 1 unless ↵ in diagram (2.9) is injective.

Proof. By hypothesis M 6= 0 is finitely generated over the Gorenstein ring R. It follows that
(see [18, Thm. 17, Lem. 23.(c)])

(2.19) G-dim(M) = max
�
i 2 N

�� Exti
R
(M,R) 6= 0

 
<1.

The Auslander–Bridger Formula (see [18, Thm. 29]) then states that

(2.20) depth(M) = depth(R)�G-dim(M) = dim(R)�G-dim(M) = n�G-dim(M).

By the Depth Lemma (see [7, Prop. 1.2.9]) applied to the short exact sequence (2.1)

n� k + 1 = depth(R) + 1 � min {depth(R), depth(I)� 1}+ 1 = depth(I)

� min
�
depth(R), depth(R) + 1

 
= n� k + 1

and hence

(2.21) depth(IF ) = depth(I) = n� k + 1.

( =) ) Using (2.21) and (2.20) the Depth Lemma applied to the short exact sequence (2.4)
gives

G-dim(M) = n� depth(M)  n�min {depth(IF ), depth(W )}  n� (n� k) = k.

((= ) Using (2.20) and (2.21) the Depth Lemma applied to the short exact sequence (2.4)
gives

n� k = dim(R) � dim(W ) � depth(W ) � min {depth(M), depth(IF )� 1} � n� k.

By (2.19) this latter inequality becomes G-dim(M)  k � 1 if and only if Extk
R
(M,R) = 0

(see [18, Lem. 23.(c)]).
If R is Gorenstein and ↵ is not injective, then Ext

k�1

R
(M,R) 6= 0 by Corollary 2.21 and hence

G-dim(M) � k � 1 by (2.19). ⇤
We can now conclude the proof of our main result.

Proof of Theorem 1.2. Since M is I-reflexive, W = V
_ by Proposition 2.13.

( =) ) Suppose that V is maximal Cohen–Macaulay. Then also W is maximal Cohen–
Macaulay and V is (!R-)reflexive (see [7, Prop. 3.3.3.(b).(ii), Thm. 3.3.10.(d).(iii)]). By Corol-
lary 2.21 Ext

k

R
(M,R) = 0 and by Lemma 2.22 G-dim(M) = k � 1.

((= ) Suppose that G-dim(M)  k�1. By Lemma 2.22 W is maximal Cohen–Macaulay and
Ext

k
(M,R) = 0. By Corollary 2.21 V = W

_ is (!R-)reflexive and maximal Cohen–Macaulay
(see [7, Prop. 3.3.3.(b).(ii)]).

The last claim is due to Lemma 2.22. ⇤
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2.5. Restricted I-free approximation. In this subsection we describe a construction that
reduces the support of an I-free approximation (2.4) and preserves I-reflexivity of M under
suitable hypotheses. In §3.2 this will be related to the definition of multi-logarithmic differential
forms and residues along Cohen–Macaulay spaces (see [4, §10] and [21, Ch. 4]).

Fix an ideal J E R with I ✓ J and set S := R and T := R/J . By hypothesis S is Cohen–
Macaulay and hence (see [7, Prop.1.2.13])

(2.22) Ass(S) = Min Spec(S).

Lemma 2.23. There is an inclusion

Supp
S
(T ) \Ass(S) ✓ AssS(T ).

In particular, equality in HomS(N,S) for any T -module N , or in HomS(N,T ) for any S-module
N , can be checked at AssS(T ).

Proof. The inclusion follows from (2.22) and MinSupp
S
(T ) ✓ AssS(T ). For any T -module N

(see [7, Exe. 1.2.27])

AssS(HomS(N,S)) = Supp
S
(N) \Ass(S) ✓ Supp

S
(T ) \Ass(S) ✓ AssS(T )

and the first particular claim follows, the second holds for a similar reason. ⇤

Definition 2.24. For any S-module N we consider the submodule supported on V (J)

NT := HomS(T,N) = AnnN (J) ✓ N.

For an I-free approximation (2.4) its J-restriction is the I-free approximation

(2.23) 0 // IF
◆J
// MJ

⇢T
// WT

// 0

defined as its image under the map Ext
1

R
(W, IF )! Ext

1

R
(WT , IF ).

In explicit terms it is the source of a morphism of I-free approximations

(2.24) 0 // IF
◆
// M

⇢
// W // 0

0 // IF
◆J
// MJ

?�

OO

⇢T
// WT

?�

OO

// 0.

The right square is obtained as the pull-back of ⇢ and WT ,! W , whose universal property
applied to ◆ and 0: IF ! WT gives the left square. The analogue of  in (2.5) for the J-
restriction (2.23) is the composition

(2.25) J : MJ = IF :M J ✓M

// F.

By Lemma 2.2 and the Snake Lemma, applying �I to (2.24) yields (see Definition 2.8)

(2.26) 0 Voo

✏✏

✏✏

F
_↵

oo M
I�

oo � _

✏✏

0oo

0 V
T

oo F
_↵

T
oo M

I

J

�
J

oo 0oo

where the bottom row

(2.27) 0 V
T

oo F
_↵

T
oo M

I

J

�
J

oo 0oo
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is the I-dual (2.11) of the J-restriction (2.23). In diagram (2.26), we denote

(2.28) U := ker(V ⇣ V
T
).

The J-restriction behaves well under the following hypothesis on T .

(2.29) Tp =

(
Sp if p 2 AssS(T ),

0 if p 2 Ass(S) \AssS(T ).

This is due to the following

Remark 2.25. Our constructions commute with localization. As special cases of the J-restriction
and its I-dual we record

(◆J , ⇢T ) =

(
(◆, ⇢) if T = S,

(idIF , 0) if T = 0,
(�

J
,↵

T
) =

(
(�,↵) if T = S,

(idF_ , 0) if T = 0.

Localizing (2.24) and (2.26) at the image of p 2 Ass(S) under the map Spec(S) ! Spec(R)

yields these special cases under hypothesis (2.29).

In the setup of our applications in §3 condition (2.29) holds true due to the following

Lemma 2.26. If S is reduced and T is unmixed with dim(T ) = dim(S), then condition (2.29)
holds and AssS(T ) ✓ Ass(S).

Proof. By hypothesis on T and (2.22)

(2.30) AssS(T ) = Min Supp
S
(T ) ✓ MinSpec(S) = Ass(S).

By hypothesis on S, for any p 2 Ass(S), Sp is a field with factor ring Tp. If p 2 AssS(T ), then
Tp 6= 0 and hence Tp = Sp. Otherwise, p 62 Supp

S
(T ) by (2.30) and hence Tp = 0. ⇤

Lemma 2.27. Assume that R is Gorenstein and consider the J-restriction (2.23) of an I-free
approximation. If T satisfies condition (2.29), then for U as defined in (2.28)

↵
�1

(U) = {' 2 F
_ | ' � (M) ✓ J!R}.

In particular, JV ✓ U .

Proof. Let ' 2 F
_ and denote by '

T
the map ' in diagram (2.6) for the J-restriction (2.23).

Consider the map  defined by the commutative diagram

(2.31) W
 
//

'

%%

T ⌦R !R

WT

'T
//

?�

OO

S ⌦R !R.

OO

OO

By Lemma 2.23 and since !R
⇠= R both '

T
= 0 and  = 0 can be checked at AssS(T ). There

the vertical maps in diagram (2.31) induce the identity by condition (2.29) and Remark 2.25.
With diagram (2.26), Lemma 2.9 applied to (2.23) and diagram (2.6) it follows that

↵(') 2 U () ↵
T
(') = 0 () '

T
= 0 ()  = 0 () ' � (M) ✓ J!R.

This proves the equality and the inclusion follows with JV = J↵(F
_
) = ↵(JF

_
). ⇤

Proposition 2.28. Assume that R is Gorenstein and consider the J-restriction (2.23) of an
I-free approximation. If T satisfies condition (2.29), then with M also MJ is I-reflexive.
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Proof. By Lemma 2.27 there is a short exact sequence

(2.32) 0! U/JV ! V/JV ! V
T ! 0.

By condition (2.29) and Remark 2.25

JSp =

(
0 if p 2 AssS(T ),

Sp if p 2 Ass(S) \AssS(T ),

(V ⇣ V
T
)p =

(
idVp if p 2 AssS(T ),

0 if p 2 Ass(S) \AssS(T ),

and hence

8p 2 Ass(S) : (JV )p = JSpVp = Up =) (U/JV )p = 0

=) dim(U/JV ) < dim(S) = depth(!R).

Then (U/JV )
_

= 0 by Ischebeck’s Lemma (see [12, Satz 1.9]). Using sequence (2.32) and
Hom-tensor adjunction it follows that

(V
T
)
_
= (V/JV )

_
= (T ⌦S V )

_
= (V

_
)T .

Denote by ⌫T the map ⌫ from Lemma 2.9 applied to the J-restriction (2.23). We obtain a
diagram

(2.33) WT

(⌫
_��W,!R

)T
// (V

_
)T

WT

�WT ,!R
// (WT )

__ (⌫T )
_
// (V

T
)
_
.

By Lemma 2.23 and since !R
⇠= S, its commutativity can be checked at AssS(T ). By con-

dition (2.29) and Remark 2.25 top and bottom horizontal maps in diagram (2.33) identify at
AssS(T ). Diagram (2.33) thus commutes and Proposition 2.13 yields the claim. ⇤

The Cohen–Macaulay property is invariant under restriction of scalars S ! T and by Hom-
tensor adjunction HomS(�,!S) = HomT (�,!T ) on T -modules where (see [7, Thm. 3.3.7.(b)])

(2.34) !T = HomS(T,!S).

Combining Theorem 1.2 and Proposition 2.28 yields (see diagram (2.26))

Corollary 2.29. In addition to the hypotheses of Theorem 1.2, let J E R with J ✓ I be such
that T = R/J satisfies condition (2.29) and WT 6= 0. Consider the J-restriction (2.23) with
I-dual (2.27). Then WT = HomT (V

T
,!T ) and V

T is a maximal Cohen–Macaulay T -module if
and only if G-dim(MJ)  k�1. In this latter case V

T
= HomT (WT ,!T ) is !T -reflexive. Unless

T ⌦ ↵T (and hence ↵) is injective G-dim(MJ) � k � 1. ⇤

Finally we mention a construction analogous to Definition 2.24 not used in the sequel.

Remark 2.30. Assume that J satisfies the hypotheses on I and consider an I-free approxima-
tion (2.4) where W is already a T -module. Then WT = W and MJ = M and the image of
(2.4) under the map Ext

1

R
(W, IF ) ! Ext

1

R
(W,JF ) is a J-free approximation that fits into a
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commutative diagram with cartesian left square

0 // JF // M
J

// W // 0

0 // IF //

?�

OO

M //

?�

OO

W // 0

where M
J
/MJ

⇠= JF/IF . In particular, MJ
= MJ if and only if I = J .

3. Application to logarithmic forms

In this section results from §2 are used to give a more conceptual approach to and to generalize
a duality of multi-logarithmic forms found by Pol [21] as a generalization of result by Granger
and the first author [11].

Let Y be a germ of a smooth complex analytic space of dimension n. Then Y ⇠= (Cn
, 0) and

OY
⇠= C{x1, . . . , xn} by a choice of coordinates x1, . . . , xn on Y . We denote by

Q� := Q(O�)

the total ring of fractions of O�. In this section we set �⇤
:= HomOY (�,OY ).

Let ⌦
•
Y

denote the De Rham algebra on Y , that is,

OY ! ⌦
1

Y
, f 7! df,

is the universally finite C-linear derivation of OY (see [25, §2] and [15, §11]) and ⌦
q

Y
=
V

q

OY
⌦

1

Y

for all q � 0. In terms of coordinates ⌦
1

Y
⇠=
L

n

i=1
OY dxi and hence

⌦
q

Y
=

q^

OY

⌦
1

Y
⇠=

M

i1<···<iq

OY dxi1 ^ · · · ^ dxiq

is a free OY -module. By definition the dual

(⌦
1

Y
)
⇤
= DerC(OY ) =: ⇥Y

⇠=
nM

i=1

OY

@

@xi

is the module of C-linear derivations on OY , or of vector fields on Y . The module of q-vector
fields on Y is then the free OY -module

(⌦
q

Y
)
⇤
=

q^

OY

⇥Y =: ⇥
q

Y
⇠=

M

i1<···<iq

OY

@

@xi1

^ · · · ^ @

@xiq

.

Notation 3.1. We set N := {1, . . . , n} and N
q

< :=
�
j 2 N

q
�� j1 < · · · < jq

 
. For j 2 N

q and
f = (f1, . . . , f`) 2 O

`

Y
we abbreviate

dxj := dxj1 ^ · · · ^ dxjq ,
@

@xj

:=
@

@xj1

^ · · · ^ @

@xjq

,

j
î
:= (j1, . . . ,

bji, . . . , jq), df = df1 ^ · · · ^ df`.

The perfect pairing

(3.1) ⇥
q

Y
⇥ ⌦

q

Y
! OY , (�,!) 7! h�,!i,

then satisfies

(3.2)

*
@

@xj

, dxk

+
= �j,k := �j1,k1 · · · �jq,kq .
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3.1. Log forms along complete intersections. Let C ✓ Y be a reduced complete intersection
of codimension k � 1. Then OC = OY /IC where IC = IC/Y is the ideal of C ✓ Y . Let
h = (h1, . . . , hk) 2 O

k

Y
be any regular sequence such that IC = hh1, . . . , hki. Geometrically

C = D1 \ · · · \Dk where Di := {hi = 0} for i = 1, . . . , k.

Notation 3.2. We denote D := D1 [ · · · [Dk = {h = 0} where h := h1 · · ·hk,

�(D) := �⌦OY OY

1

h
, �(�D) := �⌦OY OY h,

⌃ = ⌃C/D/Y := IC(D) =

kX

i=1

hi

h
OY ✓ QY , �⌃

:= HomOY (�,⌃).

Note that ⌃ = OY in case k = 1.

The following definition due to Aleksandrov (see [3, §3] and [21, Def. 3.1.4]) generalizes Saito’s
logarithmic differential forms (see [22]) from the hypersurface to the complete intersection case.

Definition 3.3. The module of multi-logarithmic differential q-forms on Y along C is defined
by

⌦
q
(logC) = ⌦

q

Y
(logC) :=

n
! 2 ⌦

q

Y

��� dIC ^ ! ✓ IC⌦q+1

Y

o
(D)

=

n
! 2 ⌦

q

Y
(D)

��� 8i = 1, . . . , k : dhi ^ ! 2 ⌃⌦
q+1

Y

o

where the equality is due to the Leibniz rule. Observe that
⌃⌦

q

Y
✓ ⌦

q
(logC) ✓ QY ⌦OY ⌦

q

Y

with ⌦
q
(logC)(�D) ✓ QY ⌦OY ⌦

q

Y
independent of D (see [21, Prop. 3.1.10]).

Extending Saito’s theory (see [22, §1-2]) Aleksandrov (see [3, §3-4,6]) gives an explicit de-
scription of multi-logarithmic differential forms and defines a multi-logarithmic residue map.
We summarize his results.

Proposition 3.4. An element ! 2 ⌦
q

Y
(D) lies in ⌦

q
(logC) if and only if there exist g 2 OY

inducing a non zero-divisor in OC , ⇠ 2 ⌦
q�k

Y
and ⌘ 2 ⌃⌦

q

Y
such that

g! =
dh

h
^ ⇠ + ⌘.

This representation defines a multi-logarithmic residue map

res
q

C
: ⌦

q
(logC)! QC ⌦OC ⌦

q�k

C
, ! 7! ⇠

g
,

that fits into a short exact multi-logarithmic residue sequence

(3.3) 0 // ⌃⌦
q

Y
// ⌦

q
(logC)

res
q
C
// !

q�k

C
// 0

where !p

C
is the module of regular meromorphic p-forms on C. ⇤

Corollary 3.5. For q < k, ⌦q
(logC) = ⌃⌦

q

Y
and ⌦

n
(logC) = ⌦

n

Y
(D). ⇤

Remark 3.6. The multi-logarithmic residue map can be written in terms of residue symbols as

res
q

C
(!) =


h!

h

�
(see [27, §1.2]1). In particular res

k

C
(
dh

h
) =


dh

h

�
2 !k

C
is the fundamental form

of C (see [13, §5]). ⇤
1This remark was made in the first author’s talk “Normal crossings in codimension one” at the 2012 Oberwol-

fach conference “Singularities” (see [26]).
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Higher logarithmic derivation modules play a prominent role in arrangement theory (see for
instance [1]). Here we extend the definitions of Granger and the first author (see [9, §5]) and by
Pol (see [21, Def. 3.2.1]) as follows.

Definition 3.7. We define the module of multi-logarithmic q-vector fields on Y along C by

Der
q
(� logC) = Der

q

Y
(� logC) :=

n
� 2 ⇥

q

Y

���
D
�,^kdIC ^ ⌦

q�k

Y

E
✓ IC

o

=

n
� 2 ⇥

q

Y

���
D
�, dh ^ ⌦

q�k

Y

E
✓ IC

o

where the equality is due to the Leibniz rule. Observe that
IC⇥q

Y
✓ Der

q
(� logC).

Lemma 3.8. We can identify the functors on OY -modules (see Notation 2.1)

�⌃
= �(�D)

IC , (⌃⌦OY �)⌃ = �⇤
,

and hence �⌃⌃
= �ICIC .

Proof. Since OY (D) is invertible and by Hom-tensor adjunction

�⌃
= HomOY (�, IC(D)) = HomOY (�,HomOY (OY (�D), IC)) = �(�D)

IC

By Lemma 2.3 in case k � 2, OY = IIC
C

= ⌃
⌃ and again by Hom-tensor adjunction

(⌃⌦OY �)⌃ = HomOY (⌃⌦OY �,⌃) = HomOY (�,⌃⌃
) = �⇤

. ⇤
Lemma 3.9. Any elements � 2 Der

q
(� logC) and ! 2 ⌦

q
(logC) pair to h�,!i 2 ⌃.

Proof. Let g, ⇠ and ⌘ be as in Proposition 3.4. Then by definition
gh�, h!i = h�, hg!i = h�, dh ^ ⇠ + h⌘i = h�, dh ^ ⇠i+ hh�, ⌘i 2 IC .

Since g induces a non zero-divisor in OC = OY /IC this implies that h�, h!i 2 IC and hence
h�,!i 2 1

h
IC = ⌃. ⇤

The following proofs for q � k � 1 proceed along the lines of Saito’s base case q = k = 1 (see
[22, (1.6)]) or Pol’s generalization to q = k � 1 (see [21, Prop. 3.2.13]).

Lemma 3.10. If ! 2 ⌦
q

Y
(D) with hDer

q
(� logC),!i ✓ ⌃, then ! 2 ⌦

q
(logC).

Proof. For every ` 2 {1, . . . , k} and j 2 N
q+1

< consider

�
`

j
:=

q+1X

i=1

(�1)i+1
@h`

@xji

@

@xj
î

2 ⇥
q

Y
.

For every i 2 N
q�k

dh ^ dxi =

X

k2N
q
<

@(h, xi)

@xk

dxk,

where @(h,xi)

@xk
is the q ⇥ q-minor of the Jacobian matrix of (h, xi) with column indices k, and

hence using (3.2)
D
�
`

j
, dh ^ dxi

E
=

q+1X

i=1

(�1)i+1
@h`

@xji

X

k2N
q
<

@(h, xi)

@xk

*
@

@xj
î

, dxk

+

=

q+1X

i=1

(�1)i+1
@h`

@xji

@(h, xi)

@xj
î

=
@(h`, h, xi)

@xj

= 0.
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It follows that �`
j
2 Der

q
(� logC) for all ` = 1, . . . , k and j 2 N

q+1

< .
Now let ! =

P
k2N

q
<

ak

h
dxk 2 ⌦

q

Y
(D) where ak 2 OY . For all ` = 1, . . . , k and j 2 N

q+1

<

D
�
`

j
,!

E
=

q+1X

i=1

(�1)i+1
@h`

@xji

X

k2N
q
<

ak

h

*
@

@xj
î

, dxk

+
=

q+1X

i=1

(�1)i+1
@h`

@xji

aj
î

h

by (3.2) and hence

dh` ^ ! =

nX

j=1

@h`

@xj

dxj ^
X

k2N
q
<

ak

h
dxk =

X

j2N
q+1
<

q+1X

i=1

@h`

@xji

aj
î

h
dxji ^ dxj

î

=

X

j2N
q+1
<

q+1X

i=1

(�1)i+1
@h`

@xji

aj
î

h
dxj =

X

j2N
q+1
<

D
�
`

j
,!

E
dxj .

If hDer
q
(� logC),!i ✓ ⌃, then dh` ^ ! 2 ⌃⌦

q

Y
for all ` = 1, . . . , k and hence ! 2 ⌦

q
(logC). ⇤

Proposition 3.11. There are chains of OY -submodules of QY ⌦OY ⌦
q

Y
and QY ⌦OY ⇥

q

Y

⌦
q

Y
✓ ⌃⌦

q

Y
✓ ⌦

q
(logC) ✓ ⌦

q

Y
(D) ✓ ⌃⌦

q

Y
(D),(3.4)

⌃⇥
q

Y
◆ ⇥

q

Y
◆ Der

q
(� logC) ◆ IC⇥q

Y
◆ ⇥

q

Y
(�D)(3.5)

that are ⌃-duals of each other.

Proof. Tensoring with QY makes both chains collapse. The cokernels of all inclusions are there-
fore torsion whereas ⌃ is torsion free. Applying �⌃ thus results in a chain of OY -modules again.
In case of (3.4) this yields

(⌦
q

Y
)
⌃ ◆ (⌃⌦

q

Y
)
⌃ ◆ ⌦

q

Y
(logC)

⌃ ◆ ⌦
q

Y
(D)

⌃ ◆ (⌃⌦
q

Y
(D))

⌃

and, with Lemma 3.8 and freeness of ⌦q

Y
and ⇥

q

Y
, the chain of OY -submodules of QY ⌦OY ⇥

q

Y

⌃⇥
q

Y
◆ ⇥

q

Y
◆ ⌦

q

Y
(logC)

⌃ ◆ IC⇥q

Y
◆ ⇥

q

Y
(�D).

For every � 2 ⌦
q
(logC)

⌃ and ⇠ 2 ⌦
q�k, dh

h
^ ⇠ 2 ⌦

q
(logC) by Proposition 3.4, hence

h�, dh ^ ⇠i = h

⌧
�,
dh

h
^ ⇠

�
2 h⌃ = IC

and � 2 Der
q
(� logC). With Lemma 3.9, it follows that ⌦

q

Y
(logC)

⌃
= Der

q
(� logC).

By the same reasoning �⌃ applied to (3.5) yields a chain of OY -modules

(⌃⇥
q

Y
)
⌃ ✓ (⇥

q

Y
)
⌃ ✓ Der

q
(� logC)

⌃ ✓ (⌃⇥
q

Y
)(�D)

⌃ ✓ ⇥
q

Y
(�D)

⌃

that can be rewritten as the chain of OY -submodules of QY ⌦OY ⌦
q

Y

⌦
q

Y
✓ ⌃⌦

q

Y
✓ Der

q
(� logC)

⌃ ✓ ⌦
q

Y
(D) ✓ ⌃⌦

q

Y
(D).

The missing equality Der
q
(� logC)

⌃
= ⌦

q
(logC) follows from Lemmas 3.9 and 3.10. ⇤
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3.2. Log forms along Cohen–Macaulay spaces. Let X ✓ Y be a reduced Cohen-Macaulay
germ of codimension k � 2. Then OX = OY /IX where IX := IX/Y denotes the ideal X ✓ Y .
There is a reduced complete intersection C ✓ Y of codimension k such that X ✓ C and hence
IX ◆ IC (see [21, Prop. 4.2.1]). Set X

0
:= C \X such that C = X [X

0. The link with §2.5 is
made by setting

S := OC , T := OX .

By Lemma 2.26 condition (2.29) holds and

(3.6) QC =

Y

p2AssOC
(OX)

OX,p ⇥
Y

p2AssOC
(OX0 )

OX0,p = QX ⇥QX0 .

This decomposition extends to differential forms as follows.

Lemma 3.12. We have QXdIC = QXdIX ✓ QX ⌦OY ⌦
1

Y
and hence

QC ⌦OC ⌦
p

C
= QX ⌦OX ⌦

p

X
�QX0 ⌦OX0 ⌦

p

X0 .

Proof. By (3.6) we may localize at p 2 AssOC (OX). We may further assume p = 1 since
exterior product commutes with extension of scalars. Let p 7! q under Spec(OC) ! Spec(OY ).
Then IC,q = IX,q by (3.6) and hence uIX ✓ IC for some u 2 OY \ q. By the Leibniz rule
udIX ✓ dIC + IXdu and hence the first claim. Since ⌦

1

C
= ⌦

1

Y
/(OY dIC + IC⌦1

Y
) this yields

⌦
1

C,p = ⌦
1

X,p and the second claim follows. ⇤

The following fact is well-known (see [27, (2.14)]); we only sketch a proof.

Lemma 3.13. The modules of regular differential p-forms on X and C are related by

!
p

X
= HomOC (OX ,!

p

C
) ✓ !p

C
.

Proof. Kersken explicitly describes (see [14, (1.2)])

(3.7) !
p

X
=

⇢
⇠

h

� ���� ⇠ 2 ⌦
p+k

Y
, IX⇠ ✓ IC⌦p+k

Y
, dIX ^ ⇠ ✓ IC⌦p+k+1

Y

�

where

⇠

h

�
= 0 if and only if ⇠ 2 IC⌦p+k

Y
. In particular, !p

X
✓ HomOC (OX ,!

p

C
) ✓ !

p

C
and

equality in !p

C
can be checked at Ass(OC). Lemma 3.12 yields the claim. ⇤

The following modules of differential forms on Y due to Aleksandrov (see [4, Def. 10.1] and
[21, Def. 4.1.3]) are defined by the relations in (3.7).

Definition 3.14. The module of multi-logarithmic differential q-forms on Y along X relative
to C is defined by

⌦
q
(logX/C) = ⌦

q

Y
(logX/C) :=

n
! 2 ⌦

q

Y

��� IX! ✓ IC⌦q

Y
, dIX ^ ! ✓ IC⌦q+1

Y

o
(D)

=

n
! 2 ⌦

q

Y
(D)

��� IX! ✓ ⌃⌦
q

Y
, dIX ^ ! ✓ ⌃⌦

q+1

Y

o
.

Observe that
⌃⌦

q

Y
✓ ⌦

q
(logX/C) ✓ ⌦

q
(logC)

with ⌦
q
(logX/C)(�D) ✓ QY ⌦OY ⌦

q

Y
independent of D (see [21, Prop. 4.1.5]).

Lemma 3.15. There is an equality ⌦
q
(logX/C) = ⌃⌦

q

Y
:⌦q(logC) IX . In other words,

⌦
q
(logX/C)(�D) = IX⌦

q

Y
:⌦q(logC) IX .
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Proof. There are obvious inclusions
⌃⌦

q

Y
✓ ⌦

q
(logX/C) ✓ ⌃⌦

q

Y
:⌦q(logC) IX ✓ ⌦

q
(logC).

By Proposition 3.4 and Lemma 3.12
! 2 ⌃⌦

q

Y
:⌦q(logC) IX =) IX res

q

C
(!) ✓ res

q

C
(⌃⌦

q

Y
) = 0

=) res
q

C
(!) 2 QX ⌦OX ⌦

q�k

X

=) 0 = dIX ^ res
q

C
(!) = res

q+1

C
(dIX ^ !)

=) dIX ^ ! ✓ ⌃⌦
q+1

Y

=) ! 2 ⌦
q
(logX/C). ⇤

The idea of Remark 3.6 is used by Aleksandrov (see [4, §10]) to define multi-logarithmic
residues along X as the restriction of those along C. The bottom sequence of the diagram in the
following Proposition 3.16 appears in his work (see [4, Thm. 10.2]); Pol proved exactness on the
right (see [21, Prop. 4.1.21]). An alternative argument is suggested by §2.5. The following data

(3.8) R := OY , I := IC , J := IX , F := ⌦
q

Y
, M := ⌦

q
(logC)(�D), ⇢ :=

1

h
res

q

C

give rise to an I-free approximation (2.4) with J-restriction (2.23). By Corollary 3.5 W = 0 if
q < k and (2.4) is trivial for q = n. We are therefore concerned with the case k  q < n. By
Lemmas 3.13 and 3.15 (see Definition 2.24 and (2.25))

(3.9) WT = !
q�k

X
, MJ = ⌦

q
(logX/C)(�D).

Now twisting diagram (2.24) by D yields the following result.

Proposition 3.16. Applying Ext
1

OY
(!

q�k

X
,! !

q�k

C
,⌃⌦

q

Y
) to the multi-logarithmic residue se-

quence (3.3) yields a commutative diagram with exact rows and cartesian right square

(3.10) 0 // ⌃⌦
q

Y
// ⌦

q
(logC)

res
q
C
// !

q�k

C
// 0

0 // ⌃⌦
q

Y
// ⌦

q
(logX/C)
?�

OO

res
q
X/C
// !

q�k

X

?�

OO

// 0

where !p

X
is the module of regular meromorphic p-forms on X. ⇤

3.3. Higher log vector fields and Jacobian modules. Pol gives a description of res
q

X/C

preserving the analogy with the definition of res
q

C
in Proposition 3.4 (see [21, §4.2.1]). As

suggested by Remark 3.6 the role of dh

h
2 ⌦

k
(logC) is played by a preimage ↵X

h
2 ⌦

k
(logX/C)

of the fundamental form

↵X

h

�
2 !0

X
of X (see [13, §5]).

Definition 3.17. Let 1X := (1, 0) 2 QX ⇥QX0 = QC (see Lemma 3.12). A fundamental form
of X in Y is an ↵X = ↵X/C/Y 2 ⌦

k

Y
such that ↵X = 1Xdh 2 QC ⌦OY ⌦

k

Y
.

Such a fundamental form exists and the explicit description of multi-logarithmic differential
forms in Proposition 3.4 generalizes verbatim (see [21, Prop. 4.2.6]).

Proposition 3.18. An element ! 2 ⌦
q

Y
(D) lies in ⌦

q
(logX/C) if and only if there exist g 2 OY

inducing a non zero-divisor in OC , ⇠ 2 ⌦
q�k

Y
and ⌘ 2 ⌃⌦

q

Y
such that

g! =
↵X

h
^ ⇠ + ⌘
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and the map res
q

X/C
in (3.10) is defined by res

q

X/C
(!) =

⇠

g
. ⇤

In the same spirit we extend Definition 3.7. We start with the first option as definition.

Definition 3.19. We define the module of multi-logarithmic q-vector fields on Y along X by

Der
q
(� logX) = Der

q

Y
(� logX) :=

n
� 2 ⇥

q

Y

���
D
�,^kdIX ^ ⌦

q�k

Y

E
✓ IX

o
.

The following result completes the analogy with Definition 3.7. In particular Der
k
(� logX)

is Pol’s module Der
k
(� logX/C) (see [21, Def. 4.2.8]) which is thus independent of C.

Lemma 3.20. We have

Der
q
(� logC) ✓

n
� 2 ⇥

q

Y

���
D
�,↵X ^ ⌦

q�k

Y

E
✓ IX

o
= Der

q
(� logX)

=

n
� 2 ⇥

q

Y

���
D
�,↵X ^ ⌦

q�k

Y

E
✓ IC

o
.

Proof. By Definition 3.17 ↵X = 1Xdh = dh 2 QX ⌦OY ⌦
k

Y
. For � 2 ⇥

q

Y
and ⇠ 2 ⌦

q�k

Y

h�,↵X ^ ⇠i 2 IX () 0 = h�,↵X ^ ⇠i =
⌦
�,↵X ^ ⇠

↵

=
⌦
�, dh ^ ⇠

↵
= h�, dh ^ ⇠i 2 QX

where � 2 QX⌦OY ⇥
q

Y
and ⇠ 2 QX⌦OY ⌦

q�k

Y
. The claimed inclusion follows. Using the Leibniz

rule and that QXdIC = QXdIX ✓ QX ⌦OY ⌦
1

Y
by Lemma 3.12

0 =
⌦
�, dh ^ ⇠

↵
2 QX () 0 =

⌦
�,^kdIC ^ ⇠

↵
=
⌦
�,^kdIX ^ ⇠

↵

= h�,^kdIX ^ ⇠i ✓ QX ()
⌦
�,^kdIX ^ ⇠

↵
✓ IX .

This proves the first equality. With IC = IX\IX0 the second equality follows from ↵X 2 IX0⌦
k

Y

(see [21, Prop. 4.2.5]). ⇤
Using Proposition 3.18 and Lemma 3.20 we obtain the following analogue of Lemma 3.9 and

of the equality Der
q
(� logC) = ⌦

q
(logC)

⌃ from Proposition 3.11.

Lemma 3.21. For � 2 Der
q
(� logX) and ! 2 ⌦

q
(logX/C) we have h�,!i 2 ⌃. ⇤

Lemma 3.22. There is an equality Der
q
(� logX) = ⌦

q
(logX/C)

⌃. ⇤
The following proposition extends Proposition 3.11 and includes the counterpart of Lemma 3.10.

Proposition 3.23. There are chains of OY -submodules of QY ⌦OY ⌦
q

Y
and QY ⌦OY ⇥

q

Y

⌦
q

Y
✓ ⌃⌦

q

Y
✓ ⌦

q
(logX/C) ✓ ⌦

q
(logC) ✓ ⌦

q

Y
(D) ✓ ⌃⌦

q

Y
(D),

⌃⇥
q

Y
◆ ⇥

q

Y
◆ Der

q
(� logX) ◆ Der

q
(� logC) ◆ IC⇥q

Y
◆ ⇥

q

Y
(�D)

that are ⌃-duals of each other.

Proof. By Lemma 3.8 and Proposition 3.11 M in (3.8) is I-reflexive. By Proposition 2.28 and
(3.9) ⌦

q
(logX/C)(�D) is therefore IC-reflexive and, again by Lemma 3.8, ⌦

q
(logX/C) ⌃-

reflexive. The claim follows with Proposition 3.11 and Lemmas 3.20 and 3.22. ⇤
Definition 3.24. Contraction with ↵X defines a map

↵
X
: ⇥

q

Y
! OX ⌦OY ⇥

q�k

Y
= HomOY (⌦

q�k

Y
,OX), � 7! (! 7! h�,↵X ^ !i).

Taking p+ q = n we define the pth Jacobian module of X as the OX -module

J p

X
:= ↵

X
(⇥

q

Y
).
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The Jacobian module J dimX

X
agrees with Pol’s Jacobian ideal JX/C (see [21, Not. 4.2.14])

which coincides with the !-Jacobian ideal if X is Gorenstein (see [21, Prop. 4.2.34]).

Remark 3.25. In explicit terms

↵
X
: ⇥

q

Y
!

M

i2N
q�k
<

OXdxi, � 7!
X

i2N
q�k
<

⌦
�,↵X ^ dxi

↵
dxi.

In case X = C, ↵C = dh and
⌦
�, dh ^ dxi

↵
=

X

j2N
q
<

@(h, xi)

@xj

D
�, dxj

E
.

In particular, J dimC

C
is the Jacobian ideal of C.

Lemma 3.26. If k  q  n, then !
q�k

X
6= 0 and, unless q = n, OX ⌦ ↵X is not injective.

Proof. This can be checked at smooth points of X = C where h = (x1, . . . , xk) and ↵X = dh.
Here !q�k

X
= ⌦

q�k

X
6= 0 and 0 6= @

@xj
2 ker(OX ⌦ ↵X

) if {1, . . . , k} 6✓ {j1, . . . , jq}. ⇤

By Lemma 3.20 there is a short exact sequence (see [21, Prop. 4.2.16] for q = k)

(3.11) 0 J n�q

X
oo ⇥

q

Y

↵
X

oo Der
q

Y
(� logX)oo 0.oo

Lemma 3.27. There is a pairing

J n�q

X
⌦ !q�k

X
! HomOC (OX ,OC)(D) = !X ,

⇣
↵
X
(�), res

q

X/C
(!)

⌘
7! h�,!i.

Proof. By Lemma 3.21 the pairing ⌦
q

Y
(D) ⇥ ⇥

q

Y
! OY (D) obtained from (3.1) maps both

⌦
q

Y
(logX/C)⇥Der

q

Y
(� logX) and ⌃⌦

q

Y
⌦⇥

q

Y
to ⌃. Using the bottom row of (3.10) and (3.11)

this yields a pairing J n�q

X
⌦ !

q�k

X
! OY (D)/⌃ = OC(D) = !C . Both J n�q

X
and !

q�k

X
are

supported on X and applying HomOC (OX ,�) yields the claim (see (2.34)). ⇤

We can now prove our main application.

Proof of the Theorem 1.3. By Lemmas 3.8 and 3.22 sequence (3.11) in terms of (3.8) is the I-
dual J restriction (2.27) twisted by D, that is, V T

= J n�q

X
and ↵

T
= ↵

X up to a twist by D.
With (3.9) and Lemma 3.26 the claim now reduces to Corollary 2.29. The identifications are
induced by the pairing in Lemma 3.27. ⇤

Proposition 3.28. The OX-modules J n�q

X
depend only on X.

Proof. We identify J n�q

X
= ⇥

q

Y
/Der

q

Y
(� logX) by the exact sequence (3.11). Any isomorphism

Y
0 ⇠= Y of minimal embeddings of X induces an isomorphism ' : OY

⇠= OY 0 over OX identifying
IX/Y

⇠= IX/Y 0 . There are induced compatible isomorphisms ⇥
q

Y
⇠= ⇥

q

Y 0 and ⌦
p

Y
⇠= ⌦

p

Y 0 over '
resulting in an isomorphism over '

Der
q

Y
(� logX) ⇠= Der

q

Y 0(� logX).

Any general embedding X ✓ Y
0 arises from a minimal embedding X ✓ Y up to isomorphism

of the latter as Y
0
= Y ⇥ Z where Z ⇠= (Cm

, 0) and hence

IX/Y 0 = OY ⌦̂mZ + IX/Y ⌦̂OZ .
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Pick coordinates z1, . . . , zm on Z and abbreviate dz := dz1^ · · ·^dzm and @

@z
:=

@

@z1
^ · · ·^ @

@zm
.

Then there are decompositions

⌦
q+m

Y 0 = OZ⌦̂⌦q

Y
^ dz � e⌦q+m

Y 0 , ⇥
q+m

Y 0 = OZ⌦̂⇥q

Y
^ @

@z
� e⇥q+m

Y 0

where the modules with tilde are generated by basis elements not involving dz and @

@z
respec-

tively. Fundamental forms of X in Y
0 and Y can be chosen compatibly as

↵X/C/Y 0 = ↵X/C/Y ^ dz 2 ⌦
k+m

Y 0 .

With Lemma 3.20 this yields inclusions

Der
q

Y
(� logX) ^ @

@z
+ e⇥q+m

Y 0 ✓ Der
q+m

Y 0 (� logX) ◆ IX/Y 0⇥
q+m

Y 0 ◆ mZ⌦̂⇥q

Y
^ @

@z

and a cartesian square

OZ⌦̂⇥q

Y

� �
�^ @

@z
// ⇥

q+m

Y 0

Der
q

Y
(� logX) +mZ⌦̂⇥q

Y

� �
//

?�

OO

Der
q+m

Y 0 (� logX).

?�

OO

It gives rise to an isomorphism of OX -modules

⇥
q+m

Y 0 /Der
q+m

Y 0 (� logX) ⇠= OZ⌦̂⇥q

Y
/(Der

q

Y
(� logX) +mZ⌦̂⇥q

Y
⇠= ⇥

q

Y
/Der

q

Y
(� logX). ⇤
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A ZOO OF GEOMETRIC HOMOLOGY THEORIES

MATTHIAS KRECK

1. Introduction

A homology theory is on the one hand given by a spectrum - and from this point of view
homology theories are almost as general as spaces. Originally they occurred in a completely
di↵erent form by geometric constructions like simplicial or singular homology theories or later
bordism theories, K-theory (a cohomology theory) and others. In this note we introduce a zoo
of homology theories which both generalize singular homology and bordism theory in a natural
way. More precisely for each subset A of the natural numbers N we construct a homology theory
hA
⇤ which for A = N � {1} is ordinary mod 2 singular homology and for A = {0} is singular

bordism.
The theories in our zoo are all bordism groups, which generalize the case of smooth manifolds

by allowing singularities. There are many concepts of manifolds with singularities one could
use here. For our pupose the objects the author introduced some years ago, which are called
stratifolds, work particularly well [4]. The theory of stratifolds was further elaborated in [3]
in the thesis of the author’s PhD student Anna Grinberg. The zoo comes from forcing certain
strata indexed by the subset A to be empty.

Despite their simple construction computations of these groups seem to be very complicated.
We give a few simple examples. However there are no interesting applications so far and the zoo
looks a bit like a curiosity. But one never knows for what these theories might be good in the
future. We mention a concrete question which might be useful in connection with the Gri�ths
group consisting of algebraic cycles in a smooth algebraic variety over the complex numbers
which vanish in singular homology.

I dedicate these notes to my friend Egbert Brieskorn. Egbert is (in a very di↵erent way like
our common teacher Hirzebruch) a person who had a great influence on me. When I had to
make a complicated decision I often had him in front of my eyes and asked myself: What would
Egbert suggest? Conversations with him were always intense and fruitful. I miss him very much.

When I thought about a subject for this note I also asked myself, what would Egbert say
about this or that mathematics. I have no idea what he would say about this zoo. But I hope
he would at least like the occurrence of manifolds with singularities. And it would probably find
his interest that if Y is a compact complex singular variety in a non-singular complex algebraic
variety X it admits a natural structure of a stratifold with all odd-dimensional strata empty and
so represents a homology class in the special case where A consists of all odd numbers.

I would like to thank Peter Lendweber for careful reading of a first version of these notes
leading to several clarifications and improvements.

2. Generalized homology theories and singular bordism

To motivate the construction let me recall the definition of singular bordism groups. Let
X be a topological space. Then a cycle is a pair f : M ! X, where M is a closed smooth
n-dimensional manifold and f a continuous map. Two cycles (M, f) and (M 0, f 0) represent the
same bordism class if and only if there is a compact manifold W with @W = M +M 0, and an

http://dx.doi.org/10.5427/jsing.2018.18n
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extension F : W ! X of the maps f and f 0. This is an equivalence relation and the equivalence
classes form a group under disjoint union denoted by Nn(X), the n-th singular bordism group.
If g : X ! Y is a continuous map it induces a homomorphism

g⇤ : Nn(X) ! Nn(Y )

given by post-composition and this way we obtain for each n a functor from the category of
topological spaces to the category of abelian groups. By construction (using the cylinder as a
bordism) this is a homotopy functor, meaning that if g and g0 are homotopic, then g⇤ = g0⇤.

This functor is a homology theory, which normally is expressed as an extension to the category
of topological pairs fulfilling the Eilenberg-Steenrod axioms apart from the dimension axiom.
But an equivalent simple characterization is the following. As in the case of relative homology
groups one has to add data to a functor h⇤, namely a boundary operator, which in our case is
the boundary operator for a Mayer-Vietoris sequence: for open subsets U and V of a topological
space a natural operator

d : hk(U [ V ) ! hk�1(U \ V ).

Then a homology theory is a homotopy functor h⇤ together with a natural boundary operator
as above, such that the Mayer-Vietoris sequence

... ! hk+1(U [ V ) ! hk(U \ V ) ! hk(U)� hk(V ) ! hk(U [ V ) ! ....

is exact. Here the maps are given by the boundary operator, the induced maps of the inclusions
and the di↵erence of the induced maps of the inclusions.

Examples of homology theories are singular homology and the npn-oriented bordism groups
N⇤(X). In the latter case the boundary operator is given a follows. If f : M ! U [ V is a
continuous map, then consider A, the complement of f�1(U) in M , and B, the complement of
f�1(V ) in M . These are disjoint closed subsets. Thus there is a smooth function ⇢ : M ! R,
which on A is 0 and on B is 1. Let t 2 (0, 1) be a regular value of ⇢. Then d[(M, f)] is
represented by f |⇢�1(t) : ⇢�1(t) ! U \ V . The construction of singular bordism was carried
out in [2] on the category of pairs of spaces. The proof that our absolute bordism theory is a
homology theory uses the same ideas, see [1], Chapter II. For manifolds with singularities there
is a problem with this proof since then there are no bicollars in general. But it was shown in [4]
that there is a bicollar up to bordism. The same arguments apply to the generalized bordism
theories constructed below.

3. Stratifolds

There are plenty of definitions of stratified spaces, starting from Whitney stratified spaces and
Mather’s abstract stratified spaces [5], which are both di↵erential topological concepts, as well as
purely topological concepts. All of them have in common that it is a topological space together
with a decomposition into manifolds, which are called strata. Since we want to generalize bordism
of smooth manifolds we restrict ourselves to di↵erential topological stratifolds.

Our approach to stratifolds is motivated by a definition of smooth manifolds in the spirit
of algebraic geometry as topological spaces together with a sheaf of functions, which in the
traditional definition corresponds to the smooth functions. Then a manifold is a Hausdor↵
space M with countable basis together with a sheaf C of continuous functions, which is locally
di↵eomorphic to Rn equipped with the sheaf of all smooth functions. Here a morphism between
spaces X and X 0 equipped with subsheaves of the sheaf of smooth functions is a continuous map
f such that if ⇢0 is in the sheaf over X 0, then ⇢0f is in the sheaf over X. An isomorphism or here
called di↵eomorphism is a bijective map f such that f and f�1 are morphisms.

Having this in mind it is natural to generalize this by considering locally compact Hausdor↵
spaces S with countable basis together with a sheaf C of continuous functions, such that for
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f1, ..., fk in C and f a smooth function on Rk, the composition f(f1, .., fk) is in C. A stratifold
is defined as a pair (S, C) such that the following properties are fulfilled. Given C one can define
the tangent space TxS at a point x 2 S as the vector space of all derivations of the germs �x(C)
of smooth functions at x. This gives a decomposition of S into subspaces

Sk := {x 2 S | dimTxS = k}.

These subspaces are called the k-strata of S. The union of all strata of dimension  k is called
the k-skeleton ⌃k.

Definition 1. An n-dimensional stratifold is a pair (S, C) as above such that
(1) For each k the stratum Sk together with the restriction SSk of the sheaf to it is a smooth
k-dimensional manifold, i.e. is locally di↵eomorphic to Rk.
(2) All skeleta are closed subsets of S.
(3) All strata of dimension > n are empty.
(4) For each x 2 S and open neighborhood U there is a so-called bump function ⇢ : S ! R�0 in
C, such that supp ⇢ ⇢ U and ⇢(x) > 0.
(5) For each x 2 Sk the restriction gives an isomorphism �x(C) ! �x(C|Sk).

A continuous map f : S ! S 0 is called a morphism or smooth, if f⇢ 2 C for each ⇢ 2 C0. If
f is a homeomorphism and f and f 0 are smooth, then f is called a di↵eomorphism.

A smooth map f induces, as for smooth manifolds, a linear map between the tangent spaces,
the di↵erential. It is given by pre-composition with the map f mapping a derivation at x 2 S
to a derivation of S 0 at f(x). This induced map is called the di↵erential of f at x.

Whereas the other conditions are natural, one might wonder where the last condition comes
from. Looking at Mather’s abstract stratified spaces, he gives a decomposition of the space into
the strata plus additional data. Among them there are neighborhoods of the strata together
with retractions ⇡ to the strata. Then Mather defines smooth (also called controlled) functions
f as continuous functions such that the restriction of f to each stratum is smooth and there is
a smaller neighborhood such that ⇡ restricted to the smaller neighborhood commutes with f .
This implies our condition (5) and actually one can reconstruct the retraction ⇡ from our data
if (5) is fulfilled ([4], p. 18↵).

All smooth manifolds are stratifolds. In this note we will only use the following comparatively
simple class of stratifolds, which is similar to the construction of CW -complexes, which we call
polarizable stratifolds, abbreviated as p-stratifolds. A 0-dimensional p-stratifold is a 0-
dimensional smooth manifold. Let (S, C) be a (k � 1)-dimensional p-stratifold and W be a
k-dimensional manifold with boundary and f : @W ! S a proper smooth map. Then we define
a k-dimensional p-stratifold (S 0 := W [f S, C0), where C0 is constructed as follows. Choose a
collar ' : @W ⇥ [0, 1) ! U ⇢ W . Then f is in C0 if and only if f |S and f |W are smooth and
there is an open subset U 0 ⇢ U such that f commutes with the retraction to @W given by the
collar. The last condition guarantees condition (5) above. It is easy to check that this is a
k-dimensional stratifold.

This way one obtains plenty of explicit stratifolds. For example let W be a compact manifold
with boundary and f the constant map from the boundary to a point. Then if we choose a collar
of the boundary and attach W to the point (equivalently collapse the boundary to a point) and
define the sheaf as above, we obtain a stratifold with 0-stratum a point and top-stratum the
interior of W . A special case of this is the cone over a smooth manifold.

If S is an n-dimensional p-stratifold and M is a m-dimensional smooth manifold then the
product S ⇥M is naturally an (n+m)-dimensional p-stratifold. In the construction above one
replaces W by W ⇥M and each attaching map f by f ⇥ id.
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We define an n-dimensional p-stratifold T with boundary as a pair of topological spaces
(T, @T ) together with the structure of an n-dimensional stratifold on T � @T , the structure of
an (n� 1)-dimensional stratifold on @T such that there is a homeomorphism ' : @T ⇥ [0, 1) onto
an open neigbourhood U ⇢ T of @T , which on @T is the identity, such that T � U is a closed
subset of T (implying that @T is an end) and its restriction to @T ⇥ (0, 1) is a di↵eomorphism
of stratifolds onto U � @T . Such a homeomorphism ' is called a collar.

Using a collar one can glue p-stratifolds with boundary the same way one glues manifolds
over common boundary components. Thus one can define bordism groups and, if one adds a
continuous map to a topological space X, singular bordism groups.

The following observation is central for our construction of the zoo of bordism groups. If T
and T 0 are p-stratifolds with boundary whose stratum of dimension r is in both cases empty,
then the same holds for the glued stratifold. Similarly if S and S 0 are stratifolds with empty
k-stratum, then the same holds for the disjoint union. Let A ✓ N be a set. Here N contains
0. An n-dimensional A-stratifold is a p-stratifold S such that for a 2 N � A the stratum of
dimension n� a is empty. For example, if A = {0}, then an A-stratifold is a smooth manifold,
all strata except the top stratum being empty. Or, if A = N � {1}, then S is an A-stratifold if
the stratum of dimension n � 1 is empty. Or, if A consists of the even numbers, then S is an
A-stratifold if and only if the strata of odd codimension are empty.

4. The zoo and the main theorem

With this, it is possible to define the zoo of bordism theories.

Definition 2. Let X be a topological space and n a natural number and A ✓ N. An n-
dimensional singular A-stratifold in X is a closed (compact without boundary) n-dimensional
A-stratifold S together with a continuous map f : S ! X.

A singular A-bordism between two n-dimensional singular A-stratifolds (S, f) and (S, f 0)
is a compact singular A-stratifold T with boundary S + S 0 together with a continuous map
F : T ! X extending f and f 0.

Since one can glue n-dimensional singular A-stratifolds over common boundary components,
singular A-bordism is an equivalence relation. Thus one can consider the equivalence classes,
which form a group under disjoint union denoted by NA

n (X). The proof is the same as in the
case of smooth manifolds.

If g : X ! Y is a continuous map, the post-composition induces a homomorphism

g⇤ : NA
n (X) ! NA

n (Y ),

which makes NA
n (X) a functor from the category of topological spaces and continuous maps to

the category of graded abelian groups and homomorphisms.
To formulate our main theorem, namely that for each A we obtain a homology theory, we

have to construct boundary operators. We have described above how this is done for bordism
groups of smooth manifolds. To generalize this to stratifolds one has to consider regular values
of smooth maps ⇢ from a p-stratifold S to R. A value t 2 R is a regular value if the restriction
to all strata is a regular value. We note that by definition of the sheaf C, if S is constructed
inductively by attaching smooth manifolds W via a smooth map to the lower skeleta, t is also
a regular value of the restriction of ⇢ to the boundary of W . The reason is that ⇢ commutes
with the retractions given by the collar. This implies that the preimage of ⇢ restricted to W is a
smooth manifold with boundary and the restriction of the collar chosen on W is a collar on this
preimage. This implies that the preimage ⇢�1(t) is in a natural way a p-stratifold of codimension
1. Furthermore, if f : S ! X is a continuous map, we can consider its restriction to ⇢�1(t).
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Finally, if S is an A-stratifold, then the codimensions of the strata of ⇢�1(t) are unchanged and
so ⇢�1(t) is again an A-stratifold.

Thus one can define the boundary operator in the Mayer-Vietoris sequence as for smooth
manifolds as follows. Let U and V be open subsets of a topological space X and f : S ! U [ V
a singular A-stratifold. Then we consider the complements C of f�1(U) and D of f�1(V ) in M .
These are closed disjoint subsets of S. In a stratifold one has partitions of unity [4], Proposition
2.3, and so there is a smooth function ⇢, which on C is zero and on D is 1. In a stratifold one
can apply Sard’s Theorem ([4], Proposition 2.6), and so there is a regular value t 2 (0, 1). By
the considerations above ⇢�1(t) is a codimension 1 stratifold and the restriction of f to it gives
a singular A-stratifold in U \ V . We will next show that this is well-defined and gives a natural
boundary operator.

Our main Theorem is the following:

Theorem 3. Let A be a subset of N. For open subsets U and V in a topological space X the
boundary operator

d : NA
n (U [ V ) ! NA

n�1(U \ V )

is well-defined and natural.
The functor NA

n (X) together with the boundary operator d is a homology theory.

Proof. We first note that since a homotopy is a special bordism, the functor is a homotopy
functor. Thus one only has to prove that there is an exact Mayer-Vietoris sequence. This
amounts to showing that for all open subsets U and V of X the boundary operator

d : NA
n (U [ V ) ! NA

n�1(U \ V )

is well-defined and natural and that the sequence is exact.
We begin with the proof that d is well-defined. In the case of bordism of smooth manifolds

this is easy using that ⇢�1(t) has a bicollar. In the case of stratifolds this is not the case. But
it was shown in [4], Lemma B.1, page 197 that up to bordism one has a bicollar. This was
proved there for so-called regular stratifolds. The regularity was used only at one place, namely
to guarantee that the set of regular values is an open subset if S is compact [4], Proposition
4.3, page 44. Once this is the case, then the proof of [4], Lemma B.1 goes through without any
change for p-stratifolds.

Next we show that the set of regular values of ⇢ is an open set if S is a compact p-stratifold.
For this we consider the regular points, the points in S where the di↵erential of ⇢ is non-trivial.
But x 2 S is a regular point if and only its restriction to the interior of the attached manifold
W is regular. This restriction to W extends to @W and commutes with the retraction given by
a collar. This implies that the regular points form an open subset. The singular points are the
complement of the regular points (and so they are a closed subset) and the image of the singular
points are the singular values. The complement of the singular values are the regular values. If
S is compact, the image of a closed set is a closed and so the image of the singular points is
closed implying that the regular values form an open set. Thus the proof of [4], Lemma B.1 goes
through for p-stratifolds.

With this the proof that the boundary operator is well-defined is the same as in [4] for regular
stratifolds. The naturality follows more or less from the construction of the di↵erential. Let
g : X ! X 0 be a continuous map and U , V be open subsets of X, and U 0 and V 0 be open
subsets of X 0, such that g(U) ✓ U 0 and g(V ) ✓ V 0. Then for a singular A-stratifold f : S ! X
we denote the complements of the preimages of U and V by C and D, similarly we denote the
complements of the preimage of U 0 and V 0 by C 0 and D0. We have chosen a smooth function
⇢, which on C is 0 and on D is 1. Now we consider gf and notice that C 0 ✓ C and D0 ✓ D.
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Thus we can take the same separating function for the definition of the boundary operator
d0 : NA

n (U 0 [ V 0) ! NA
n�1(U

0 \ V 0).
Lemma B.1 in [4] is also the key to the proof of the special case considered in [4], that the

Mayer-Vietoris sequence is exact. The case considered there is the case, where A = N � {1}.
That A is of that special form is nowhere used in this proof. The only thing that matters is that
all constructions used in the proof stay within the world of A-stratifolds. These constructions
are: gluing of stratifolds via parts of boundary components and taking the preimage of a regular
value. The definition of A-stratifolds using conditions on the existence of non-empty strata of a
certain codimension are compatible with these constructions. Thus the proof in [4] goes through.

⇤

One can enlarge this zoo even more by adding additional structure to the strata of a stratifold,
for example an orientation or a stable almost complex structure or a spin-structure or a framing.
In all these cases one obtains again a homology theory.

Now we mention a few special cases which show that the A-homology theories give a unified
picture of some of the most important homology theories which originally had rather di↵erent
constructions. To formulate the result let me remind the reader of the Postnikov tower of a
homology theory. As mentioned above one has a unified homotopy theoretic picture of homology
theories in terms of spectra S. Given a spectrum S and a topological space X one can consider
the stable homotopy groups ⇡n(S ^X), which form a homology theory. As with spaces one can
consider Postnikov towers of spectra. This is given by spectra Sk together with a map S ! Sk,
where one requires that all stable homotopy groups of Sk vanish above degree k and the map
induces an isomorphism up to degree k.

If we consider for example the Thom spectrum MO which represents singular bordism, then
the 0-th stage of the Postnikov tower is a homology theory, which has coe�cients Z/2 in degree
0 and 0 in degree > 0. Thus this homology theory represents H⇤(X;Z/2).

Returning to our zoo, we consider some special cases. For a positive integer k we consider
the set Ak := N� {1, ..., k}. For k = 1 we define A1 = {0}. Then for n  k an n-dimensional
Ak-stratifold is the same as a smooth manifold and so for n < k the bordism group NAk

n is equal
to the bordism group of manifolds Nk. In particular for k = 1 the bordism groups NA1

⇤ (X)
are equal to the bordism group of smooth manifolds N⇤(X). On the other hand for n � k the
group is zero, since the cone over such a stratifold is a null bordism (the cone point is a stratum
of codimension n + 1 > k). This implies that for k = 1 the coe�cients NA1

⇤ are Z/2 in degree
0 and 0 else. Thus by the characterization of ordinary homology by the Eilenberg-Steerond
Axioms (which include the dimension axiom) NA1

⇤ (X) is equivalent to H⇤(X;Z/2) for X a
CW -complex. But since all p-stratifolds are homotopy equivalent to CW -complexes (all smooth
manifolds with boundary are relative CW -complexes and a p-stratifold is inductively obtained
by attaching smooth manifolds) this implies that the same holds for arbitrary topological spaces
(exercise) and we have shown:

Theorem 4. The homology theory NAk
⇤ is equivalent to the homology theory given by the k-stage

of the Postnikov tower of the Thom spectrum MO. In particular

NA1
⇤ (X) is equivalent to H⇤(X;Z/2), and NA1

⇤ (X) = N⇤(X).

This is a good place to remark that the same result is not true if we use regular stratifolds
instead of p-stratifolds. Then one also obtains homology theories. But although for A1 both
theories have the same coe�cients, the theory based on regular stratifolds is only for CW -
complexes equivalent to ordinary singular homology with Z/2 coe�cients. For more general
spaces this is not true, for example for 1-point compactifications of non-compact manifolds the
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theory is in general di↵erent (see [4], page 187; the argument there for integral homology works
also for Z/2-homology).

We finish this note with a potential application of our theories to the Gri�ths group. As
mentioned before, one can add more structure to the strata of an A-stratifold. If we distinguish
a stable almost complex structure on all strata (there is no compatibility between the structures
on the di↵erent strata) we call the corresponding homology theory UA

⇤ (X).

In the discussion above, one obtains similar statements if one replaces non-oriented bordism
by unitary bordism U⇤(X), MO by MU and Hk(X;Z/2) by Hk(X;Z).

Now, we consider the special case of an A-homology theory for Aeven-stratifolds with stable
almost complex strata, where Aeven consists of the set of even natural numbers. We have a
forgetful transformation (replace Aeven by N� {1} and use the orientation given by the almost
complex structure to obtain an element in integral homology)

' : UAeven
2r (X) ! H2r(X;Z).

Question: What are the image and kernel of '?

This might be useful in connection with the Gri�ths group consisting of the kernel of the
natural transformation H : Z⇤

algX ! H⇤(X;Z) (the letter H stands for Hodge), whereX is a non-
singular complex algebraic variety and Z⇤

algX is the ring of cycles modulo algebraic equivalence
on X. For simplicity we assume that X is compact, so that Poincaré duality holds and we can
consider the corresponding map in homology Zalg

⇤ X ! H⇤(X, ;Z). Totaro [6] has constructed a
canonical lift of this transformation over U⇤(X)⌦U⇤ Z. We will construct another lift.

Since a complex algebraic variety is in a natural way an Aeven p-stratifold [3], we obtain a
transformation

Zalg
⇤ X ! UAeven

⇤ (X).

If we compose this with the transformation given by the forgetful map ' above, the composition
of these two transformations is the Poincaré dual of the transformation H : Z⇤

algX ! H⇤(X;Z).
Thus one might try to do the same as Totaro did, to find elements in the kernel of

UAeven
⇤ (X) ! H⇤(X;Z)

which are in the image of Zalg
⇤ X ! UAeven

⇤ (X). Unfortunately we have nothing to say about this
at the moment. The reason why our lift might be interesting is that in contrast to U⇤(X)⌦U⇤ Z
our theory UAeven

⇤ (X) is a homology theory, which might be a useful fact. On the other hand a
computation of UAeven

⇤ (X) is probably very hard.
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Abstract. A real morsification of a real plane curve singularity is a real deformation given
by a family of real analytic functions having only real Morse critical points with all saddles on
the zero level. We prove the existence of real morsifications for real plane curve singularities
having arbitrary real local branches and pairs of complex conjugate branches satisfying some
conditions. This was known before only in the case of all local branches being real (A’Campo,
Gusein-Zade). We also discuss a relation between real morsifications and the topology of sin-
gularities, extending to arbitrary real morsifications the Balke-Kaenders theorem, which states
that the A’Campo–Gusein-Zade diagram associated to a morsification uniquely determines the
topological type of a singularity.

Introduction

By a singularity we always mean a germ (C, z) ⇢ C2 of a plane reduced analytic curve at its
singular point z. Irreducible components of the germ (C, z) are called branches of (C, z). Let
f(x, y) = 0 be an (analytic) equation of (C, z), where f is defined in the closed ball B(z, ") ⇢ C2

of radius " > 0 centered at z. The ball B(z, ") is called the Milnor ball of (C, z) (and is
denoted in the sequel BC,z) if z is the only singular point of C in B(z, "), and @B(z, ⌘) intersects
C transversally for all 0 < ⌘  ". A nodal deformation of a singularity (C, z) is a family of
analytic curves Ct = {ft(x, y) = 0}, where ft(x, y) is analytic in x, y, t for (x, y) 2 B(C, z) and
t varying in an open disc D⇣ ⇢ C of some radius ⇣ > 0 centered at zero, and where C0 = C, Ct

is smooth along @BC,z, intersects @BC,z trasversally for all t 2 D⇣ , for any t 6= 0, the curve Ct

has only ordinary nodes in BC,z, and the number of nodes does not depend on t. The maximal
number of nodes in a nodal deformation of (C, z) in B equals �(C, z), the �-invariant (see, for
instance, [17, §10]).

Let (C, z) be a real singularity, i.e., invariant with respect to the complex conjugation, z 2 C

its real singular point. Denote by ReBr(C, z), ImBr(C, z) the numbers of real branches and the
pairs of complex conjugate branches centered at z, respectively. Let Ct = {ft(x, y) = 0}, t 2 D⇣ ,
be an equivariant1 nodal deformation of a real singularity (C, z). Its restriction to t 2 [0, ⇣) is
called a real nodal deformation. A real nodal deformation is called a real morsification of
(C, z) if each function ft, 0 < t < ⇣, has only real critical points in B(C, z), all critical points
are Morse, and all the saddle points have the zero critical level. Clearly, then all maxima have
positive critical values, and all minima negative ones.

The authors were supported by the grant no. 1174-197.6/2011 from the German-Israeli Foundations, by
the grant no. 176/15 from the Israeli Science Foundation, and by a grant from the Hermann-Minkowski-Minerva
Center for Geometry at Tel Aviv University. The authors are indebted to Sergey Fomin for prompting this research
and for many stimulating discussions and important suggestions. Special thanks are due to Ilya Tyomkin, who
pointed out a gap in the first version of the paper. We are also very thankful to the unknown referee for valuable
remarks and corrections.

1Here and further on, equivariant means commuting with the complex conjugation.
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N. A’Campo [1, 2, 4] and S. Gusein-Zade [15, 16] performed a foundational research on
this subject. In particular, they showed that real morsifications carry a lot of information on
singularities and allow one to compute such invariants as the monodromy and intersection form
in vanishing homology in a simple and e�cient way. However, some questions have remained
open, in particular:

Question: Does any real plane curve singularity admit a real morsification?

Our main result is a partial answer to this question. Before precise formulation, we should
mention that an a�rmative answer was given before in the case of all branches of (C, z) being
real (below referred to as a totally real singularity), see [1, Theorem 1]2 and [14, Theorem 4]
(see also [6, Section 4.3]). Notice that any topological type of a curve singularity is presented by
a totally real singularity, see [14, Theorem 3].

Now we give necessary definitions. A singularity is called Newton non-degenerate, if in
some local coordinates, it is strictly Newton non-degenerate, that is given by an equation
f(x, y) = 0 with a convenient Newton diagram at z = (0, 0) and such that the truncation of
f(x, y) to any edge of the Newton diagram is a quasihomogeneous polynomial without critical
points in (C⇤)2 (i.e., it has no multiple binomial factors). We say that a singularity (C, z) is
admissible along its tangent line L if the singularity (CL, z) formed by the union of the
branches of (C, z) tangent to L is as follows: (CL, z) is the union of a Newton non-degenerate
singularity with a singularity, whose all branches are smooth.

Theorem 1. Let (C, z) be a real singularity, T (C, z) = {z0 = z, z1, ...} the vertices of its minimal

resolution tree. For any zi 2 T (C, z) denote by (Ci, zi) the germ at zi of the corresponding strict

transform of (C, z). If, for any real point zi 2 T (C, z), the singularity (Ci, zi) is admissible along

each of its non-real tangent lines, then the real singularity (C, z) admits a real morsification.

Note that the case of totally real singularities is included, since then the restrictions asserted
in Theorem are empty. We illustrate the range of singularities covered by Theorem 1 with a few
examples.

Example 1. (1) Any quasihomogeneous (in real coordinates) singularity satisfies the hypotheses

of Theorem 1, and their morsifications can be constructed in the same manner as for the totally

real singularities even if the singularity contains complex conjugate branches, see Section 2.1.2.

(2) The simplest singularity satisfying the hypotheses of Theorem 1 and whose morsification

is constructed by a new method suggested in the present paper is a pair of transversal ordinary

cuspidal branches, given, for instance, by an equation (x2 + y
2)2 + x

5 = 0. The real part of

its morsification looks as shown in Figure 1. One can show that all possible morsifications are

isotopic to this one.

(3) The simplest singularity beyond the range of Theorem 1 is a pair of two transversal complex

conjugate branches of order 4 with two Puiseux pairs (2, 3) and (2, 7) (equivalently, with the

Puiseux characteristic exponents (4, 6, 7)), given, for instance, by an equation

((w2
+ � x

3)2 � x
5
w+)((w

2
� � x

3)2 � x
5
w�) = 0, w± = y ± x

p
�1 .

On the other hand, a singularity consisting of a pair of complex conjugate branches with the

same Puiseux pairs (2, 3), (2, 7) as above, but having a common real tangent does satisfy the

hypotheses of Theorem 1, since after one blow up it turns into a singularity with two complex

conjugate branches having only one Puiseux pair.

We believe that the following holds:

2As pointed to us by S. Gusein-Zade, there is a gap in the proof of [1, Theorem 1]: namely, the function in
[1, Formula (1) in page 12] does not possess the claimed properties.
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Figure 1. Morsification of a pair of complex conjugate cuspidal branches

Conjecture 1. Any real plane curve singularity possesses a real morsification.

In the proof of Theorem 1 presented in Section 2, we combine a relatively elementary inductive
blow-up construction in the spirit of [1] with the patchworking construction as appears in [20, 21]
and some explicit formulas for real morsifications of pairs of complex conjugate smooth branches
and pairs of branches of topological type xp+y

q = 0, (p, q) = 1. We expect that suitable formulas
for real morsifications of pairs of complex conjugate branches with several Puiseux pairs would
lead to a complete solution of the existence problem of real morsifications.

A real morsification of a totally real singularity yields a so-called A’Campo-Gusein-Zade
diagram, which uniquely determines the topological type of the singular point, as shown by
L. Balke and R. Kaenders [7, Theorem 2.5 and Corollary 2.6]. In Section 4, we extend this result
to morsifications of arbitrary real singularities.

1. Elementary geometry of real morsifications

For the reader’s convenience, we present here few simple and in fact known claims on morsi-
fications. In what follows we consider only real singularities.

Recall that a real node of a real curve can be either hyperbolic or elliptic, that is, analytically
equivalent over R either to x

2�y
2 = 0, or x2+y

2 = 0, respectively. For a real nodal deformation
Ct = {ft(x, y) = 0}, 0  t < ⇣, the saddle critical points of ft on the zero level correspond to
real hyperbolic nodes of Ct and vice versa.

Lemma 2. The number of hyperbolic nodes in any real nodal deformation Ct, 0  t < ⇣, of

(C, z) does not exceed �(C, z)� ImBr(C, z).

Proof. As we noticed in Introduction, the maximal number of nodes in a nodal deformation of a
singularity (C, z) is the �-invariant �(C, z). In a real nodal deformation, a pair Q,Q of complex
conjugate branches either glues up into one surface immersed into B(C, z) thus reducing the
total number of nodes by at least one, or Q and Q do not glue up to each other and to other
branches and then their intersection points are either complex conjugate nodes or real elliptic
nodes, and, at last, if Q and Q do not glue up to each other, but glue up to some other branches
of (C, z), we loose at least two nodes. So, the bound follows. ⇤

The following lemma is a version of [1, Lemma 4 and Theorem 3]. Let Ct, 0  t < ⇣, be
a a real morsification of a real singularity (C, z). The sets RCt, 0 < t < ⇣, are isotopic in
the disc RBC,z. Each of them is called a divide of the given morsification (more information
on divides see in Section 4.1). Given a divide D ⇢ RBC,z of a real morsification of the real
singularity (C, z), the connected components of RBC,z \D disjoint from @RBC,z are called inner



310 PETER LEVIANT AND EUGENII SHUSTIN

components. Denote by I(D) the union of the closures of the inner components of RBC,z \ D

(called body of the divide in [3]).

Lemma 3. Let D = RCt be a divide of a real morsification of a real singularity (C, z). Then

(i) if (C, z) is not a hyperbolic node then I(D) is non-empty, connected, and simply con-

nected;

(ii) D has �(C, z)� ImBr(C, z) singularities, which are hyperbolic nodes of Ct;

(iii) each inner component of RBC,z \D is homeomorphic to an open disc;

(iv) the number h(C, z) of the inner components of RBC,z \D does not depend on the mor-

sification and satisfies the relation

h(C, z) + �(C, z)� ImBr(C, z) = µ(C, z) ,

µ(C, z) being the Milnor number.

Proof. In claim (i) suppose that I(D) is not connected. Then the associated Coxeter-Dynkin
diagram of the singularity (C, z) constructed in [15] (see also [16, §3]) appears to be disconnected
contrary to the fact that it is always connected [12, 14]. Furthermore, I(D) is simply connected
since is has no holes by construction.

Statements (ii)-(iv) follow from claim (i), from the bound

#Sing(D)  �(C, z)� ImBr(C, z)

of Lemma 2, from the Milnor formula [17, Theorem 10.5]

µ(C, z) = 2�(C, z)� ReBr(C, z)� 2ImBr(C, z) + 1 ,

from the fact that each inner component of RBC,z \D contains a critical point of the function
ft(x, y), and hence

h(C, z) + �(C, z)� ImBr(C, z)  µ(C, z) ,

and from the calculation of the Euler characteristic of I(D)

h(C, z)� (2 ·#Sing(D)� ReBr(C, z)) + #Sing(D) � 1.

⇤

Remark 4. In fact, one could equivalently define real morsifications as real nodal deformations

having precisely �(C, z)� ImBr(C, z) hyperbolic nodes as their only singularities.

Lemma 5. Given a real morsification Ct, 0  t < ⇣, of a real singularity (C, z),

• any real branch P of (C, z) does not glue up with other branches and deforms into a

family of immersed discs Pt, t > 0, whose real point sets RPt ⇢ RBC,z are immersed

segments with �(P ) selfintersetions and endpoints on @RBC,z;

• any pair of complex conjugate branches Q,Q of (C, z) do not glue up to other branches,

but glue up to each other so that they deform into a family of immersed cylinders Qt,

t > 0, with the real point set RQt ⇢ RBC,z being an immersed circle disjoint from

@B(C, z) and having �(Q [Q)� 1 = 2�(Q) + (Q ·Q)� 1 selfintersections (here (Q ·Q)
denotes the intersection number);

• for any two real branches P
0
, P

00
, the intersection RP 0

t \RP 00
t , t > 0, consists of (P 0 ·P 00)

points;

• for any real branch P and a pair of complex conjugate branches Q,Q, the intersection

RPt \ RQt, t > 0, consists of 2(P ·Q) points;

• for any two pairs of complex conjugate branches Q
0
, Q

0
and Q

00
, Q

00
, the intersection

RQ0
t \ RQ00

t , t > 0, consists of 2(Q0 ·Q00) + 2(Q0 ·Q00
) points.
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(a) (b)

Figure 2. Non-partitions

Proof. Straightforward from Lemmas 2 and 3. ⇤

Lemma 6. Let (C1, z), (C2, z) be two real singularities without branches in common. If the real

singularity (C1 [C2, z) possesses a real morsification, then each of the real singularities (C1, z),
(C2, z) possesses a real morsification too.

Proof. Straightforward from Lemma 5. ⇤

Given a divide D of a real morsification of a real singularity (C, z), it follows from Lemma
3 that I(D) possesses a cellular decomposition into Sing(D) as vertices, the components of
D \Sing(D), disjoint from @RBC,z, as the 1-cells, and the inner components of RBC,z \D as the
2-cells. Following [1, §1], we say that the given real morsification defines a partition, if, in the
above cellular decomposition of I(D), the intersection of the closures of any two 2-cells is either
empty, or a vertex, or the closure of a 1-cell.

This property was assumed in the Balke-Kaenders theorem [7, Theorem 2.5 and Corollary
2.6] about the recovery of the topological type of a singularity out of the A’Campo-Gusein-Zade
diagram. In fact, this assumption is not needed (see Section 4). Here we just notice the following:

Lemma 7. There are real morsifications that do not define a partition.

Proof. For the proof, we present two simple examples: Figure 2(a) shows a real morsification of
the singularity (y2 + x

3)(y2 + 2x3) = 0 (two cooriented real cuspidal branches with a common
tangent), while Figure 2(b) shows a real morsification of the real singularity

(y2 � x
4)(y2 � 2x4) = 0

(four real smooth branches quadratically tangent to each other). A construction is elementary.
For example, the morsification shown in Figure 2(a) can be defined by

(y2 + x
2(x� "1(t)))(y

2 + 2(x� "2(t))
2(x� "3(t))) = 0 ,

where 0 < "2(t) < "3(t)⌧ "1(t)⌧ 1. ⇤
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2. Existence of real morsifications

2.1. Blow-up construction. Let us recall that the multiplicity of a singularity (C, z), resp. of
a branch P , is the intersection numbers mt(C, z) = (C · L)z, resp. (P · L)z with a generic line
L through z. Recall that the proper transform of (C, z) under the blowing up of z consists of
several germs (C⇤

i , zi) with zi being distinct points on the exceptional divisor E associated with
distinct tangents to (C, z). It is know that (see, for instance, [13, Page 185 and Proposition
3.34])

(1) �(C, z) =
X

i

�(C⇤
i , zi) +

mt(C, z)(mt(C, z)� 1)

2
, mt(C, z) =

X

i

(C⇤
i · E)zi .

2.1.1. The totally real singularities. The existence of real morsifications for totally real singular-
ities was proved in [1, Theorem 1]. We present here a proof (similar to the A’Campo’s one) in
order to be self-contained and to use elements of that proof in the general case.

(1) Consider, first, the case of a totally real singularity (C, z) whose all branches are smooth.
We proceed by induction on the maximal �-invariant �1(C, z) of the union of any subset of
branches tangent to each other.

The base of induction, �1(C, z) = 0, corresponds to the union of d � 2 smooth branches with
distinct tangents. Here �(C, z) = d(d � 1)/2, and we construct a real morsification by shifting
the branches to a general position.

Assuming that �1(C, z) > 0 in the induction step, we blow up the point z into an exceptional
divisor E. The strict transform of (C, z) splits into components (C⇤

i , zi), zi 2 RE, corresponding
to di↵erent tangents of (C, z). Notice that E is transversal to all branches of (C⇤

i , zi), and hence
�1(C⇤

i [ E, zi) < �1(C, z) for all i (cf. (1)). Then we construct real morsifications of each real
singularity (C⇤

i [ E, zi) in which the germs (E, zi) stay fixed (in view of Lemma 5 these germs
do not glue up with other branches, and hence can be kept fixed by suitable local equivariant
di↵eomorphisms). Thus, we get the union of real curves (C⇤

i )
+ in neighborhoods of zi, having

X

i

�(C⇤
i , zi) = �(C, z)� mt(C, z) · (mt(C, z)� 1)

2

real hyperbolic nodes and mt(C, z) real intersetion points with E. Then we blow down E and

obtain a deformation whose elements have �(C, z) � mt(C,z)·(mt(C,z)�1)
2 real hyperbolic nodes

and a point of transversal intersection of mt(C, z) smooth branches. Deforming the latter real
singularity, we complete the construction of a real morsification.

(2) Now we prove the existence of real morsifications for arbitrary totally real singularities,
using induction on �2(C, z), the �-invariant of the union of all singular branches of (C, z). The
preceding consideration serves as the base of induction. The induction step is very similar: we
blow up the point z and notice that

P
i�2(C⇤

i [ E, zi) < �2(C, z); then proceed as in the
preceding paragraph.

2.1.2. Semiquasihomogeneous singularities. The same blow-up construction of real morsifica-
tions works well in the important particular case of semiquasihomogeneous singularities. Let

F (x, y) =
X

pi+qj=pq

aijx
i
y
j

be a real square-free quasihomogeneous polynomial, where 1  p  q. Then

(C, z) =
�
F (x, y) +

X

pi+qj>pq

aijx
i
y
j = 0
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is called a real semiquasihomogeneous singularity of type (p, q). This real singularity has
d = gcd(p, q) branches, among which we allow complex conjugate pairs.

(1) A semiquasihomogeneous singularity of type (p, p) is just the union of smooth transversal
branches. If they all are real the existence of a real morsification is proved in Section 2.1.1. Thus,
suppose that F (x, y) splits into the product F1(x, y) of real linear forms and the product F2(x, y)
of positive definite quadratic forms qi(x, y), 1  i  k, k � 1. The forms qi are not proportional
to each other, and there are bi > 0, i = 1, ..., k, such that any two quadrics qi � bi = 0 and
qj � bj = 0, 1  i < j  k, intersect in four real points, and all their intersection points are
distinct. So, we obtain a real morsification by deforming (C, z) in the family

F (x, y, t) = F1(x, y)
kY

i=1

(qi(x, y)� bit), 0  t⌧ 1 ,

and then by shifting each of the lines defined by F1 = 0 to a general position.

(2) Let (C, z) be a real semiquasihomogeneous singularity of type (p, q), 2  p < q. We
simultaneously prove the existence of real morsifications of (C, z) and of the following additional
singularities:

(f1) (C[L, z), where L is a real line intersecting (C, z) at z with multiplicity p (i.e. transver-
sally) or q (tangent);

(f2) (C [L1 [L2, z), where a real line L1 intersects (C, z) with multiplicity p and a real line
L2 6= L1 intersects (C, z) at z with multiplicity p or q.

We proceed by induction on �(C, z). The base of induction, �(C, z) = 1, corresponds to p = 2,
q = 3, that is, an ordinary cusp. Here (C, z), (C [ L, z), and (C [ L1 [ L2, z) are totally real,
hence possess a real morsification. Suppose that �(C, z) > 1, blow up the point z, and consider
the union of the strict transform of the studied singularity with the exceptional divisor E. Notice
that the strict transform of a real semiquasihomogeneous singularity of type (p, q) is also a real
semiquasihomogeneous singularity either of type (p, q�p) if 2p  q, or of type (q�p, p) if 2p > q,
and in both cases it intersects E with multiplicity p. It is easy to see that the strict transform
of singularities of the form (f1) and (f2) with added E is again a real singularity of one of these
forms with parameters (p, q�p) or (q�p, p) and, may be, an extra real node. We then complete
the proof as in Section 2.1.1.

2.2. Singularities without real tangents. The constructions of morsifications presented in
this section is the mein novelty of the present paper. In the case of singularities with only
smooth branches, Lemma 8 presents a rather simple direct formula for the morsification. In
the case of non-smooth branches with one Puiseux pair (Lemma 9 below), we apply an ad hoc
deformation argument (a kind of the pathchworking construction). The geometric background for
this argument is as follows. We extend the pair (C2

, (C, z)) to a trivial family (C2
, (C, z))⇥(C, 0),

then blow up the point z 2 C2 ⇥ {0}. The central fiber of the new family is the union of the
blown-up plane C2

1 and the exceptional divisor E ' P2. The germ (C, z) yields in P2 a real
conic C2 with multiplicity p � 2 that intersects the line C2

1 \ E in two imaginary points. Our
deformation gives an inscribed equivariant family of curve germs, whose real part appears to be
a deformation of the above p-multiple conic C2.

2.2.1. The case of one pair of complex conjugate tangents. Let a real singularity (C, z) have ex-
actly two tangent lines, and they are complex conjugate. In suitable local equivariant coordinates
x, y in BC,z, we have z = (0, 0), and the tangent lines are

L = {x+ (↵+ �
p
�1)y = 0}, L = {x+ (↵� �

p
�1)y = 0} ,

where ↵,� 2 R, � 6= 0.
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Denote by (Ci, z), i = 1, ..., s, the branches of (C, z) tangent to L; respectively (Ci, z),
i = 1, ..., s, are the branches of (C, z) tangent to L. Introduce the new coordinates

w = x+ (↵+ �
p
�1)y, bw = x+ (↵� �

p
�1)y .

Notice that bw = w if x, y 2 R. We also will use for R2 \ {0} the coordinates ⇢ > 0, ✓ 2 R/2⇡Z
such that

(2) x+ ↵y = ⇢ cos ✓, �y = ⇢ sin ✓, ⇢ =
p
w bw .

Lemma 8. Let (C, z) have only smooth branches. Then (C, z) possesses a real morsification.

Proof. A branch (Ci, z), 1  i  s, has an analytic equation

bw =
X

n2Ii

ainw
n
, Ii ⇢ {n 2 Z : n > 1}, ain 2 C⇤ as n 2 Ii .

Correspondingly, (Ci, z) is given by w =
P

n2Ii
ain bwn. We claim that the equation

(3) Ft(w, bw) :=
sY

i=1

(�i(w, bw)� t
2) = 0, 0  t < ⇣ ,

defines a real morsification of (C, z), where

�i(w, bw) =
 
bw �

X

n2Ii

ainw
n

! 
w �

X

n2Ii

ain bwn

!

and ⇣ > 0 is su�ciently small. First, Ft(w, bw) (the left-hand side of (3)) is an analytic function
in w, bw and t. A separate factor in Ft(w, bw) is

�i(w, bw)� t
2 = w bw � t

2 +
X

n2Ii

|ain|2(w bw)n �
X

n2I1

(ainw
n+1 + ain bwn+1)

+2
X

n1<n2
n1,n22Ii

(w bw)n1(ain1ain2w
n2�n1 + ain1ain2 bwn2�n1) .

Restricting the equation �i(w, bw) to RBC,z (in coordinates x, y), passing in R2 \ {0} to coordi-
nates ⇢ > 0, ✓ 2 R/2⇡Z defined via (2, and rescaling by substitution of t⇢ for ⇢, we obtain a
family of curves depending on the parameter 0  t < ⇣

 i,t := ⇢
2 � 1 +

X

n2Ii

t
2n�2|ain|2⇢2n � 2

X

n2Ii

t
n�1|ain|⇢n+1 cos((n+ 1)✓ � ✓in)

+ 2
X

n1<n2
n1,n22Ii

t
n1+n2�2|ain1ain2 |⇢n1+n2 cos((n2 � n1)✓ + ✓in1 � ✓in2) = 0 ,

where ain = |ain| exp(
p
�1✓in), n 2 Ii. It is easy to see that each of them a circle embedded into

an annulus {|⇢�1| < Kt} ⇢ R2 withK > 0 a constant determined by the given singularity (C, z),
and, furthermore, the normal projection of each curve to the circle ⇢ = 1 is a di↵eomorphism.
Let 1  i < j  s. Set

nij = min{n 2 Ii [ Ij : ainij 6= ajnij} .

Note that nij = (Ci · Cj), the intersection number of branches Ci, Cj . On the other hand,

 i,t(⇢, ✓)� j,t(⇢, ✓) = 2tnij�1|ainij � ajnij |⇢nij+1 cos((nij + 1)✓ � ✓ij,nij ) +O(tnij ) ,
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where ✓ij,nij 2 R/2⇡Z, and hence, for a su�ciently small t > 0, the curves  i,t = 0 and  j,t = 0
intersect transversally in 2nij + 2 points. In total, we obtain

2
X

1i<js

(nij + 1) = 2
X

1i<js

(Ci · Cj) + s
2 � s = �(C, z)� ImBr(C, z)

hyperbolic nodes as required for a real morsification. ⇤

Lemma 9. Let the singularity (CL, z) be formed by a pair of branches of topological type

x
p + y

q = 0, 2  p < q, (p, q) = 1,

that are tangent to L and L respectively. Then (C, z) possesses a real morsification.

Proof. (1) We start with the very special case of (C, z) given by

(4) F (w, bw) = w
p bwp � a bwp+q � aw

p+q = 0, a 2 C⇤
.

Denote by P (�) = �
p + b

(0)
p�2�

p�2 + ... + b
(0)
0 2 R[�] the monic polynomial of degree p having⇥p

2

⇤
critical points on the level �2|a| and

⇥p�1
2

⇤
critical points on the level 2|a|, whose roots sum

up to zero (a kind of the p-th Chebyshev polynomial). We claim that there exist real functions

b0(t), ..., bp�2(t), analytic in t
1
p such that bi(0) = b

(0)
i , 0  i  p� 2, and the family

(5) Ft(w, bw) = (w bw � t
2)p +

0X

i=p�2

t
(p�i)(p+q)

p bi(t)(w bw � t
2)i � a bwp+q � aw

p+q = 0 ,

0  t < ⇣ ,

is a real morsification of (C, z). To prove this, we rescale the latter equation by substituting
(tw, t bw) for (w, bw) and restrict our attention to RBC,z passing to the coordinates ⇢, ✓ in (2):

(⇢2 � 1)p +
0X

i=p�2

t
(p�i)(q�p)

p bi(t)(⇢
2 � 1)i � 2|a|⇢p+q cos((p+ q)✓ � ✓a) = 0 ,

where a = |a| exp(
p
�1✓a). Next, we substitute ⇢

2 = 1 + t
q�p
p � and come to

(6) (1 + t
q�p
p �)�(p+q)/2

0

@�
p +

0X

i=p�2

bi(t)�
i

1

A = 2|a| cos((p+ q)✓ � ✓a) .

Finally, we recover the unknown functions bp�2(t), ..., b0(t) from the following conditions.
Let P (�) > 3|a| as |�| > �0. Suppose that |�|  �0 and that t is small so that the function of

�

Pt(�) := (1 + t
q�p
p �)�(p+q)/2

0

@�
p +

0X

i=p�2

bi(t)�
i

1

A

has simple critical points µ1(t), ..., µp�1(t) arranged in the growing order and respectively close

to the critical points µ(0)
1 , ..., µ

(0)
p�1 of P (�). So, we require

(7) Pt(µi(t)) = (�1)i · 2|a|, i = 1, ..., p� 1 .

These conditions hold true for t = 0 by construction, and we only need to verify that the
Jacobian with respect to µ1, ..., µp�1 does not vanish. To this end, we observe that there exists a

di↵eomorphism of a neighborhood of the point (µ(0)
1 , ..., µ

(0)
p�1) 2 Rp�1 onto a neighborhood of the

point (b(0)p�2, ..., b
(0)
0 ) 2 Rp�1 sending the critical points of a polynomial �p + ebp�2�

p�2 + ...+ eb0
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to its coe�cients. Then the Jacobian of the left-hand side of the system (7) with respect to
µ1, ..., µp�1 at t = 0 turns to be

det

✓
(µ(0)

i )j
@bj

@µi

���
t=0

◆j=0,...,p�2

i=1,...,p�1

= ±
Y

1i<jp�1

(µ(0)
i � µ

(0)
j ) · det D(ebp�2, ...,

eb0)
D(µ1, ..., µp�1)

��
t=0

6= 0 .

It follows from (7) that, for any ✓ 2 R/2⇡Z, the equation (6) on � has p real solutions (counting
multiplicities) in the interval |�| < �0, and we have exactly (p� 1)(p+ q) = �(C, z)� ImBr(C, z)
double roots as

� = µ2i�1(t), cos((p+ q)✓ � ✓a) = �1, 1  i  p

2
,

or

� = µ2i(t), cos((p+ q)✓ � ✓a) = 1, 1  i  p� 1

2
.

That is, family (5) indeed describes a real morsification of (C, z).

Note, that the real curve {Ft = 0} ⇢ RBC,z is an immersed circle lying in the �0t
p+q
p -

neighborhood of the ellipse ⇢ = t and transversally intersecting in 2p points (counting multiplic-
ities) with each real line through the origin.

(2) Consider the general case. By a coordinate change

(w, bw) 7!

0

@w +
X

i�2

↵i bwi
, bw +

X

i�2

↵iw
i

1

A

one can bring (C, z) to a strictly Newton non-degenerate form with the Newton diagram

�(F ) = [(p+ q, 0), p, p)] [ [(p, p), (0, p+ q)]

in the coordinates w, bw (see Figure 3(a)), and with an equation

F (w, bw) = (w bw)p � a bwp+q � aw
p+q +

X

pi+qj>p(p+q)
qi+pj>p(p+q)

aijw
i bwj = 0 ,

where a 2 C⇤ and aij = aji for all i, j (cf. (5)). We construct a real morsification of (C, z)
combining the result of the preceding step with the patchworking construction as developed in
[21, Section 2].

Denote by �(F ) the Newton polygon of F (w, ew) and divide the domain under �(F ) by the
segment [(0, 0), (p, p)] into two triangles T1, T2 (see Figure 3(b)). So, �(F ), T1, and T2 form

a convex subdivision of the convex polygon ‹�(F ) = Conv(�(F ) [ {(0, 0)}), i.e., there exists a

convex piecewise linear function ⌫ : ‹�(F )! R taking integral values at integral points and whose
linearity domains are �(F ), T1, and T2. The overgraph Graph+(⌫) of ⌫ is a three-dimensional
convex lattice polytope, and we have a natural morphism Tor(Graph+(⌫))! C whose fibers for

t 2 C⇤ are isomorphic to Tor(e(F )), and the central fiber is the union

Tor(�(F )) [ Tor(T1) [ Tor(T2).

In the toric surface Tor(�(F )), we have a curve C = {F (w, bw) = 0}, in the toric surfaces Tor(T1)
and Tor(T2), we define curves

R1 = {(w bw � 1)p � aw
p+q = 0} and R2 = {(w bw � 1)p � a bw = 0} ,

respectively. The complex conjugation interchanges the pairs (Tor(T1), R1) and (Tor(T2), R2).
Note that R1, R2 transversally intersect the toric divisors

Tor([(p, p), (p+ q, 0)]) and Tor([(p, p), (0, p+ q)])
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Figure 3. Patchworking a real morsification

in the same points as C. Furthermore, R1, R2 are rational curves intersecting the toric divisor
Tor([(0, 0), (p, p)] = Tor(T1) \ Tor(T2) in the same point z1, where each of them has a singular
point of topological type x

p + y
p+q = 0. To apply the patchworking statement of [21, Theorem

2.8], we perform the weighted blow up X! Tor(Graph+(⌫)) of the point z1 with the exceptional
divisor E = Tor(T ), T = Conv{(p, 0), (0, p+ q), (0,�p� q)} (see [21, Figure 1]) being a part of
the central fiber of X! C.

One can view this blow up via the refinement procedure developed in [20, Section 3.5]. Namely,
we perform the toric coordinate change u = w bw, v = w

�1, transforming the triangles T1, T2

to T
0
1, T

0
2 as shown in Figure 3(c), and respectively transforming the curves R1, R2 and the

function ⌫. Note that this coordinate change defines an automorphism of the punctures real
plane R2 \ {0}. Next we perform another coordinate change u = u1 + 1, v = v1, bringing
the singular points of R1, R2 to the origin and transforming their Newton triangles T

0
1, T

0
2 into

the edge T
00
1 = [(p, 0), (0,�p � q)] and the triangle T

00
2 = Conv{(0, p + q), (p, 0), (p + q, p + q)},

respectively (see Figure 3(d)). The triangle T = Conv{(0,�p� q), (0, p+ q), (p, 0)} corresponds
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to the exceptional surface, in which we have to define a real curve by an equation with Newton
triangle T , having the coe�cients at the vertices determined by the equations of R1 and R2 and
having (p� 1)(p+ q) = �(C, z)� ImBr(C, z) real hyperbolic nodes. We just borrow the required
curve from the special example studied in the first step. Namely, we do the above transformations
with the data given by (4), and arrive at the curve given by a polynomial having coe�cient a

at (0, p + q), coe�cient a at (0,�p � q), coe�cient 1 at (p, 0), and coe�cients b
(0)
i at (i, 0),

i = 0, ..., p� 2.
To apply [21, Theorem 2.8], we have to verify the following transversality conditions:

• for i = 1, 2, the germ at Ri of the family of curves on the surface Tor(Ti) in the tauto-
logical linear system that have a singularity of the topological type x

p + y
p+q = 0 in a

fixed position, is smooth of expected dimension;
• the germ at R of the family of curves on the surface Tor(T ) in the tautological linear
system that intersect the toric divisors Tor([(0,�p�q), (p, 0)]) and Tor([(p, 0), (0, p+q)])
in fixed points and have (p� 1)(p+ q) nodes, is smooth of expected dimension.

Both conditions are particular cases of the S-transvesality property, and they follow from the
criterion in [19, Theorem 4.1(1)]. In the former case, one needs the inequality �RiKi > b, where
Ki is the canonical divisor of the surface Tor(Ti), and b a topological invariant of the singularity
defined by

b(xp + y
p+q = 0) =

(
p+ (p+ q)� 1, if q 6⌘ 1 mod p,

p+ (p+ q)� 2, if q ⌘ 1 mod p

and the inequality holds, since �RiKi = p + (p + q) + 1. In the latter case, one needs the
inequality

R · Tor([(0, p+ q), (0,�p� q)]) > 0

(nodes do not count in the criterion), which evidently holds.
Thus, [21, Theorem 2.8] yields the existence of an analytic equivariant deformation of F (w, bw)

defining in RBC,z curves with (p� 1)(p+ q) = �(C, z)� ImBr(C, z) hyperbolic nodes. ⇤
Lemma 10. Let a real singularity (C, z) with exactly two tangent lines L,L be admissible along

its tangent lines. Then (C, z) possesses a real morsification.

Proof. We apply construction presented in the proof of Lemmas 8 and 9 for the bunch of smooth
branches a nd for pairs of singular complex conjugate branches separately, and we shall show
that, for any two pairs (C1, C1), (C2, C2) of complex conjugate branches of (C, z), their divides
intersect in 2(C1 · C2) + 2mtC1 ·mtC2 (real) points.

For C1, C2 smooth this follows from Lemma 8. In other situations, we can assume that C1[C2

(and C1 [ C2) form a strictly Newton non-degenerate singularity so that C1 os of topological
type x

p + y
q = 0 with 2  p < q, (p, q) = 1, and C2 is of topological type x

p0
+ y

q0 = 0 with
1  p

0
< q

0, (p0, q0) = 1.
If q/p = q

0
/p

0, then p = p
0, q = q

0, and hence C1 [ C1 and C2 [ C2 are given by

F (w, bw) = (w bw)p � a bwp+q � aw
p+q +

X

pi+qj>p(p+q)
qi+pj>p(p+q)

aijw
i bwj = 0 ,

and
F

0(w, bw) = (w bw)p � a
0 bwp+q � a

0
w

p+q +
X

pi+qj>p(p+q)
qi+pj>p(p+q)

a
0
ijw

i bwj = 0 ,

respectively, where a, a
0
, a � a

0 2 C⇤. The patchworking construction in the second step of the
proof of Lemma 9 can be applied to both the pairs of the branches simultaneously, and the
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considered question on the intersection of the divides reduces then to the intersection of the
curves R,R

0 in the toric surface Tor(T ), T = Conv{(0,�p� q), (p, 0), (0, p+ q)}. The real parts
RR,RR0 of these curves, in suitable coordinates � > 0, ✓ 2 R/2⇡Z are given by

�
p +

0X

i=p�2

b
(0)
i �

i = 2|a| cos((p+ q)✓ � ✓a), �
p +

0X

i=p�2

b
(0)
i �

i = 2|a0| cos((p+ q)✓ � ✓a0) ,

respectively. The number of their (real) intersection points is p times the number of solutions of
the equation

|a| cos((p+ q)✓ � ✓a) = |a0| cos((p+ q)✓ � ✓a0), ✓ 2 R/2⇡Z .

The latter number is 2(p+ q), and hence the total number of intersection points is

2p(p+ q) = 2pq + 2p2 = 2(C1 · C2) + 2mtC1 ·mtC2

as required.
Suppose that ⌧ = q0

p0 � q
p > 0. Then C1 [ C1 and C2 [ C2 are given by

F (w, bw) = (w bw)p � a bwp+q � aw
p+q +

X

pi+qj>p(p+q)
qi+pj>p(p+q)

aijw
i bwj = 0 ,

and
F

0(w, bw) = (w bw)p
0
� a

0 bwp0+q0 � a
0
w

p0+q0 +
X

p0i+q0j>p0(p0+q0)
q0i+p0j>p0(p0+q0)

a
0
ijw

i bwj = 0 ,

respectively. Along the construction of Lemmas 8 and 9, we substitute in the above equations
(w bw � t

2)p for (w bw)p and (w bw � t
2)p

0
for w bw)p0

, respectively, then make the same rescaling
(w, bw) 7! (tw, t bw). Next, we pass to the real coordinates �, ✓ via

⇢
2 = w bw = 1 + t

q�p
p �, w = ⇢ exp(

p
�1✓), bw = ⇢ exp(�

p
�1✓) ,

(adapted to the pair p, q, not p0, q0 !). Then the real morsification of C1 [ C1 is given by

�
p +

0X

i=p�2

b
(0)
i �

i = 2|a| cos((p+ q)✓ � ✓a) +O(t
1
p ) ,

while the real morsification of C2 [ C2 is given by �
p0

= O(ttau). The divide of the real

morsification of C2 [ C2 is the circle immersed into the O(t
1
p0 )-neighborhood of the level line

� = 0 in the annulus {(�, ✓) 2 (��0,�0)⇥(R/2⇡Z)} so that the normal projection onto the circle
� = 0 is a p

0-fold covering. Hence, this divide intersects with the divide of the real morsification
of C1 [ C1 in 2p0(p+ q) = 2p0q + 2p0p = 2(C1 · C2) + 2mtC1 ·mtC2 real points.

The case of ⌧ = q
p �

q0

p0 < 0 can be considered in the same manner. ⇤

2.2.2. The case of several pairs of complex conjugate tangents. Suppose now that (C, z) has
r � 2 pairs of complex conjugate tangent lines

Li = {x+ (↵i + �i

p
�1)y = 0}, Li = {x+ (↵i � �i

p
�1)y = 0}, i = 1, ..., r ,

where ↵i,�i 2 R, �i 6= 0 for all i = 1, ..., r. Set

wi = x+ (↵i + �i

p
�1)y, bwi = x+ (↵i � �i

p
�1)y, i = 1, , , ., r .

Equations ⇢
2
i := wi bwi = const > 0, i = 1, ..., r, define distinct ellipses in R2, and there are

�1, ..., �r > 0 such that each two ellipses ⇢2i = �i, ⇢2j = �j , 1  i < j  r, intersect in four (real)
points, and all 2r(r � 1) intersection points are distinct.
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For any i = 1, ..., r, we introduce a real singularity (C(i)
, z) formed by the union of all the

branches of (C, z) tangent either to Li, or to Li, and then construct a real morsification of
(C(i)

, z) following the procedure of Section 2.2.1, in which t should be replaced by t
p
�i. For a

given t > 0, the divide of this morsification lies in O(t>2)-neighborhood of the ellipse ⇢
2
i = �it

2,
and it is the union of several immersed circles so that the normal projection onto the ellipse is
a covering of multiplicity 1

2mt(C(i)
, z). Hence, the divides of the morsifications of (C(i)

, z) and

C
(j)

, z), 1  i < j  r, intersect in mtC(i) · mtC(j) real points. So, in total the union of all r
divides contains

rX

i=1

⇣
�(C(i)

, z)� ImBr(C(i)
, z)
⌘
+

X

1i<jr

(C(i) · C(j))z = �(C, z)� ImBr(C, z)

real hyperbolic nodes.

2.3. Proof of Theorem 1: general case. Suppose now that (C, z) is a real singularity satis-
fying hypotheses of Theorem 1. Denote by (Cre

, z), resp. (Cim
, z), the union of the branches of

(C, z) that have real, resp. complex conjugate tangents.
If Cre = ;, the existence of a real morsification follows from the results of Sections 2.2.1 and

2.2.2. Assume that C
re 6= ;, and it contains only smooth branches. We settle this case by

induction on �3(C, z), the maximal �-invariant of a subgerm of (Cre
, z) having a unique tangent

line. If �3(C, z) = 0, then all branches of (Cre
, z) are smooth real and transversal to each other.

Then we first construct a real morsification of (Cim
, z) as in Sections 2.2.1 and 2.2.2 with t > 0

chosen so small that each branch of (Cre
, z) intersects the divide of the morsification of (Cim

, z)
in mt(Cim

, z) real points. Then we slightly shift the branches of (Cre
, z) in general position

keeping the above real intersection points and obtaining additional �(Cre
, z) hyperbolic nodes as

required. In the case of �3(C, z) > 0, we blow up the point z and consider the strict transform
of (Cre

, z), which consists of germ (Ci, zi) with real centers zi on the exceptional divisor E.
Clearly, for each germ (Ci [ E, zi), its branches with real tangents are smooth and transversal
to E, and, furthermore, �3(Ci [E, zi) < �3(C, z) for all i. Hence, there are real morsifications
of the germs (Ci [ E, zi), in which we cam assume the germs (E, zi) to be fixed. Then we blow
down E and obtain a deformation of (Cre

, z) with mt(Cre
, z) real smooth transversal branches

at z and additional �(Cre
, z)� ImBr(Cre

, z)� 1
2mt(Cre

, z)(mt(Cre
, z)�1) real hyperbolic nodes

(cf. computations in Section 2.1.1(1)). Returning back the subgerm (Cim
, z), we obtain a real

singularity at z with �3 = 0, and thus, complete the construction of a real morsification of (C, z)
as in the beginning of this paragraph.

Now we get rid of all extra restrictions on (Cre
, z) and prove the existence of a real morsifica-

tion of (C, z) by induction on �4(C, z), which is the �-invariant of the union of singular branches
of (Cre

, z). The preceding consideration serves as the base of induction. The induction step is
precisely the same, and we only notice that (in the above notations)

max�4(Ci [ E, zi) < �4(C, z).

The proof of Theorem 1 is completed.

3. Real morsifications and Milnor fibers

3.1. A’Campo surface and Milnor fiber. In [2, Section 3], A’Campo constructs the link of
a divide of a real morsification of a singularity (which we call A’Campo link). This link is
embedded into the 3-sphere, the boundary of the Milnor ball, and the fundamental result by
A’Campo [2, Theorem 2] states that it is isotopic to the link of the given singularity in the
3-sphere. In this section, we discuss a somewhat stronger isotopy. Namely, in [2, Section 3],
A’Campo associates with a real morsification a surface (which we call A’Campo surface),
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whose boundary is the A’Campo link. It is natural to ask whether the pair (A’Campo surface,
A’Campo link) is isotopic to the pair (Milnor fiber, its boundary).

In [2, Page 22], A’Campo conjectures a certain transversality condition for the known morsi-
fications that ensure the discussed transversality. Here we prove this transversality condition for
all morsifications constructed in Section 2. We also show that the spoken transversality condi-
tion may fail even for morsifications of simple singularities. Hence, the question on the isotopy
between the A’Campo surface and the Milnor fiber remains open in a general case.

Let (C, 0) ⇢ C2 be a real singularity given by an equivariant analytic equation f(x, y) = 0.
Following [2, Section 3], we replace the standard Milnor ball B(C, 0) by the bi-disc

B(0, ⇢0) := {u+ v
p
�1 2 C2 : u, v 2 D(0, ⇢0) ⇢ R2},

where ⇢0 > 0 and C2 = R2 � R2
p
�1. It is easy to verify that @B(0, ⇢) transversally intersects

with C for each 0 < ⇢  ⇢0 if ⇢0 is small enough, and we assume this further on. For ⇠ 2 C with
0 < |⇠| ⌧ 1 all curves M⇠ = {f(x, y) = ⇠} ⇢ B(0, ⇢0) are smooth and transversally intersect
@B(0, ⇢0). They are called Milnor fibers of the given singularity (C, 0). Respectively, the links
LM⇠ = M⇠\@B(0, ⇢0) are isotopic in the sphere @B(0, ⇢0) to the link L(C, z) = C\@B(0, ⇢0) of
the singularity (C, z), and the pairs (M⇠, LM⇠), 0 < |⇠|⌧ 1, are isotopic in (B(0, ⇢0), @B(0, ⇢0)).

Introduce the family of bi-discs

B
0
⇢(0, ⇢0) = {u+ v

p
�1 2 C2 : u 2 D(0, ⇢0), v 2 D(0, ⇢)}, 0 < ⇢  ⇢0 .

By definition, B0
⇢0
(0, ⇢0) = B(0, ⇢0). Let Ct = {ft(x, y) = 0}, 0  t  t0, f0 = f , be a real

morsification of (C, 0) defined in B(0, ⇢0). Without loss of generality, we can assume that Ct

intersects with @B(0, ⇢0) transversally for all 0  t  t0.
We have two families of singular surfaces in B(0, ⇢0):

• F (⇢) = Ct0 \B
0
⇢(0, ⇢0), 0  ⇢  ⇢0,

• R(⇢) = {u + v
p
�1 2 B

0
⇢(0, ⇢0) : u 2 RCt0 , v 2 TuRCt0 , v 2 D(0, ⇢)}, 0  ⇢  ⇢0

(here RCt0 ⇢ D(0, ⇢0) is an immersed real analytic curve with nodes, and at each node
u 2 RCt0 we understand TuRCt0 as the union of the tangent lines to the branches
centered at u).

Denote LF (⇢) = F (⇢) \ @B
0
⇢(0, ⇢0) and LR(⇢) = R(⇢) \ @B

0
⇢(0, ⇢0) for all 0 < ⇢  ⇢0.

Lemma 11. [cf. [2], Theorem 2] (1) The set LR(⇢) is a link in the sphere @B
0(⇢) for any

0 < ⇢  ⇢0. The set LF (⇢) is a link in the sphere @B
0
⇢(0, ⇢0) for all but finitely many values

⇢ 2 (0, ⇢0]. Furthermore, LF (⇢0) is a link equivariantly isotopic in @B(0, ⇢0) to the singularity

link L(C, z).
(2) There exists ⇢

0 = ⇢
0(t0) such that the links LF (⇢0) and LR(⇢0) are equivariantly isotopic

in @B
0
⇢0(0, ⇢0), and the pairs (F (⇢0), LF (⇢0)) and (R(⇢0), LR(⇢0)) are equivariantly isotopic in

(B0
⇢0(0, ⇢0), @B0

⇢0(0, ⇢0)).

Proof. The first statement is straightforward. The second one immediately follows from the fact
that F (⇢) and R(⇢) are immersed surfaces having the same real point set with the same tangent
planes along it. ⇤

For ⌘ > 0 small enough, the algebraic curves

F
sm(⇢) = {ft0(x, y) = ⌘} \B

0
⇢(0, ⇢0)

are smooth for all ⇢0(t0)  ⇢  ⇢0, and each of them is obtained from F (⇢) by a small deformation
in a neighborhood Uu of each node u 2 RCt0 that replaces two trasversally intersecting discs with
a cylinder. Respectively, for all ⇢0(t0)  ⇢  ⇢0, we define C

1-smooth equivariant A’Campo
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surfaces R
sm(⇢) ⇢ B

0
⇢(0, ⇢0), obtained from R(⇢) by replacing R(⇢) \ Uu with the cylinder

F
sm(⇢) \ Uu smoothly attached to R(⇢) \ Uu for each node u 2 RCt0 .
If ⇠ 2 C \ {0} with |⇠| small enough, then the intersections M⇠ \ @B

0(⇢) are transversal for all
⇢
0(t0)  ⇢  ⇢0. We would like to address

Question. Is the pair (Rsm(⇢0), LR(⇢0)) isotopic to (M⇠, LM⇠) in (B(0, ⇢0), @B(0, ⇢0)), or,
equivalently, is the pair (Rsm(⇢0(t0)), LR(⇢0(t0))) isotopic to (M⇠\B0(⇢0(t0)),M⇠\@B0

⇢0(t0)
(0, ⇢0)

in (B0
⇢0(t0)

(0, ⇢0), @B0
⇢0(t0)

(0, ⇢0))?

This seems to be stronger that Lemma 11. We would like to comment on this question
more. Since (F sm(⇢0), F sm(⇢0) \ @B(0, ⇢0)) is isotopic to (M⇠, LM⇠) in (B(0, ⇢0), @B(0, ⇢0)),
and, by Lemma 11, (F sm(⇢0(t0)), F sm(⇢0(t0)) \ @B

0
⇢0(t0)

(0, ⇢0)) is (equivariantly) isotopic to

(Rsm(⇢0(t0)), LR(⇢0(t0))) in B
0
⇢0(t0)

(0, ⇢0), @B0
⇢0(t0)

(0, ⇢0)), the answer to the above Question
would be yes, if we could prove one of the following claims. Observe that the closure of
R

sm(⇢0) \ R
sm(⇢0(t0)) as well as the closure of F sm(⇢0) \ F

sm(⇢0(t0)) is the disjoint union of
pairs of discs (corresponding to real branches of (C, z)) and cylinders (corresponding to pairs
of complex conjugate branches of (C, z)), and the former surface defines a cobordism of LR(⇢0)
and LR(⇢0(t0)) trivially fibred over [⇢0(t0), ⇢0]. So the requested claims are

(A) The surface Closure(F sm(⇢0) \ F sm(⇢0(t0))) defines a trivial cobordism of

F
sm(⇢0) \ @B(0, ⇢0) and F

sm(⇢0(t0)) \ @B
0
⇢0(t0)

(0, ⇢0).

(B) The intersections Ct \ @B
0
⇢0(t0)

(0, ⇢0) are trasversal for all 0  t  t0.

Claim (A) seems to be open in general so far, and it is proved in [18] for morsifications of
totally real singularities obtained by the blowing up construction as in [1] (see also [11, Theorem
5.2]). Claim (B) is formulated in [2, Page 22] as a conjecture again for the morsifications of
totally real singularities constructed in [1]. However, in general, it does not hold:

Proposition 12. The totally real singularity (C, z) given by y
2 � x

2n = 0, n � 4, possesses a

real morsification Ct, 0  t  t0 such that for arbitrary 0 < ⇢ < ⇢0 and 0 < t < t0, there exist

0 < ⇢
0
< ⇢ and 0 < t

0
< t for which the intersection of Ct0 and @B

0
⇢0(0, ⇢0) is not transversal.

Proof. We have @B
0
⇢(0, ⇢0) = (@D(0, ⇢0)⇥D(0, ⇢)) [ (D(0, ⇢0)⇥ @D(0, ⇢)). The intersection of

Ct with @D(0, ⇢0)⇥D(0, ⇢) is transversal for any real morsification of (C, z). On the other hand,
the intersection of Ct with D(0, ⇢0)⇥ @D(0, ⇢) is not transversal at some point

p = u+ v
p
�1 2 D(0, ⇢0)⇥ @D(0, ⇢)

if and only if the tangent line to Ct at this point has a real slope. Indeed, if Ct is given in a
neighborhood of p by y = '(x), then the lack of transversality of the intersection of Ct and
D(0, ⇢0)⇥ @D(0, ⇢) at p can be expressed as

Im
d'

dx

��
p
· v2 = v1 � Re

d'

dx

��
p
· v2 = 0, where v = (v1, v2) 6= 0 ,

and hence Imd'
dx

��
p
= 0. In other words, the lack of transversality means the existence of a real

slope tangent line to Ct at a non-real point.
Now we define

Ct =

(
(y � tx

2)2 �
nY

k=1

(x� kt)2 = 0

)
, 0  t  t0, 0 < t0 ⌧ 1 .
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The real point set of Ct consist of two branches y = tx
2±
Qn

k=1(x�kt) transversally intersecting
in n points, and hence it is a real morsification. It is easy to compute that the branch

y = tx
2 +

nY

k=1

(x� kt)

has n� 2 tangent lines with the zero slope at the points

xi(t) = �
i

✓
2

n

◆1/(n�2)

t
1/(n�2)(1 +O(t>0)), i = 0, ..., n� 3 ,

where �n�2 = �1 is a primitive root of unity. Thus, we obtain at least n� 3 zero slope tangents
at imaginary points. Since xi(t)! 0 as t! 0, the statement of Proposition follows. ⇤
3.2. Real Milnor morsifications. We say that a real morsification of a real singularity (C, z)
is a real Milnor morsification if in the notation of Section 3.1, the pair (Rsm(⇢0), LR(⇢0)) is
isotopic to (M⇠, LM⇠) in (B0

⇢(z, ⇢0), @B
0
⇢(z, ⇢0)) for some 0 < ⇢  ⇢0.

Theorem 2. Any isolated real plane curve singularity satisfying the hypotheses of Theorem 1

admits a real Milnor morsification.

Proof. We prove the theorem by establishing Claim (B) formulated in the preceding section.
Let (C, z) be a real singularity as in Theorem 1. Applying a suitable local di↵eomorphism,

we can assume that (C, z) does not contain (segments of) straight lines, and hence (L ·C)z <1
for any line L through z. Denote by ⇤ the union of all real tangent lines to (C, z) at z. Under
the assumption made, we apply the construction used in the proof of Theorem 1 and obtain a
real morsification of (C [ ⇤, z), in which ⇤ remains fixed. Then we get rid of ⇤ and obtain a
real morsification Ct, 0  t  t0, of (C, z). We shall show that it is a real Milnor morsification
(possibly replacing t0 with a smaller positive number).

As noticed in the proof of Proposition 12, the required property is equivalent to the absence
of non-real lines with real slopes tangent to Ct, 0  t  t0.

Our first observation is

Lemma 13. Let (C, z) be a real singularity, L a real line passing through z and intersecting

(C, z) only at z (in the Milnor ball), with a finite multiplicity (L · C)0. Denote by PL the germ

of the pencil of the lines parallel to L and by RPL its real point set. Let Ct, 0  t < ", be a

real morsification of (C, z) as above, and let Ct and Lt intersect in (L · C)z real points for any

t 2 (0, "). Then each line L
0 2 PL \ RPL intersects each element Ct, 0 < t < ", transversally.

Proof. Let C 0 be a Milnor fiber. Then the lines of PL in total are tangent to C
0 in

(C, z) + (L · C)z �mt(C, z)

points, where (C, z) is the class of the singularity (C, z) (see, for example, [13, Section I.3.4]
for details). Since, for a node,  = 2, and in general

(C, z) = 2�(C, z) + mt(C, z)� Br(C, z),

we get that the lines of PL in total are tangent to Ct in

(C, z) + (L · C)z �mt(C, z)� 2(�(C, z)� ImBr(C, z)) = (L · C)z � ReBr(C, z)

points. It follows that

• L intersects the morsification Ci,t of any real branch (Ci, z) of (C, z) in (L · Ci)z real
points, while the real point set RCi,t of Ci,t is an immersed segment; that is, L cuts
RCi,t into (L · Ci) + 1 immersed segments, among all but two have both endpoints on
RL; hence, varying L in RPL, we encounter at least (L · Ci)z � 1 real tangency points;
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• L intersects the morsification Cj,t of a pair of complex conjugate branches (Cj , z), Cj , z)
of (C, z) in 2(L · Ci)z real points, and hence it cuts RCj,t (which is an immersed circle)
into 2(L ·Ci)z immersed segments, whose all endpoints lie on RL, and hence, varying L

in RPL, we encounter at least 2(L · Ci)z real tangency points.

The claim of Lemma follows. ⇤

Remark that, under conditions of Lemma 13, there is an open neighborhood UL of L in the
dual plane P2,_ such that all non-real curves with real slopes intersect each curve Ct, 0 < t < ",
transversally. Thus, Theorem 2 follows from

Lemma 14. For any real line L through z, there exist 0 < ⇢  ⇢0 satisfying the following

conditions

• L \ C \B
0
⇢(z, ⇢0) = {z};

• for some " > 0, L intersects with any curve Ct, 0 < t < ", in (L · C)z real points

(counting multiplicities).

Proof. Let L1, ..., Lk be all real tangent lines to (C, z) at z. Write (C, z) =
S

i(Ci, z), where
(Ci, z) either has a unique (real) tangent line, or a pair of complex conjugate tangent lines, and
(Ci, z), (Cj , z) have no tangent in common as i 6= j. We can consider morsifications of (Ci, z)
separately.

Suppose that (Ci, z) has a pair of complex conjugate tangent lines. The morsification of
(Ci, z) constructed in Section 2.2.1 is such that the real point set of Ct, 0 < t < ", consists of
one or several immersed circles going in total 1

2mt(Ci, z) times around z, and hence L (which is
transversal to (Ci, z), i.e. (L · Ci)z = mt(Ci, z)) intersects any curve Ct in mt(Ci, z) real points
(counting multiplicities).

Suppose that (Ci, z) has a unique (real) tangent line Lz, and L 6= Lz. Then

(L · Ci)z = mt(Ci, z).

The smooth real branches of (Ci, z) are deformed in any morsification so that they remain
transversal to L and intersect L at one real point. For (C 0

i, z), the union of the other branches of
(Ci, z), the construction of a morsification presented in Section 2.3 goes inductively. Namely, we
blow up z, construct a morsification of the strict transform of (Ci, z) united with the exceptional
divisor and then blow down the exceptional divisor. Elements of this intermediate deformation
have mt(C 0

i, z) smooth real branches centered at z, all transversal to L, and in any further
deformation they intersect with L in mt(C 0

i, z) real points.
If (Ci, z) has a unique (real) tangent line Lz, and L = Lz, the statement follows from the

construction. ⇤

Therefore, we have proved Theorem 2. ⇤

4. A’Campo-Gusein-Zade diagrams and topology of singularities

4.1. A�-diagrams of real morsifications. L. Balke and R. Kaenders proved [7, Theorem
2.5 and Corollary 2.6] that the A’Campo-Gusein-Zade diagram (briefly, A�-diagram) associated
with a morsification of a totally real singularity determines the complex topological type of the
given singularity. Here we extend this result to real morsifications of arbitrary real singularities.
We get rid of the requirement for morsifications to define a partition (see Section 1 and [7,
Definition 1.2]) and prove that an A�-diagram determines the topological type of the singularity
as well as some additional information on its real structure.

Let us recall definitions from [5] and [7].
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A subset D of a closed disc D ⇢ R2 is called a connected divide if it is the image of an
immersion of a disjoint union ⌃ 6= ; of a finite number of segments I = [0, 1] and circles S

1

satisfying the following conditions:

• the set of the endpoints of all the segments in ⌃ is injectively mapped to @D, whereas
the other points of ⌃ are mapped to the interior of D;

• each point of the complement D \Sing(D) to a finite set Sing(D) has a unique preimage
in ⌃, each point of Sing(D) is a transversal intersection of two smooth local branches;

• the images of any two connected components of ⌃ intersect each other.

Note that ⌃ is uniquely determined by D. The image of any connected component of ⌃ is a
divide, which is called a branch of the divide D.

The divide of a real morsification of a real singularity placed in the real Milnor disc (see
Section 1) is a connected divide in the above sense.

Connected components of D \ D and of D \ Sing(D), disjoint from @D, are called inner
components. Clearly, each inner component of D\D is homeomorphic to an open disc, and each
inner component of D \Sing(D) is homeomorphic either to an open interval, or to S

1 if D ' S
1.

It is straightforward that the set ⇡0(D \ D) of the connected components of D \ D can be
2-colored, i.e., there exists a function ⇡0(D \ D) ! {±1} such that the components, whose
boundaries intersect along one-dimensional pieces of D, have di↵erent signs, and there are pre-
cisely two functions like that (cf. [7, Proposition 1.4]). Fix a 2-coloring s : ⇡0(D \D)! {±1}.
The A’Campo-Gusein-Zade diagram (A�-diagram) of a connected divide D is a 3-colored
graph A�(D) = (V,E, c) such that

• the set V of its vertices is in one-to-one correspondence with the disjoint union of Sing(D)
(the set of •-vertices in the notation of [7]) and the set ⇡inn

0 (D \D) of the inner compo-
nents of D \D (the �-vertices and  -vertices in the notation of [7] in accordance with
the chosen coloring);

• two distinct vertices K1,K2 2 ⇡
inn
0 (D\D) such that @K1\@K2\Sing(D) 6= ; are joined

by k edges, where k is the number of inner components of D\Sing(D) inside @K1\@K2;
• two vertices K 2 ⇡

inn
0 (D \D) and p 2 Sing(D) such that p 2 @K are joined by k edges,

where k is the number of components of the intersection of K with a small disc centered
at p (clearly, here k = 1 or 2);

• the 3-coloring c : V ! {±1, 0} is defined by c(K) = s(K), K 2 ⇡
int
0 (D \ D), and

c(p) = 0, p 2 Sing(D).

Comparing with [7, Definition 1.5], we admit multi-graphs, i.e., vertices can be joined by several
edges, while this is excluded in [7, Definition 1.5] by the partition requirement. On the other
hand, there are no loops. By construction, the A�-diagram can be embedded into D (cf. [7,
Remark in page 43]).

The A�-diagram associated with the divide of a real morsification of a real singularity is
simply called an A�-diagram of that singularity.

4.2. A�-diagram determines the weak real topological type of a singularity. The topo-
logical type of a real singularity (C, z) is its equivalence class up to a homomorphism of the Milnor
ball, and it is known [8, 23] (see also [9, Section 8.4]) that the topological type of a given singular-
ity is determined by the collections of Puiseux pairs of its branches and by pairwise intersection
numbers of the branches. We introduce the weak real topological type of (C, z) to be the
topological type enriched with the following information:

• indication of real branches and pairs of complex conjugate branches;
• the cyclic order of real branches, that is, if (C, z) has k � 1 real branches, we number
them somehow and introduce the cyclic order on the multiset {1, 1, 2, 2, ..., k, k} induced
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by the position of the 2k intersection points of the real branches with the circle @RBC,z

and defined up to reversing the orientation of @RBC,z and renumbering the topological
types of the real branches, their mutual intersection multiplicities and their intersection
multiplicities with non-real branches.

Theorem 3. An A�-diagram of an arbitrary real singularity determines its weak real topological

type.

Proof. Balke and Kaenders [7] proved that the A�-diagram determines the topological type of
a totally real singularity, and we closely follow the lines of their proof referring for details to [7,
Section 2] and presenting necessary modifications for the general case.

First, we remark that the partition requirement (see Section 1) was not, in fact, used in [7].
In particular, it is not needed in the construction of the Coxeter-Dynkin diagram from the given
divide as presented in [15].

(1) The main step in the proof of [7, Theorem 2.5 and Corollary 2.6] is to show that an
A�-diagram of a totally real singularity determines the branch structure of the divide, pairwise
intersection numbers of the branches, and an A�-diagram of each branch. Their argument
literally applies in the general case. We notice in addition that one can easily distinguish between
A�-diagrams of non-closed and closed branches of the divide, i.e., between an A�-diagram of a
real branch of (C, z) and an A�-diagram of a pair of complex conjugate branches. Namely, in the
former case, the A�-diagram contains either a univalent •-vertex, or a bivalent •-vertex joined
with a �-vertex and  -vertex, while in the latter case, the A�-diagram has no such •-vertices.

We only comment on the persistence of the cyclic order of real branches of the singularity
(aka, non-closed branches of the divide). An embedding of the A�-diagram into RBC,z defines
the divide up to isotopy (see [7, Page 46]). The ambiguity in the construction of an embedding
is related to the existence of the so-called chains in the A�-diagram, i.e., connected subgraphs
consisting of bivalent or univalent •-vertices and bivalent �-vertices (or bivalent  -vertices)
joined by arcs as shown in Figure 4(a) (cf. [7, Figure 6]). Figure 4(b) shows the corresponding
fragment of the divide (cf. [7, Figure 7]). By [7, Lemma 2.8], the given A�-diagram can be
transformed by inserting new chains and extending the existing ones in a controlled way into a
chain separating A�-diagram, whose maximal (with respect to inclusion) chains have pairwise
distinct lengths, and no new chain can be added.

Each chain of a divide shares the boundary with two non-inner components of the complement
to the divide, and the disc RBC,z can be cut into three parts as shown in Figure 4(b) by dashed
lines (cf. [7, Figure 7]), and similarly one can cut RBC,z with respect to the embedded chain of
the A�-diagram, Figure 4(a). Then a given embedding of a chain separating A�-diagram can be
changed in part A or in part B by a reflection with respect to the axis of the chain (and so for any
other maximal chain). Note that the branches of the divide, which are disjoint from the chain
of the divide, must all lie either in part A, or in part B, since any two of them must intersect
each other. In the presence of such branches, located, say, in part A, and under the assumption
that the chain is formed by two branches of the divide, all possible self-intersections of the latter
branches must lie in part A too due to Lemma 3(i) applied to the divide with one of these two
branches removed. All these observations yield that the cyclic order of non-closed branches of
the divide is preserved under the changes of the embedding of the chain separating A�-diagram
described above. Finally, we note that the same cycling order of the divide is induced by the
corresponding embedding of the original A�-diagram.

(2) The topological type a real branch of the given singularity can be recovered from its
A�-diagram, see [7, Theorem 1.9]. In a similar way, we show that an A�-diagram of a closed
branch of the divide determines the topological type of a real singularity formed by a pair of



MORSIFICATIONS OF REAL PLANE CURVE SINGULARITIES 327

(a) (b)

A BA B

Figure 4. Chains of an A�-diagram and of a divide

complex conjugate branches. Namely, an A�-diagram defines the monodromy operator of such
a singularity, see [4] and [16, Page 39], and hence its characteristic polynomial, which is the
reduced Alexander polynomial of the link of the singularity [17, §8] (see also [22, Theorem 3.3]).
Thus, we complete the proof with the following statement which is a particular case of [10,
Proposition 3.2].

Lemma 15. The reduced Alexander polynomial of a singularity formed by two topologically

equivalent branches determines the topological type of the branches and their intersection multi-

plicity.

(3) To complete the recovery of the topological type of the given singularity (C, z), we have
to find pairwise intersection multiplicities of the branches of (C, z). By [7, Lemma 2.2], the
intersection number of two non-closed branches of the divide equals the intersection multiplicity
of the corresponding real branches of (C, z). Similarly, the intersection number of a non-closed
and a closed branches of the divide equals twice the intersection multiplicity of the corresponding
real branch of (C, z) with each of the two complex conjugate branches of (C, z) corresponding
to the closed branch of the divide. At last, consider the intersection of two closed branches of
the divide and suppose without loss of generality that these are the only branches of the divide.
From Lemma 15 we know the topological type and the intersection multiplicity of complex
conjugate branches of (C, z) associated with each of the branches of the divide. We claim that
this information together with the intersection number of the branches of the divide determines
the pairwise intersection multiplicities of all four branches of (C, z). Indeed, this can easily
be proved by induction on the number of real infinitely near points in the resolution tree of
(C, z). ⇤
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Abstract. Let f(z, z̄) be a strongly mixed homogeneous polynomial of three variables
z = (z1, z2, z3) of polar degree q with an isolated singularity at the origin. It defines a
smooth Riemann surface C in the complex projective space P2. The fundamental group of
the complement ⇡1(P2 \ C) is a cyclic group of order q if f is a homogeneous polynomial
without z̄. We propose a conjecture that this may be even true for mixed homogeneous
polynomials by giving several supporting examples.

1. Introduction

Let f(z, z̄) =
P

⌫,µ c⌫,µz
⌫ z̄µ be a mixed polynomial of n-variables z = (z1, . . . , zn) 2 Cn. A

mixed polynomial f(z, z̄) is called mixed weighted homogeneous if there exist integers q1, . . . , qn
and p1, . . . , pn and non-zero integers mr, mp such that

gcd(q1, . . . , qn) = 1, gcd(p1, . . . , pn) = 1,
Pn

j=1 qj(⌫j + µj) = mr,
Pn

j=1 pj(⌫j � µj) = mp, if c⌫,µ 6= 0

We say f(z, z̄) is mixed weighted homogeneous of radial weight type
(q1, . . . , qn;mr) and of polar weight type (p1, . . . , pn;mp).

Using polar coordinates r, ⌘ of C⇤ where r > 0 and ⌘ 2 S
1 with S

1 = {⌘ 2 C | |⌘| = 1}, we
define a polar C⇤-action on Cn by

(r, ⌘) � z = (rq1⌘p1z1, . . . , r
qn⌘pnzn), (r, ⌘) 2 R+ ⇥ S

1

(r, ⌘) � z̄ = (r, ⌘) � z = (rq1⌘�p1 z̄1, . . . , r
qn⌘�pn z̄n).

Then f satisfies the Euler equality

f((r, ⌘) � (z, z̄)) = r
mr⌘

mpf(z, z̄). (E1)

It is easy to see that such a polynomial defines a global fibration

f : Cn � f
�1(0) ! C⇤ (GM)

without further assumption. A mixed polynomial f(z, z̄) is called a strongly mixed weighted
homogeneous polynomial (respectively strongly mixed homogeneous polynomial) of n-variables
z = (z1, . . . , zn) 2 Cn with polar degree q and radial degree d if pi = qi for i = 1, . . . , n andP

i=1 pi(⌫i ± µi) = d and q (resp. pi = qi = 1, i = 1, . . . , n and |⌫| + |µ| = d and |⌫| � |µ| = q)
for any ⌫, µ with c⌫,µ 6= 0. Here q is assumed to be a positive integer. For such a strongly mixed
weighted homogenous polynomial, the associated C⇤-action on Cn is the holomorphic action
defined by

(⇣, (z1, . . . , zn)) 7! ⇣ � z = (⇣p1z1 . . . , ⇣
pnzn)

2000 Mathematics Subject Classification. 14J17, 14N99.
Key words and phrases. Mixed homogeneous, Milnor fiber.
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and f satisfies the equality

f(� � z,� � z) = r
d exp (iq✓)f(z, z̄), where � = r exp(i✓) 2 R+ ⇥ S

1
.

Assume that f is strongly mixed homogeneous. Then the action is reduced to

� � z = (�z1, . . . ,�zn).

By the above equality, it defines canonically a real analytic projective variety V in Pn�1:

V = {[z] 2 Pn�1 | f(z, z̄) = 0}.

Let eV be the mixed a�ne hypersurface

eV = f
�1(0) = {z 2 Cn | f(z, z̄) = 0}.

Let f : Cn \ eV ! C⇤ be the global Milnor fibration defined by f and let F be the Milnor
fiber, namely F = f

�1(1) ⇢ Cn. The monodromy map h : F ! F is defined by

h(z) = (!qz1, . . . ,!qzn), !q = exp(
2⇡ i

q
).

and the restriction of the Hopf fibration to the Milnor fiber ⇡ : F ! Pn�1 \ V is nothing but
the quotient map by the cyclic action induced by h.

Remark 1. We may also consider the case q = 0 in the above strongly mixed homogeneous
polynomial and consider the corresponding projective variety V = {[z] | f(z, z̄) = 0} but V need
not be a real codimension 2 hypersurface. For example, n = 3 and take

f(z, z̄) := z1z̄1 � z2z̄2 + z3z̄3.

Then dimR V = 3. Note that f does not have a Milnor fibration if q = 0. Another extreme case
is g(z, z̄) := z1z̄1 + z2z̄2 + z3z̄3. Then Ṽ = {0} and V is empty. Such a polynomial is called a
fake strongly mixed homogeneous polynomial.

A strongly mixed homogeneous polynomial is called a true strongly mixed homogeneous poly-
nomial if f does not have any fake strongly mixed homogeneous factor in the polynomial ring
C[z1, z̄1, . . . , zn, z̄n] which defines a non-empty projective variety.

In [10, 14], we have shown that

Theorem 2 (Theorem 11, [14]). Assume that f(z, z̄) is a non-degenerate, strongly mixed ho-
mogeneous polynomial of n variables such that V is irreducible and mixed non-singular in an
open dense subset. Then the embedding degree of V is equal to the polar degree q. In particular,
H1(Pn�1 \ V ) = Z/qZ.

Here ”irreducible” means as a real algebraic variety.

Proposition 3. Assume that f(z, z̄) is a non-degenerate, strongly mixed homogeneous polyno-
mial of n variables such that V is irreducible and mixed non-singular in an open dense subset.
Then the Euler characteristics satisfy the following equalities.

(1) �(F ) = q �(Pn�1 \ V ) and �(Pn�1 \ V ) = n � �(V ). In particular, if n = 3 and V is
smooth curve with the genus g, then �(F ) = q(1 + 2g).

(2) The following sequence is exact.

1 ! ⇡1(F )
⇡]�!⇡1(Pn�1 \ V ) ! Z/qZ ! 1.

In particular, F is simply-connected if and only if ⇡1(Pn�1 \ V ) ⇠= Z/qZ.
(3) If q = 1, the projection ⇡ : F ! Pn�1 \ V is a di↵eomorphism.
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Remark 4. The assumption that V is irreducible as a real algebraic variety is di↵erent from
the irreduciblity of f in C[z1, z̄1, . . . , zn, z̄n].

Using the periodic monodromy argument in [7], we have

Proposition 5. Assume that f is a strongly mixed homogeneous polynomial of polar degree
q > 0. The zeta function of the monodromy h : F ! F is given by

⇣(t) = (1� t
q)��(F )/q

.

In particular, if q = 1, h = idF and ⇣(t) = (1� t)��(F ).

If f is a holomorphic function with an isolated singularity at the origin, F is (n�2)-connected
and it is homotopic to a bouquet of µ spheres of dimension n� 1 ([7]). For mixed polynomials,
we do not have any connectivity theorem. But we do not have any examples of mixed weighted
homogeneous polynomials which break the connectivity which holds in the holomorphic case.
Thus we propose the following conjecture as a first working problem.

simply-connectedness Conjecture 6. Assume n � 3 and that f : Cn ! C is a non-
degenerate strongly mixed homogeneous polynomial of polar degree q which has an isolated sin-
gularity at the origin. In other words, V is an irreducible mixed non-singular hypersurface of
real codimension 2. Then
(a) The Milnor fiber F is simply-connected.

By (2) of Proposition 3, this conjecture is equivalent to the following.
(b) The fundamental group of the complement ⇡1(Pn�1 � V ) is a cyclic group of order q.

The purpose of this paper is to give several non-trivial examples for the case n = 3 which
support this conjecture.

Remark 7. The condition ”strongly non-degenerate” (with respect to the Newton boundary),
introduced in [15], is necessary to have a Milnor fibration for a non-mixed weighted homogeneous
polynomial. However for a mixed weighted homogeneous polynomial, the Milnor fibration (GM)
always exists.

For a mixed weighted homogneous polynomial, the notion ‘non-degenerate’ implies ‘strongly
non-degenerate’. We explain this assertion for a strongly mixed weighted homogenous polynomial
f for simplicity. Take any face function f� of f . f� is also strongly mixed homogeneous and
satisfies the Euler equality

f�(� � z,� � z) = r
d exp (iq✓)f�(z, z̄), where � = r exp(i✓) 2 R+ ⇥ S

1
.

Take any point w 2 C⇤n \ V (f�). Consider two tangent vectors @
@r ,

@
@✓ 2 TwC⇤n. By the

above equality, it is easy to see that their images by df� : TwC⇤n ! Tf�(w)C⇤ are linearly
independent. That is, non-zero numbers are regular values for f�. (For a mixed weighted
homogeneous polynomial, we use the equality (E1) and do the same argument.)

In Theorem 2 and Proposition 3, to make Pn�1 \ V connected, we have to assume that V has
no real codimension 1 component. This does not happen if f is non-degenerate or ‘true’. To
make the Milnor fiber F connected, we have to assume that dimR V = 2n� 4 and the existence
of a mixed smooth point (see (1) of Theorem 9). Thus in Theorem 2 and Proposition 3, we
can replace the assumption on f by the assumption that f is a true strongly mixed homogeneous
polynomial such that V is irreducible and mixed non-singular in an open dense subset.

2. Easy mixed polynomials

Unlike the holomorphic case, we do not know in general the connectivity of the Milnor fiber
even under the assumption that Ṽ has an isolated singularity at the origin. In this section,
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we study easy examples. Suppose that f is either a simplicial mixed polynomial or a join type
or twisted join type polynomial of three variables. Then the connectivity behaves just as the
holomorphic case. We will first explain these polynomials below.

2.1. Simplicial polynomial. Assume that n = 3 and z = (z1, z2, z3). A mixed polynomial
f(z, z̄) is called simplicial if it is a linear sum of three mixed monomials

f(z, z̄) =
3X

i=1

ciz
⌫i z̄µi

and if the two matrices

(⌫i ± µi)
3
i=1 =

0

@
⌫11 ± µ11 ⌫12 ± µ12 ⌫13 ± µ13

⌫21 ± µ21 ⌫22 ± µ22 ⌫23 ± µ23

⌫31 ± µ31 ⌫32 ± µ32 ⌫33 ± µ33

1

A

are non-degenerate where ⌫i = (⌫i1, ⌫i2, ⌫i3), µi = (µi1, µi2, µi3). In this case, we may assume
that ci = 1 for i = 1, 2, 3. Among them, the following polynomials are strongly mixed homoge-
neous and have an isolated singularity at the origin.

fB := z
q+r
1 z̄

r
1 + z

q+r
2 z̄

r
2 + z

q+r
3 z̄

r
3 , (Brieskorn Type)

fI := z
q+r�1
1 z̄

r
1z2 + z

q+r�1
2 z̄

r
2z3 + z

q+r
3 z̄

r
3 , (Tree type a)

fII := z
q+r�1
1 z̄

r
1z2 + z

q+r�1
2 z̄

r
2z3 + z

q+r�1
3 z̄

r
3z1, (Cyclic type a)

fIII := z
q+r�1
1 z̄

r
1z2 + z

q+r�1
2 z̄

r
2z1 + z

q+r
3 z̄

r
3 , (Simplicial+Join a)

f
0
I := z

q+r
1 z̄

r�1
1 z̄2 + z

q+r
2 z̄

r�1
2 z̄3 + z

q+r
3 z̄

r
3 , (Tree type b)

f
0
II := z

q+r
1 z̄

r�1
1 z̄2 + z

q+r
2 z̄

r�1
2 z̄3 + z

q+r
3 z̄

r�1
3 z̄1, (Cyclic type b)

f
0
III := z

q+r
1 z̄

r�1
1 z̄2 + z

q+r
2 z̄

r�1
2 z̄1 + z

q+r
3 z̄

r
3 , (Simplicial+Join b).

Here q � 1 and r � 1 are positive integers. All above polynomials have simply-connected Milnor
fibers ([9]). For fB , fI , fII , fIII , their Milnor fiberings and links are in fact isotopic to the
holomorphic ones by the contraction z

r
i z̄

r
i 7! 1 ([11, 5]):

fB := z
q
1 + z

q
2 + z

q
3 , (Brieskorn Type)

fI := z
q�1
1 z2 + z

q�1
2 z3 + z

q
3 , (Tree type a)

fII := z
q�1
1 z2 + z

q�1
2 z3 + z

q�1
3 z1, (Cyclic type a)

fIII := z
q�1
1 z2 + z

q�1
2 z1 + z

q
3 , (Simplicial+Join a).

Remark 8. The above list does not cover all possibilities. For example, we can combine fI and
f
0
I :

fI
00 := z

q+r
1 z̄

r�1
1 z̄2 + z

q+r�1
2 z̄

r
2z3 + z

q+r
3 z̄

r
3 .

2.2. Join type mixed polynomials. Let f(z, z̄) be a true strongly mixed homogeneous con-
venient polynomial of n-variables z = (z1, . . . , zn) of polar degree q and radial degree q + 2r
with an isolated singularity at the origin. Consider the join polynomial g := f(z, z̄)�w

q+r
w̄

r of
(n+ 1)-variables. Let Ff , Fg be the respective Milnor fibers of f and g. Consider the projective
Mixed hypersurfaces Vf and Vg defined by f = 0 and g = 0 respectively in Pn�1 or Pn.

Theorem 9. Assume that f(z, z̄) is a true strongly mixed homogeneous convenient polynomial
of n-variables and the corresponding projective variety Vf has a mixed smooth point in Vf and
n � 2. Then

(1) Ff is connected and
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(2) ⇡1(Pn \ Vg) = Z/qZ and Fg is simply-connected.

Proof. In this theorem, we do not assume that f is strongly non-degenerate. Note that

Ff ={z 2 Cn | f(z, z̄)� 1 = 0}
Vf = {[z] 2 Pn�1 | f(z, z̄) = 0}

Vg ={[z : w] 2 Pn | f(z, z̄)� w
q+r

w̄
r = 0}.

Consider the a�ne chart Uw := {w 6= 0} in Pn. In this coordinate space, using a�ne coordinates
uj = zj/w, j = 1, . . . , n, we see that

Vg \ Uw = {u 2 Cn | f(u, ū)� 1 = 0}.

This expression says that Ff
⇠= Vg \ Uw. Note that Vg \ {w = 0} ⇠= Vf has a smooth point p.

Consider the projection ⇡ : Pn ! Pn�1 which is defined by [z : w] 7! [z] 2 Pn�1. Then the
restriction ⇡ : Vg ! Pn�1 is a q-fold covering branched over Vf ⇢ Pn�1. Take a non-singular
point p of Vf ⇢ Pn�1 and consider a small normal disk D centered at p. For simplicity, we assume
that p 2 {z1 6= 0} and we choose the a�ne coordinate chart {z1 6= 0} with a�ne coordinates
vj = zj/z1, j = 2, . . . , n and x = w/z1. In this chart, Vg is defined by f(v, v̄)� x

q+r
x̄
r = 0 with

v = (1, v2, . . . , vn). Then the covering (v, x) 7! v is topologically equivalent to the holomorphic
cyclic covering defined by x

q � f = 0 in a small disk D with center p. (In D, we can take the
function f : D ! C as a real analytic complex-valued coordinate function and we may assume
that the image f(D) is a small unit disk �⇢ with radius ⇢.) Thus the fiber of a boundary
point p

0 , f(p0) = ⇢e
i✓0 2 @�, decomposes by {Re

i(✓0+2j⇡)/q | j = 0, . . . , q � 1} in x-coordinate
with R = |⇢|1/(q+2r) and under the local monodromy along @D, those q points are cyclically
rotated as Re

i(✓0+2j⇡)/q 7! Re
i(✓0+2(j+1)⇡)/q

, j = 0, . . . , q � 1. Thus ⇡
�1(D⇤) is connected,

where D
⇤ := D \ {p}. As Pn�1 \ Vf is connected, any point y 2 Vg \ Vf can be connected using

the covering structure to one of the points ⇡�1(p0). Here we identify Vf with Vg \ {w = 0}. As
Vg � Vf = Vg \ U!, Vg \ U! is connected.

Now we consider the fundamental group, assuming n = 2 for simplicity. Vg is defined by
z
q+r
3 z̄

r
3 � f(z, z̄) where z = (z1, z2). Consider the pencil lines L⌘ = {z2 = ⌘z1} and let

b = (0 : 0 : 1) be the base point of the pencil. Let eP2 be the blow-up space at b. Then

e⇡ : eP2 ! P1 is well defined and ⇡1(eP2 \ eVg) ⌘ ⇡1(P2 \ Vg) with eVg = e⇡�1(Vg) ⇠= Vg. The zero
points f(z, z̄) = 0 are the locus of singular pencil lines. Take a simple zero p 2 Vf and take p

0

nearby as a base line and put L = ⇡
�1(p0). Take generators ⇠1, . . . , ⇠q of ⇡1(L \ Vg \ L) as in

Figure 1. They satisfy the vanishing relation at infinity: ⇠q . . . ⇠1 = e. The centers of the small
circles are the points of L \ Vg. We always orient the small circles counterclockwise. Then the
monodromy relations at p are given by

⇠1 = ⇠2 = · · · = ⇠q, ⇠q . . . ⇠1 = e

See [8]. The argument is exactly the same as for a complex algebraic curve with a maximal flex
point in Zariski [18]. Thus we get ⇠q1 = e and ⇡1(P2 \ Vg) ⇠= Z/qZ.

The assertion (2) of Theorem 9 is true for any n � 2. For n > 2, we take a generic hyperplane
H of type a1z1 + · · · + anzn = 0 which contains [0 : · · · : 0 : 1] and use the surjectivity
⇡1(H \ V \H) ! ⇡1(Pn \ Vg). The defining polynomial of Vg \H is also of join type and use an
induction argument. Here we do not use the Zariski Hyperplane section theorem [4] (we do not
know if the same assertion holds for mixed hypersurfaces or not) but we only use the surjectivity
for a non-singular mixed hypersurface of join type which is easy to be shown. We leave this
assertion to reader. ⇤
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Figure 1. Generators of ⇡1(L� L \ V )

Example 10. Consider Rhie’s Lens equation

'n(z) := z̄ � z
n�2

zn�1 � an�1
� "

z
=

g(z, z̄)

(zn�1 � an�1)z
= 0, n � 2.

We can choose suitable positive numbers a, " so that 0 < " ⌧ a ⌧ 1 and 'n has 5(n� 1) simple
zeros (see [16] and also [13]). Let g(z, z̄) be the numerator of 'n and take the homogenization of
g(z, z̄)

G(z0, z̄0) := g(z1/z2, z̄1/z̄2)z
n
2 z̄2

= z̄1(z
n
1 � a

n�1
z1z

n�1
2 )� z̄2

�
z
n�1
1 z2 + "(zn�1

1 z2 � a
n�1

z
n�1
2 z1)

�

where z0 = (z1, z2). Consider the join type polynomial and the associated projective curve C:

C : f(z, z̄) := z
n
3 z̄3 +G(z0, z̄0) = 0, z = (z1, z2, z3).

Observe that f is strongly mixed homogeneous of polar degree q = n� 1 and radial degree n+ 1.
Consider the a�ne chart {z2 6= 0} and consider the a�ne coordinates w3 = z3/z2, w1 = z1/z2.
Then the a�ne equation takes the form w

n
3 w̄3 � g(w1, w̄1) = 0. Consider the pencil of lines

L⌘ = {z1�⌘z2 = 0} or in the a�ne equation, w1 = ⌘. There are exactly 5(n�1) singular pencil
lines corresponding to the zeros of g(w1, w̄1) = 0. These roots are all simple by the construction.
In a small neighborhood of any such zero, the projection ⇡ : C ! C is locally equivalent to
w

n
3 w̄3 �w1 = 0 or w

n
3 w̄3 � w̄1 = 0 depending on the sign of the zero. Take a point ⌘0 near some

zero of g and take generators ⇠1, . . . , ⇠q of ⇡1(L⌘0 \ C) on the line L⌘0 as in Figure 1, then we
get that ⇠1 = · · · = ⇠q as the monodromy relation. Thus we get ⇡1(P2 \ C) = Z/qZ. Note that
L1 \ C consists of q simple points. Thus the Euler number and the genus of C are calculated
easily as

�(C) = (n� 1)(2� (5n� 5)� 1) + 5n� 5 + n� 1 = 17n� 5n2 � 12,

g(C) =
(5n� 7)(n� 2)

2
.
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In the moduli space of mixed polynomials of polar degree n�1 and radial degree n+1, the lowest
genus is taken by

z
n
1 z̄1 + z

n
2 z̄2 + z

n
3 z̄3

which is isotopic to the holomorphic curve

z
n�1
1 + z

n�1
2 + z

n�1
3 = 0

of degree n� 1 and therefore the genus is (n� 2)(n� 3)/2 by Plücker’s formula.

Remark 11. The genus of a non-singular mixed curve of polar degree q is greater or equal to
(q�1)(q�2)

2 by the Thom inequality ([6]). In [10], it is shown that for any g � 0, there exists a
mixed non-singular curve of polar degree 1 with genus g.

2.3. Twisted join type polynomials. Let f(z) be a strongly mixed homogeneous polynomial
of polar degree q and radial degree q + 2r and consider the mixed homogeneous polynomial of
(n+ 1)-variables:

g(z, z̄, w, w̄) = f(z, z̄) + z̄nw
q+r

w̄
r�1

.

g is also strongly mixed homogeneous polynomial. Recall that f(z, z̄) is called to be 1-convenient
if the restriction of f to each coordinate subspace fi := f |{zi=0} is non-trivial for i = 1, . . . , n
([9])

Theorem 12. ([10]) Assume that n � 2 and f is 1-convenient with a connected Milnor fiber Ff

and let g(z, z̄, w, w̄) be the twisted join polynomial as above.

(1) The Milnor fiber Fg = g
�1(1) of g is simply-connected.

(2) The Euler characteristic of Fg is given by the formula:

�(Fg) = �(q + r)�(Ff ) + (q + r + 1)�(Ffn)

where fn := f |{zn = 0} and Ffn = f
�1
n (1).

Assume that n = 2 and f(z, z̄) has an isolated singularity at the origin. Then we have

Corollary 13. V = {g = 0} ⇢ P2 is a non-singular mixed curve and
⇡1(P2 � V ) ⇠= Z/qZ.

Example 14.

Consider the mixed curve defined by

f
0
I = z

q+r
1 z̄

r�1
1 z̄2 + z

q+r
2 z̄

r�1
2 z̄3 + z

q+r
3 z̄

r
3 , (Tree type b)

As f 0
I is simplicial and also of twisted join type as

f
0
I = z

q+r
1 z̄

r�1
1 z̄2 + (zq+r

2 z̄
r�1
2 z̄3 + z

q+r
3 z̄

r
3),

we show that the Milnor fiber is simply-connected and

⇡1(P2 \ C) ⇠= Z/qZ.
Here as (zq+r

2 z̄
r�1
2 z̄3 + z

q+r
3 z̄

r
3) is not 1- convenient, Theorem 12 can not be applied directly.

Let us see this assertion directly. We take the coordinate chart U2 := {z2 6= 0} and put
w1 = z1/z2, w3 = z3/z2. Then the a�ne equation of C in U2 is

f(w1, w3) = w
q+r
1 w̄

r�1
1 + w̄3 + w

q+r
3 w̄

r
3.

We consider the pencil L⌘ := {w3 � ⌘ = 0}, ⌘ 2 C. It is easy to see that the branching locus is
the set of the q + 2 points given by

⌃ := {w3 | w̄3(w
q+r
3 w̄

r�1
3 + 1) = 0}.
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The base point of the pencil is b = [1 : 0 : 0] and note that b 2 C. L⌘ \ C has q + 1 points over
C \⌃ and 1 point over ⌃. Taking a generic pencil L⌘0 near a branching point w 2 ⌃ and taking
generators ⇠1, . . . , ⇠q+1 of ⇡1(L⌘0 \ C) similarly as those in Figure 1, we get cyclic monodromy
relations at each point of ⌃:

⇠1 = ⇠2 = · · · = ⇠q+1.

This is enough to conclude that ⇡1(P2 \ C) is abelian and therefore isomorphic to

H1(P2 \ C) ⇠= Z/qZ.

As for the Euler characteristic, we get �(C) = �(q + 1)(q � 1) + q + 3 = �q
2 + q + 4. Thus the

genus of C is (q + 1)(q � 2)/2.

3. Non-trivial examples

Let F (z, z̄) be a true strongly non-degenerate mixed homogeneous polynomial of three vari-
ables z = (z1, z2, z3) of polar degree q and radial degree q + 2r and we consider the projective
mixed curve

C := {[z] 2 P2 |F (z, z̄) = 0}.
We study the geometric structure of C and the fundamental group ⇡1(P2 � C) using the pencil
L⌘ := {z2 = ⌘z3}, ⌘ 2 C, or equivalently the projection

p : (P2
, C) ! P1

, [z] 7! [z2, z3].

Take the a�ne chart U3 := {z3 6= 0} with coordinate functions (z, w) with z = z1/z3, w = z2/z3.
Then C \ U3 is defined by f(z, w, z̄, w̄) = F (z, z̄)/zq+r

3 z̄
r
3 = 0. Let ⌃ ⇢ P1 be the branching

locus of p.

3.0.1. Holomorphic case. If F is homogeneous polynomial without complex conjugate variables,
⌃ is described by the discriminant locus of f as a polynomial in z. Put �(w) := discrimzf(z,w).
Thus ⌃ is a finite set of points ⌃ = {⇢1, . . . , ⇢`} given by �(w) = 0. For any ⇢j 2 ⌃ and
⇢j,k 2 p

�1(⇢j), C is locally a cyclic covering of order sj,k at ⇢j,k where sj,k is the multiplicity of
⇢j,k in p

�1(⇢j) as the root of f(z, ⇢j) = 0 which is equal to the intersection multiplicity of L⇢j

and C at ⇢j,k.

3.0.2. Mixed polynomial case. Let F be a mixed homogeneous polynomial. Usually it is not easy
to compute ⌃. Instead of computing ⌃, we proceed as follows. Let z = x+yi and w = u+vi and
write f as f(x, y, u, v) := g(x, y, u, v) + ih(x, y, u, v) where g and h are real polynomials which
are the real and imaginary part of f respectively. Consider the complex algebraic variety

C(C) := {(x, y, u, v) 2 C4 |g(x, y, u, v) = h(x, y, u, v) = 0}

which is the complexification of our curve. Note that C(C) \ R4 = C. The branching locus
of pC : C(C) ! C2 is obtained by a Groebner basis calculation from the ideal [g, h, J ] where
J = @g

@x
@h
@y � @g

@y
@h
@x and [g, h, J ] is the ideal generated by g, h, J . The defining ideal is generated

by the polynomials C[u, v]\ [g, h, J ]. It is usually a principal ideal and the generating polynomial
R(u, v) of this ideal describes the discriminant locus of the complexified variety. We define the
branching locus ⌃R by the intersection ⌃C \ R2. Take a point w 2 ⌃R. It is not always true
that a point w 2 ⌃R is a branching point of p : C ! R2. It might come from the branching
on the complex point of C(C) outside of C. That is ⌃ ⇢ ⌃R but the equality does not hold in
general. See Example 2 below. Also it might have some point ⌘0 such that L⌘0 \ C contains a
1-dimensional intersection. See Remark 16.
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Figure 2. Vanishing loops

There are some cases for which these branching loci are comparatively simple. Suppose that
f is a join type polynomial of zq+r

1 z̄
r
1 and a strongly mixed homogeneous convenient polynomial

K(z2, z3, z̄2, z̄3) of two variables z2 and z3. Then the a�ne equation takes the form

f(z, z̄) = z
q+r

z̄
r + k(w, w̄) = 0

with respect to the a�ne coordinates z = z1/z3 and w = z2/z3. By the non-degeneracy assump-
tion, the roots of k(w, w̄) = 0 are all simple. Then the branching locus ⌃ is nothing but the
set of those roots and over any of these roots, the projection is locally equivalent to the q-cyclic
coverings zq+r

z̄
r � w = 0 or zq+r

z̄
r � w̄ = 0 respectively depending on the sign of the root.

However for a generic mixed polynomial, ⌃R and ⌃ are much more complicated. Usually they
have real dimension 1 components and also they can have isolated points. We assume that for
each ⌘, L⌘ \ C is a finite point. We define �(⌘) to be the cardinality of L⌘ \ C. We subdivide
{C \ ⌃,⌃ � S(⌃), S(⌃)} by �-values where S(⌃) is the singular locus of ⌃ and let D be the
corresponding subdivision. We call D the �-subdivision of the parameter space. A 2-dimensional
connected component V 2 D (respectively 1-dimensional L, 0-dimensional P ) is called a region
(resp. an edge, a vertex). A region V is called regular if the inclusion map V ⇢ V̄ is a homotopy
equivalence. An edge L is called regular if there exist exactly two regions, say V1, V2 whose
boundaries contain L and �(L) = (�(V1) + �(V2))/2. A vertex P is called regular if there exist
at most two regions which contain P in their boundary.

For a regular edge M 2 D, suppose that two regions S1, S2 are touching each other along M

and suppose that �(S1) > �(S2). Take a point a 2 M and a small transversal path

� : [0, 1] ! R2 = C

so that �(t) 2 S1 for t < 1/2, �(1/2) = a and �(t) 2 S2 for t > 1/2. Let � := (�(S1)� �(S2))/2.
Then for a su�ciently small " > 0 and 1/2�"  8t < 1/2, p�1(�(t)) consists of �(S1) points, say
⇠1(t), . . . , ⇠�(S1)(t) and among them there exist � pairs of points {⇠2i�1(t), ⇠2i(t)}, i = 1, . . . , �
and we can choose a continuous family of disjoint � disks Di(t), i = 1, . . . , � in the pencil line
p
�1(�(t)) = R2 which contain only the corresponding pair of roots so that when t goes to 1/2,

two roots approach each other in the disk Di(t) and collapse to �i 2 La \M , a double point and
then they disappear for t > 1/2. These pairs of roots {⇠2i�1(t), ⇠2i(t)} as roots of a polynomial
equation f(z,�(t)) = 0 have opposite signs (one positive and one negative). Take a base point



338 MUTSUO OKA

b = [1 : 0 : 0] of the fundamental group at the base point of the pencil. Consider a loop
!i 2 ⇡1(L�(1/2�")�C, b) represented by the boundary loop of Di(1/2�"), connected to the base
point by a path outside of L�(1/2�") \ [k

i=1Di(�(1/2 � ")). Then we get the following relation
for t : 1/2� ✏ ! 1/2 + ✏

!i = e, i = 1, . . . , �.

Take elements ⇠2i�1, ⇠2i as in Figure 2. Then this implies that

!i = ⇠2i�1⇠2i = e or equivalently ⇠2i�1 = ⇠
�1
2i , i = 1, . . . , �.

We call these relations vanishing monodromy relations.

3.1. Example 1. Now we present several examples which are neither simplicial nor of join type
but the complement has an abelian fundamental group.

3.1.1. Example 1-1. Consider the following mixed curve of polar degree 1

Ct : F (z, z̄) := z1
2
z̄1 + z2

2
z̄2 + z

2
3 z̄3 + t z1

2
z2z̄3 = 0

with t 2 C and let Ct be the corresponding projective curve. Let Mt = F
�1(1) be the corre-

sponding Milnor fiber. Then C0 is of mixed Brieskorn type and isotopic to the standard line
z1 + z2 + z3 = 0, namely a sphere S

2 (see [11]) and M0 is di↵eomorphic to the plane C. This is
true for any small t. Observe that {z3 = 0} \ Ct = {[1 : �1 : 0]}.

We are interested in C := C(�4) : z
2
1 z̄1 + z

2
2 z̄2 + z

2
3 z̄3 � 4 z1z2z̄3. We use the notation

M�4 = M for simplicity. Take the a�ne coordinate z = z1/z3, w = z2/z3. Then the a�ne
equation is given as

C : z
2
z̄ + w

2
w̄ + 1� 4 zw = 0.

To compute the Euler characteristic �(C) and the fundamental group
⇡1(P2 \ C), we consider the pencil L⌘ := {w = ⌘}, ⌘ = u + vi 2 C. The branching locus ⌃R is
given by R(u, v) = 0 where

R(u, v) = 27 + 11642 v2u4 � 2640u7
v
2 + 405u4

v
8 + 162u10

v
2 + 16438 v6

� 6736 v6u3 � 350u6 + 405 v4u8 + 162u2
v
10 + 27 v12 + 540 v6u6

+ 28430u2
v
4 � 148u3 � 2196uv2 � 7032u5

v
4 + 27u12 � 2196uv8 � 148u9

.

See Appendix 1 (§3.3.1) for the practical computation of R(u, v). Its diagram of the zero locus set
R = 0 is given as Figure 3. Let A be the bounded region of C \⌃R and let U be the complement
P1 \ Ā. There are four singular points Vi, i = 1, . . . , 4 of the boundary of Ā. Actually �1 is an
isolated point of ⌃R but L⌘ \C consists of one simple point and it does not give any branching
of the projection p : C ! C. Thus �1 /2 ⌃.

As the polar degree is 1, the number of intersection points of L⌘ \ C counted with sign is
always 1. Observe that L⌘ \ C consist of 3 simple roots of f(z, ⌘) = 0 for any ⌘ 2 A. Observe
further that over any point ⌘ of the complement U of Ā, L⌘ \ C has a unique simple root, i.e.
�(U) = 1 and �(A) = 3. For any smooth boundary point ⌘ of @Ā, L⌘ \ C has two points, one
simple and one double point. (Strictly speaking, there does not exist the notion of multiplicity
in the mixed roots. See [12]. Here we use the terminology “double root” in the sense that it is
a limit of two simple roots). As for four singular points, we have �(Vi) = 1, i = 1, . . . , 4. Let
a1a2 be the line segment cut by A \ {v = 0} where a1 ⇡ 0.51, a2 ⇡ 1.94. For any a1 < ⌘ < a2,
L⌘ \C has three simple points which are all real. This can be observed by the diagram of f = 0
restricted on the real plane section (w, z) 2 R2 ( Figure 4). Consider the limit of L⌘ \C when ⌘

goes to a1 or a2 along the real line segment a1a2. There are two real positive roots and one real
negative root and at both ends, two positive roots collapse in the double point, which is clear
from Figure 4.
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Figure 3. Diagram of R = 0, Example 1-1

Figure 4. Diagram of f = 0, Example 1-1

Using these data, we can compute the Euler characteristic as

�(C) = �(p�1(Ā)) + �(p�1(U)) = �1 + 1 = 0.

This implies C is a torus and �(P2 � C) = 3� 0 = 3. We claim

Proposition 15.

(1) ⇡1(P2 � C) = {e}, ⇡1(M) = {e}.
(2) �(M) = 3, H1(M) = 0, H2(M) = 2.

Proof. We first compute the fundamental group. Put b0 = 1 and we take Lb0 as a fixed regular
pencil line. Then Lb0 \ C = {x1, x2, x3} where

x1 < 0 < x2 < x3.
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Figure 5. Generators of ⇡1(Lb0 � C \ Lb0)

See Figure 4. It is not hard to see that ⇡1(Lb0 \C \Lb0) ! ⇡1(P2 \C) is surjective. See §3.3 for
an explanation in detail. Take generators ⇠1, ⇠2, ⇠3 of ⇡1(Lb0 \C \Lb0) as in Figure 5. They are
oriented counterclockwise. First, as a vanishing relation at infinity, they satisfy the relation

⇠1⇠2⇠3 = e.(1)

When ⌘ moves on the interval [a1, a2] from ⌘ = b0 to a1 or a2, we see that two positive roots
collapse in the point for ⌘ = a1 or ⌘ = a2 and disappear for ⌘ < a1 or ⌘ > a2. Thus as a
vanishing relation, we get

⇠2 = ⇠
�1
3 .

Now we consider the movement from ⌘ = 1 along the vertical line to ⌘ = 1+v0i where (1, v0) 2 @A

and v0 ⇡ 0.26. The generators are deformed as in Figure 6. Thus as a vanishing monodromy
relation, we get (⇠�1

2 ⇠1⇠2)⇠3 = e. Thus combining the above relations, we get

⇠1 = ⇠3, ⇠2 = ⇠1, and ⇠1 = e.

We conclude that ⇡1(P2 � C) = {e}. ⇤

Remark 16. It can be observed that the set � := {t = t1 + t2i 2 C |Ct : singular} is a real
one-dimensional semi-algebraic set and the complement C \ � has two connected components in
this case. The bounded region contains 0 and for any t in this region, Ct is isotopic to C0 and
it is a rational sphere. � is calculated by Groebner basis calculation. In our case, we found that
� is defined by

t
4
1 � 6t21 + 8t1 � 3 + 2t22t

2
1 � 6t22 + t

4
2 = 0.

Certainly C�4 is in the outside unbounded region. We may choose another one C 3p3 which must
be isotopic to C�4 but the branching locus is very di↵erent and defined by R = 0 and its diagram
is given by Figure 7.

In this example, �(A) = �(B) = 3 but the point (u, v) = (�1, 0) is special as L�1 \ C has
one simple point and one 1-dimensional component which is defined by |z| = 6

p
3. Thus the

geometry of the pencil is more complicated and it takes more careful consideration to compute
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Figure 6. movement on ⌘ = 1 + si, Example 1-1

Figure 7. Diagram of R = 0, Remark16

the fundamental group.

R(u, v) := 27+540 v6u6+405 v4u8+162u2
v
10+120u9+162u10

v
2+654u4

v
2+120u3+216uv2

+1008u5
v
4+216uv8+27u12+405 v8u4+768 v6u3+576u7

v
2+90 v6+558u2

v
4+186u6+27 v12.

3.1.2. Example 1-2. We consider another example with polar degree 1 and radial degree 3. Let
F (z, z̄) := z

2
1 z̄1+z

2
2 z̄2+z

2
3 z̄3�4z2z3z̄3�2z23 z̄1. Taking the a�ne chart {z3 6= 0} and coordinates

z = z1/z3, w = z2/z3, the a�ne equation is f(z, w) = z
2
z̄ + w

2
w̄ + 1 � 4w � 2z̄. Consider the

pencil L⌘ := {w = ⌘}, ⌘ 2 C. Putting w = u + vi, the branching locus is described by R = 0
where the explicit form is given in Appendix 2(§3.3.2) to show that the equation of R grows
exponentially by the number of monomials and degree. However the diagram of R = 0 is not so
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Figure 8. Diagram of R = 0, Example 1-2

complicated and it is given in Figure 8. We observe that �(Wi) = 1, i = 1, 2, 3 and �(T ) = 3
where T is the complement of W 1 [W 2 [W 3. There are two singular points of the boundary of
T , V1, V2 and �(Vi) = 1 and the other boundary points have 2 roots. Let a1, . . . , a6 be real roots
of R(u, 0) = 0 and we assume that a1 < a2 < · · · < a6. Note that a1 ⇡ �2.22 and a2 ⇡ �1.98.
See figure 8. In the Figure, the horizontal line is the w-coordinate axis. Take a base line Lb0

with b0 = a2 � ", 0 < " ⌧ 1. See the diagram of f = 0 on R2 (Figure 9). Two vertical lines
are w = a1 and w = a2. We take generators ⇠1, ⇠2, ⇠3 of ⇡1(Lb0 \ C) as the left side of Figure 5.
Considering a movement of ⌘ = b0 to ⌘ = a1 and from ⌘ = b0 to ⌘ = a2, we get the vanishing
monodromy relations

⇠1⇠2 = e, ⇠2⇠3 = e.(2)

This is also clear from Figure 9. Combining the vanishing relation ⇠1⇠2⇠3 = e, we get

⇠2 = ⇠
�1
1 = ⇠

�1
3 = e.

Thus ⇡1(P2 \ C) is abelian and we conclude that ⇡1(P2 \ C) = H1(P2 � C) is trivial. The Euler
number is computed as

�(C) = �(W1) + �(W2) + �(W3) + �(T )� �(@T ) = 1 + 1 + 1� 3� 2 = �2.

Thus the genus of C is 2.

3.2. Example 2. Consider the next mixed curve of polar degree 2 and radial degree 4.

Ct F (z, z̄) := z̄1z
3
1 + z

3
2 z̄2 + z

3
3 z̄3 + t z

2
1 z̄2z3

For t small, Ct is isotopic to the conic z
2
1 + z

2
2 + z

2
3 = 0 in P2 and a rational sphere ([11]). We

take t = �4 and put C = C�4 and M = M�4 the Milnor fiber. The branching locus is defined
by R = R1R2 = 0 where
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Figure 9. Diagram of f = 0 with z, w 2 R, Example 1-2

Figure 10. Diagram of R = 0, Example 2

R1 := 1 + u
8 + 6 v4u4 + 2u4 � 2 v4 + 4 v6u2 + 4u6

v
2 + v

8
,

R2 := 1� 12u4 + 124 v4 � 320u2
v
2 + 8u14

v
2 + 12580 v4u4 + 12936 v6u2 + 3464u6

v
2 + 70 v8u8

� 1228u8
v
4 + 56 v10u6 � 1472 v6u6 + 56 v6u10 � 548 v8u4 � 26u8 + 3846 v8 � 12u12

+ 124 v12 + u
16 + 28 v12u4 + 8 v14u2 + 28u12

v
4 � 368u10

v
2 + 176 v10u2 + v

16
.

We claim that

Proposition 17. (1) ⇡1(P2 � C) ⇠= Z/2Z.
(2) �(C) = �2. The genus of C is 2.

Proof. The locus R1 = 0 gives two isolated points P = (0, 1), Q = (0,�1). Note that the a�ne
equation of C is defined by f(z, w) = z

3
z̄ +w

3
w̄+ 1� 4z2w̄ = 0. Recall that the highest degree
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Figure 11. Generators of ⇡1(L1 � C \ L1) (⌘ = 1)

part of f as a polynomial of z is z3z̄, and therefore the number of roots counted with sign is two
by [12]. We also observe thatf(z, w) = 0 () f(�z, w) = 0. Thus the roots are symmetric with
respect to the origin in z-coordinates. R is symmetric with respect to the v-axis but the region B

does not give any branching. It comes from the complex part of the curve. Thus �(B) = 2. Also
we observe that �(A) = 6 and �(@A) = 4 except 4 singular points V1, . . . , V4 where L⌘ \C has 2
multiple points. The complement region E := P1 \ (Ā[ {P,Q}) has 2 simple points for any fiber
L⌘ \C with ⌘ 2 E. We have �(P ) = �(Q) = 1. Take generators of ⇡1(L1�C), ⇠i, i = 1, . . . , 6 as
in Figure 11. Observe that f(z, w) = 0 implies f(�z, w) = 0. Thus the roots are always paired
by z,�z for a fixed w. Put Ā \ {v = 0} = {a, b} with a ⇡ 0.51 and b ⇡ 1.93. First we consider
the movement ⌘ = 1 ! a. Consider the diagram of fr := z

4 + w
4 + 1� 4z2w (Figure12) where

fr is the restriction of f to R2. This says that on [a, b], L⌘ \C has exactly four real roots, which
are symmetric with respect the origin and at ⌘ = a, they collapse to two double roots. Let fi be
the restriction of f(iz, w) to (z, w) 2 R2 and look at its diagram. See Figure 13. Using the real
diagram of fi := �z

4 + w
4 + 1 + 4z2w, we see also that there are exactly two purely imaginary

roots of f(z, ⌘) = 0 for any w 2 R. The above observation says that

⇠1⇠2 = e, ⇠5⇠6 = e.(3)

(The Figure 12 shows that we get the same degeneration for ⌘ ! b.) Then we consider the
movement of the line L⌘ further to the left until ⌘ = 0. Then we move L⌘ along the imaginary
axis to ⌘ = i which is a root of multiplicity 2 (P in the diagram). Note that the monodoromy
along |w � i| = " is topologically the half turn of two roots. Thus we get

⇠3 = ⇠4.(4)

Now we will see the vanishing relation along the vertical line for ⌘ = 1 ! 1+ c0i . . . where c0

is the positive root of R2(1, v) = 0. The root of f(z, w) = 0 with w = 1 + ci is given as

±P1,±P2, P1 ⇡ 1.57� 1.21i, P2 ⇡ 0.76 + 0i
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Figure 12. Diagram of f = 0, Example 2

Figure 13. Diagram of fi(z, w) = 0, Example 2

where ±P1 are double roots. Recall that f(z, 1) = 0 has roots

±Q1,±Q2,±Q3, Q1 ⇡ 2.11i, Q2 ⇡ 0.76, Q3 ⇡ 1.84.

The movement of generators during the above movement is described in Figure 14. The dotted
loops show the situation in ⌘ = 1+(c0�")i wit 0 < " ⌧ 1. They are denoted as ⇠01, . . . , ⇠

0
6. In this

movement, ⇠2, ⇠5 do not move much. Other generators are deformed as indicated with arrows.
At ⌘ = 1 + c0i, ⇠01, ⇠

0
4 and ⇠

0
3, ⇠

0
6 collapse respectively. Thus ⇠1 = ⇠

0
1, ⇠4 = ⇠

0
4 and ⇠3 = ⇠

0
3, ⇠6 = ⇠

0
6

and we get vanishing relations which are written as

⇠1⇠4 = e, (⇠4⇠5)
�1

⇠3(⇠4⇠5)⇠6 = e.(5)

Using (3), (4)and (5), we conclude that

⇠2 = ⇠
�1
1 , ⇠3 = ⇠1, ⇠4 = ⇠

�1
1 , ⇠5 = ⇠1, ⇠

2
1 = e.

That is, ⇡1(P2 � C) ⇠= Z/2Z ⇠= H1(P2 � C). ⇤

3.3. Surjectivity. Assume that f(z, z̄, w, w̄) = 0 is the a�ne equation of a non-singular mixed
curve C of polar degree q and radial degree q+2r. We assume that f is monic in the sense that
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Figure 14. Movement of generators, Example 2

it has the monomial zq+r
z̄
r with a non-zero coe�cient. Consider the pencil line

L⌘ = {w = ⌘}, ⌘ 2 C
and we consider the �-subdivision D of C (the parameter space) by the value of �(⌘) using the
diagram of R. We assume that all regions, edges and vertices are regular. We assume also that
the base point b of the pencil is not on C. Let G = {�(⌘) | ⌘ 2 C} ⇢ N the possible number
of roots of f(z, z̄, ⌘, ⌘̄) = 0 and �max be the maximum of G. We assume the following two
conditions.
(1) The set Umax := {⌘ | �(⌘) = �max} is connected and it is a region.
(2) Take a region U of D with �(U) < �max. Put @+U = {q 2 @U | �(q) � �(U)}. Then @+U is
connected.

Note that the above condition is satisfied in Example 1-1, Example 1-2, Example 2. Let B be
the complement of the union of regions of D, i.e. B is the union of the edges and vertices. We fix
a generic line L⌘0 with ⌘0 2 Umax and a base point b 2 L⌘0 \ C. Let � : (I, {0, 1}) ! (P2 \ C, b)
be a loop. We may assume that {t |�(t) 2 B} is finite. Let ↵ := min{�(�(t)) | t 2 I} and we
may assume that ↵ is taken in a region V of D. Put D� be the union of U with �(U) � �. Then
we assert:

Assertion 18. � is homotopic in P2 \ C to a loop �̂ in the pencil line L⌘0 \ C.

Proof. We may assume that ⇡ �� intersects B transversely at smooth points of B if it intersects.
Step 1. Suppose that ↵ 6= �max. Then the image of ⇡ � � intersects more than two regions.

Take a path segment L of ⇡(�(I)) \ V . Let P,Q be the end points of L and assume that
P = ⇡(�(t1)) and Q = ⇡(�(t2)) with t1 < t2. By the assumption (2), P,Q belongs to the unique
boundary component @+V and there is a path L

00 in the boundary @+V connecting P,Q and
�(⌘) � ↵ for any ⌘ 2 L

00. We want replace L by some path L
0 ⇢ V which is homotopic to L

00

relatively to the end points. See Figure 15. Consider the closed path at Q, ! := L
�1 · L0. The

composition of paths is to be read from the left. Take a lift !̃ which is a loop starting at �(t2),
passes through �(t1) and comes back to �(t2) which is null homotopic in P2 \C. We can simply
take !̃ near the infinity. Then replace � by �[0,t2] · !̃ · �[t2,1] which is homotopic to �. Now �

is clearly homotopic to �
0 where �

0 := �[0,t2] · !̃ · �[t2,1]. Note that the image ⇡(�0(I)) replaces
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Figure 15. Segment L

the segment L by L
0. Now we can deform L

0 to L
00 and further to the other side of the region

of L00, keeping the homotopy class. Doing this operation for any path segment cut by V , we get
a loop �

00 whose image by ⇡ is in D� where � := min{G \ {↵}}. By induction, we can deform �

keeping the homotopy class to a loop �1 in ⇡
�1(Umax).

Step 2. Now we assume that �1 is a loop in ⇡
�1(Umax). We deform �1 further to a loop �̂

which is a loop in the line L⌘0 .
If Umax is contractible, this is easy to deform using the fibration structure of ⇡ over Umax.

This is the case for Example 1-1 and Example 2. In Example 1-2, Umax = T and ⇡1(Umax, ⌘0)
is a free group of rank 2.

Assume that ⇡1(Umax) is non-trivial. Put ⌧ := ⇡ � �1 , a loop in Umax. Take a lift ⌧̃ starting
at b which is a contractible closed curve in ⇡

�1
Umax \ C. Consider the loop �1 · ⌧̃�1. This is

homotopic to �1. The image of this modified loop by ⇡ is clearly homotopic to a constant loop
at ⌘0. Using the fibration structure over Umax, we can deform this loop to a loop �̂ in L⌘0 \ C.
For the detail of lifting argument, see for example Spanier [17]. ⇤

The surjectivity assertion is not true if ⌘0 does not belong to Umax. Also a loop ⌧ 2 (L⌘0 \C)
cannot be expressed by a loop in (L⌘ \C) if �(⌘) < �max without using the monodromy relations.
An example is given by ⇠2i�1, ⇠2i in Figure 2 can not deformed on the line L�(1/2+"). We close
this paper by a question.
Question. Do the conditions (1) and (2) hold for any mixed function?

3.3.1. Appendix 1. Let f be a mixed strongly homogeneous polynomial. To compute the defining
polynomial of the branching locus R in Example 1-1, Example 1-2 and Example 2, we proceed
as follows. Let z = x + yi and w = u + vi and write f as g + ih where g, h are polynomials of
x, y, u, v with real coe�cients. Let J = @g

@x
@h
@y � @g

@y
@h
@x and let A = [g, h, J ], the ideal generated

by g, h, J . Then we use the MAPLE command: Groebner[Basis](A,plex(x,y,u,v)). For further
explanation for Groebner calculation, we refer [3] for example.

Acknowledgement. For the numerical calculation of roots of f(z, w) = 0 with fixed various
complex numbers w’s, we have used the following program on MAPLE which is kindly written
by Pho Duc Tai, Hanoi University of Science. I am grateful to him for his help.
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Pho’s program to compute roots of mixed polynomial on MAPLE:
fsol3 := proc (f, z)

local aa, a, b, ↵, f1, f2, h, i, j, k, s, temp; print(Factorization of Input = factor(f)); ↵ := factors(f)[2];

temp := {};
for k to nops(↵) do

if 1 < ↵[k][2] then RETURN(printf(”Input is not squarefree. Please solve each factor.”)) end if;

assume(a, real); assume(b, real); h := expand(subs(z = a+I*b, ↵[k][1]));

f1 := Re(h); f2 := Im(h); aa := RootFinding[Isolate]([f1, f2], [a, b]);

temp := `union`(temp, seq([[op(aa[i][1])][2], [op(aa[i][2])][2]], i = 1 .. nops(aa))) end do;

RETURN([op(temp)])

end proc

3.3.2. Appendix 2: Equation of R for Example 1.2.

The equation of the branching locus is the following.

R(u, v) = �179685 + 129384576u4v4 + 2160u19v2 + 27u24 � 864 v22 + 13590816u7 � 102858240 v6u5

� 47520u18v4 � 7631712u+ 174564288 v6u4 � 288581376 v6u2 + 193050720 v8u2 + 580608 v14u3

+2032128u13v4+5080320u9v8+4064256u7v10+72576uv16�142560u6v16�9504u2v20�142560u16v6

� 399168u12v10 � 285120u14v8 � 285120u8v14 � 47520u4v18 � 399168u10v12 +441460992 v2u6 +27 v24

+542688 v16+55344648 v6u6+216u21+12096 v20�6048u19+20877120u2�466968u15+4064256u11v6

+2032128u5v12+580608u15v2+1550016 v2�21912872u3�103122216 v2u+15611136uv10�2415360 v8u3

� 212093856u3v4 + 165770304u7v2 � 93452u18 + 33480480 v8u5 + 27856256 v6u3 + 138815904 v6u

� 137971200u7v4 � 46557076 v6 + 134691072u2v2 + 20322912u4 + 35835552 v4 � 15874316u6

+ 588672u5 � 425273772 v2u4 + 404256u16 + 352376064 v2u3 + 44453280 v4u9 + 57198720 v6u7

+ 6479040 v10u3 � 596640 v12u+ 6378146 v12 + 271049040u5v4 � 55084800u9v2 � 242721696u8v2

� 283722816u6v4 + 85432284u10v2 + 15257280u11v2 � 9504u20v2 � 73189752 v8u+ 324u22v2

+ 1597920u13 + 2630208 v14u2 � 3738096u14v4 � 12425640u10v8 � 11851032u8v10 � 8601296u12v6

� 7583152u6v12 � 912372u16v2 � 752448u14 + 190612542u8v4 � 52716324u2v10 � 107902338 v8u4

+ 1782u20v4 � 50865792 v4u� 4232728u9 + 9720u17v4 + 2160u3v18 + 9720u5v16 + 25920u15v6

+ 54432u11v10 + 45360u9v12 + 45360u13v8 + 25920u7v14 + 216uv20 + 1451520u6v14 + 120960u2v18

+ 2155584 v12u2 � 821676u2v16 � 18081480u7v8 � 11114040u11v4 � 18630120u9v6 � 10126488u5v10

�3003624u3v12�3552264u13v2�3198096u4v14+72576u17�337318944u5v2�99220 v18�2136768 v14

+ 544320u16v4 + 2540160u12v8 + 3048192u10v10 + 1451520u14v6 + 2540160u8v12 + 120960u18v2

+544320u4v16 +12096u20 +80914380 v4u2 +7271904u10 � 864u22 +10619712u4v10 +18579648u12v4

� 22564800u6v8 +33143040u8v8 +19619136u6v10 � 78557760u8v6 � 71293248u10v4 +33409728u10v6

+ 7934784u4v12 + 4945344u14v2 + 5940u18v6 + 5940u6v18 + 324u2v22 + 13365u16v8 + 24948u12v12

+ 21384u14v10 + 13365u8v16 + 1782u4v20 + 21384u10v14 � 217728u15v4 � 762048u11v8

� 762048u9v10 � 508032u13v6 � 508032u7v12 � 54432u17v2 � 54432u3v16 � 217728u5v14 � 6048uv18

�7068480u8�357240uv14+30563520 v8�15242784 v10�1027742u12�1945344u11�22380096u12v2.
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LACUNAS AND LOCAL ALGEBRAICITY OF VOLUME FUNCTIONS

V.A. VASSILIEV

To the memory of Egbert Brieskorn

Abstract. The volume cut o↵ by a hyperplane from a bounded body with smooth boundary
in R2k never is an algebraic function on the space of hyperplanes: for k=1 it is the famous
lemma XXVIII from Newton’s Principia. Following an analogy of these volume functions with
the solutions of hyperbolic PDE’s, we study the local version of the same problem: can such
a volume function coincide with an algebraic one at least in some domains of the space of
hyperplanes, intersecting the body? We prove some homological and geometric obstructions
to this integrability property. Based on these restrictions, we find a family of examples of
such “locally integrable” bodies in Euclidean spaces.

1. Introduction

According to an Archimedes’ theorem, the volume cut by a plane from a ball in R3 depends
algebraically on the coordinates of the plane. The same is true also for all balls and ellipsoids
in all odd-dimensional Euclidean spaces, but no additional examples are known by now.

On the contrary, Newton proved that for no bounded convex domain with smooth boundary
in R2 the areas cut from it by the a�ne lines depend algebraically on the coordinates of these
lines, see [12], [7], [2], [6]. V.I. Arnold [3] conjectured that similar statements hold also in
higher dimensions. The even-dimensional part of this problem was completed in [16]: there is
no bounded domain (convex or not) with smooth boundary in R2k, for which the volume cut
o↵ by a hyperplane is algebraic. The odd-dimensional part of Arnold’s conjecture (stating that
the ellipsoids in R2k+1 are unique bodies with this property) has only partial solutions: several
geometric obstructions to the algebraicity of volumes are presented in [15]; however it is not
clear whether they are su�cient for the proof of the general problem.

We study a local version of the same problem: given a body W ⇢ RN , can the corresponding
volume function coincide with an algebraic one at least in some open subset of the space of all
a�ne subspaces in RN intersecting W? We prove some topological and geometric obstructions
to this local integrability property, and find a series of new bodies satisfying it.

There is a deep analogy between this problem and the lacuna problem in the theory of hy-
perbolic PDE’s developed in [13], [11], [4], [5]; for a list of parallel notions see page 138 in [15].
Many of our objects and terminology are borrowed from the theory of lacunas.

1.1. Notation and definitions. Denote by P the space of all a�ne hyperplanes in RN . It al-
most coincides with RPN : the homogeneous coordinates (a1 : · · · : aN : b) define the hyperplane
with the equation

(1) a1x1 + · · ·+ aNxN + b = 0,

and (0 : · · · : 0 : 1) is the only point in RPN but not in P.

2010 Mathematics Subject Classification. 14D05, 44A99; 20F55.
Key words and phrases. Integral geometry, Picard-Lefschetz theory, lacuna, algebraic function, monodromy,

Newton’s lemma XXVIII.
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Let W ⇢ RN be a smooth body, that is, a bounded (not necessarily connected) domain with
smooth boundary. It defines a two-valued function VW on P: its values VW (X) on a hyperplane
X are equal to the volumes of intersections of the body W with two halfspaces in RN separated
by X.

The space P consists of open domains whose points are the hyperplanes transversal to @W ,
and the walls between these domains formed by the hyperplanes tangent to it: these walls
form the projective dual hypersurface of @W . Such an open domain in P is called a lacuna
if the restriction of the volume functions to this domain coincides with an algebraic function
on P, that is, there exists a non-trivial polynomial F (a1, . . . , aN , b, V ) vanishing in any point
(a1, . . . , aN , b, V ) such that V equals either of the two volumes cut o↵ from the body W by the
hyperplane with the equation (1) from our domain. The body W is called algebraically integrable
if all domains of P are lacunas.

There is a trivial example of a lacuna: it is the domain consisting of hyperplanes not inter-
secting the body W , so that the corresponding volume function is equal identically to a pair of
constants in it, 0 and the volume of entire W . Given a body, does it define nontrivial lacunas in
P (so that the corresponding volume functions are not constant)?

In the case of convex W ⇢ R2k and infinitely di↵erentiable @W the answer is negative (there
is only one non-trivial domain in P, and it is not a lacuna); for k = 1 it is the Newton’s lemma
XXVIII. The main result of [16] says that for an arbitrary bounded body with C

1-boundary in
R2k all regular domains in P cannot be lacunas simultaneously.

2. Obstructions to the integrability

In this section we assume that the boundary @W of the body W ⇢ RN is a smooth component
(or a collection of components) of the zero set of an irreducible polynomial with real coe�cients.

For any generic real hyperplane X, we define an (N � 2)-dimensional complex manifold, and
some collection of elements of its (N � 2)-dimensional homology group, one of which is given by
the manifold X [ @W , and the others are called vanishing cycles. Our main result (Theorem 1
below) says that if the intersection index of the first cycle with either of these vanishing cycles
is not equal to 0, then the component of P containing X is not a lacuna. Let us introduce all
these objects.

Let A be the zero set in CN of the polynomial distinguishing @W . This set A can have
singular points in the imaginary domain. Let us fix a Whitney stratification of the algebraic
subvariety A[CPN�1

1 ⇢ CPN , where CPN is the standard compactification of CN , and CPN�1
1

is the “infinitely distant” hyperplane in it. An a�ne hyperplane X ⇢ CN is called generic if
its closure in CPN is transversal to this chosen stratification of A [ CPN�1

1 . The set of generic
hyperplanes contains a Zariski open subset in the space PC of all complex hyperplanes in CN .
In particular, the real planes in RN , whose complexifications are generic, are dense in P. Using
the complexifications of real planes, we will consider P as a subset of PC.

Denote by Reg the space of all generic hyperplanes in CN , and denote by RegR the set of
hyperplanes with real coe�cients that are transversal to @W ; in particular RegR � Reg\P . All
elements of the di↵erence RegR \ (Reg \ P) correspond to real planes whose complexifications
are not transversal to the stratified variety A [ CPN�1

1 at some pairs of its complex conjugate
imaginary points. The codimension of this di↵erence in P is at least 2, in particular it does not
separate di↵erent connected components of Reg \ P.

The volume function is analytic inside any component of RegR.
Given a complex hyperplane X in CN , denote by C̆N

, X̆ and Ă the sets CN
, X and A from

which all singular points of the hypersurface A are removed.
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Consider the chain of homomorphisms

(2) HN (C̆N
, X̆ [ Ă) ! HN�1(X̆ [ Ă) ! HN�2(X̆ \ Ă),

where the first arrow is the usual boundary operator, and the second one is the Mayer-Vietoris
di↵erential. (All homology groups here and below are with integer coe�cients only).

By the Thom isotopy lemma (see e.g. [10]), for all X 2 Reg the groups of any of three
kinds indicated in (2) are isomorphic to each other; moreover, any path in Reg identifies such
groups for the endpoints of the path via the Gauss–Manin connection (that is, the homological
realization of the covering homotopy property over this path).

Let X0 2 Reg \ P be a generic plane. The group HN (C̆N
, X̆0 [ Ă) contains two important

elements ⇤±(X0): the parts of the body W ⇢ RN cut o↵ by the real part of the hyperplane
X0 and taken with the canonical (once fixed) orientation of RN . Let �±(X0) be the images
of these elements in the group HN�2(X̆0 \ Ă) under the composite homomorphism (2). They
are represented by the manifold X0 \ @W taken with some (opposite) orientations, in particular
��(X0) +�+(X0) = 0.

For any X 2 Reg the first and the last groups in (2) contain also some distinguished sets of
elements, called vanishing contours and vanishing cycles respectively and defined in the following
way.

Let u be a generic point of the hypersurface Ă, that is, a non-singular point of A such that
the second fundamental form of A at this point is non-degenerate. Such points are dense in A

since A is irreducible and bounds a body in RN . The set of all hyperplanes tangent to A at
points close to u is then a smooth hypersurface in PC.

Let B be a small ball in CN centered at our generic point u 2 Ă, and X(u) ⇢ CN be the
tangent hyperplane of A at u. For any hyperplane X

0(u) su�ciently close to X(u) but lying in
Reg, consider the sequence

(3) HN (B,X
0(u) [A) ! HN�1((X

0(u) [A) \B) ! HN�2(X
0(u) \A \B),

whose maps are defined as in (2). All three groups in this sequence are then isomorphic to Z, and
both maps in it are the isomorphisms. Denote by ⇤(u) and �(u) some generators of the first and
the last groups in (3) obtained one from another by this composite homomorphism. Denote by
the same letters ⇤(u) and �(u) the images of these elements in the groups HN (C̆N

, X̆
0(u) [ Ă)

and HN�2(X̆ 0(u) \ Ă) under the identical embedding.
An arbitrary path in Reg connecting the points X

0(u) and X0 identifies the groups of any
of three types (2) for these hyperplanes, in particular moves the elements ⇤(u) and �(u) into
some two elements of the groups HN (C̆N

, X̆0 [ Ă) and HN�2(X̆0 \ Ă) respectively. All elements
of the latter two groups which can be obtained in this way from any choice of a generic point
u, a path connecting X and X

0(u) in Reg, and a generator of the group HN (B,X
0(u) [A), are

called the vanishing contours and vanishing cycles respectively.

Theorem 1. If the domain of RegR ⇢ P containing X0 is a lacuna then the intersection indices
h�+(X0),�i ⌘ �h��(X0),�i of (n� 2)-dimensional cycles in the complex (n� 2)-dimensional
manifold X̆0 \ Ă are equal to 0 for all vanishing cycles � 2 HN�2(X̆0 \ Ă).

Proof. The integrals of the holomorphic volume form

(4) dx1 ^ · · · ^ xN

along the relative cycles define a linear function on the group HN (CN
, X [ A), and also on the

group HN (C̆N
, X̆ [ Ă) for any X 2 P.
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Every element ⇤ of the group

(5) HN (C̆N
, X̆0 [ Ă)

defines a function germ Int(⇤) in a neighborhood of our point X0 in Reg: its value at any point
X ⇡ X0 is equal to the integral of the form (4) along the relative cycle ⇤(X) 2 HN (C̆N

, X̆ [ Ă),
obtained from ⇤ by the Gauss-Manin connection over the paths connecting X0 and X in our
neighborhood. By the construction, this function is complex analytic. If ⇤ is one of cycles ⇤+ or
⇤�, then the restriction of this function to RegR coincides with the volume function, which also
is analytic; therefore the analytic continuations of both functions to entire Reg coincide. If this
analytic continuation is infinite-valued then the domain of RegR containing X0 is not a lacuna.

So we get a linear map Int from the group (5) to the space of all analytic function germs at
the point X0 2 P. Denote by H the image of the group (5) under this map (or, equivalently, the
group (5) itself factored through the subgroup consisting of all elements defining zero germs).
By the construction, H is an integer lattice. The group ⇡1(Reg, X0) acts on the group (5) by
monodromy operators, and on H by analytic continuations; these actions commute with our
epimorphism Int : HN (C̆N

, X̆0 [ Ă) ! H.
Now suppose that h�+(X0),�i 6= 0 for some cycle � vanishing along a path connecting the

points X0 and X
0(u). Consider the loop in ⇡1(Reg, X0) going along this path from X0 to X

0(u),
rotating around the set of planes tangent to A at points close to u, and coming back to X0 along
the same path. By the Picard–Lefschetz formula (and the functoriality of the maps (2)) this
loop adds to the cycle ⇤+(X0) the class of the contour ⇤ vanishing along our path and taken
with a non-zero coe�cient c (equal to ±h�+(X0),�i).

If N is odd then we will pass this loop again and again. In this case the intersection index
of (N � 2)-dimensional cycles in X̆ \ Ă is skew-symmetric, therefore any new travel along this
loop adds to our integration chain a new copy of the cycle c · ⇤. The function germ defined by
any vanishing cycle is not equal to zero, hence we get immediately an infinite number of leaves
of the analytic continuation.

Lemma 1. Let N be even, then the orbit of the germ defined by any vanishing contour ⇤ under
our ⇡1(Reg, X0)-action in H is infinite.

Proof of this lemma is based on considerations of §3 in [16]. The main tool there is a reflection
group associated with any body likeW . It acts on a lattice F generated by finitely many elements
corresponding to the vanishing contours, and the orbits of all these generators are not greater
than the orbit of an arbitrary germ Int(⇤) defined by our vanishing contour under the action of
the entire group ⇡1(Reg, X0). (The action by reflections in F is defined by the loops in Reg, all
whose points are the planes parallel to X0). Therefore if our ⇡1(Reg, X0)-orbit in H of a germ
defined by a vanishing contour is finite, then this reflection group also should be finite. However,
it was proved in [16] that this reflection group always is infinite. ⇤

Therefore the orbit of our contour c · ⇤ also is infinite. However, this orbit is a subset of the
set of di↵erences between the elements of the orbit ot the class Int(⇤+(X)) 2 H. The latter
orbit is thus also infinite, that is, the analytic continuation of the volume function has infinitely
many leaves at the point X0, and cannot be algebraic. ⇤

Theorem 2. If N is even then two neighboring domains of the set RegR of generic hyperplanes
in P (that is, two domains separated by only one piece of the variety projective dual to @W )
cannot be lacunas simultaneously.

Proof. Let X1, X2 be two points of Reg\P separated by such a piece consisting of hyperplanes
tangent to the surface @W close to some its generic point u; suppose that the planes X1 and
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X2 are parallel and very close to the plane X(u) tangent to A at this point. Then we have
three important elements of the group HN (C̆N

, X̆1 [ Ă). The first one is our real contour
⇤+(X1) defined by the points of W cut o↵ by the plane X1. The second cycle, M(⇤+(X2)),
is obtained from the similar element ⇤+(X2) of the group HN (C̆N

, X̆2 [ Ă) by the Gauss–
Manin continuation over a small arc connecting the points X2 and X1 in the space Reg of
generic complex hyperplanes. The third element is the vanishing cycle ⇤(u) generating the
group HN (B,X1 [ A) where B is a small ball centered at the point u, see (3). By Lemma 3.3
of §III.3 in [15], these three cycles are related by the equality

(6) ⇤+(X1)�M(⇤+(X2)) = ±⇤(u),

where the sign ± depends on the choice of the orientation of the last cycle. By Lemma 1, the
orbit of the class Int(⇤(u)) 2 H of the vanishing contour ⇤(u) under the monodromy action in
H is infinite in the case of even N , therefore the orbits of the classes of elements ⇤+(X1) and
⇤+(X2) cannot be finite simultaneously. ⇤
Remark 1. It follows by induction from the identity (6) that either of the relative homology
classes ⇤+(X0) and ⇤�(X0) is equal to the sum of several vanishing contours corresponding to
the tangency points of @W with the hyperplanes parallel to X0 and lying to the corresponding
side from it.

3. Local geometry of the boundaries of lacunas and Davydova condition

Let X1 and u be the same as in the previous proof. Let �+(X1) and �(u) be two elements
of the group HN�2(X̆1 \ Ă) obtained by the homomorphism (2) from the elements ⇤+(X1) and
⇤(u) used in this proof. If their intersection index in X̆1\Ă is not equal to zero, then by Theorem
1 the domain of RegR containing X1 is not a lacuna. This property h�+(X1),�(u)i 6= 0 can be
checked directly in the terms of the local geometry of @W at the point u: more precisely, in the
terms of its second fundamental form, cf. [8], [5].

Let us choose a�ne coordinates y1, . . . , yN in RN with the origin at the point u in such a way
that y1 = 0 on the tangent hyperplane X(u), and y1 > 0 on the examined hyperplane X1 in
our neighborhood B of the point u. The hypersurface @W is then defined by an equation of the
form y1 = �(y2, . . . , yN ) in a vicinity of the point u. The function � is smooth and has a critical
point at the origin: d�(0) = 0. This critical point is Morse since u is generic.

Proposition 1 (see e.g. [11] or Theorem 3.1 in page 183 of [15]). h�+(X1),�(u)i = 0 if and
only if the positive inertia index of the quadratic part of the Taylor expansion of the function �
at the critical point is even.

The trivial example occurs when this inertia index is equal to 0: in this case the cycle �+(X1)
(consisting of all real points of X1 \ A) is empty close to u and certainly cannot intersect the
vanishing cycle �(u) concentrated in the neighborhood of u.

Remark 2. This geometric condition is completely analogous to the Davydova condition in the
theory of hyperbolic PDE’s, see [8], although the integration cycles and forms in this theory are
di↵erent. In both theories, the homology classes of the varieties like X \A play the crucial role.
However, in our case these cycles are related with the N -dimensional integration contours by
the maps (2), while in the hyperbolic science the integration contours lie in some groups similar
to our HN (CN \ (X [A)), which in the case of generic X are related to the group HN�2(X \A)
by the double Leray tube operation.

Now let U be a connected component of the space RegR ⇢ P, and Y 2 @U a hyperplane
tangent to @W .
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Definition 1 (cf. [5]). The domain U is a local lacuna at the point Y if the volume function
VW coincides with a pair of regular analytic single-valued functions in the intersection of the
domain U with some neighborhood of the point Y in P.

Proposition 2 (cf. [5]). 1. Let Y 2 P be a hyperplane having a generic tangency with @W at
some point u. A domain of RegR is a local lacuna close to this point Y if and only if the condition
h�+(X1),�(u)i = 0 from Proposition 1 is satisfied for some (and then for any) neighboring point
X1 of this domain.

2. If a domain is not a local lacuna at some generic point of its boundary, then it also is not
a lacuna.

The proof of statement 1 essentially repeats that of a similar statement in [5]: it follows from
the removable singularity theorem. The proof of statement 2 uses additionally Theorem 1. ⇤

So, in the case of even N exactly one of neighboring domains of RegR at a generic point
Y 2 @W is a local lacuna, and the other is not.

In the case of odd N , either both neighboring domains are local lacunas or both are not. In
particular, if N is odd and the hypersurface @W contains the points at which the inertia indices
of its second fundamental quadratic form are odd, then the body W definitely is not algebraically
integrable.

The study of geometric restrictions preventing a domain to be a local lacuna at more compli-
cated points of its boundary also is parallel to that for hyperbolic PDE’s, see [9], [14], [15].

4. Examples of lacunas

Let m = N � 3, so that RN is decomposed into the sum R3
x � Rm

y .
Our easiest example is the tubular "-neighborhood in RN of the unit 2-sphere in R3

x, that is,
the body defined by the inequality

(7)

✓q
x
2
1 + x

2
2 + x

2
3 � 1

◆2

+ (y21 + · · ·+ y
2
m)  "

2
,

where 0 < " < 1. (This equation of its boundary is not polynomial, but is obviously equivalent
to a polynomial one of degree 4).

There is a much more general class of examples. Instead of y21+ · · ·+y
2
m, consider an arbitrary

smooth function  : Rm
y ! R+, invariant under the central symmetries in Rm

y , whose unique
critical point is a minimum point at the origin,  (0) = 0, and the entire set  �1([0, "2]) is
contained in some compact neighborhood of the origin in Rm

y . Define the body W in R3
x � Rm

y

by the condition

(8)

✓q
x
2
1 + x

2
2 + x

2
3 � 1

◆2

+  (y1, . . . , ym)  "
2
.

Denote by C the volume of this body (8), and by ⌦ the (N�1)-dimensional Euclidean volume
of its section by an arbitrary hyperplane in Rm+3 containing the plane Rm

y .

Theorem 3. If a hyperplane X ⇢ R3+m defined by some equation

↵1x1 + ↵2x2 + ↵3x3 +
mX

j=1

�jyj = �

is su�ciently close to one containing the subspace Rm
y (that is, X is nearly orthogonal to R3

x and
contains a point of R3

x su�ciently close to the origin), then the volumes of two parts cut by X
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from the body (8) are equal to

(9)
C

2
± ⌦

�p
↵
2
1 + ↵

2
2 + ↵

2
3

.

In particular, the domain in P containing X is a lacuna.

Remark 3. The right-hand fraction in (9) is the distance from the plane X \R3
x to the origin.

The values (9) do not depend on the coe�cients �j in the equation of X.

Lemma 2. In the conditions of Theorem 3, the (m+2)-dimensional volume of the intersection
X \W is equal to ⌦

cos↵(X) where ↵(X) is the angle between R3
x and the normal vector of X.

Proof of lemma. For any y 2 Rm
y , the preimage of y under the canonical projection W ! Rm

y

is empty if  (y) > "
2; if  (y) < "

2 then it is a spherical layer in R3
x between the spheres of radii

R = 1+
p
"2 �  (y) and r = 1�

p
"2 �  (y). Let X̃ be the hyperplane in R3+m containing the

subspace Rm
y and such that the 2-planes X \ R3

x and X̃ \ R3
x are parallel to one another. The

orthogonal projection of X \W to X̃ consists of points (x, y) such that  (y)  "
2
, and x belongs

to a section of the above-described spherical layer (depending on y) by a 2-plane (depending also
onX). IfX is indeed su�ciently close to a vertical hyperplane containing Rm

y , then for any y with
 (y) < "

2 this plane section of the layer is an annulus. The area of this annulus does not depend
on the choice of this cutting 2-plane: if the distance of this plane from the origin in R3

x is equal

to h < r, then this area is equal to ⇡
⇣p

R2 � h2
2 �

p
r2 � h2

2
⌘
= ⇡(R2 � r

2) = 4⇡
p
"2 �  (y).

So, the (m+ 2)-dimensional volume of the projection of X \W to X̃ is equal to

4⇡

Z

 (y)"2

p
"2 �  (y)dy,

which does not depend on X and hence is equal to the constant ⌦. Further, the orthogonal
projection of planes multiplies the volumes by the cosine of the angle between the normals of
these planes. ⇤

Proof of Theorem 3. Let X0 be the plane parallel to X and passing through the origin in
R3+m. Both values of the volume function at the point X0 are obviously equal to one another
and hence to C

2 . For any � 2 [0, dist(X0, X)] denote by X(�) the plane obtained from X0 by the
parallel shift towards X by the distance �. The derivatives of the volume functions VW (X(�))
over the parameter � are then equal to ± the volume from Lemma 2. So, when we come to X,
these volumes grow/decrease by

⌦

cos↵(X)
⇥ dist(X0, X).

Consider the right triangle in R3+m whose vertices are the origin and its projections to the
planes X and X \R3

x. Its angle at the origin is equal to ↵(X), the leg at this vertex is equal to
dist(X0, X), and the hypotenuse is exactly the fraction in (9). ⇤

Remark 4. We see that a locally algebraically integrable body in RN (that is, a body having non-
trivial lacunas) does not need to be algebraic itself: in fact, only finite smoothness is demanded
on the function  (y1, . . . , ym) participating in the construction of our examples.
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VARIETIES OF SINGULAR MATRICES
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Abstract. We consider the varieties of singular m ⇥ m complex matrices which may be
either general, symmetric or skew-symmetric (with m even). For these varieties we have
shown in another paper that they had compact “model submanifolds” for the homotopy
types of the Milnor fibers which are classical symmetric spaces in the sense of Cartan. In this
paper we use these models, combined with results due to a number of authors concerning the
Schubert decomposition of Lie groups and symmetric spaces via the Cartan model, together
with Iwasawa decomposition, to give cell decompositions of the global Milnor fibers.

The Schubert decomposition is in terms of “unique ordered factorizations” of matrices
in the Milnor fibers as products of “pseudo-rotations”. In the case of symmetric or skew-
symmetric matrices, this factorization has the form of iterated “Cartan conjugacies” by
pseudo-rotations. The decomposition respects the towers of Milnor fibers and symmetric
spaces ordered by inclusions. Furthermore, the “Schubert cycles”, which are the closures of
the Schubert cells, are images of products of suspensions of projective spaces (complex, real,
or quaternionic as appropriate). In the cases of general or skew-symmetric matrices the Schu-
bert cycles have fundamental classes, and for symmetric matrices mod 2 classes, which give a
basis for the homology. They are also shown to correspond to the cohomology generators for
the symmetric spaces. For general matrices the duals of the Schubert cycles are represented
as explicit monomials in the generators of the cohomology exterior algebra; and for symmetric
matrices they are related to Stiefel-Whitney classes of an associated real vector bundle.

Furthermore, for a matrix singularity of any of these types. the pull-backs of these coho-
mology classes generate a characteristic subalgebra of the cohomology of its Milnor fiber.

We also indicate how these results extend to exceptional orbit hypersurfaces, complements
and links, including a characteristic subalgebra of the cohomology of the complement of a
matrix singularity.

Preamble: Motivation from the Work of Brieskorn

After Milnor developed the basic theory of the Milnor fibration and the properties of Milnor
fibers and links for isolated hypersurface singularities, Brieskorn was involved in fundamental
ways in developing a more complete theory of isolated hypersurface singularities. Furthermore
through the work of his many students the theory was extended to isolated complete intersection
singularities.

For isolated hypersurface singularities Brieskorn developed the importance of the intersection
pairing on the Milnor fiber [Br]. This includes the computation of the intersection index for
Pham-Brieskorn singularities, leading to the discovery that for a number of these singularities
the link is an exotic topological sphere. He also demonstrated in a variety of ways that group
theory in various forms plays an essential role in understanding the structure of singularities. This
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includes the relation between the monodromy and the Milnor fiber cohomology by the Gauss-
Manin connection, and including the intersection pairing [Br2]. This includes the relation with
Lie groups, especially for the ADE classification for simple hypersurface singularities, where he
identified the intersection pairing with the Dynkin diagrams for the corresponding Lie groups. He
also gave the structure of the discriminant for the versal unfoldings using the Weyl quotient map
on the subregular elements of the Lie group [Br3]. In combined work with Arnold [Br4], he further
showed that for the simple ADE singularities the complement of the discriminant is a K(⇡, 1).
He continued on beyond the simple singularities to understand the corresponding structures for
unimodal singularities [Br5], setting the stage for further work in multiple directions.

The approaches which he initiated provide models for approaching questions for highly non-
isolated hypersurface singularities which are used in this paper. For matrix singularities, the
high-dimensional singular set means that the Milnor fiber, complement and link have low con-
nectivity and hence can have (co)homology in many degrees [KMs]. To handle this complexity
for matrix singularities of the various types, Lie group methods are employed to answer these
questions. Partial answers were already given in [D3], including determining the (co)homology
of the Milnor fibers using representations as symmetric spaces. This continues here by obtaining
geometric models for the homology classes, understanding the analogue of the intersection pair-
ing on the Milnor fiber via a Schubert decomposition, determining the structure of the link and
complement, and their relations with the cohomology structure. We see that there is the analogue
of the ADE classification which is given for the matrix singularities by the ABCD classification
for the infinite families of simple Lie groups. We also indicate how these geometric methods
extend to complements and links, including more general exceptional orbit hypersurfaces for
prehomogeneous spaces.

Introduction

In this paper we derive the Schubert cell decomposition of the Milnor fibers of the varieties
of singular matrices for m ⇥ m complex matrices which may be either general, symmetric, or
skew-symmetric (with m even). We show that there is a homology basis obtained from “Schu-
bert cycles”, which are the closures of these cells. We further identify these homology classes
with the cohomology. For general matrices we identify the correspondence with monomials of
the generators for the exterior cohomology algebra and for symmetric matrices we identify the
Schubert classes with monomials in the Stiefel-Whitney classes of an associated vector bundle.
We also indicate how these results extend to more general exceptional orbit varieties and for
the complements and links for all of these cases. Furthermore, for general matrix singularities
defined from these matrix types, we define characteristic subalgebras of the cohomology of the
Milnor fibers and complements representing them as modules over these subalgebras.

In [D3] we computed the topology of the exceptional orbit hypersurfaces for classes of preho-
mogeneous spaces which include these varieties of singular matrices. This included the topology
of the Milnor fiber, link, and complement. This used the representation of the complements
and the global Milnor fibers as homogeneous spaces which are homotopy equivalent to compact
models which are classical symmetric spaces studied by Cartan. These symmetric spaces have
representations as “Cartan models”, which can be identified as compact submanifolds of the
global Milnor fibers.

We use the Schubert decomposition for these symmetric spaces developed by Kadzisa-Mimura
[KM] building on the earlier results for Lie groups and Stiefel manifolds by J. H. C. Whitehead
[W], C.E. Miller, [Mi], I. Yokota [Y]. This allows us to give a Schubert decomposition for the
compact models of the Milnor fibers, which together with Iwasawa decomposition provides a
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cell decomposition for the global Milnor fibers in terms of the Schubert decomposition for these
symmetric spaces.

The Schubert decompositions are in terms of cells defined by the unique “ordered factoriza-
tions” of matrices in the Milnor fibers into “pseudo-rotations” of types depending on the matrix
type, and their relation to a flag of subspaces. For symmetric or skew-symmetric matrices, this
factorization has the form of iterated “Cartan conjugacies” by the pseudo-rotations. These are
given by a modified form of conjugacy which acts on the Cartan models.

The Schubert decomposition is then further related to the co(homology) of the global Milnor
fibers. We do so by showing the Schubert cycles for the symmetric spaces are images of products
of suspensions of projective spaces of various types (complex, real, and quaternionic as appropri-
ate). This allows us to relate the duals of the fundamental classes of the Schubert cycles (mod 2
classes for symmetric matrices) to the cohomology classes given for Milnor fibers in [D1]. These
are given for the di↵erent matrix types and various coe�cients as exterior algebras. In the sym-
metric matrix case the cohomology with Z/2Z coe�cients is given as an exterior algebra on the
Stiefel-Whitney classes of an associated real vector bundle. For coe�cient fields of characteristic
zero the generators are classes which transgress to characteristic classes of appropriate types.

We further indicate how these methods also apply to exceptional orbit hypersurfaces in [D3]
and how they further extend to the complements of the varieties and their links.

Lastly, we show that for matrix singularities of these matrix types, we can pull-back the
cohomology algebras of the global Milnor fibers to identify characteristic subalgebras of the
Milnor fibers for these matrix singularities. This represents the cohomology of the Milnor fiber
of a matrix singularity of any of these types as a module over the corresponding characteristic
subalgebra. We also indicate how this also holds for the cohomology of the complement.

1. Cell Decomposition for Global Milnor Fibers in Terms of
their Compact Models

We consider the varieties of singular m ⇥m complex matrices which may be either general,
symmetric, or skew-symmetric (with m even). In [D1] we investigated the topology of these
singularities, including the topology of the Milnor fiber, link and complement. This was done
by viewing them as the exceptional orbit varieties obtained by the representation of a complex
linear algebraic group G on a complex vector space V with open orbit. For example this includes
the cases where V = M is one of the spaces of complex matrices M = Symm or M = Skm (for
m = 2k) acted on by GLm(C) by B · A = BABT , or , M = Mm,m and GLm(C) acts by left
multiplication. Each of these representations have open orbits and the resulting prehomogeneous
space has an exceptional orbit variety E which is a hypersurface of singular matrices.

Definition 1.1. The determinantal hypersurface for the space of m ⇥m symmetric or general
matrices, denoted by M = Symm or M = Mm,m is the hypersurface of singular matrices defined

by det : M ! C and denoted by D(sy)
m for M = Symm, or Dm for M = Mm,m. For the space

of m ⇥m skew-symmetric matrices M = Skm (for m = 2k) the determinantal hypersurface of

singular matrices is defined by the Pfa�an Pf : Skm ! C, and is denoted by D(sk)
m . In the

following we uniformly denote any of these functions as f .

Then, we showed in [D3] that the Milnor fibers for each of these singularities at 0 are di↵eo-

morphic to their global Milnor fibers f�1(1) which are denoted by: Fm for general case, F (sy)
m

for the symmetric case, and F (sk)
m for the skew-symmetric case. Then, we show in Theorem

3.1 in [D3, §3] that each global Milnor fiber is acted on transitively by a linear algebraic group

and so is a homogeneous space. In particular, Fm = SLm(C), F (sy)
m ' SLm(C)/SOm(C), and
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F (sk)
2m ' SL2m(C)/Spm(C). Moreover, these spaces have as deformation retracts spaces which

are symmetric spaces of classical type studied by Cartan: SLm(C) has as deformation retract
SUm; SLm(C)/SOm(C) has as deformation retract SUm/SOm; and SL2m(C)/Spm(C) has as
deformation retract SU2m/Spm. These are compact models for the Milnor fibers and we denote

them as F c
m, F (sy) c

m , and F (sk) c
2m respectively.

This allowed us to obtain the rational (co)homology (and integer cohomology for the general
and skew-symmetric cases and the Z/2Z cohomology for the symmetric cases), as well as using
the Bott periodicity theorem to compute the homotopy groups in the stable range.

We will now further use the cell decompositions of the symmetric spaces together with Iwasawa
decomposition to give the cell decompositions for the global Milnor fibers. We recall the Iwasawa
decomposition for SLm(C) has the formKAN whereK = SUm, Am consists of diagonal matrices
with real positive entries of det = 1, and Nm is the nilpotent group of upper triangular complex
matrices with 1’s on the diagonal. In particular, this means that the map

SUm ⇥Am ⇥Nm ! SLm(C)

sending (U,B,C) 7! U ·B ·C is a real algebraic di↵eomorphism. Alternatively Am ·Nm consists
of the upper triangular matrices of det = 1 with complex entries except having real positive
entries on the diagonal. As a manifold it is di↵eomorphic to a Euclidean space of real dimension
2
�m
2

�
+m � 1. We denote this subgroup of SLm(C) as Solm, which is a real solvable subgroup

of SLm(C).
For any of the preceding cases, let F denote the Minor fiber and Y the compact symmetric

space associated to it. Suppose that Y has a cell decomposition with open cells {ei : I = 1, . . . , r}.
Then, we have the following simple proposition.

Proposition 1.2. With the preceding notation, the cell decomposition of F is given by

{ei · Solm : I = 1, . . . , r}.
Moreover, if the closure ēi has a fundamental homology class (for Borel-Moore homology), then
ei · Solm = ēi · Solm has a fundamental homology class with the same Poincaré dual.

Proof. By the Iwasawa decomposition Y ⇥ Solm ' F via (U,B) 7! U · B. Hence, if for i 6= j,
ei \ ej = ;, then (ei⇥Solm)\ (ej ⇥Solm) = ; and (ei ·Solm)\ (ej ·Solm) = ;. Also, as Y = [iei
is a disjoint union, so also is F = [iei · Solm. Third, each ei ⇥ Solm is homeomorphic to a
cell of dimension dim R(ei) + 2

�m
2

�
+ m � 1. Thus, F is a disjoint union of the cells ei · Solm.

Lastly, ēi = ei [ji eji where the last union is over cells of dimension less than dim ei. Hence,
¯ei · Solm = ēi · Solm = (ei · Solm) [ji (eji · Solm). Hence this is a cell decomposition.
Then, ēi is a singular manifold with open smooth manifold ei. If it has a Borel-Moore

fundamental class, which restricts to that of ei, then so does ei · Solm have a fundamental class
that restricts to that for ei · Solm ' ei ⇥ Solm. Then, as ēi is the pull-back of ei · Solm under
the map i : Y ! Y ⇥ Solm ' F which is transverse to ēi ⇥ Solm ' ei · Solm, by a fiber-square
argument for Borel-Moore homology, the Poincaré dual of ei · Solm pulls-back via i⇤ to the
Poincaré dual of ēi. As i is a homotopy equivalence, via the isomorphism i⇤ the Poincaré duals
agree. ⇤

2. Cartan Models for the Symmetric Spaces

The General Cartan Model.
By Cartan, a symmetric space is defined by a Lie group G with an involution � : G ! G so

that the symmetric space is given by the quotient space G/G�, where G� denotes the subgroup
of G invariant under �. Furthermore this space can be embedded into the Lie group G. The
embedding is called the Cartan model. It is defined as follows, where we follow the approach of
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Kadzisa-Mimura [KM] and the references therein. They introduce two subsets M and N of G
defined by:

M = {g�(g�1) : g 2 G} and N = {g 2 G : �(g�1) = g}.

Then, we have G/G� ' M ⇢ N . The inclusion is the obvious one, and the homeomorphism is
given by g 7! g�(g�1). Via this homeomorphism, we may identify the symmetric space G/G�

with the subset M ⇢ G. The subspace N is closed in G, and it can be shown that M is the
connected component of N containing the identity element. In the three cases we consider, it
will be the case that M = N .

We also note that while M and N are subspaces of G, they are not preserved under products
nor conjugacy; however they do have the following properties.
Further Properties of the Cartan Model:

i) there is an action of G on both M and N defined by g · h = gh�(g�1) and on M it is
transitive;

ii) the homeomorphism G/G� ' M is G-equivariant under left multiplication on G/G� and
the preceding action on M ;

iii) both M and N are invariant under taking inverses; and
iv) if g, h 2 N commute then gh 2 N .

For Un, g⇤ = g�1 so an alternative way to write the action in i) is given by g 7! h · g · �(h⇤). We
will refer to this action as Cartan conjugacy.

Then, Kadzisa-Mimura use the cell decompositions for various G to give the cell decomposi-
tions for M and hence the symmetric space G/G�. There is one key di↵erence with what we will
do versus what Kadzisa-Mimura do. They give the cell decomposition; however we also want to
represent the closed cells where possible as the images of specific singular manifolds, specifically
products of suspensions of projective spaces of various types and to relate the fundamental ho-
mology classes to corresponding classes in cohomology. Together with the reasoning in §1 and
the identification of the global Milnor fibers with the Cartan models, we will then be able to
give the Schubert decomposition for the global Milnor fibers and identify the Schubert homology
classes with dual cohomology classes.

The Cartan Models for SUm, SUm/SOm, and SU2m/Spm.
For the three cases we consider: SUm , SUm/SOm, SU2m/Spm, we first observe that the

exact sequence of groups (2.1) does not split

(2.1) 1 ����! SUm ����! Um
det����! S1 ����! 1 .

However, it does split as manifolds Um ' S1 ⇥ SUm sending

C 7! (det(C), I1,m�1(det(C)) · C),

where I1,m�1(det(C)�1) is the m ⇥ m diagonal matrix with 1’s on the diagonal except in the
first position where it is det(C)�1. Thus, topological statements about Um have corresponding
statements about SUm and conversely.

We first give the representation for the symmetric spaces. For SUm we just use itself as a
compact Lie group.

Next, for SU(m)/SO(m) we let the involution � on SU(m) be defined by C 7! C. We see
that �(C) = C is equivalent to C = C. Thus C is a real matrix which is unitary; and hence C
is real orthogonal. As det(C) = 1, we see that SU�

m = SOm.
The third case is SU2n/Spn for m = 2n. In this case, the involution � on SU2n sends

C 7! JnCJ⇤
n where Jn is the 2n⇥2n block diagonal matrix with 2⇥2 diagonal blocks

✓
0 1
�1 0

◆
.



SCHUBERT DECOMPOSITION FOR MILNOR FIBERS 363

As J⇤
n = JT

n = �Jn = J�1
n , then �(C) = C is equivalent to JnCJn = �C, or as C�1 = C

T

we can rearrange to obtain CTJnC = Jn (or alternatively CJnCT = Jn), which implies that
C leaves invariant the bilinear form (v, w) = vTJnw (for column vectors v and w) and so is an
element of Spn(C), and so an element of Spn = SU2n \ Spn(C).

The corresponding Cartan models are then given as follows. We denote the Cartan models

by respectively: Cm, C(sy)
m , and C(sk)

m .
First, for G = SUm, which is itself a symmetric space, and we let Cm = SUm. In this case,

Cartan conjugacy is replaced by left multiplication.
Second, for SUm/SOm we claim

(2.2) C(sy)
m

def
= {C · CT : C 2 SUm} = {B 2 SUm : B = BT } .

The inclusion of the LHS in the RHS is immediate. For the converse, we note that if B 2 SUm

and B = BT , then by the following Lemma given in [KM] there is an orthonormal basis of
eigenvectors which are real vectors so we may write B = ACA�1 with A an orthogonal matrix
and C a diagonal matrix with diagonal entries �j so that |�j | = 1. Thus, A�1 = AT , and so
B = ADAT ·ADAT with D a diagonal matrix with entries

p
�j .

Lemma 2.1. If B 2 SUm and B = BT then there is a real orthonormal basis of eigenvectors
for B.

This is a simple consequence of the eigenspaces being invariant under conjugation, which is
easily seen to follow from the conditions. In this case, Cartan conjugacy by A on B is checked
to be given by B 7! A ·B ·AT .

Third, for SU2n/Spn with m = 2n, we may directly verify

(2.3) C(sk)
m

def
= {C · Jn · CT · J⇤

n : C 2 SU2n} = {B 2 SU2n : (B · Jn)T = �B · Jn} .

Then, Cartan conjugacy by A on B is given by B 7! A · (B · Jn) · AT · J�1
n , with B · Jn

skew-symmetric for B 2 C(sk)
m .

Hence, from (2.2), we have the compact model for F (sy)
m as a subspace is given by

F (sy) c
m = SUm \ Symm(C)

and the Cartan model for the symmetric space SUm/SOm is given by F (sy) c
m itself. Similarly,

from (2.3), we have the compact model for F (sk)
m with m = 2n as a subspace is given by

F (sk) c
m = SUm \ Skm(C) and the Cartan model for the symmetric space SU2n/Spn is given by

F (sk) c
m · J�1

n .

Remark 2.2. Frequently for all three cases, we will want to apply a Cartan conjugate for an
element of Un instead of SUn. The formula for the Cartan conjugate remains the same and
the corresponding symmetric spaces are Un, Un/On, and U2n/Spn. By the properties of Cartan
conjugacy, an iteration of Cartan conjugacy by elements Ai 2 Un whose product belongs to SUn

will be a Cartan conjugate by an element of SUn and preserve the Cartan models of interest to
us.

Tower Structures of Global Milnor fibers and Symmetric Spaces by Inclusion.
Lastly, these global Milnor fibers, symmetric spaces and compact models form towers via

inclusions: i) sending A 7!
✓
A 0
0 1

◆
for SUm ⇢ SUm+1, Fm ⇢ Fm+1, or F (sy)

m ⇢ F (sy)
m+1 which

induce inclusions of the symmetric spaces SUm and SUm/SOm and corresponding global Milnor
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fibers, or ii) sending A 7!
✓
A 0
0 I2

◆
for the 2 ⇥ 2 identity matrix I2 for SUm ⇢ SUm+2 for

m = 2n and the corresponding symmetric spaces SU2n/Spn and Milnor fibers F (sk)
m ⇢ F (sk)

m+2.
The Schubert decompositions will satisfy the additional property that they respect the inclusions.

We summarize these results by the following.

Proposition 2.3. For the varieties of singular m⇥m complex matrices which are either general,
symmetric or skew-symmetric, their global Milnor fibers, representations as homogeneous spaces,
compact models given as symmetric spaces and Cartan models are summarized in Table 1.

Milnor Quotient Symmetric Compact Model Cartan

Fiber F (⇤)
m Space Space F (⇤) c

m Model
Fm SLm(C) SUm SUm F c

m

F (sy)
m SLm(C)/SOm(C) SUm/SOm SUm \ Symm(C) F (sy) c

m

F (sk)
m ,m = 2n SL2n(C)/Spn(C) SU2n/Spn SUm \ Skm(C) F (sk) c

m · J�1
n

Table 1. Global Milnor fiber, its representation as a homogenenous space,
compact model as a symmetric space, compact model as subspace and Cartan
model.

3. Schubert Decomposition for Compact Lie Groups

We recall the “Schubert decomposition”for compact Lie groups, concentrating on SUn. The
cell decompositions of certain compact Lie groups, especially SOn and Un and SUn were carried
out by C. E. Miller [Mi] and I. Yokota [Y], building on the work of J. H. C. Whitehead [W]
for the cell decomposition of Stiefel varieties. In the case of Grassmannians, the Schubert
decomposition is in terms of the dimensions of the intersections of the subspaces with a given
fixed flag of subspaces. For these Lie groups, elements are expressed as ordered products of
(complex) “pseudo rotations”about complex hyperplanes (or reflections about real hyperplanes
in the case of SOn). The cell decomposition is based on the subspaces of a fixed flag that contain
the orthogonal lines to the hyperplane axes of rotation (or reflection). We will concentrate on
the complex case which is relevant to our situation.

(Complex) Pseudo-Rotations.
We note that given a complex 1–dimensional subspace L ⇢ C

n, we can define a “(complex)
pseudo-rotation”about the orthogonal hyperplane L? as follows. Let x 2 L be a unit vector. As
L is complex we have a positive sense of rotation through an angle ✓ given by x 7! ei✓x. We
extend this to be the identity on L?. This is given by the following formula for any x0 2 C

n:

A(✓,x)(x
0) = x0 � ((1� ei✓) < x0, x >)x .

This is not a true rotation as a complex linear transformation so we refer to this as a “pseudo-
rotation”. Then, A(✓,x) can be written in matrix form as A(✓,x) = (In � (1� ei✓)x · x̄T ) for x an
n-dimensional column vector.

Remark 3.1. In the special case that A(✓,x) has finite order as an element of the group Un, it
is called a “complex reflection”.

We observe a few simple properties of pseudo-rotations:
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i) A(✓,x) only depends on L =< x >, so we will also feel free to use the alternate notation
A(✓,L);

ii) A(✓,x) is a unitary transformation with det(A(✓,x)) = ei✓;
iii) if B 2 Un, then B ·A(✓,x) ·B�1 = A(✓,Bx) is again a pseudo-rotation; and

iv) A(✓,x) = A(�✓,x̄); A
�1
(✓,x) = A(�✓,x); and AT

(✓,x) = A(✓,x̄).

Ordered Factorizations in SUm and Schubert Symbols.
Then, given any B 2 SUn, we may diagonalize B using an orthonormal basis {v1, . . . , vn} so

if C denotes the unitary matrix with the vi as columns, then we may write B = CDC�1 where
D is a diagonal matrix with diagonal entries �i of unit length so that

Qn
i=1 �i = 1. This can

be restated as saying that B is a product of pseudo-rotations about the hyperplanes < vj >?

with angles ✓j where �j = ei✓j . Thus, B =
Qn

j=1 A(✓j ,vj). However, we note that as certain
eigenspaces may have dimension > 1, the terms and their order in the product are not unique.

There is a method introduced by Whitehead and used by Miller and Yokota for obtaining a
unique factorization leading to the Schubert decomposition in SUn. The product is rewritten
as a product of di↵erent pseudo-rotations whose lines satisfy certain inclusion relations for a
fixed flag leading to an ordering of the pseudo-rotations. We let 0 ⇢ C ⇢ C

2 ⇢ · · · ⇢ C
n

denote the standard flag. Then, if L =< x >⇢ C
k and L =< x > 6⇢ C

k�1, we will say
that x and L minimally belong to C

k and introduce the notation x 2min C
k or L ⇢min C

k. If
x = (x1, x2, . . . , xn) then x 2min C

k i↵ xk+1 = · · · = xn = 0 and xk 6= 0. We observe two simple
properties: if x 2min C

k then x̄ 2min C
k; and if x0 2min C

k0
with k0 < k, then A(✓,x0)(x) 2min C

k.
Then to rewrite the product in a di↵erent form, we proceed, as in the other papers, to follow

Whitehead with the following lemma.

Lemma 3.2. Suppose that we have two pseudo-rotations A(✓,x) and A(✓0,x0) with x 2min C
m and

x0 2min C
m0

.

1) If m > m0, then

(3.1) A(✓,x) ·A(✓0,x0) = A(✓0,x0) ·A(✓,x̃),

where x̃ = A�1
(✓0,x0)(x).

2) If m = m0, and < x > 6=< x0 > let W =< x, x0 >, which has dimension 2, and let
L =< x̃ >= W \ C

m�1, with x̃ 2min C
k for k  m � 1. Then, there exist pseudo-

rotations A(✓̃,x̃) and A(✓̃0,x̃0) with x̃ 2min C
k and x̃0 2min C

m such that

(3.2) A(✓,x) ·A(✓0,x0) = A(✓̃,x̃) ·A(✓̃0,x̃0) .

Moreover, for generic x, x0 2min C
m, x̃ 2min C

m�1.

Proof. For 1), by property iii) of pseudo-rotations, A�1
(✓0,x0) · A(✓,x) · A(✓0,x0) is a pseudo-rotation

of the form A(✓,x̃) with x̃ = A�1
(✓0,x0)(x). Also, both A(✓,x) and A(✓0,x0) are the identity on C

m?;
hence x̃ 2min C

m.
For 2), if < x >=< x0 >, then the pseudo-rotations commute. Next, suppose these lines di↵er

so the complex subspace W spanned by x and x0 is 2-dimensional. Then, dim CW \ C
m�1 = 1.

We denote it by L and let it be spanned by a unit vector x̃ with say x̃ 2min C
k for k  m � 1

(and generically k = m� 1). We note that both pseudo-rotations are the identity on W?. Also,
W ⇢ C

m. It is su�cient to consider the pseudo-rotations restricted to W ' C
2 with x̃ denoted

by e2 and orthogonal unit vector e1. Then, let (A(✓,x) · A(✓0,x0))
�1(e1) = v. Then, we want a

pseudo-rotation on W that sends e1 7! v. If v 6= �e1, then reflection about the complex line
spanned by e1 + v, is a pseudo-rotation by ⇡ and sends e1 to v. If v = �e1, then reflection
about the complex line spanned by e2 works instead. If we denote this reflection by A(⇡,x̃0), then
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A(✓,x) ·A(✓0,x0) ·A(⇡,x̃0) is a unitary transformation which fixes e1 and is hence a pseudo-rotation

about the line < e1 > and so sends e2 = x̃ to ei✓̃x̃ for some angle ✓̃. Thus,

A(✓,x) ·A(✓0,x0) = A(✓̃,x̃) ·A(✓̃0,x̃0)

giving the result. ⇤
This allows us to rewrite a product of pseudo-rotations as a product where the lines are

minimally contained in successively larger subspaces of the flag.

Whitehead Algorithm for ordered factorization of Unitary matrices. Given B 2 SUn, we may
write B =

Qk
j=1 A(✓j ,xj), with the {xj} an orthonormal set of vectors with say xj 2min C

mj . Note
that k may be less than n as we may exclude the eigenvectors x0

j with eigenvalue 1, which give
A(0,x0

j)
= In. Then, we may use Lemma 3.2 to reduce the product into a standard form as follows.

For the sequence (m1,m2, . . . ,mk), we find the largest j so that mj � mj+1. If mj > mj+1,
then by 1) of Lemma 3.2, we may replace A(✓j ,xj) · A(✓j+1,xj+1) by A(✓j+1,xj+1) · A(✓j ,x̃j), with
x̃j 2min C

mj . If instead mj = mj+1, then by 2) of Lemma 3.2, we may instead replace the
product by A(✓0j ,x

0
j)
· A(✓0j+1,x

0
j+1)

, where x0
j+1 2min C

mj and x0
j 2min C

`, where ` < mj satisfies

(< xj , xj+1 > \C
mj ) ⇢min C

`.
Then, we relabel the angles and vectors to be (✓j , xj), where now mj < mj+1 < · · · < mk.

Then, we may repeat the procedure until we obtain m1 < m2 < · · · < mk. We summarize the
final result of this process.

Lemma 3.3. Given B 2 SUn, it may be written as a product

(3.3) B = A(✓1,x1) ·A(✓2,x2) · · ·A(✓k,xk) ,

with xj 2min C
mj and 1  m1 < m2 < · · · < mk  n, and each ✓i 6⌘ 0mod 2⇡.

If B has the form given in Lemma 3.3 with m1 > 1, then we will say that B has Schubert
type m = (m1,m2, · · · ,mk) and write m(B) = m. If instead m1 = 1, then as det(B) = 1

B = A(�✓̃,e1) ·A(✓2,x2) ·A(✓2,x2) · · ·A(✓k,xk),

where ✓̃ ⌘
Pk

j=2 ✓jmod 2⇡ and we instead denote m(B) = (m2, · · · ,mk). For the case of an
empty sequence with k = 0, we associate the unique identity element I. We refer to the tuple
m = (m1,m2, · · · ,mk) as the Schubert symbol of B. It will follow from Theorem 3.7 that this
representation is unique.

There is also an alternative way to obtain a factorization (3.3) where instead xj 2min C
m0

j

with a decreasing sequence m0
1 > m0

2 > · · · > m0
k. In fact, if we give a representation for B�1

as in (3.3) with the mi increasing, then taking inverses gives a product of A�1
(✓i,xi)

= A(�✓i,xi)

in decreasing order. There is a question for a given B 2 SUn about the relation between the
increasing and decreasing symbols. The relation between these is a consequence of the following
lemma which is basically that given in [KM, Prop. 4.5] and is a consequence of the uniqueness
of the Schubert symbol for one direction of ordering.

Lemma 3.4. Suppose xi 2min C
mi , for 1  i  k and m1 < m2 < · · · < mk; and yj 2min C

m0
j ,

for 1  j  k0 and m0
1 < m0

2 < · · · < m0
k. Also, suppose ✓i, ✓0i 6⌘ 0mod 2⇡ for each i. Let

Ai = A(✓i,xi) and Bj = A(✓0j ,yj). If

A1 ·A2 · · ·Ak = Bk0 ·Bk0�1 · · ·B1,

then the following hold:

a) k = k0 and (m1,m2, . . . ,mk) = (m0
1, . . . ,m

0
k0);
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b) Ai = B�1
1 ·B�1

2 · · ·B�1
i�1 ·Bi ·Bi�1 · · ·B1 for 1  i  k; and

c) Bi = A1 ·A2 · · ·Ai�1 ·Ai ·A�1
i�1 · · ·A

�1
1 for 1  i  k.

In the cases of k = 1 in b) and c), we let A0 = B0 = Im so they are understood to be A1 = B1.

Proof. We let Ci denote the RHS of the equation in b) but for 1  i  k0. Since Bi�1 ·Bi�2 · · ·B1

leaves pointwise invariant (Cm0
i)?, we conclude Bi�1 · Bi�2 · · ·B1(yi) = y0i 2min C

m0
i ; hence by

property iii) for pseudo rotations, Ci = A(✓0i,y
0
i)
. Thus, we have that A has two di↵erent Schubert

factorizations with increasing Schubert symbols (m1,m2, . . . ,mk) and (m0
1, . . . ,m

0
k0). By the

uniqueness of the Schubert symbols, we obtain a).
Furthermore, by the uniqueness of the Schubert decomposition stated in Theorem 3.7 (for

increasing Schubert decomposition) and Remark 3.8, it then furthermore follows that Ai = Ci for
all i so b) holds. Lastly, the uniqueness of the increasing order Schubert decomposition implies
by taking inverses that we also have uniqueness of decreasing order Schubert decomposition.
Then, the corresponding analogue of the argument for b) yields c). ⇤

We then have the following corollary

Corollary 3.5. If B 2 SUn, then

m(B) = m(B�1) = m(B) = m(BT ) .

Proof. Given an increasing Schubert factorization B = A1 · A2 · · ·Ak for Ai = A(✓i,xi) with
Schubert symbol m = (m1,m2, . . . ,mk), then B�1 = Ak ·Ak�1 · · ·A1 is a Schubert factorization
for decreasing order. This has the decreasing Schubert symbol (mk,mk�1, . . . ,m1), and hence
B�1 has the same increasing Schubert symbol m.

Next, B = A1 · A2 · · ·Ak, and by property iv) of pseudo-rotations Ai = A(�✓i,x̄i) so the
Schubert Symbol is the same.

Lastly, as B 2 SUn, BT = B�1, which combined with the two other properties implies that
it has the same Schubert symbol. ⇤

Remark 3.6. We will use the increasing order for the Schubert symbol to be in agreement with
that used for the Schubert decomposition as in Milnor-Stashe↵ [MS]. In fact, if A = A1 ·A2 · · ·Ak

for Ai = A(✓i,xi) with Schubert symbol m = (m1,m2, . . . ,mk), and we let V = C < x1, . . . , xk >,
then dim CV \Cmi = i so V as an element of the Grassmannian Gk(Cn) would also have Schubert
symbol m. In [KM], the decreasing order Schubert symbol is used; however, we easily change
between the two.

We next state the form of the Schubert decomposition given in terms of the Schubert factor-
ization giving the Schubert types for elements of SUn.

Schubert Decomposition for SUn.
In describing the Schubert decomposition for SUn, we are giving a version of that contained

in [W], [Mi], [Y] and summarized in [KM] (but using instead an increasing order).
Given an increasing sequence m1 < m2 < · · · < mk with 1 < m1 and mk  n, which we

denote by m = (m1,m2, . . . ,mk), we define a map

 m : SCPm1�1 ⇥ SCPm2�1 ⇥ · · ·⇥ SCPmk�1 �! SUn ,

where SX denotes the suspension of X. This is given as follows:
First, we define a simpler map for m  n, I = [0, 1] and a complex line L ⇢ C

m,

 ̃m : I ⇥ CPm�1 ! SUn
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defined by  ̃m(t, L) = A(2⇡t,L). Since A(0,L) = A(2⇡,L) = In independent of L, this descends to
a map  m : SCPm�1 ! SUn. Then, we define

 m((t1, L1), . . . , (tk, Lk)) = A(�2⇡t̃,e1) ·  m1(t1, L1) ·  m2(t2, L2) · · · mk(tk, Lk)

= A(�2⇡t̃,e1) ·A(2⇡t1,L1) ·A(2⇡t2,L2) · · ·A(2⇡tk,Lk) ,(3.4)

where t̃ =
Pk

j=1 tj . We note that the first factor A(�2⇡t̃,e1) ensures the product is in SUn as in
the splitting for (2.1).

We observe that each I ⇥ CPm�1 has an open dense cell

Em = (0, 1)⇥ {x = (x1, . . . , xm, 0, . . . 0) : (x1, . . . , xm) 2 S2m�1 and xm > 0},

which is of dimension 2m � 1 (as xm =
q
1�

Pm�1
j=1 |xj |2 ). Also, if x = (x1, . . . , xm, 0, . . . 0)

with xm > 0, then x 2min C
m.

We now introduce some notation and denote

S̃m = SCPm1�1 ⇥ SCPm2�1 ⇥ · · ·⇥ SCPmk�1 ;

also, we consider the corresponding cell

Em = Em1 ⇥ Em2 ⇥ · · ·⇥ Emk ,

and the image Sm =  m(Em) in SUn. Then, Em is an open dense cell in S̃m with

dim REm =
kX

j=1

(2mj � 1) = 2|m|� `(m)

for |m| =
Pk

j=1 mj and `(m) = k, which we refer to as the length of m. Also, the image

Sm =  m(Em) consists of elements of SUn of Schubert type m. Furthermore, Sm =  m(S̃m).
Then the results of Whitehead, Miller and Yokota together give the following Schubert decom-
position of SUn.

Theorem 3.7. The Schubert decomposition of SUn has the following properties:

a) SUnis the disjoint union of the Sm as m = (m1, . . . ,mk) varies over all increasing
sequences with 1 < m1, mk  n, and 0  k  n� 1.

b) The map  m : Em ! Sm is a homeomorphism.
c) (Sm\Sm) ⇢ [m0Sm0 , where the union is over all Sm0 with dimSm0 < dimSm.
d) the Schubert cells Sm are preserved under taking inverses, conjugates, and transposes.

We note that d) follows from Corollary 3.5.
Hence, the Schubert decomposition by the cells Sm is a cell decomposition of SUn. The cells

Sm are referred to as the Schubert cells of SUn. We note that as Sm is the image of the “singular
manifold” S̃m which has a Borel-Moore fundamental class, we can describe in §5 the homology
of SUn in terms of the images of these fundamental classes.

Remark 3.8. There is an analogous Schubert decomposition for Un where the Schubert symbols
can include m1 = 1.

4. Schubert Decomposition for Symmetric Spaces

For the Milnor fibers for the varieties of singular matrices, we have compact models which are
symmetric spaces. To give the Schubert decomposition of these, we use the results of Kadzisa
and Mimura [KM] which modifies the Schubert decomposition given for SUn to apply to the
Cartan models for the symmetric spaces. We have given the Schubert decomposition for SUn in
the previous section so we will consider the form it takes for both SUn/SOn and SU2n/Spn.
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We again use the standard flag 0 ⇢ C ⇢ C
2 ⇢ · · · ⇢ C

n and the same notation for pseudo-
rotations as in §3.

Schubert Decomposition for SUn/SOn.

We consider an element of the Cartan model C(sy)
n for SUn/SOn. If B 2 C(sy)

n we have that
B 2 SUn and B = BT . By Lemma 2.1, there is an orthonormal basis of real eigenvectors xi for
B. Hence, each < xi >2 RPn�1. Then B can be written as a product of pseudo-rotations about
complexifications of real hyperplanes C < xi >?. We will refer to such a pseudo-rotation A(✓,x)

for a real vector x as an R-pseudo-rotation. There are two problems in trying to duplicate the
reasoning used for the Schubert decomposition for SUn. First, there is no analogue of Lemma
3.2 for products of R-pseudo-rotations. Second, it need not be true that the ordered product of

R-pseudo-rotations A(✓,xi) is an element of C(sy)
n if the vectors xi are not mutually orthogonal.

The solution obtained by Kadzisa-Mimura is to use instead “ordered symmetric factorizations”
by R-pseudo-rotations. Specifically it will be a product resulting from the successive application

of Cartan conjugates by R-pseudo rotations, which always yields elements of C(sy)
n .

Then, in describing the Schubert decomposition for SUn/SOn, we are giving a version of that
contained in [KM], except we again define maps from products of cones on real projective spaces
whose open cells give the cell decomposition.

Given an increasing sequence m1 < m2 < · · · < mk with 1 < m1 and mk  n, which we
denote by m = (m1,m2, . . . ,mk) we define a map

 (sy)
m : (CRPm1�1)⇥ (CRPm2�1)⇥ · · ·⇥ (CRPmk�1) �! SUn ,

with CX = (I ⇥X)/({0}⇥X) for I = [0, 1], denoting the cone on X. This is given as follows:
First, we define a simpler map for m  n, I = [0, 1] and a real line L ⇢ R

m,

 ̃(sy)
m : CRPm�1 ! SUn

defined by  ̃(sy)
m (t, L) = A(⇡t,LC), with LC denoting the complexification of the real line L. Note

this factors through the cone as A(0,LC) = Id, independent of L. We will henceforth abbreviate
this to A(⇡t,L). Then, we extend this to a map

 ̃(sy)
m :

kY

i=1

(CRPmi�1) �! SUn

defined by

 ̃(sy)
m ((t1, L1), . . . , (tk, Lk)) = A(�⇡t̃,e1) ·  m1(t1, L1) ·  m2(t2, L2) · · · mk(tk, Lk)

= A(�⇡t̃,e1) ·A(⇡t1,L1) ·A(⇡t2,L2) · · ·A(⇡tk,Lk) .(4.1)

where t̃ =
Pk

j=1 tj . We note that the first factor A(�⇡t̃,e1) ensures the product is in SUn as in
the splitting for (2.1). Then we define
(4.2)

 (sy)
m ((t1, L1), . . . , (tk, Lk)) =  ̃(sy)

m ((t1, L1), . . . , (tk, Lk)) ·
⇣
 ̃(sy)
m ((t1, L1), . . . , (tk, Lk))

⌘T
.

We note that the RHS is the Cartan conjugate of I by  ̃m((t1, L1), . . . , (tk, Lk)) 2 SUn and thus

is in the Cartan model C(sy)
n . It can also be obtained by successively applying to I the Cartan

conjugates by the A(⇡tj ,Lj), for j = k, k � 1, . . . , 1, 0, where we let A(⇡t0,L0) denote A(�⇡t̃,e1)
(each of these are, strictly speaking, Cartan conjugates for Un but their product is in SUn).
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We observe that each CRPm�1 has an open dense cell

E(sy)
m = (0, 1)⇥ {x = (x1, . . . , xm, 0, . . . 0) : (x1, . . . , xm) 2 Sm�1 and xm > 0}

which is of dimension m. Also, if x = (x1, . . . , xm, 0, . . . 0) with xm > 0, then x 2min C
m.

We now introduce some notation and denote

S̃(sy)
m = (CRPm1�1)⇥ (CRPm2�1)⇥ · · ·⇥ (CRPmk�1),

the cell
E(sy)

m = E(sy)
m1

⇥ E(sy)
m2

⇥ · · ·⇥ E(sy)
mk

,

and S(sy)
m =  m(E(sy)

m ). Then, E(sy)
m is an open dense cell in S̃(sy)

m with

dim RE
(sy)
m = |m| def=

kX

j=1

mj .

Also, the image S(sy)
m =  m(E(sy)

m ) consists of elements of SUn of real Schubert type m. Fur-

thermore, S(sy)
m =  (sy)

m (S̃(sy)
m ). Then the results of Kadzisa-Mimura [KM, Thm 6.7] give the

following Schubert decomposition of SUn/SOn.

Theorem 4.1. The Schubert decomposition of SUn/SOn has the following properties:

a) SUn/SOnis the disjoint union of the S(sy)
m as m = (m1, . . . ,mk) varies over all increas-

ing sequences with 1 < m1, mk  n, and 0  k  n� 1.

b) The map  (sy)
m : E(sy)

m ! S(sy)
m is a homeomorphism.

c) (S(sy)
m \S(sy)

m ) ⇢ [m0S(sy)
m0 , where the union is over all S(sy)

m0 with dimS(sy)
m0 < dimS(sy)

m .

Hence, the Schubert decomposition by the cells S(sy)
m is a cell decomposition of SUn/SOn.

We refer to the cells S(sy)
m as the symmetric Schubert cells of SUn/SOn. We also refer to the

factorization given by (4.2) for elements B of S(sy)
m as the ordered symmetric factorization and

the corresponding Schubert symbol is denoted by m(sy)(B).

Remark 4.2. Unlike the case of SUn, in general the S̃(sy)
m do not carry a top-dimensional

fundamental class. In the case of a simple Schubert symbol (m1), since L is real, A(⇡,L) is the
complexification of a real reflection about the real hyperplane L?

C and hence it is its own inverse
and transpose. This is independent of L. Then,

 (sy)
(m1)

(⇡, L1) = A(�⇡,e1) ·A(⇡,L1) ·A
T
(⇡,L1)

·AT
(�⇡,e1)

= A(�⇡,e1) ·A(⇡,L1) ·A
�1
(⇡,L1)

·A�1
(�⇡,e1) = Id(4.3)

Thus,  (sy)
(m1)

({1} ⇥ RPm1�1) = Id and so factors to give a map  (sy)
(m1)

: SRPm1�1 ! C(sy)
n .

Hence, for the simple Schubert symbol (m1), E
(sy)
(m1)

=  (sy)
(m1)

(SRPm1�1) has a fundamental class

which is the image of the fundamental class of SRPm1�1.
For a general symmetric Schubert symbol m = m(sy) = (m1,m2, . . . ,mk), if (SUn/SOn)(`)

denotes the `-skeleton of SUn/SOn, then  
(sy)
m composed with the projection does factor through

to give a map

 ̃(sy) 0
m :

kY

i=1

SRPmi�1 ! (SUn/SOn)/(SUn/SOn)
(|m|�1) .

The product again carries a fundamental class and in §5 we see how these images in homology
correspond to generators.
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Schubert Decomposition for SU2n/Spn.
For the Schubert decomposition for SU2n/Spn we will largely follow [KM, §7]; except that for

the geometric properties of Milnor fibers we will emphasize the use of the quaternionic structure
on C

2n. We already have the complex structure giving multiplication by i. We extend it to H by
defining multiplication by j by jx = Jnx̄ for x 2 C

2n with x̄ complex conjugation (so kx = ijx).
Then, it is a standard check (see e.g. [GW, §1.4.4]) that this defines a quaternionic action so
C

2n ' H
n. For this quaternionic structure, each subspace C

2m spanned by {e1, . . . , e2m} is a
quaternionic subspace.

Let < x, y >= xT · ȳ (for column vectors x and y) denote the Hermitian inner product on
C

2n. It has the following directly verifiable properties:

i) multiplication by Jn is H-linear;
ii) < jx, jy >= < x, y >; and
iii) (by ii)) both < x, jx >= 0 and < jx, y >= �< x, jy >.

An element B of the Cartan model for SU2n/Spn is characterized from (2.3) by

(BJn)
T = �BJn.

so that BJn is an element of SU2n and is skew-symmetric. This has the following consequence,
which is basically equivalent to [KM, Thm 3.4].

Lemma 4.3. If B 2 C(sk)
2n , the Cartan model for SU2n/Spn, then

a) Bjx = jB⇤x; and
b) if B satisfies the condition in a), then the eigenspaces of B are H-subspaces.

Proof. For a), this is a simple calculation.

Bjx = BJnx̄ = �(BJn)
T x̄ = �JT

n BT x̄ = JnB̄Tx = JnB⇤x = jB⇤x .

For b), we observe that if Bx = �x, then as B 2 SU2n, B⇤ = B�1 and |�| = 1 so

Bjx = jB⇤x = jB�1x = j��1x = Jn��1x = �Jnx̄ = �jx .

Thus, the �-eigenspace of B is invariant under multiplication by j. ⇤

We will refer to a B 2 U2n which satisfies the condition in a) of Lemma 4.3 as being H*-linear.
To factor such a matrix, we use a version of pseudo-rotation for Hn. Given a quaternionic line
L ⇢ C

2n, let L? be the quaternionic hyperplane orthogonal to L. We define an H-pseudo-
rotation by an angle ✓, Ã(✓,L) which is the identity on L? and is multiplication by ei✓ on L.
It is C-linear and can be checked to be H*-linear. If x 2 L is a unit vector, then by property
iii), {x, jx} is an orthonormal basis for L. Then, Ã(✓,L) can be written as a product of pseudo-
rotations A(✓,x)A(✓,jx), which commute. By the properties of pseudo-rotations, we have the
following properties of H-pseudo-rotations.

i) Ã⇤
(✓,L) = Ã�1

(✓,L) = Ã(�✓,L);

ii) Ã(✓,L) = Ã(�✓,L̄), where L̄ is the H-line generated by x̄; and

iii) ÃT
(✓,L) = Ã(✓,L̄);

iv) det(Ã(✓,L)) = e2i✓;

v) If L ? L0 then Ã(✓,L) and Ã(✓,L0) commute;

vi) Ã(✓,L) is H*-linear.

Proof. All of i) - v) follow directly from the properties of pseudo-rotations. For vi) we observe
that Ã(✓,L) is characterized as a unitary matrix which has L for the eigenspace for ei✓ and L?
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as the eigenspace for the eigenvalue 1. Thus, for vi), as both L and L? are H-subspaces we see
Ã(✓,L) ⌘ Id on L? and for x 2 L,

Ã(✓,L)(jx) = ei✓jx = je�i✓x = jÃ�1
(✓,L)(x) .

As Ã⇤
(✓,L) = Ã�1

(✓,L), we see that Ã(✓,L)(jx) = jÃ⇤
(✓,L)(x) on each summand L and L?; hence they

are equal. ⇤
In addition, we can give a unique representation of Ã(✓,L) as an ordered product of pseudo-
rotations.

Lemma 4.4. Given an H-line L ⇢min C
2m, there is a unique unit vector x 2 L \ C

2m�1 of
the form x = (x1, . . . , x2m�1, 0) with x2m�1 > 0 so that jx = (x̄2,�x̄1, x̄4,�x̄3, . . . , 0,�x2m�1).
Hence, Ã(✓,L) can be uniquely written A(✓,x) ·A(✓,jx).

Proof. As dim CL = 2. dim C(L \ C
2m�1) = 1. It is � 1, and otherwise it would be 2, i.e.

L ⇢ C
2m�1. Then, under the H-linear projection p : C2m ! C

2m/C2m�2 the image of L, which
is an H-subspace would have C-dimension 1, a contradiction.

As dim C(L \ C
2m�1) = 1, and L 6⇢ C

2m�2, we may find a unit vector x 2 L of the form
x0 = (x0

1, . . . , x
0
2m�1, 0) with x0

2m�1 6= 0. Multiplying x0 by an appropriate unit complex number

we obtain x with x2m�1 > 0. Then, jx is as stated and so is Ã(✓,L). ⇤
Whitehead-Type Ordered Factorization.

For an H*-linear B 2 U2n, we may initially factor it as a product of H-pseudo-rotations in
a manner similar to the symmetric case as follows. Each eigenspace V� of B with � = ei✓ 6= 1
is an H-subspace. We choose the smallest m0

1 so that V� \ C
2m0

1 6= 0, and hence is an H-line

L(�)
1 . We successively repeat this for (L(�)

1 )? \ V� and obtain an orthogonal decomposition

V� = L(�)
1 � L(�)

2 · · ·L(�)
k0 with L(�)

j ⇢min C
2m0

j and m0
1 < m0

2 < · · · < m0
k0 . Each L(�)

j gives an

H-pseudo-rotation Ã
(✓,L(�)

j )
. We may do this for each eigenvalue � 6= 1. Because di↵erent Lj

are orthogonal, the corresponding H-pseudo-rotations commute. Thus, we may factor B as a
product of H-pseudo-rotations

(4.4) B = Ã(✓1,L1) · Ã(✓2,L2) · · · Ã(✓k,Lk)

where Lj ⇢min C
2mj , 1  m1  m2  · · ·  mk, and several ✓j may be equal. However, this is

not an ordered factorization as some of the mj may be equal.
We would like to apply an analogue of the Whitehead Lemma 3.2 to products of H-pseudo-

rotations. However, it is not possible to do so remaining in the category of H-pseudo-rotations.
For example, if B 2 U2n then B · Ã(✓,L) · B�1 is a unitary transformation with B(L) as the
eigenspace for ei✓ and B(L?) = (B(L))? as the eigenspace for the eigenvalue 1. While B(L) is
a 2-dimensional complex space, it need not be an H-subspace.

However, there is an alternate way to proceed which uses Lemma 4.4. We may uniquely
decompose each H-pseudo-rotation in (4.4) into a product of pseudo-rotations about orthogonal
planes which thus all commute so that (4.4) may be rewritten

(4.5) B = A(✓1,x1) ·A(✓2,x2) · · ·A(✓k,xk) ·A(✓k,jxk) · · ·A(✓2,jx2) ·A(✓1,jx1)

Then, we can progressively apply Whitehead’s Lemma to the factors A(✓j ,xj) beginning with
the highest j and proceeding left to the lowest to obtain an ordered factorization for the product
involving the A(✓j ,xj). Then for each application of Whitehead’s Lemma for these, there is a
corresponding application of it for the A(✓j ,jxj) from the left proceeding to the right using the
following lemma.
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Lemma 4.5. Given a relation between pseudo-rotations

(4.6) A(✓,x) ·A(✓0,x0) = A(✓1,x1) ·A(✓2,x2) ,

there is a corresponding relation

(4.7) A(✓0,jx0) ·A(✓,jx) = A(✓2,jx2) ·A(✓1,jx1) .

Proof. First, apply the transpose to each side of (4.6) and then conjugate with Jn to obtain

(4.8) (Jn ·AT
(✓0,x0) · J�1

n ) · (Jn ·AT
(✓,x) · J�1

n ) = (Jn ·AT
(✓2,x2)

· J�1
n ) · (Jn ·AT

(✓1,x1)
· J�1

n ).

Then, for any pseudo-rotation A(✓,x),

(4.9) Jn ·AT
(✓,x) · J�1

n = Jn ·A(✓,x̄) · J�1
n = A(✓,Jnx̄) = A(✓,jx) .

Thus, applying (4.9) to each product in (4.8) yields (4.7). ⇤
Then, by applying Whitehead’s Lemma successively to appropriate adjacent pairs A(✓j ,xj) ·

A(✓j0 ,xj0 ) and Lemma 4.5 to the corresponding pairs A(✓j0 ,jxj0 ) ·A(✓j ,jxj) we may rewrite

(4.10) B = A(✓01,x
0
1)
·A(✓02,x

0
2)
· · ·A(✓0k,x

0
k)

·A(✓0k,jx
0
k)
· · ·A(✓02,jx

0
2)
·A(✓01,jx

0
1)

with the A(✓0j ,x
0
j)

in increasing order and the A(✓0j ,jx
0
j)

in decreasing order.

Kadzisa-Mimura Ordered Skew-Symmetric Factorization.

In fact, this is the skew-symmetric factorization of B 2 C(sk)
m given by Kadzisa-Mimura. We

further rewrite (4.10) using the properties of pseudo-rotations �(A�1
i ) = A(✓i,jxi). Hence, B in

(4.10) can be rewritten either as

(4.11) B =
⇣
A(✓1,x1) ·A(✓2,x2) · · ·A(✓k,xk) · Jn ·AT

(✓k,xk)
· · ·AT

(✓1,x1)

⌘
· J�1

n

or alternatively for each Aj = A(✓j ,xj) as

(4.12) B = A1 ·A2 · · ·Ak · �(A�1
k ) · · ·�(A�1

1 ) ,

which is a Cartan conjugate of I and hence belongs to F (sk) c
m .

What we have not yet considered is the skew-symmetric Schubert symbol associated to this
factorization. We shall do so in giving in the next section the Kadzisa-Mimura algorithm for ob-
taining the ordered skew-symmetric factorization from the full Whitehead ordered factorization.

We next define the maps for the cell decomposition of SU2n/Spn via the Cartan Model

C(sk)
2n . In describing the Schubert decomposition for SU2n/Spn, we are giving a version that

modifies that contained in [KM] to associate to the Borel-Moore fundamental classes of products
of suspensions of quaternionic projective spaces the Borel-Moore fundamental classes of the
“Schubert cycles” obtained as the closures of the Schubert cells. However, unlike the general
and symmetric cases, we cannot directly do this by expressing the closures of Schubert cells as
the images of the products of suspensions of quaternionic projective spaces. Instead we proceed
through intermediate spaces which are products of suspensions of complex projective spaces.

For any m > 0, we define via the quaternionic structure on C
2m ' H

m a map

�m : CP 2m�2 ! HPm�1

by �m(L) = L+ jL for complex lines L ⇢ C
2m�1. For a quaternionic line Q ⇢min H

m, Q has a
unique element x = (x1, . . . , x4(m�1), x4m�3, 0) 2 S4m�3 ⇢ C

2m�1 with x4m�3 > 0. Then,

jx = (x̄2,�x̄1, x̄4,�x̄3, . . . , x̄4(m�1),�x̄4m�5, 0,�x4m�3) .

Hence, the set of such Q are parametrized by the cell E4m�4 in S4m�3 with x4m�3 > 0 (since

x4m�3 =
q
1�

P4(m�1)
j=1 |xj |2 ). However, this cell also parametrizes the open dense subset of



374 JAMES DAMON

L 2 CP 2m�2 with L ⇢min C
2m�1. The map �m acts as the identity on these parametrized cells of

dimension 4m�4, and the complements have lower dimensions. We may then take the suspension
S�m : SCP 2m�2 ! SHPm�1, which now is a homeomorphism on the cell (0, 1) ⇥ E4m�4 of
dimension 4m� 3. Thus, S�m ⇤ sends the Borel-Moore fundamental class of SCP 2m�2 to that
of SHPm�1.

Then, given an increasing sequence 1 < m1 < m2 < · · · < mk  n, which we denote by
m(sk) = (m1,m2, . . . ,mk), we may form the product map

�̃(sk)
m = S�m1 ⇥ S�m2 ⇥ · · ·⇥ S�mk ,

which again sends the Borel-Moore fundamental class of the product SCP 2m1�2⇥· · ·⇥SCP 2mk�2

to that of SHPm1�1 ⇥ · · ·⇥ SHPmk�1.
Then, the correspondence we give between the fundamental homology classes of

SHPm1�1 ⇥ · · ·⇥ SHPmk�1

and the Schubert cycles will be via the fundamental homology classes of

SCP 2m1�2 ⇥ · · ·⇥ SCP 2mk�2.

We do so by defining a map

 (sk)
m : SCP 2m1�2 ⇥ SCP 2m2�2 ⇥ · · ·⇥ SCP 2mk�2 �! C(sk)

m .

This is given as follows:

 ̃(sk)
m : (I ⇥ CP 2m1�2)⇥ (I ⇥ CP 2m2�2)⇥ · · ·⇥ (I ⇥ CP 2mk�2) �! SUn

is defined by

 ̃(sk)
m ((t1, L1), . . . , (tk, Lk)) = A(�2⇡t̃,e1) ·A(2⇡t1,L1) ·A(2⇡t2,L2) · · ·A(2⇡tk,Lk)

·A(2⇡tk, jLk) · · ·A(2⇡t2, jL2) ·A(2⇡t1, jL1) ·A(�2⇡t̃,�e3) ,(4.13)

where t̃ =
Pk

j=1 tj . We note that the product is of the form (4.10) and hence (4.12). Also, the
first and last factors A(�2⇡t̃,e1) and A(�2⇡t̃,�e3) ensure the product is in SUn as in the splitting
for (2.1).

Since A(0,L) = A(2⇡,L) = In independent of a complex line L ⇢ C
2m�1, (4.13) descends to a

map

 (sk)
m : SCP 2m1�2 ⇥ SCP 2m2�2 ⇥ · · ·⇥ SCP 2mk�2 �! C(sk)

m .

As remarked above, each SCP 2mj�2 has an open dense cell of dimension 4mj � 3 which we
denote by

E(sk)
mj

= (0, 1)⇥ {x = (x1, . . . , x4(mj�1), x4mj�3, 0, . . . 0)

: (x1, . . . , x4(mj�1), x4mj�3), 0) 2 S4mj�3 and x4mj�3 > 0}

and we conclude H < x >⇢min C
2mj .

We now introduce some notation and denote

S̃(sk)
m = SCP 2m1�2 ⇥ SCP 2m2�2 ⇥ · · ·⇥ SCP 2mk�2 .

Also, we consider the corresponding cell E(sk)
m = E(sk)

m1 ⇥ E(sk)
m2 ⇥ · · · ⇥ E(sk)

mk , and the image

S(sk)
m =  (sk)

m (E(sk)
m ) in C(sk)

2n . Then, E(sk)
m is an open dense cell in S̃(sk)

m with

dim RE
(sk)
m =

kX

j=1

(4mj � 3) = 4|m(sk)|� 3k = 4|m(sk)|� 3`(m(sk))
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for |m(sk)| =
Pk

j=1 mj (and `(m(sk)) = k). Also, the image S(sk)
m =  (sk)

m (E(sk)
m ) consists of

elements of C(sk)
2n of skew Schubert type m. Furthermore, S(sk)

m =  (sk)
m (S̃(sk)

m ). Then the results
of Kadzisa-Mimura [KM, Thm 8.7] give the following Schubert decomposition of SU2n/Spn.

Theorem 4.6. The Schubert decomposition of SU2n/Spn has the following properties via the

di↵eomorphism SU2n/Spn ' C(sk)
2n :

a) SU2n/Spn is the disjoint union of the S(sk)
m as m = m(sk) = (m1, . . . ,mk) varies over

all increasing sequences with 1 < m1 < · · · < mk  n, and 0  k  n� 1.

b) The map  (sk)
m : E(sk)

m ! S(sk)
m is a homeomorphism.

c) (S(sk)
m \S(sk)

m ) ⇢ [m0S(sk)
m0 , where the union is over all S(sk)

m0 with dimS(sk)
m0 < dimS(sk)

m .

Hence, the Schubert decomposition by the cells S(sk)
m gives a corresponding cell decomposi-

tion of SU2n/Spn. The cells S(sk)
m will be referred to as the skew-symmetric Schubert cells of

SU2n/Spn or C(sk)
2n . We note that S(sk)

m has a Borel-Moore fundamental class which we refer
to as a skew-symmetric Schubert cycle. It is the image of the Borel-Moore fundamental class

of the “singular manifold”S̃(sk)
m . It corresponds to the Borel-Moore fundamental class of the

associated product of suspensions of quaternionic projective spaces. We describe in §5 the ho-

mology of SU2n/Spn and C(sk)
2n in terms of these skew-symmetric Schubert cycles. Furthermore,

for m = 2n the relation of C(sk)
m with F (sk) c

m allows us to give a Schubert decomposition for the
Milnor fiber.

Remark 4.7. If in the initial factorization of B 2 C(sk)
2n given in (4.4) into a product of H-

pseudo-rotations, the orders for all of the L(�`)
j are all distinct then 1 < m1 < m2 < · · · < mk.

By the commutativity of the H-pseudo-rotations, we may arrange them in increasing order and
obtain (4.10) without using Whitehead’s Lemma. Hence, the skew-symmetric Schubert symbol
is given by m(sk) = (m1,m2, · · · ,mk), which would be the corresponding Schubert symbol in the
quaternionic Grassmannian. In general, the use of Whitehead’s Lemma has the e↵ect of twisting
the H-lines which then again reappear from the form of the skew-symmetric factorization.

5. Schubert Decomposition for Milnor Fibers

In this section we apply the results giving the Schubert decomposition for the associated
symmetric spaces providing compact models for the global Milnor fibers. We first give the form
that the Schubert decomposition gives for the specific Cartan models, and extending these to
the Milnor fibers themselves. Second, in doing this we give an algorithm due to Whitehead and
Kadzisa-Mimura for identifying for a given matrix in the global Milnor fiber the Schubert cell
to which it belongs. Third, we will see the form that the Schubert decomposition takes for the
global Milnor fibers using Iwasawa decomposition.

Whitehead-Kadzisa-Mimura Algorithm for Identifying Schubert Cells.
The algorithm given by Kadzisa-Mimura [KM] for the ordered factorizations of matrices in the

various Cartan models uses the ordered factorization for SUm based on the work of Whitehead
[W] as developed by Miller [Mi] and Yokota [Y]. They cleverly combine the uniqueness of
the factorization for Um (and SUm) and the Cartan conjugacy for the Cartan models to give
the symmetric, respectively skew-symmetric, factorizations for the cases of SUm/SOm and for
m = 2n, SU2n/Spn. We explain this algorithm as it will apply to the compact models for global
Milnor fibers and then for the global Milnor fibers themselves.
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An element of any of the Cartan models is a matrix B 2 SUm for appropriate m. Thus, by
Lemma 3.3 we may obtain an ordered factorization by pseudo-rotations except with decreasing
order for B.

(5.1) B = Ak ·Ak�1 · · ·A1 ,

where Aj = A(✓j ,xj) with the {xj} a set of unit vectors with xj 2min C
mj and

1  m1 < m2 < · · · < mk  m,

and ✓i 6⌘ 0mod 2⇡ for each i. In addition, if m1 = 1 then the Schubert symbol is
m = (m2, . . . ,mk). Now from (5.1) we describe how to obtain either the symmetric or skew-
symmetric ordered factorizations as obtained by Kadzisa-Mimura.

Ordered Symmetric Factorizations for C(sy). As B 2 C(sy), �(B�1) = B. Hence, as

�(B�1) = B�1 = BT ,

we obtain from (5.1)

Ak ·Ak�1 · · ·A1 = AT
1 ·AT

2 · · ·AT
k .

As each Aj = A(✓j ,xj), A
T
j = A(✓j ,x̄j) is a pseudo-rotation with x̄j 2min C

mj . Thus, it follows

by Lemma 3.4 that A1 = AT
1 and x1 is real. Let C1 = A

(
✓1
2 ,x1)

. We can write A1 = C1 · C1,

and as A(✓1,x1) is a pseudo-rotation about a real hyperplane, so is C1. Hence, C1 = CT
1 and

�(C1) = C⇤
1 . Then, from (5.1) since

(5.2) B = Ak ·Ak�1 · · ·A1 ,

we have

C⇤
1 ·B · �(C1) = (C⇤

1 ·Ak ·Ak�1 · · ·A2 · C1) · C1 · �(C1)

= (C⇤
1 ·Ak · C1) · (C⇤

1 ·Ak�1 · C1) · · · (C⇤
1 ·A2 · C1)

= A(2)
k ·A(2)

k�1 · · ·A
(2)
2 ,(5.3)

where each A(2)
j = C⇤

1 ·Aj ·C1 is again a pseudo-rotation A
(✓j ,x

(2)
j )

, with x(2)
j = C�1

1 (xj) satisfying

x(2)
j 2min C

mj as C1 ⌘ Id on (Cm1)?.
Also, the LHS of (5.3) is the Cartan conjugate of the symmetric matrix B and so is still

symmetric (and in SUn), except now it is a product of k � 1 pseudo-rotations with Schubert
symbol (mk, . . . ,m2). Thus we can inductively repeat the argument to write.

C⇤
j · · ·C⇤

2 · C⇤
1 ·B · �(C1) · �(C2) · · ·�(Cj) = A(j+1)

k ·A(j+1)
k�1 · · ·A(j+1)

j+1

which has Schubert symbol (mj+1, . . . ,mk). After k � 1 steps we obtain

(5.4) C⇤
k�1 · · ·C⇤

2 · C⇤
1 ·B�(C1) · �(C2) · · ·�(Ck�1) = A(k)

k ,

with A(k)
k = A

(✓k,x
(k)
k )

for x(k)
k 2min C

mk . The last step then allows us to rewrite (5.4) as

(5.5) B = C1 · · ·Ck�1 · Ck · �(C⇤
k) · �(C⇤

k�1) · · ·�(C⇤
1 ) ,

which gives the ordered symmetric factorization.
We obtain as a corollary of the algorithm

Corollary 5.1. If B 2 F (sy) c
m = C(sy)

m , and has increasing Schubert symbol m = (m1, . . . ,mk),
then the symmetric factorization has the same Schubert symbol m(sy) = m.



SCHUBERT DECOMPOSITION FOR MILNOR FIBERS 377

Ordered Skew-symmetric Factorizations for C(sk)
m . The algorithm for C(sk)

m , with m = 2n, is very
similar and depends on the following lemma, see [KM, Lemma 7.2].

Lemma 5.2. If B 2 (U2n \ Skm(C)) · J�1
n , with m = 2n, has a factorization as in (5.1), then:

k is even, m1 is odd, m2 = m1 + 1, and A2 = �(A⇤
1).

Here �(A) = Jn · A · J�1
n and A1 = A(✓1,x1) with x1 2min C

m1 , for which we may arrange
x1 = (x1,1, . . . , x1,m1) with x1,m1 > 0. Then, by properties of pseudo-rotations

A2 = �(A⇤
1) = A(✓1,jx1)

(hence, A2 · A1 is an H-pseudo-rotation and A1 and A2 commute). We may then rewrite (5.1)
as

A⇤
1 ·B · �(A1) = A⇤

1 ·Ak ·Ak�1 · · ·A3 ·A1 · �(A⇤
1) · �(A1)

= (A⇤
1 ·Ak ·A1) · (A⇤

1 ·Ak�1 ·A1) · · · (A⇤
1 ·A3 ·A1)

= A(2)
k ·A(2)

k�1 · · ·A
(2)
3 ,(5.6)

where each A(2)
j = A⇤

1 ·Aj ·A1 is again a pseudo-rotation A
(✓j ,x

(2)
j )

, with x(2)
j = A�1

1 (xj) satisfying

x(2)
j 2min C

mj as A1 ⌘ Id on (Cm1)?.
Also, the LHS of (5.6) is the Cartan conjugate of B for which B · Jn is skew-symmetric (and

in U2n); and so it also has these properties, except now it is a product of k� 2 pseudo-rotations
with Schubert symbol (mk, . . . ,m3). Thus we can inductively repeat the argument. After k

2
steps we obtain a factorization in the form

B = A(✓1,x0
1)
· · ·A(✓r,x0

r)
· �(A⇤

(✓r,x0
r)
) · · ·�(A⇤

(✓1,x0
1)
) ,

= A(✓1,x0
1)
· · ·A(✓r,x0

r)
·A(✓r, jx0

r)
· · ·A(✓1, jx0

1)
.(5.7)

Here k = 2r, and each H < x0
r >⇢min C

2mj . This gives the ordered skew-symmetric factor-
ization. By (4.9) we may write each A(✓j ,jx0

j)
= Jn · AT

(✓j ,x0
j)
· J�1

n , and then by (4.11) we may

alternately write (5.7) in the form

(5.8) B = A(✓1,x0
1)
· · ·A(✓r,x0

r)
· Jn ·AT

(✓r,x0
r)
· · ·AT

(✓1,x0
1)
· J�1

n .

We obtain as a corollary of the algorithm.

Corollary 5.3. If B 2 C(sk)
m = F (sk) c

m · J�1
n (with m = 2n), then it has an increasing Schubert

symbol of the form

m = (2m1 � 1, 2m1, 2m2 � 1, 2m2, . . . , 2mr � 1, 2mr)

with 1 < m1 < m2, · · · < mr  n. Then the ordered skew-symmetric factorization has the
skew-symmetric Schubert symbol m(sk) = (m1,m2, . . . ,mr).

To use the preceding results for the global Milnor fibers, we use in each case the Iwasawa
decomposition, which is given for SLn by the Gram-Schmidt process, to determine the Schubert
cell decomposition.

Global Milnor Fibers for the Variety of Singular m⇥m-Matrices.
This is the simplest case and was essentially covered in Proposition 1.2. Given B 2 Fm,

the global Milnor fiber, we have Fm = SLm(C). To obtain its representation in the Iwasawa
decomposition SLm(C) = SUm ·Am ·Nm where Am denotes the group of diagonal matrices with
positive entries, and Nm is the nilpotent group of upper triangular complex matrices with 1’on
the diagonal. We may apply the Gram-Schmidt process to the columns of B to obtain B = A ·C,
where A is unitary and C is upper triangular with positive entries on the diagonal. As det(B) = 1,
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det(A) is a unit complex number, and det(C) > 0; it follows that both det(A) = det(C) = 1;
thus, C belongs to Solm = Am ·Nm. Then by applying the method of §3 for giving an ordered
factorization for A gives the Schubert symbol for A, which we shall also use for B. Thus, we
may describe the Schubert decomposition for the global Milnor fiber Fm as follows.

Theorem 5.4. The Schubert decomposition of the global Milnor fiber Fm for the variety of m⇥m
general complex matrices is given, via the di↵eomorphism with SLm(C), by the disjoint union of
the Schubert cells Sm ·Solm where the Sm are the Schubert cells of SUm for all Schubert symbols
m = (m1, . . . ,mk) with 1 < m1 < · · · < mk  m.

Global Milnor Fibers for the Variety of Singular m⇥m-Symmetric Matrices.

If B 2 F (sy)
m , then we want to relate B to a matrix C 2 F (sy) c

m = SUm \ Symm(C) = C(sy)
m .

As B is symmetric and det(B) = 1, as in [D3, Table 1] we may diagonalize the quadratic form
XT ·B ·X, for column vectors X so there is a C 2 SLm(C) so that (CX)T ·B · CX = XT ·X.
Thus, CT · B · C = Im or B = (C�1)T · C�1. Then, by Iwasawa decomposition C�1 = A · E,

with A 2 SUm and E 2 Solm. Then, B = ET · (AT ·A) · E, and AT ·A 2 C(sy)
m . If

m = (m1,m2, . . . ,mk)

is the Schubert symbol for Ã = AT ·A, it is also the symmetric Schubert symbol and so

Ã = AT ·A 2 S(sy)
m

and conversely.
We let SolTm denote the group of lower triangular complex matrices E with positive entries

on the diagonal and det(E) = 1. Then, there is the action of SolTm on C(sy)
m as follows:

SolTm ⇥ C(sy)
m ! C(sy)

m sending (E, Ã) 7! E · Ã · ET .

Then, the action applied to each Schubert cell S(sy)
m gives by Proposition 1.2 the Schubert cell

for F (sy)
m which we denote by SolTm · (S(sy)

m ). Combining this with Theorem 4.1 we obtain

Theorem 5.5. The Schubert decomposition of the global Milnor fiber F (sy)
m for the variety of

m⇥m symmetric complex matrices is given by the disjoint union of the symmetric Schubert cells

SolTm · (S(sy)
m ) for S(sy)

m the symmetric Schubert cells of SUm/SOm for all symmetric Schubert
symbols m(sy) = (m1, . . . ,mk) with 1 < m1 < · · · < mk  m.

Furthermore, the preceding algorithm using ordered factorization gives the symmetric Schubert

symbol for a given matrix in F (sy)
m .

Global Milnor Fibers for the Variety of Singular m⇥m Skew-Symmetric Matrices.

For the case of B 2 F (sk)
m with m = 2n, we follow an analogous argument to the preceding.

We first want to relate B to a matrix C 2 F (sk) c
m = SUm \ Skm(C), and then use the relation

F (sk) c
m · J�1

n = C(sk)
m to determine the skew-symmetric factorization for C · J�1

n to determine its
skew-symmetric Schubert type.

As B is skew-symmetric with Pf(B) = 1, as in [D3, Table 1] we may block diagonalize the
quadratic form XT ·B ·X, for column vectors X so there is a C 2 SLm(C) so that

(CX)T ·B · CX = XT · Jn ·X.

Thus, CT ·B · C = Jn or B = (C�1)T · Jn · C�1. Then, we again apply Iwasawa decomposition
C�1 = A · E, with A 2 SUm and E 2 Solm. Then,

B = ET · (AT · Jn ·A) · E,

and
Ã = AT · Jn ·A 2 SUm \ Skm(C).
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It follows Ã · J�1
n 2 C(sk)

m . The Schubert symbol

m = (2m1 � 1, 2m1, 2m2 � 1, 2m2, . . . , 2mk � 1, 2mk)

for Ã·J�1
n is obtained from the ordered factorization of Ã·J�1

n . By (5.8), this may be alternatively
written as a skew-symmetric factorization of Ã

(5.9) Ã = A(✓1,x0
1)
· · ·A(✓k,x0

k)
· Jn ·AT

(✓k,x0
k)
· · ·AT

(✓1,x0
1)
.

By Corollary 5.3, m(sk) = (m1,m2, . . . ,mk) is the skew-symmetric Schubert symbol. Then,

under the map C(sk)
m ! F (sk)

m given by right multiplication by Jn, i.e.

Ã · J�1
n 7! Ã 2 SUm \ Skm(C) = F (sk)

m ,

we have S(sk)
m mapping di↵eomorphically to S(sk)

m · Jn ⇢ F (sk)
m . Hence, we again use the action

of SolTm but on F (sk)
m given by :

SolTm ⇥ F (sk)
m ! F (sk)

m sending (E, Ã) 7! E · Ã · ET .

Then, from the action applied to each Schubert cell S(sk)
m after right multiplication by Jn gives

by Proposition 1.2 the Schubert cell for F (sk)
m which we denote by SolTm · (S(sk)

m ·Jn). Combining
this with Theorem 4.1 we obtain

Theorem 5.6. The Schubert decomposition of the global Milnor fiber F (sk)
m for the variety of

m ⇥ m skew-symmetric complex matrices (with m = 2n) is given by the disjoint union of the

skew-symmetric Schubert cells SolTm · (S(sk)
m · Jn) corresponding to the skew-symmetric Schu-

bert cells S(sk)
m of C(sk)

m , for all skew-symmetric Schubert symbols m(sk) = (m1, . . . ,mk) with
1 < m1 < · · · < mk  n.

Furthermore, the preceding algorithm using ordered factorization gives the associated skew-

symmetric Schubert symbol for a given matrix in F (sk)
m .

6. Representation of the Dual Classes in Cohomology

Having given the Schubert decomposition for the global Milnor fibers in terms of the cor-
responding Cartan models, we now consider how the Schubert decomposition corresponds to
the (co)homology of the global Milnor fibers as given in [D3], which was deduced from that
of the corresponding symmetric spaces. We will refer to the closures of the Schubert cells in
each case as Schubert cycles of the appropriate type. We shall see that for both the general
and skew-symmetric cases the Schubert cycles are cycles whose fundamental classes define Z-
homology classes. For the symmetric case, the symmetric Schubert cycles are only mod 2-cycles
which define unique Z/2Z-homology classes. The situation is somewhat similar to that for real
Grassmannians where the Z/2Z-cohomology classes correspond to real Schubert cycles, while
the rational classes are more di�cult to identify in terms of the Schubert decomposition.

This identification is made using the standard method (see e.g. [Ma, Chap. IX, §4]) for
computing the (co)homology of a finite CW-complex X with skeleta {X(k)} with coe�cient ring
R using the finite algebraic complex Ck({X(k)}) = Hk(X(k), X(k�1);R), with boundary map
given by the boundary map for the exact sequence of a triple. Then, rkR(Ck({X(k)})) equals
the number of cells qk of dimension k. Thus, rkRHk(X;R)  qk with equality i↵ the closures of
the cells of dimension k give a free set of generators for Hk(X;R). Likewise the cohomology is
computed from the complex Ck({X(k)}) = Hk(X(k), X(k�1);R) using the coboundary map for
the exact sequence of a triple in cohomology.
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Milnor Fiber for the Variety of Singular m⇥m-Matrices.
We consider the Schubert decomposition for Fm obtained from that for the compact model

F c
m = SUm as a result of Theorem 5.4. Then, the homology of SUm can be computed from

the algebraic complex with basis formed from the Schubert cells Sm. By a result of Hopf, the
homology of SUm (which is isomorphic as a graded Z-module to its cohomology) is given as a
graded Z-module by

H⇤(SUm;Z) ' ⇤⇤
Zhs3, s5, . . . , s2m�1i ,

where s2j�1 has degree 2j � 1. Then, a count shows that Hq(SUn;Z) is spanned by s2m1�1 ·
s2m2�1 · · · s2mk�1 where 1 < m1 < m2 < · · · < mk  m and q =

Pk
j=1(2mj�1). This equals the

number of Schubert cells Sm of real dimension q. Thus, each Sm defines a Z-homology class of
dimension dim RSm. Together they form a basis for Hq(SUm;Z). Also,  m(S̃m) = Sm and S̃m

has a top homology class in Hq(S̃m;Z) for q = dim R(S̃m), which we can view as a fundamental
class for S̃m for Borel-Moore homology. We have a similar dimension count in cohomology, so
that the duals of the classes Sm via the Kronecker pairing give a Z-basis for cohomology.

Then, as F c
m = SUm and the inclusion im : F c

m ,! Fm is a homotopy equivalence, we obtain
the following

Theorem 6.1. The homology H⇤(Fm;Z) has for a free Z-basis the fundamental classes of the
Schubert cycles, given as images im ⇤� m ⇤([S̃m]) =  m ⇤(S̃m) = Sm as we vary over the Schubert
decomposition of SUm. The Kronecker duals of these classes give the Z-basis for the cohomology

H⇤(SUm;Z) ' ⇤⇤
Zhe3, e5, . . . , e2m�1i .

Moreover, the Kronecker duals of the simple Schubert classes S(m1) are homogeneous generators
of the exterior algebra cohomology.

Proof. The preceding discussion establishes all of the theorem except for the last statement
about the generators of the cohomology algebra. We prove this by induction on m. It is trivially
true for m = 1, 2. Suppose it is true for m < n and let in�1 : SUn�1 ,! SUn denote the natural
inclusion A 7!

�
A 0
0 1

�
. The Schubert decomposition preserves the inclusion so that any Sm for

m = (m1,m2, · · · ,mk) with mk < n is contained in the image of in�1 and so is also a Schubert
cell for SUn�1; while if mk = n, then Sm is in the complement of the image of SUn�1. Thus,
if the result is true for SUn�1, the Kronecker duals to the simple S(m1) with m1 < n restrict
via i⇤n�1 to the Kronecker duals of the S(m1) with m1 < n viewed as Schubert cells of SUn�1.
Thus, they map to the generators of the exterior algebra ⇤⇤

Z < e3, e5, · · · e2n�3 >. Also, the
Kronecker dual to any Sm with mk = n is zero on any Schubert cell of SUn�1 so by a counting
argument the kernel of i⇤n�1, which is the ideal generated by e2n�1, is spanned by the Kronecker
duals of the Schubert cells with mk = n.

Now there is a unique Schubert class of this type of degree 2n � 1, and hence its Kronecker
dual is the added generator which together with the others for S(m1) with m1 < n generate
H⇤(SUn;Z). ⇤

There is also the question of identifying the Kronecker dual of the Schubert cycle [Sm] for
m = (m1,m2, · · · ,mk), which we denote by em. We claim it is given up to sign by the cohomol-
ogy class e2m1�1 · e2m2�1 · · · e2mk�1 (where the products denote cup-products). We show this
using the product structure of the group SUm to give a product representation for the closures
of Schubert cells together with the Hopf algebra structure of H⇤(SUm).

We let Sm · Sm0 denote the group product in SUm of the closures of Schubert cells Sm and
Sm0 . We also use the simpler notation Sm1 to denote the Schubert cell Sm when m = (m1). In
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particular, we emphasize that

Sm1 = {A(�✓,e1) ·A(✓,x1) : ✓ 2 (0, 2⇡), x1 2min C
m1} .

First, as result of Lemma 3.2, we obtain the following version of a lemma due to Whitehead
(see e.g. [KM, Lemma 4.2] or [Mi, Lemma 2.2]).

Lemma 6.2. For Schubert cells in Cm for SUm,

1) If 1 < m1 < m2  m, then

Sm2 · Sm1 = Sm1 · Sm2 = S(m1,m2) .

2) If 1 < m0  m, then
Sm0 · Sm0 ✓ S(m0�1,m0) .

We note that this di↵ers slightly from the above referred to lemmas as each element in Sm1

is a product of two pseudo-rotations, one of which is A(�✓,e1). However, by the lemma, this
pseudo-rotation can also be interchanged with other A(✓,xj), and combined via multiplication
with other A(�✓0,e1). We also note in the lemma that dim RS(m0�1,m0)  2 · dim RSm0 � 2.

We can inductively repeat this to obtain

Lemma 6.3. For Schubert cells Smj in Cm (for SUm):

1) If m = (m1,m2, . . . ,mr) then

Sm = Sm1 · Sm2 · · ·Smr .

2) If m = (m1,m2, . . . ,mr) and m0 = (m0
1,m

0
2, . . . ,m

0
r0) with

{m1,m2, . . . ,mr} \ {m0
1,m

0
2, . . . ,m

0
r0} = ;,

then
Sm · Sm0 = Sm00 ,

where m00 is the union of m and m0 in increasing order.
3) If m = (m1,m2, . . . ,mr) and m0 = (m0

1,m
0
2, . . . ,m

0
r0) with

{m1,m2, . . . ,mr} \ {m0
1,m

0
2, . . . ,m

0
r0} 6= ;,

then
Sm · Sm0 ⇢ C(q)

m ,

where q  dim RSm + dim RSm0 � 2.

Proof. For 1) we consider a product in Sm1 · Sm2 · · ·Smr which has the form

(6.1) B = (A(�✓1,e1) ·A(✓1,x1)) · (A(�✓2,e1) ·A(✓2,x2) · · · (A(�✓r,e1) ·A(✓r,xr)),

where each xj 2min C
mj . Then, we may repeatedly apply the Whitehead Lemma to move each

A(�✓j ,e1) to the left and obtain a factorization in the form

(6.2) B = A(�✓̃,e1) ·A(✓1,x0
1)
·A(✓2,x0

2
) · · ·A(✓r,x0

r)
),

where ✓̃ =
Pr

j=1 ✓j and each x0
j 2min C

mj . Hence, B 2 Sm. Conversely we can reverse the
process beginning with B in (6.2) and obtain a factorization as in (6.1). This gives the equality
for the Schubert cells. Since the closures are compact, we obtain the equality of 1) by taking
closures of the Schubert cells.

Given 1) we may write

(6.3) Sm · Sm0 = (Sm1 · Sm2 · · ·Smr ) · (Sm0
1
· Sm0

2
· · ·Sm0

r0
).

If {m1,m2, . . . ,mr}\ {m0
1,m

0
2, . . . ,m

0
r0} = ;, then we can repeatedly apply a) of the Whitehead

Lemma to move an element of Sm0
j
across an element of Smi when mi > m0

j while preserving
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the order of the mi’s and m0
j ’s. We arrive at an ordered factorization with increasing order m00,

which is the union of m and m0 in increasing order. Taking closures of the Schubert cells then
gives 2).

Finally, for 3), we may begin with (6.3). There are smallest m` = m0
k. Then, if m

0
j < m0

k then
it di↵ers from all mi. Hence, we can first move the elements in Sm0

j
across all of those in Smi as in

the previous case by 2) of Lemma 6.3. Next, we can move elements in Smk0 across those in Smj as
long as mj > m`. Then, we arrive at a factorization where we have successive terms in Sm` and
Smk0 with m` = m0

k. Then, we may apply b) of the Whitehead lemma (or 2) of Lemma 6.2) and
obtain a new pair in Sm̃ and Sm` with m̃  m`�1. This has the e↵ect of reducing the sum of the
Schubert symbol values in the product by at least 1. Also, further application of the Whitehead
Lemma will not increase the sum. Hence, by further application of the Whitehead Lemma we
obtain a product in the union of Schubert cells of dimension q  dim RSm+dim RSm0 �2. Thus,
it lies in the q-skeleton of Cm. This gives 3) when we take closures. ⇤

Now we will use the Hopf structure of H⇤(SUn) to relate the fundamental classes from the
Schubert decomposition with the cohomology classes via the Kronecker pairing. Let

µ : SUn ⇥ SUn ! SUn

denote the multiplication map. Then, we can use Lemma 6.3 to determine the e↵ect of µ⇤ for
homology using the complex Ck({X(k)}) and then the coproduct map µ⇤ for the Hopf algebra.
We obtain as a corollary of Lemma 6.3.

Corollary 6.4. We let sm denote the homology class obtained from  m ⇤([S̃m]) with restriction
to positive orientation for Em. For m = (m1,m2, . . . ,mr) and m0 = (m0

1,m
0
2, . . . ,m

0
r0) we let

m = {m1,m2, . . . ,mr} \ {m0
1,m

0
2, . . . ,m

0
r0} and let m00 = (m00

1 ,m
00
2 , . . . ,m

00
r00) denote the union

of the elements of m and m0 written in increasing order. Then,

(6.4) µ⇤(sm ⌦ sm0) =

(
"m,m0 · sm00 if m = ;,
0 if m 6= ; ,

where "m,m0 is the sign of the permutation which moves (m,m0) to increasing order.

The reason for the factor "m,m0 is that each interchange of two factors S(m1) and S(m2) will

change the orientation by a factor (�1)(2m1�1)(2m2�1) = �1.
From the corollary we obtain a formula for the coproduct µ⇤ in terms of the (Kronecker) dual

basis {em} in cohomology to Schubert basis for homology {sm}.

(6.5) µ⇤(em) =
X

(�1)deg(em0 ) deg(em00 )"m0,m00 · em0 ⌦ em00 ,

where the sum is over all disjoint m0 and m00 whose union in increasing order gives m (and the
terms (�1)deg(em0 ) deg(em00 ) arise from the property ('⌦ )(�⌦ ⌫) = (�1)deg(') deg( )'(�) (⌫)).
Since Sm is a product of odd dimensional cells, deg(em0)(= dim RSm) ⌘ `(m)mod 2 and the
sign in (6.5) equals (�1)`(m

0)`(m00). Also, note the sum includes the empty symbol which denotes
the Schubert cell consisting of just In. In the case of the simple Schubert symbol (m1) we obtain

µ⇤(e(m1)) = e(m1) ⌦ 1 + 1⌦ e(m1) .

Hence, all of the e(m1) are independent primitive classes. Then there is the following relation
between the generators of H⇤(SUn) and the Schubert classes.

Theorem 6.5. H⇤(SUn) is a free exterior algebra with generators e(m) of degrees 2m � 1, for
m = 2, . . . , n. Moreover the Kronecker dual to sm for m = (m1,m2, . . . ,mr) is

em = (�1)�(m)e(m1)e(m2) . . . e(mr),
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where �(m) =
�`(m)

2

�
(where we denote

�1
2

�
= 0).

Proof. We already have established the first statement about the algebra generators in Theorem
6.1. We note that it also follows from the Hopf algebra structure. Since the e(m) , form = 2, . . . , n
are primitive generators of degree 2m�1, and H⇤(SUn) is a Hopf algebra which is a free exterior
algebra on generators of degrees 2m � 1 for m = 2, . . . , n, it follows by a theorem of Hopf-
Samuelson that H⇤(SUn) is the free exterior algebra generated by the primitive elements e(m) ,
for m = 2, . . . , n.

We furthermore claim that the Kronecker dual to the Schubert class sm for

m = (m1,m2, . . . ,mr)

is given by (�1)�(m)e(m1)e(m2) . . . e(mr), which will follow from em = (�1)`(m
0)e(m1)em0 for

m0 = (m2,m3, . . .mr).

We prove this by induction on r. It is already true for r = 1. Next, consider the case of
m = (m1,m2); then "(m1),(m2) = 1, "(m2),(m1) = �1 and (�1)`(m1)`(m2) = �1. Then, from (6.5)

(6.6) µ⇤(e(m1,m2)) = e(m1,m2) ⌦ 1 � e(m1) ⌦ e(m2) + e(m2) ⌦ e(m1) + 1⌦ e(m1,m2) .

Also, as µ⇤ is an algebra homomorphism,

µ⇤(e(m1) · e(m2)) = µ⇤(e(m1
) · µ⇤(e(m2))

=
�
e(m1) ⌦ 1 + 1⌦ e(m1)

�
·
�
e(m2) ⌦ 1 + 1⌦ e(m2)

�

= e(m1) · e(m2) ⌦ 1 + e(m1) ⌦ e(m2) � e(m2) ⌦ e(m1) + 1⌦ e(m1) · e(m2) ,(6.7)

where the signs on the RHS result from both e(m1) and e(m2) having odd degree. Adding (6.7)
and (6.6), we obtain

(6.8) µ⇤(e(m1,m2)+e(m1)·e(m2)) =
�
e(m1,m2) + e(m1) · e(m2)

�
⌦1 + 1⌦

�
e(m1,m2) + e(m1) · e(m2)

�
.

This implies that if e(m1,m2) + e(m1) · e(m2) 6= 0, then it is a primitive element independent
from the other primitive elements e(m). This contradicts the Hopf-Samuelson theorem. Thus,
e(m1,m2) = �e(m1) · e(m2).

Suppose by induction the result holds for k < r. Then, for m = (m1, . . . ,mr), let
m0 = (m2, . . . ,mr). First, by (6.5) we have

(6.9) µ⇤(em) = em ⌦ 1 + 1⌦ em +
X

(�1)`(m
0)`(m00)"m0,m00 · em0 ⌦ em00 ,

where the sum is over all m0 = (m0
1,m

0
2, . . . ,m

0
k) and m00 = (m00

1 ,m
00
2 , . . . ,m

00
k0) which are both

nonempty, disjoint, and whose union in increasing order is m. Then, by induction we obtain

µ⇤(e(m1) · em0) = µ⇤(e(m1
) · µ⇤(em0)

=
�
e(m1) ⌦ 1 + 1⌦ e(m1)

�
· (em0 ⌦ 1 + 1⌦ em0+

X
(�1)`(m

00)`(m000)"m00,m000 · em00 ⌦ em000

⌘
,(6.10)

where the sum is over m00 and m000 which are nonempty, disjoint and whose union in increasing
order is m0. In the sum on the RHS of (6.9), we have in addition to the terms em⌦1 and 1⌦em
the four following types of terms :
Four Types of Terms in (6.9):

i) (�1)`(m
0)"(m1),m0 · e(m1) ⌦ em0 = (�1)`(m

0)e(m1) ⌦ em0

ii) (�1)`(m
0)"m0,(m1) · em0 ⌦ e(m1) = em0 ⌦ e(m1)

iii) (�1)`(m
00)`(m000)"m00,m000 · em00 ⌦ em000 with m1 in m00

iv) (�1)`(m
00)`(m000)"m00,m000 · em00 ⌦ em000 with m1 in m000
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For comparison, we have in addition to the terms (e(m1)em0) ⌦ 1 and 1 ⌦ (e(m1)em0) the corre-
sponding terms from (6.10) which have the following types:
Corresponding Four Types of Terms in (6.10):

i) e(m1) ⌦ em0

ii) (�1)`(m
0)em0 ⌦ e(m1)

iii) (�1)`(m
00)`(m000)"m00,m000 · (e(m1)em00)⌦ em000

iv) (�1)`(m
00)(�1)`(m

00)`(m000)"m00,m000 · em00 ⌦ (e(m1)em000)

In the first two cases for (6.10), we can view them as a decomposition ofm either as ({m1},m0)
or (m0, {m1}). We see that the corresponding coe�cients for i) and ii) for (6.10) and (6.9) di↵er
by a factor (�1)`(m

0). The corresponding terms in iii) and iv) for (6.10) can be viewed as a
decomposition either as ({m1} [m00,m000) or (m00, {m1} [m000). The corresponding coe�cients
will also be shown to di↵er by the same factor (�1)`(m

0).
For example, for iv) let m̃000 = {m1} [m000. Then,

"m00,m̃000 = (�1)`(m
00)"m00,m000 , `(m̃000) = `(m000) + 1;

and by the induction hypothesis em̃000 = (�1)`(m
000)e(m1) · em000 . Then, substituting these values

in iv) for (6.10) yields

(�1)`(m
00)(�1)`(m

00)`(m000)"m00,m000 · em00 ⌦ (e(m1)em000) =

(�1)`(m
00)(�1)`(m

00)`(m̃000)(�1)`(m
00)(�1)`(m

00)(�1)`(m
000)"m00,m̃000 · em00 ⌦ em̃000

= (�1)`(m
00)`(m̃000)(�1)`(m

00)(�1)`(m
000)"m00,m̃000 · em00 ⌦ em̃000

= (�1)`(m
0)
⇣
(�1)`(m

00)`(m̃000)"m00,m̃000 · em00 ⌦ em̃000

⌘
(6.11)

A similar, but somewhat simpler, argument works for the terms iii).
Then, we proceed as in the previous case. We compute µ⇤(em � (�1)`(m

0)e(m1)em0) from
(6.10) and (6.9) and by the above all terms of types i) - iv) cancel so we obtain

(6.12) µ⇤(em � (�1)`(m
0
)e(m1)em0) = (em � (�1)`(m

0
)e(m1)em0)⌦ 1 + 1⌦ (em � (�1)`(m

0
)e(m1)em0).

This again implies that em� (�1)`(m
0)e(m1)em0 is a primitive element if it is nonzero. Hence, it

is zero and so em = (�1)`(m
0)e(m1)em0 . Repeated inductive application of this implies that for

m = (m1,m2, . . . ,mr)

em = (�1)�(m)e(m1) · e(m2) · · · e(mr) .

with �(m) = 1 + 2 + · · ·+ (r � 1) =
�`(m)

2

�
. ⇤

As a consequence we have determined the Poincaré duals to the Schubert classes.

Corollary 6.6. For each Schubert symbol m = (m1,m2, . . . ,mr) let the ordered complement in
{2, 3, . . . , n} be denoted by m0 = (m0

1,m
0
2, . . . ,m

0
n�1�r).

i) The Poincaré dual to the Schubert class
⇥
Sm

⇤
in F c

n and to the Schubert class
⇥
Sm · Soln

⇤

in Fn is given by

(�1)(�(n)+�(m))"m,m0 e(m0
1)
· e(m0

2)
· · · e(m0

n�1�r)

for n = (2, 3, . . . , n).
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ii) For Schubert symbols m and m0 such that `(m)+ `(m0) = n�1, the intersection pairing
satisfies

(6.13) h[Sm], [Sm0 ]i =

8
><

>:

(�1)(�(n)+�(m)+�(m0))"m,m0 if m0 is the ordered

complement to m,

0 otherwise .

Proof. By Theorem 6.5, the Kronecker dual to
⇥
Sm

⇤
is given by

em = (�1)�(m)e(m1) · e(m2) · · · e(mr).

Also, the fundamental class for [SUn] with orientation given by
⇥
Sn

⇤
has Kronecker dual

(�1)�(n)e(2) · e(3) · · · e(n).

Then, the Poincaré dual to
⇥
Sm

⇤
is given by a cohomology class ⌫ such that

em [ ⌫ = (�1)�(n)e(2) · e(3) · · · e(n).
This is satisfied by

⌫ = (�1)(�(n)+�(m))"m,m0 e(m0
1)
· e(m0

2)
· · · e(m0

n�1�r)
.

In the case of the Schubert class
⇥
Sm · Soln

⇤
in Fn, we note that Sm is the transverse inter-

section of F c
n = SUn with Sm · Soln in Fn and that the inclusion in : F c

n ,! Fn is a homotopy
equivalence. Hence, by a fiber square argument, the Poincaré dual in H⇤(Fn;Z) to the funda-
mental class of Sm ·Soln for Borel-Moore homology, agrees via i⇤n with that for the fundamental
class of Sm in H⇤(F c

n;Z).
The consequence for the intersection pairing follows from the above and

(6.14) h[Sm], [Sm0 ]i = hem [ em0 ,
⇥
Sn

⇤
i.

⇤
Milnor Fiber for the Variety of Singular m⇥m-Skew-Symmetric Matrices.

We second consider the case of the global Milnor fiber F (sk)
m for skew-symmetric matrices

with m = 2n. Then, the homology of SU2n/Spn can be computed from the algebraic complex

with basis formed from the Schubert cells S(sk)
m . By a result of Cartan (see e.g. Mimura-Toda

[MT, Theorem 6.7]) the homology of SU2n/Spn (which is isomorphic as a graded Z-module to
its cohomology) is given as a graded Z-module by

(6.15) H⇤(SU2n/Spn;Z) ' ⇤⇤
Zhs5, s9, . . . , s4n�3i .

where s4j�3 has degree 4j�3. By the universal coe�cient theorem this holds as well as a vector
space over a field k of characteristic zero.

Theorem 6.7. The homology H⇤(F
(sk) c
m ;Z) for m = 2n has for a free Z-basis the fundamental

classes of the skew-symmetric Schubert cycles, im ⇤ �  (sk)
m ⇤ ([S̃

(sk)
m ]) =  (sk)

m ⇤ (S̃
(sk)
m ) = S(sk)

m as we

vary over the Schubert decomposition of C(sk)
m ' SU2n/Spn. Moreover, the Kronecker duals of

the simple skew-symmetric Schubert cycles S(sk)
(m1)

give homogeneous exterior algebra generators
for the cohomology.

This likewise extends to H⇤(F
(sk)
m ;Z) (m = 2n) for Borel-Moore homology with basis given

by the fundamental classes of the global skew-symmetric Schubert cycles SolTm · (S(sk)
m · Jn) for

F (sk)
m . The Poincaré duals of these classes form a Z-basis for the cohomology

H⇤(F (sk)
m ;Z) ' ⇤⇤

Zhe5, e9, . . . , e4n�3i .
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Proof. The proof follows the same lines as that of Theorem 6.1. Then, a count from (6.15) shows
that Hq(SU2n/Spn;Z) is spanned by s4m1�3 · s4m2�3 · · · s4mk�3, where

1 < m1 < m2 < · · · < mk  n

and q =
Pk

j=1(4mj � 3). By Theorem 5.6 this equals the number of skew-symmetric Schubert

cells S(sk)
m of real dimension q. Thus, each  (sk)

m (S̃(sk)
m ) = S(sk)

m defines a Z-homology class of

dimension dim RS
(sk)
m . Together they form a basis for Hq(SU2n/Spn;Z). That the Kronecker

duals of the simple Schubert cycles S(sk)
(m1)

give algebra generators for the cohomology follows by
the same argument used in Theorem 6.1.

As S̃(sk)
m has a top homology class in Hq(S̃

(sk)
m ;Z) for q = dim R(S̃

(sk)
m ), we can view it as

a fundamental class for S̃(sk)
m for Borel-Moore homology. As F (sk) c

m ' C(sk)
m ' SU2n/Spn by

multiplication by Jn and the inclusion im : F (sk) c
m ,! F (sk)

m is a homotopy equivalence, we

conclude that these classes form a Z-basis for the cohomology via H⇤(F (sk)
m ;Z) ' H⇤(F (sk) c

m ;Z).
Their Poincaré duals then form a Z-basis for the Borel-Moore homology. ⇤

Again there is the question of explicitly identifying the Kronecker dual of the fundamental

class  (sk)
m ⇤ ([S̃

(sk)
m ]) with a cohomology class as a polynomial in the cohomology algebra generators

e4j�3, j = 2, . . . , n, and as a consequence explicitly identifying the generators for the cohomology
algebra. We shall comment on this after next considering the symmetric case.

Milnor Fiber for the Variety of Singular m⇥m-Symmetric Matrices.

We next consider the case of F (sy)
m . Again the line of reasoning will be similar to the two

preceding cases with the crucial di↵erence that the (co)homology has two di↵erent forms for
coe�cients Z/2Z or a field of characteristic zero. There is the compact model

F (sy) c
n ' C(sy)

n ' SUn/SOn

for F (sy)
n . Then, the homology of SUn/SOn can be computed from the algebraic complex with

basis formed from the Schubert cells S(sy)
m . By a result of Borel and Hopf, see e.g. [Bo] and

see [KM], the homology of SUn/SOn with Z/2Z-coe�cients (which is isomorphic as a graded
Z/2Z-vector space to its cohomology) is given as a graded vector space over the field Z/2Z

H⇤(SUn/SOn;Z/2Z) ' ⇤⇤
Z/2Zhs2, s3, . . . , sni ,

where sj has degree j. A count shows that

dim Z/2ZH⇤(SUn/SOn;Z/2Z) = 2n�1 .

This is the same as the number of Schubert cells S(sy)
m , for

1 < m1 < · · · < mk  n

in the cell decomposition of SUn/SOn. Thus, the Schubert cycles S(sy)
m , which are mod 2-

homology cycles, give a Z/2Z-basis for the homology H⇤(SUn/SOn;Z/2Z). In particular the

mod 2-homology cycles S(sy)
m for which |m| = q give a Z/2Z-basis for Hq(SUn/SOn;Z/2Z) for

each q � 0.
Thus, we conclude by an analogous argument to that used in the preceding two cases

Theorem 6.8. The homology H⇤(F
(sy) c
n ;Z/2Z) has for a Z/2Z-basis the Z/2Z fundamental

classes of the symmetric Schubert cycles
h
S(sy)
m

i
as we vary over the Schubert decomposition of
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C(sy)
n ' SUn/SOn for all symmetric Schubert symbols m(sy) = (m1, . . . ,mk) with

1 < m1 < · · · < mk  n.

Moreover, the Kronecker duals of the simple symmetric Schubert cycles S(sy)
(m1)

are algebra gener-

ators for the exterior cohomology algebra with Z/2Z-coe�cients.

This extends to H⇤(F
(sy)
n ;Z/2Z) with Z/2Z-basis given by the Borel-Moore mod 2-cycles given

by the global symmetric Schubert cycles
h
SolTm · (S(sy)

m )
i
for S(sy)

m over the symmetric Schubert

symbols m(sy). The Poincaré duals of these classes form a Z/2Z-basis for the cohomology.

H⇤(F (sy)
m ;Z/2Z) ' ⇤⇤

Z/2Zhe2, e3, . . . , eni .

There are several points to be made regarding this result and that for skew-symmetric matri-
ces.

First, unlike the cases of SUn and SU2n/Spn, the closure of the Schubert cells are not the
images of Borel-Moore homology classes of singular manifolds. As mentioned earlier, if we

consider instead the quotient space F (sy) c
m /(F (sy) c

m )(q�1), and |m| = q, then the composition of
the map

 ̃(sy)
m :

kY

i=1

(CRPmi�1) �! SUn/SOn ' F (sy) c
m

with the quotient map prq : F (sy) c
m ! F (sy) c

m /(F (sy) c
m )(q�1) factors through to give a map

prq �  ̃(sy)
m :

kY

i=1

SRPmi�1 �! F (sy) c
m /(F (sy) c

m )(q�1) .

As

prq : (F (sy) c
m , (F (sy) c

m )(q�1)) ! (F (sy) c
m /(F (sy) c

m )(q�1), ⇤),

for ⇤ the point representing (F (sy) c
m )(q�1) in the quotient, is a relative homeomorphism,

prq ⇤ : Hq(F
(sy) c
m , (F (sy) c

m )(q�1);Z/2Z) ' Hq(F
(sy) c
m /(F (sy) c

m )(q�1), ⇤;Z/2Z) .

Then, the closure S(sy)
m corresponds via the isomorphism to the image of the fundamental class

of
Qk

i=1(SRP
mi�1) under prq ⇤ �  ̃(sy)

m ⇤ .
Moreover, as noted earlier for the simple Schubert symbol (m1), there is a factored map

 ̃(sy)
(m1)

: SRPmi�1 ! SUn/SOn ' F (sy) c
m with image S(sy)

(m1)
, giving it a Borel-Moore fundamental

homology class for Z/2Z-coe�cients.
However, for cohomology with rational coe�cients, see e.g. [MT, Chap. 3, Thm 6.7 (2)]

or Table 1 in [D3], many of these Schubert cells do not contribute homology classes. This is
similar to the situation for oriented Grassmannians for Z/2Z versus rational coe�cients. This
relation extends further. Over SUn/SOn is a natural n-dimensional real oriented vector bundle
En = (SUn ⇥SOn R

n) where R
n has the natural representation of SOn. This bundle can be

viewed geometrically as the set of oriented real subspaces V ⇢ C
n with dim RV = n such that

ChV i = C
n. Then, by e.g. [MT, Chap. 3, Thm 6.7 (3)] the cohomology of SUn/SOn, already

quoted in Theorem 6.8 has ej = wj(En), the j-th Stiefel-Whitney class. This bundle pulls-back

by the homotopy equivalence SUn/SOn ' F (sy) c
n ' F (sy)

n to give an n-dimensional real oriented
vector bundle, which we denote by Ẽn and then

H⇤(F (sy)
n ;Z/2Z) ' ⇤⇤

Z/2Z < w2, w3, . . . , wn >
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where wj = wj(Ẽn) for each j = 2, 3, . . . , n. We will see in the next section that this algebra
naturally pulls back to a characteristic subalgebra of Milnor fibers for general symmetric matrix
singularities generated by the Stiefel-Whitney classes of the pull-back of Ẽn to the Milnor fiber.

Although both

H⇤(F (sy)
n ;Z/2Z) ' H⇤(SUn/SOn;Z/2Z) and H⇤(F (sk)

2n ;Z) ' H⇤(SU2n/Spn;Z)

are exterior algebras, neither is a Hopf algebra. Hence, the full argument given for H⇤(Fn;Z)
for the relation between the cohomology and the Schubert decomposition cannot be given using
Hopf algebra methods. However, it does suggest the following conjecture is true and constitutes
work in progress.

Conjecture: For both F (sk) c
n and F (sy) c

n , the Kronecker duals to the Schubert classes S(sk)
(m) ,

resp. S(sy)
(m) for Schubert symbols m(sk), or m(sy) = (m1,m2, . . . ,mr) are given up to sign by

e(m1) · e(m2) · · · e(mr) in the corresponding cohomology algebra.

7. Characteristic Subalgebra in the Cohomology of General Matrix
Singularities

In the preceding section we have identified for the Milnor fibers Fm, F (sy)
m , and F (sk)

m (for m
= 2n), their cohomology and the decomposition of their homology using the Schubert decompo-
sition. We see how this applies to the structure of Milnor fibers of general matrix singularities
of each of these types.

Let M denoting any one of the three spaces of complex m ⇥ m matrices which are general
Mm,m(C), symmetric Symm(C), or skew-symmetric Skm(C) with m = 2n. Also, let Dm, resp.

D(sy)
m , or D(sk)

m denote the variety of singular matrices of the corresponding type. We suppose
that each type is defined by H : M ! C, which denotes either the determinant det for Dm or

D(sy)
m , or the Pfa�an Pf for D(sk)

m .

Matrix Singularities of a Given Type.
A matrix singularity of any of the given types is defined by a holomorphic germ

f0 : Cs, 0 ! M, 0,

and the singularity is defined by X0 = f�1
0 (V), 0 where V denotes the appropriate variety of

singular matrices. We impose an additional condition on f which can take several forms based
on forms of K-equivalence preserving V. There is the equivalence defined using the parametrized
action by points in C

s of the group G = GLm(C) acting by C 7! A · C · AT in the symmetric
or skew-symmetric cases. For the general m ⇥ m matrix case, the action of G = GLm(C)
acting by left multiplication su�ces for studying the Milnor fiber. However, for the general
equivalence studying the pull-back of Dm the action is given by G = GLm(C)⇥GLm(C) acting
by C 7! A · C · B�1 . We denote the equivalence for any of the general, symmetric, or skew-
symmetric cases as KM -equivalence. The second equivalence allows the action of germs of
di↵eomorphisms of Cs ⇥M, (0, 0) of the form '(x, y) = ('1(x),'2(x, y)) which preserve C

s ⇥V,
and is denoted KV equivalence. The third is a subgroup of KV which preserves the defining
equation of Cs ⇥ V, H � prM , with prM denoting projection onto M . It is denoted KH . See for
example [DP2], [D2], or [D1] for more details about the groups of equivalence and their relations
and the properties of germs which have finite codimension for one of these equivalences. In
particular, for the three classes of varieties of singular matrices, KV and KM equivalences agree.

If f0 has finite KV -codimension, then it may be deformed to ft which is transverse to V in
a neighborhood B"(0) of 0 2 C

s for t 6= 0. Then it is shown in [DM] that one measure of the
vanishing topology of X0 is by the“singular Milnor fiber”X̃t = f�1

t (V) \ B"(0). It is homotopy
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equivalent to a bouquet of real spheres of dimension s� 1. If s < codimM (sing(V)), then this is
the usual Milnor fiber of V0. This condition requires s < 4, resp. 3, resp. 6, for the three types
of matrices.

In the special case that V is a free divisor and holonomic in the sense of Saito [Sa] and satisfies
a local weighted homogeneity condition [DM] or is a free divisor and H-holonomic [D1], then
the singular Milnor number is given by the length of the normal space NKH ef0, which is a
determinantal module.

For the three classes of varieties of singular matrices, the varieties are not free divisors.
Nonetheless, when s  codimM (sing(V)), Goryunov and Mond [GM] give a formula for the
Milnor number which adds a correction term for the lack of freeness given by an Euler charac-
teristic of a Tor complex. Instead, Damon-Pike [DP3] give a formula valid for all s but which
is presently restricted to a limited range of matrices. It is given by a sum of terms which are
lengths of determinantal modules, based on placing the varieties in a tower of free divisors [DP2].

Cohomology Structure of Milnor Fibers of General Matrix Singularities.
We explain how the results in earlier sections provide information about the cohomology of

the Milnor fiber for a matrix singularity X0 for all s.
We consider the defining equation H : CN , 0 ! C, 0 for V, where M ' C

N for each case. For
V there exists 0 < � << ⌘ such that for balls B� ⇢ C andB⌘ ⇢ C

N (with all balls centered
0), we let F� = H�1(B�) \ B⌘ so H : F� ! B� is the Milnor fibration of H, with Milnor fiber
Vw = H�1(w) \ B⌘ for each w 2 B�. By continuity, there is an " > 0 so that f0(B") ⇢ F�. By
possibly shrinking all three values, H � f0 : f�1

0 (F�)\B" ! B� is the Milnor fibration of H � f0.
Also, by the parametrized transversality theorem, for almost all w 2 B�, f0 is transverse to Vw

and so the Milnor fiber of H � f0 is given by

Xw = (H � f0)�1(w) \B" = f�1
0 (Vw) \B" .

Thus, if we denote f0|Xw = f0,w, then in cohomology with coe�cient ring R,

f⇤
0,w : H⇤(Vw;R) ! H⇤(Xw;R).

For any of the three types of matrices with (⇤) denoting () for general matrices, (sy) for symmetric
matrices, or (sk) for skew-symmetric matrices, we let

A(⇤)(f0;R)
def
= f⇤

0,w(H
⇤(Vw;R)) ,

which we refer to as the characteristic subalgebra of the cohomology of the Milnor fiberH⇤(Xw;R)
of X0. This is an algebra over R, and the cohomology of the Milnor fiber of the matrix singularity
X0 is a graded module over A(⇤)(f0;R) (both with coe�cients R).

By Theorems 6.1 and 6.7 for the m⇥m general case or skew-symmetric case (with m = 2n),
for R = Z-coe�cients (and hence for any coe�cient ring R) A(⇤)(f0;R) is the quotient ring of a
free exterior R-algebra on generators e2j�1, for j = 2, 3, . . . ,m, resp. e4j�3 for j = 2, 3, . . . , n.
For the m ⇥ m symmetric case there are two important cases where either R = Z/2Z or is a
field of characteristic zero. In the first case, by Theorem 6.8, A(⇤)(f0;Z/2Z) is the quotient
ring of a a free exterior algebra on generators ej = wj(Ẽm), for j = 2, 3, . . . ,m, for wj(Ẽm) the
Stiefel-Whitney classes of the real oriented m-dimensional vector bundle Ẽm on the Milnor fiber

of D(sy)
m . Hence, A(⇤)(f0;Z/2Z) is a subalgebra generated by the Stiefel-Whitney classes of the

pull-back vector bundle f⇤
0,w(Ẽm) on Xw.

For the coe�cient ring R = k a field of characteristic zero, the symmetric case breaks-up into
two cases depending on whether m is even or odd (see [MT, (2),Thm. 6.7, Chap. 3] or Table 1
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of [D3]).

(7.1) H⇤(F (sy)
m ;k) '

(
⇤⇤khe5, e9, . . . , e2m�1i if m = 2k + 1

⇤⇤khe5, e9, . . . , e2m�3i{1, em} if m = 2k ,

where em is the Euler class of Ẽm. Hence, in both cases they are graded modules over an exterior
algebra. Hence, the Milnor fiber of X0 has cohomology over a field of characteristic zero which,
via the characteristic subalgebra is a graded module over the exterior algebra in either case of
(7.1).

We summarize these cases with the following.

Theorem 7.1. Let f0 : Cs, 0 ! M, 0 be a matrix singularity of finite KM -codimension for M the
space of m⇥m matrices which are either general, symmetric, or skew-symmetric (with m = 2n).
Let V denote the variety of singular matrices. Then,

i) The cohomology (with coe�cients in a ring R) of the Milnor fiber of X0 = f�1
0 (V) has

a graded module structure over the characteristic subalgebra A(⇤)(f0;R) of f0.
ii) In the general and skew-symmetric cases, A(⇤)(f0;R) is a quotient of the free R-exterior

algebra with generators given in Theorems 6.1 and 6.7 .
iii) In the symmetric case with R = Z/2Z, A(sy)(f0;Z/2Z) is the quotient of the free exterior

algebra over Z/2Z on the Stiefel-Whitney classes of the real oriented vector bundle Ẽm

on the Milnor fiber of V.
iv) In the symmetric case with R = k, a field of characteristic zero, A(sy)(f0;k) is a quotient

of the k-algebras in each of the cases in (7.1).

In light of this theorem there are several problems to be solved for determining the cohomology
of the Milnor fiber of the matrix singularity X0 for coe�cients R.

Questions for the Cohomology of the Milnor Fibers of Matrix Singularities

1) Determine the characteristic subalgebras as the images of the exterior algebras by de-
termining which monomials map to nonzero elements in H⇤(Xw;R).

2) Find the non-zero monomials in the image by geometrically identifying the pull-backs of
the Schubert classes.

3) For the symmetric case with Z/2Z-coe�cients, compute the Stiefel-Whitney classes of
the pull-back of the vector bundle Ẽm.

4) Determine a set of module generators for the cohomology of the Milnor fibers as modules
over the characteristic subalgebras.

Transversality to Schubert Cycles.
We can give a first step for these using transversality. We let M denote one of the spaces

of m⇥m matrices with variety of singular matrices denoted by V . There is a transitive action
on SLm(C) on the global Milnor fibers of the varieties of singular matrices in all three cases.

We let S(⇤)
m denote the Schubert cell in the global Milnor fiber of the corresponding type. For

each Schubert class S(⇤)
m and A 2 SLm(C), we let A · S(⇤)

m denote the image under the action
of A. Also, we let the germ f1 = A�1 · f0 denote the germ obtained by applying the constant
matrix A�1 to f0(x) independent of x. This action preserves the global Milnor fibers of V. Then,
deforming either the Schubert cells or f0 by multiplication by A yields the following.

Lemma 7.2. Given f0 : Cs, 0 ! M, 0 of finite KM -codimension, for almost all A 2 SLm(C)

the germ f0 is transverse to A · S(⇤)
m for all Schubert cells S(⇤)

m in a Milnor fiber Vw of V. Then,

for f1 = A�1 · f0 and e0m the Poincaré dual to [S⇤
m], f⇤

1 (e
0
m) is the Poincaré dual of [f�1

1 (S(⇤)
m )].

Then, f1 is KM -equivalent to f0, and f⇤
0w = f⇤

1w.
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Proof. As SLm(C) is path-connected, the action of A is homotopic to the identity. Let At be

such a path from Im to A. Hence, [At · S(⇤)
m ] = [S(⇤)

m ] for all t.
Next, by the parametrized transversality theorem and the transitive acton of SLm(C) on the

global Mlnor fiber, it follows that f0 is transverse to A · S(⇤)
m for almost all A 2 SLm(C). As

there are only a finite number of Schubert cells, then for almost all A this simultaneously holds

for all of the Schubert cells S(⇤)
m . For such an A with f1 = A�1 · f0, it follows that f1 = A · f0

is transverse to all of the Schubert cells. If e0m denotes the Poincaré dual to [S(⇤)
m ], it is also the

Poincaré dual to [A · S(⇤)
m ]. Thus, by a fiber square argument f⇤

1w(e
0
m) is the Poincaré dual to

[f�1
1w (A · S(⇤)

m )].
Lastly, the family ft = A�1

t ·f0 is a KM -constant family so that f1 = A�1 ·f0 is KM -equivalent
to f0 and f⇤

0w = f⇤
1w. ⇤

Remark 7.3. As a simple consequence of this lemma, we may replace f0 by the KM -equivalent

f1 = A�1 · f0 transverse to S(⇤)
m . If s < 1

2codimR(S
(⇤)
m ) + 1, then f�1

1w (A · S(⇤)
m ) is empty. Hence

f⇤
0w(e

0
m) = 0.

Module Structure for the Milnor Fibers.
We make several remarks regarding these questions concerning the module structure. These

involve two cases at opposite extremes, namely s < codimM (sing(X0)) or f0 is the germ of a
submersion. In the first case when s < codimM (sing(V)), X0 has an isolated singularity, and
the singular Milnor fiber for f0 is the Milnor fiber for X0, so the Milnor number and singular
Milnor number agree. Also, f⇤

0w(e
0
m) = 0 for all e0m of positive degree; thus

A(⇤)(f0, R) = H0(Xw;R) ' R.

As the Minor fiber is homotopy equivalent to a CW-complex of real dimension s � 1, the cor-
responding classes which occur for the Milnor fiber will have a trivial module structure over
A(⇤)(f0, R).

Second, if f0 is the germ of a submersion, then the Milnor fiber has the form Vw ⇥C
k, where

k = s� dim CM and so has the same cohomology, so we conclude that

f⇤
0 : H⇤(Vw;R) ' H⇤(Xw;R)

so A(⇤)(f0, R) = H⇤(Xw;R). Also, there are no singular vanishing cycles. Thus, for these two
cases there is the following expression for the cohomology of the Milnor fiber, where the second
summand has trivial module structure shifted by degree s� 1.

(7.2) H⇤(Xw;R) ' A(⇤)(f0, R)�Rµ[s� 1],

where µ = µV(f0) for V = D(⇤)
m the corresponding variety of singular matrices.

We ask whether this holds in general or at least for a large class of matrix singularities.

Question: How generally valid is (7.2) for matrix singularities of the three types?

For this question, we note that for the case of 2 ⇥ 3 complex matrices with V denoting the
variety of singular matrices and s = 5, the matrix singularities define Cohen-Macaulay 3-fold
singularities. A stabilization of these singularities gives a smoothing and Milnor fiber. In [DP3,
Thm. 8.4] is given an algebraic formula for the vanishing Euler characteristic, which becomes
the di↵erence of the Betti numbers b3 � b2 of the Milnor fiber. While specific calculations in the
Appendix of [DP3] show that the vanishing Euler characteristic typically increases in families
with the KV -codimension, it is initially not clear how this increase is distributed as changes of
b3 and b2. Surprisingly, Frühbis-Krüger and Zach [FZ], [Z] show that for a large class of such
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singularities that b2 = 1. This suggests it may be possible to identify certain classes of m ⇥m
matrix singularities for which there are contributions from A(⇤)(f0, R) for the topology of the
Milnor fiber. This is a fundamental question whose answer along with the preceding ones will
clarify our understanding of the full cohomology of the Milnor fibers of matrix singularities.

8. Extensions to Exceptional Orbit Varieties, Complements, and Links

We indicate in this section how the methods of the previous sections can be extended to
exceptional orbit hypersurfaces for prehomogeneous vector spaces in the sense of Sato, see [So]
and [SK]. This includes equidimensional prehomogeneous spaces, see [D3], in the cases of both
block representations of solvable linear algebraic groups [DP2] and the discriminants for quivers
of finite type in the sense of Gabriel, see [G], [G2], represented as linear free divisors by Buchweitz-
Mond [BM].

Second, we can also apply the preceding methods to the complements of exceptional orbit
hypersurfaces arising as the varieties of singular m⇥m matrices just considered and the equidi-
mensional prehomogeneous spaces just described. Third, in [D3], the cohomology of the link of
one of these singularities is computed as a shift of the (co)homology of the complement. Thus,
the Schubert classes for the complement correspond to cohomology classes in the link. How-
ever, we explain how the multiplicative cohomology structure of the complement contains more
information than the cohomology of the link.

Exceptional Orbit Hypersurfaces for the Equidimensional Cases.

Block Representations of Linear Solvable Algebraic Groups.
First, for the case of block representations of solvable linear algebraic groups, in [DP, Thm

3.1] the complement was shown to be a K(⇡, 1)-space where ⇡ is a finite extension of Zn (for n
the rank of the solvable group) by the finite isotropy group of the action on the open orbit. The
solvable group is an extension of an algebraic torus by a unipotent group which is contractible.
The resulting cell decomposition follows from that for the torus times the unipotent group. Thus,
the decomposition is that modulo the finite group. In important cases of (modified) Cholesky-
type factorization for the three types of matrices and also m⇥ (m+1) matrices the finite group
is either the identity or (Z/2Z)n and the resulting quotient is shown, see [DP, Thm 3.4], to still
be the extension of a torus by a (contractible) unipotent group.

Thus, for these cases the cell decomposition follows from the product decomposition for the
complex torus times the unipotent group, which has as a compact model a compact torus of the
same rank. Moreover, by [DP, Thm 4.1], the cohomology with complex coe�cients is an exterior
algebra which has as generators 1-forms defined from the defining equation of the exceptional
orbit hypersurface.

Also, by [DP, Thm 3.2] the Milnor fiber is again a K(⇡0, 1)-space with ⇡0 a subgroup of ⇡
(for the complement) with quotient Z. Again, by [DP, Thm 3.4] for the cases of (modified)
Cholesky-type factorization of matrices, it is also true that the Milnor fiber for these cases is the
extension of a torus, except of one lower rank, by the unipotent group. Likewise the cohomology
with complex coe�cients of the Milnor fiber is again an exterior algebra which has one fewer
generator, as the result of a quotient by a single specified relation.

Discriminants of Quivers of Finite Type.
The quivers are defined by a finite ordered graph � having for each vertex vi a space C

ni

and for each directed edge from vi to vj a linear map 'ij : Cni ! C
nj . Those quivers of finite

type were classified by Gabriel [G], [G2]. The discriminants for the quiver spaces of finite type
were shown by Buchweitz-Mond [BM] to be linear free divisors. As such these discriminants are

exceptional orbit hypersurfaces for the action of the group G = (
Qk

i=1 GLni(C))/C
⇤, where k =
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|�|. Since each GLni(C) topologically factors as SLni(C)⇥C
⇤, the complement is di↵eomorphic

to (
Qk

i=1 SLni(C))⇥(C⇤)k�1. The earlier results for the Schubert decomposition for each SLn(C)
via its maximal compact subgroup SUn and the product cell decomposition for (C⇤)k�1 gives a
product Schubert cell decomposition for the complement.

The Milnor fiber has an analogous form (
Qk

i=1 SLni(C)) ⇥ (C⇤)k�2, and a product Schubert
cell decomposition for the Milnor fiber.

The cohomology of the complement is given by [D3, (5.11)] as an exterior algebra on a specific
set of generators. The cohomology of the Milnor fiber is also an exterior algebra except with
one fewer degree 1 generator, see [D3, (Thm 5.4)]. Furthermore, by Theorem 6.1 relating the
Schubert decomposition for SLn(C) via its maximal compact subgroup SUn with the cohomology
classes, we conclude that for both the complement and the Milnor fiber of the discriminant of
the space of quivers, the closures of the product Schubert cells provide a set of generators for
the homology.

Complements of the Varieties of Singular Matrices.
We can likewise give a Schubert decomposition for the complements of the varieties of m⇥m

matrices which are general, symmetric or skew-symmetric. We note that in [D3] the complements
were given as GLm(C) for the general matrices, GLm(C)/Om(C) for the symmetric matrices,
and GL2n(C)/Spn(C) for the skew-symmetric case with m = 2n. These have as compact models
the symmetric spaces Um, resp. Um/Om, resp. U2n/Spn. Each of these has a Schubert decom-
position given in [KM]. As remarked in §3, Um has a Schubert decomposition by cells Sm for
m = (m1,m2, . . . ,mr), where m1 may equal 1 and it is not required that

Pr
i=1 ✓i ⌘ 0mod 2⇡.

Second, in [KM, §5] is given a Schubert decomposition for Um/Om using for the symmetric

Schubert cell S(sy)
m the symmetric factorization into pseudo-rotations except again

m(sy) = (m1,m2, . . . ,mr),

where m1 may equal 1 and it is not required that
Pr

i=1 ✓i ⌘ 0mod ⇡.
Third, in [KM, §7] is given a Schubert decomposition for U2n/Spn using for the skew-

symmetric Schubert cell S(sk)
m the skew-symmetric factorization into pseudo-rotations except

again m(sk) = (m1,m2, . . . ,mr), where m1 may equal 1 and it is not required that
rX

i=1

✓i ⌘ 0mod 2⇡.

In the case of Um and U2n/Spn the cohomology with integer coe�cients is an exterior algebra
with an added generator of degree 1; and for Um/Om the cohomology with Z/2Z coe�cients is
an exterior algebra with an added generator of degree 1. Hence, a counting argument analogous
to that for the Milnor fibers show that the closure of each Schubert class gives a homology
generator for the complement.

Complements of the Varieties of Singular m⇥ n Matrices.
The varieties of singularm⇥n complex matrices, Vm,n, withm 6= n were not considered earlier

because they do not have Milnor fibers. However, the methods do apply to the complement and
link as a result of work of J. H. C. Whitehead [W]. Let M = Mm,n(C) denote the space
of m ⇥ n complex matrices. We consider the case where m > n. The other case m < n is
equivalent by taking transposes. The left action of GLm(C) acts on M with an open orbit
consisting of the matrices of rank n. This is the complement to the variety Vm,n of singular
matrices and can be described as the ordered set of n independent vectors in C

m. Then, the
Gram-Schmidt procedure replaces them by an orthonormal set of n vectors in C

m. This is the
Stiefel variety Vn(Cm) and the Gram-Schmidt procedure provides a strong deformation retract of
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the complement M\Vm,n onto the Stiefel variety Vn(Cm). Thus, the Stiefel variety is a compact
model for the complement. Whitehead [W] computes both the (co)homology of the Stiefel variety
using a Schubert decomposition which he gives. The cohomology for integer coe�cients of the
complement of the variety Vm,n is given by:

(8.1) H⇤(Mm,n\Vm,n;Z) ' ⇤⇤
Zhe2(m�n)+1, e2(m�n)+3, . . . , e2m�1i

with degree of ej equal to j. Again the Schubert decomposition gives for the closure of each
Schubert cell a homology generator.

Cohomology of the Links and Schubert Decomposition of the Complement.
Consider an exceptional orbit variety E of a prehomogeneous vector space V of dim CV = N .

Suppose there is a compact manifold K ⇢ V \E oriented for a coe�cients field k, which is a
compact model for the complement V \E . Then the cohomology of the link L(E) is given, see
[D3, Prop. 1.9], by the following formula

Cohomology of the Link L(E):

(8.2) eH⇤(L(E);k) ' ^H⇤(K;k) [2N � 2� dim RK] ,

where the graded vector space ^H⇤(X;k) [r] will denote the vector space H⇤(X;k), truncated
at the top degree and shifted upward by degree r. Furthermore, to a basis of vector space
generators of Hq(K;k), q < dim RK, there corresponds by Alexander duality a basis of vector
space generators of H2N�2�q(K;k).

As a consequence of this and the preceding established relations between the Schubert decom-
position (or product Schubert decomposition) of the complement and the homology, we obtain
the following conclusions.

Theorem 8.1. For the following exceptional orbit varieties E there are the following relations
between the Schubert (or product Schubert) decomposition for a compact model of the complement
and the cohomology of the link obtained by shifting the cohomology of the compact model (for
coe�cients a field of characteristic zero k unless otherwise stated).

1) For the equidimensional solvable case for (modified) Cholesky-type factorizations of m⇥m
matrices of all three types or (m+ 1)⇥m matrices, the cohomology of the link is given
by the shifted cohomology of the compact model torus, see [D3, Thm 4.5]. The closures
of the cells of the product cell decomposition of nonmaximal dimension give a homology
basis which correspond to the cohomology basis of the link after the shift.

2) For the discriminant of the quiver space for a quiver of finite type, the cohomology
of the link is the shifted cohomology of the compact model described above with shift
given by [D3, Thm. 5.4]. The closures of cells of the product Schubert decomposition of
nonmaximal dimension for the complement give a homology basis which correspond after
the shift to the cohomology basis for the link.

3) For the varieties of singular m ⇥m complex matrices, in the general case or the skew-
symmetric case with m even, the cohomology of the link is the shifted cohomology of the
compact symmetric spaces Um, resp. U2n/Spn (m = 2n) given above with shift given
in [D3, Table 2]. The closures of the Schubert cells of nonmaximal dimension in each
case give a homology basis which corresponds to the cohomology basis of the link after
the shift.

4) For the varieties of singular m ⇥ m complex symmetric matrices, the shifted cohomol-
ogy of H⇤(Um/Om;Z/2Z), described above, gives the cohomology of the link for Z/2Z-
coe�cients, where the shift is

�m+1
2

�
�2. The closures of the Schubert cells of nonmaximal
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dimension in the Schubert decomposition give a basis of Z/2Z-homology classes corre-
sponding to the cohomology basis of the link after the shift. For coe�cients in a field k
of characteristic zero, the cohomology of Um/Om, is an exterior algebra which depends
on whether m is even or odd and the shifts are given in [D3, Table 2], without a direct
relation with the Schubert decomposition.

5) For the variety of singular m⇥n complex matrices, Vm,n (with m > n), the cohomology
of the compact model, the Stiefel variety Vn(Cm), for the complement is given by (8.1).
The cohomology of the link is given in (8.2) as the upper truncated and cohomology
H⇤(Mm,n\Vm,n,k) shifted by n2 � 2 (as a graded vector space). The closures of the
Schubert cells of nonmaximal dimension give a homology basis for the cohomology of the
link after the shift.

Complements of the Varieties of Matrix Singularities.
Given a matrix singularity f0 : Cs, 0 ! M, 0 with V ⇢ M the variety of singular matrices

and X0 = f�1
0 (V). Here M can denote any of the spaces of matrices and of any sizes. In the

preceding, we indicated how the cohomology of the link L(V) is expressed as an upper truncated
and shifted cohomology of the complement M\V. Because of the shift, we showed in [D3] that
the cohomology product structure is essentially trivial. Thus, the link is a stratified real analytic
set whose structure depends upon much more than just the group structure of the (co)homology.
On the other hand, we showed in [D3] that the cohomology structure of the complement is an
exterior algebra, and hence contributes considerably more that just the vector space structure
of the cohomology of the link. This extra cohomology structure captures part of the additional
structure.

Consequently, for the matrix singularity, using the earlier notation, we note that there is
a map of complements f0 : (B"\X0) ! (B�\V). Also, B�\V ' M\V, which has a compact
model given by either a symmetric space or a Stiefel manifold. Thus, the cohomology of the
complement H⇤(B"\X0;R) is a module over the characteristic subalgebra which is the image of
H⇤(B�\V;R) under f⇤

0 . In turn, this is an exterior algebra. Hence, the multiplicative structure
considerably adds to the group structure that would result from the link. This is just as for the
Milnor fiber described earlier.
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in Math. 317, (1973).
[Br5] Die Hierarchie der 1-unimodularen Singularitäten, Manuscripta Math. vol 27 (1979) 183–219.
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FINITE SUBGROUPS OF SL3(C)
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Dedicated to the memory of Egbert Brieskorn with great admiration

Abstract. A finite subgroup of SL2(C) defines a (Kleinian) rational surface singularity. The
McKay correspondence yields a relation between the Poincaré series of the algebra of invariants
of such a group and the characteristic polynomials of certain Coxeter elements determined
by the corresponding singularity. Here we consider some non-abelian finite subgroups G of
SL3(C). They define non-isolated three-dimensional Gorenstein quotient singularities. We
consider suitable hyperplane sections of such singularities which are Kleinian or Fuchsian
surface singularities. We show that we obtain a similar relation between the group G and the
corresponding surface singularity.

Introduction

In [E4] we showed that the Poincaré series of the coordinate algebra of a two-dimensional
quasihomogeneous singularity is the quotient of two polynomials one of which is related to the
characteristic polynomial of the monodromy of the singularity. There are two special cases of
this result. One is the case of a Kleinian singularity not of type A2n. The Kleinian singularities
are defined by quotients of C2 by finite subgroups of SL2(C). In this case, the relation means
that the Poincaré series is the quotient of the characteristic polynomials of the Coxeter element
and the a�ne Coxeter element of the corresponding root system of type ADE. We derived this
relation from the McKay correspondence. The other case is the case of a Fuchsian singularity. A
Fuchsian singularity is defined by the action of a Fuchsian group (of the first kind) � ⇢ PSL(2,R)
on the tangent bundle TH of the upper half plane H. For a Fuchsian hypersurface singularity (or
more generally for a Fuchsian singularity of genus 0 [EP]), we showed that the Poincaré series
is the quotient of two characteristic polynomials of Coxeter elements [E5].

Here we consider a similar relation for the Poincaré series of some non-abelian finite subgroups
of SL3(C). The non-abelian finite subgroups of SL3(C) define non-isolated three-dimensional
Gorenstein quotient singularities. We consider those groups where the natural three-dimensional
representation is irreducible and the corresponding quotient singularity has a certain hyperplane
section which is a Kleinian or Fuchsian singularity. We show, that in this way, we again obtain
relations between the Poincaré series of the algebra of invariants of the group and the charac-
teristic polynomials of certain Coxeter elements determined by the corresponding Kleinian or
Fuchsian singularity.

The famous paper [Br] of E. Brieskorn is fundamental for the study of Kleinian singularities.
The Kleinian singularities were a central theme in Brieskorn’s research and we owe Brieskorn
many beautiful and important results about these singularities. Therefore I would like to express
my great admiration for him in dedicating this paper to his memory.
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G |G| x, y, z cG R(x, y, z) Sing. ↵1, . . . ,↵m

C2n+1 2n+ 1 2, 2n+ 1, 2n+ 1 1 x
2n+1 + y

2 + z
2

A2n 2n
C2n 2n 2, 2n, 2n 2 x

2n + y
2 + z

2
A2n�1 2n� 1

Dn 4n 4, 2n, 2n+ 2 2 x
n+1 + xy

2 + z
2

Dn+2 2, 2, n
T 24 6, 8, 12 2 x

4 + y
3 + z

2
E6 2, 3, 3

O 48 8, 12, 18 2 x
3
y + y

3 + z
2

E7 2, 3, 4
I 120 12, 20, 30 2 x

5 + y
3 + z

2
E8 2, 3, 5

Table 1. Subgroups of SL2(C) and surface singularities

1. Finite subgroups of SL2(C) and SL3(C) and normal surface singularities

Let G be a finite subgroup of SL2(C). The classification of finite subgroups of SL2(C) up to
linear equivalence is well-known, see e.g. [Kl]. There are up to conjugacy five classes of such
groups: the cyclic groups C`, the binary dihedral groups Dn, the binary tetrahedral group T ,
the binary octahedral group O, and the binary icosahedral group I. The quotients of C2 by
these groups were studied by E. Brieskorn [Br]. Equations for these singularities can be obtained
from generators and relations of the algebra of invariant polynomials with respect to G. This
algebra has three generators x, y, z in each case which satisfy an equation R(x, y, z) = 0. The
degrees of the generators and the equation R(x, y, z) = 0 are indicated in Table 1. (They can be
found, e.g., in [Sp].) The equations define isolated hypersurface singularities in C

3, the so called
Kleinian singularities.

The finite subgroups of SL3(C) were classified up to linear equivalence by H. F. Blichfeldt,
G. A. Miller, and L. E. Dickson [Bl, MBD] with two missing cases (see [YY]). There are 12 types
of finite subgroups of SL3(C): (A)–(L). There are four infinite series (A)–(D). The groups of
type (A) are the diagonal abelian groups and the groups of type (B) are isomorphic to transitive
finite subgroups of GL2(C). Here the natural 3-dimensional representation is not irreducible.
Type (C) is the infinite series �(3n2) of groups and type (D) the series �(6n2) (for the notation
see [HH, LNR, EL]). Moreover, we have 8 exceptional subgroups (E)–(L).

We consider those subgroups of type (C)–(L) which admit a certain hyperplane section which
defines a Kleinian or Fuchsian singularity. Generators and relations for the algebra of invariant
polynomials with respect to G have been computed in [YY] (see also [We] for some cases).
They correspond to non-isolated Gorenstein quotient singularities C

3
/G. These singularities

are either hypersurface singularities in C
4 or complete intersection singularities in C

5. We
denote the coordinates of these spaces by w, x, y, z and w, x, y, z, u respectively. We consider
hyperplane sections of these singularities, namely we consider the restrictions of the equations to
the hyperplane w = 0. For the series (C) and (D) the hyperplane sections of the corresponding
singularities for the first few elements of these series are listed in Table 2. It turns out that
the singularities corresponding to the series (C) (�(3n2)) belong to Arnold’s E-series whereas
those of type (D) (�(6n2)) belong to Arnold’s Z-series (n even) or are complete intersection
singularities (n odd) (for the definition of these series see [Arn]). The subgroups which correspond
to Kleinian singularities are the tetrahedral group T = �(3 · 22) and the octahedral group
O = �(6·22) which correspond to the Kleinian singularities E6 and E7 respectively. Those which
correspond to Fuchsian singularities are �(3 · 42) (E14), �(6 · 42) (Z11), �(6 · 62) (Z1,0), and
�(6 ·32) which corresponds to the elliptic complete intersection singularity �1 in C. T. C. Wall’s
notation [Wa2]. (For a list of Fuchsian hypersurface and complete intersection singularities see
[E5].) These are 6 cases. The remaining 8 exceptional subgroups of types (E)–(L) all correspond
to Fuchsian singularities except in the case (H) which is the icosahedral group I corresponding
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G |G| w, x, y, z(, u) cG R(0, x, y, z(, u)) Sing.
�(3 · 22) 12 2, 3, 4, 6 1 z

2 + 4y3 + 27x4
E6

�(3 · 32) 27 3, 3, 6, 9 3 z
2 + 4y3 + 27x6 eE8

�(3 · 42) 48 4, 3, 8, 12 1 z
2 + 4y3 + 27x8

E14

�(3 · 52) 75 5, 3, 10, 15; 30 1 z
2 + 4y3 + 27x10

E18

�(6 · 22) 24 2, 4, 6, 9 1 z
2 + 4xy3 + 27x3

E7

�(6 · 32) 54 6, 6, 6, 6, 9 3

⇢
z
2
� xy

u
2 + 4xyz + 27x3

�
�1

�(6 · 42) 96 4, 6, 8, 15 1 z
2 + 4xy3 + 27x5

Z11

�(6 · 52) 150 10, 6, 8, 10, 15 1

⇢
z
2
� xy

u
2 + 4x2

yz + 27x5

�
no name

�(6 · 62) 216 6, 6, 12, 21 3 z
2 + 4xy3 + 27x7

Z1,0

�(6 · 72) 294 14, 6, 10, 14, 21 1

⇢
z
2
� xy

u
2 + 4x3

yz + 27x7

�
no name

�(6 · 82) 384 8, 6, 16, 27; 54 1 z
2 + 4xy3 + 27x9

Z19

Table 2. The first subgroups of types (C) and (D) and surface singularities

G |G| w, x, y, z(, u) cG R(0, x, y, z(, u)) Sing.
(C): T 12 2, 3, 4, 6 1 z

2 + 4y3 + 27x4
E6

�(3 · 42) 48 4, 3, 8, 12 1 z
2 + 4y3 + 27x8

E14

(D): O 24 2, 4, 6, 9 1 z
2 + 4xy3 + 27x3

E7

�(6 · 32) 54 6, 6, 6, 6, 9 3

⇢
z
2
� xy

u
2 + 4xyz + 27x3

�
�1

�(6 · 42) 96 4, 6, 8, 15 1 z
2 + 4xy3 + 27x5

Z11

�(6 · 62) 216 6, 6, 12, 21 3 z
2 + 4xy3 + 27x7

Z1,0

(E) 108 6, 6, 9, 12, 12 3

⇢
9u2

� 12z2

432y2 � x
3
� 36xz

�
K

0
1,0

(F) 216 6, 9, 12, 12 3
4z3 � 144yz2

+1728y2z � 186624x4 U12

(G) 648 9, 12, 18, 18 6 4z3 � 9yz2 + 6y2z � y
3 + 6912x3

y U1,0

(H)=I 60 2, 6, 10, 15 1 z
2
� y

3 + 1728x5
E8

(I) 168 4, 6, 14, 21 1 z
2
� y

3
� 1728x7

E12

(J) 180 6, 6, 12, 15 3 y
3
� xz

2 + 64x2
y
2

Q2,0

(K) 504 6, 12, 18, 21 3 y
3
� xz

2
� 256x3

y Q11

(L) 1080 6, 12, 30, 45 3
459165024z2 � 25509168y3

�(7558272� 2519424
p
15i)x5

y
E13

Table 3. Subgroups of SL3(C) and surface singularities

to the Kleinian singularity E8. Altogether we have 14 cases which we will consider in this paper.
They are listed in Table 3. These singularities are surface singularities and they are isolated
except in the three cases �(6 · 32), (E) and (J). They correspond to Kleinian singularities in
the cases T , O and (H) (the icosahedral group I) and to Fuchsian singularities in the other
cases. They correspond to simple (T , O, I), unimodal (�(3 · 42), �(6 · 42), (F), (I), (K),
(L)) and bimodal (�(6 · 62), (G), (J)) hypersurface singularities, to the unimodal complete
intersection singularity of type K

0
1,0 (type (E)) in Wall’s notation [Wa1], and to the elliptic
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complete intersection singularity �1. The names of the hypersurface singularities according to
V. I. Arnold’s classification [Arn] are indicated in the last column of Table 3.

2. Poincaré series and Coxeter elements

We now consider the isolated singularities corresponding to these singularities. They are
quasihomogeneous. This means the following. A complex polynomial f(x1, . . . , xn) is called
quasihomogeneous, if there are positive integers w1, . . . , wn (called weights) and d (called de-

gree) such that f(�w1x1, . . . ,�
wnxn) = �

d
f(x1, . . . , xn) for � 2 C

⇤. A complete intersection
singularity given as the zero set of polynomials f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) is called quasi-
homogeneous, if f1, . . . , fk are quasihomogeneous with respect to the same weights w1, . . . , wn

but degrees d1, . . . , dk respectively. We call the system W := (w1, . . . , wn; d1, . . . , dk) the weight

system corresponding to the set of polynomials. Let cW be the greatest common divisor of
w1, . . . , wn, d1, . . . , dk. The weight system is called reduced if cW = 1.

We assume that f1(0) = · · · = fk(0) = 0 and the system of equations f1 = · · · = fk = 0 has
an isolated singularity at the origin. The coordinate algebra Af := C[x1, . . . , xn]/(f1, . . . , fk) is
a Z-graded algebra with respect to the system of weights (w1, . . . , wn; d1, . . . , dk). Therefore we
can consider the decomposition of Af as a Z-graded C-vector space:

Af :=
1M

k=0

Af,k, Af,k :=
�
g 2 Af

�� g(�w1x1, . . . ,�
wnxn) = �

k
g(x1, . . . , xn)

 
.

The formal power series pf (t) :=
P1

k=0
(dimC Af.k)tk is called the Poincaré series of Af . It is

given by

pf (t) =

Qk
i=1

(1� t
di)Qn

j=1
(1� twj )

.

Let (X,x) be a Kleinian singularity. Then the minimal resolution of the singularity x has
an exceptional divisor with the dual graph depicted in Fig. 1 with m = 1 in the case of the
An-singularities and m = 3 in the other cases (see, e.g., [Br]). Here all vertices correspond to
rational curves of self-intersection number �2, the mutual intersection numbers are either 0 or 1,
and two vertices are joined by an edge if and only if the intersection number of the corresponding
rational curves is equal to 1. The values of the numbers ↵1, . . . ,↵m are indicated in Table 1.
They are the Dolgachev numbers of the singularity, see [ET]. It turns out that these graphs
are precisely the ordinary Coxeter-Dynkin diagrams of type ADE. (Note that the corresponding
intersection matrix is the Cartan matrix multiplied by �1.)

Now let (X,x) be a Fuchsian hypersurface or complete intersection singularity. A natural
compactification of X is given by X := Proj(Af [t]), where t has degree 1 for the grading of
Af [t] (see [P]). This is a normal projective surface with a C

⇤-action. The surface X may acquire
additional singularities on the boundary X1 := X \X = Proj(Af ). Let g = g(X1) be the genus
of the boundary. We assume g = 0. Let ⇡ : S ! X be the minimal normal crossing resolution of
all singularities of X. The preimage eX1 of X1 under ⇡ : S ! X consists of the strict transform
�0 of X1 and m chains �

i
1
, . . . , �

i
↵i�1

, i = 1, . . . ,m, of rational curves of self-intersection �2
which intersect again according to the dual graph shown in Figure 1 (see, e.g., [D, E5]). By
the adjunction formula and g = 0, the self-intersection number of the rational curve �0 is also
�2. The numbers ↵1, . . . ,↵m of the Fuchsian singularities corresponding to finite subgroups of
SL3(C) are indicated in Table 4. They are again the Dolgachev numbers of the singularity, see
[ET, E3].
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· · ·

•

�21

· · · •

�2↵2�1

•
�0

•

�m�1
↵m�1�1

· · · •

�m�1
1

•
�1↵1�1

•
�m↵m�1

· · · · · ·

•
�11

•
�r1

Figure 1. The graph T
�
↵1,...,↵m

G Name Normal form Weights ↵1, . . . ,↵m

(C): T E6 z
2 + y

3 + x
4 3,4,6;12 2, 3, 3

�(3 · 42) E14 z
2 + y

3 + x
8 3,8,12;24 3, 3, 4

(D): O E7 z
2 + y

3 + yx
3 4,6,9;18 2, 3, 4

�(6 · 32) �1

⇢
xy + z

2

x
3 + y

3 + z
3 + w

2

�
2,2,2,3;4,6 2, 2, 2, 2, 2, 2

�(6 · 42) Z11 z
2 + xy

3 + x
5 6,8,15;30 2, 3, 8

�(6 · 62) Z1,0 z
2 + xy

3 + x
7 2,4,7;14 2, 2, 2, 4

(E) K
0
1,0

8
<

:

xu+ y
2

ax
4 + xy

2 + z
2 + u

2
,

a 6= 0, 1

4

9
=

; 2,3,4,4;6,8 2, 2, 4, 4

(F) U12 z
3 + y

3 + x
4 3,4,4;12 4, 4, 4

(G) U1,0 z
3 + yz

2 + x
3
y 2,3,3;9 2, 3, 3, 3

(H)=I E8 z
2 + y

3 + x
5 6,10,15;30 2, 3, 5

(I) E12 z
2 + y

3 + x
7 6,14,21;42 2, 3, 7

(J) Q2,0 xz
2 + y

3 + x
4
y 2,4,5;12 2, 2, 2, 5

(K) Q11 xz
2 + y

3 + yx
3 4,6,7;18 2, 4, 7

(L) E13 z
2 + y

3 + x
5
y 4,10,15;30 2, 4, 5

Table 4. Normal forms, reduced weight systems, and Dolgachev numbers

We call the graph T
�
↵1,...,↵m

a Coxeter-Dynkin diagram. Let V� be the free Z-module with
the basis

�
1

1
, . . . , �

1

↵1�1
, �

2

1
, . . . , �

2

↵2�1
, . . . , �

m
1
, . . . , �

m
↵m�1

, �0

equipped with the symmetric bilinear form h�,�i given by the intersection matrix corresponding
to Fig. 1. This defines a lattice (V�, h�,�i).

We consider two extensions of this lattice. Let V0 = V� � Z�1 with the symmetric bilinear
form defined by Fig. 2. Here the double dashed line between �0 and �1 means h�0, �1i = �2. Let
V+ = V0 � Z�2 with the symmetric bilinear form defined by Fig. 3.



402 WOLFGANG EBELING

· · ·

•
�1

•

�21

· · · •

�2↵2�1

•
�0

•

�m�1
↵m�1�1

· · · •

�m�1
1

•
�1↵1�1

•
�m↵m�1

· · · · · ·

•
�11

•
�r1

Figure 2. The graph T↵1,...,↵m

· · ·

•
�2

•
�1

•

�21

· · · •

�2↵2�1

•
�0

•

�m�1
↵m�1�1

· · · •

�m�1
1

•
�1↵1�1

•
�m↵m�1

· · · · · ·

•
�11

•
�r1

Figure 3. The graph T
+
↵1,...,↵m

If (V, h�,�i) is an arbitrary lattice and e 2 V is a root, i.e. he, ei = �2, then the reflection
corresponding to e is defined by

se(x) = x�
2hx, ei

he, ei
e = x+ hx, eie for x 2 V.

If B = (e1, . . . , en) is an ordered basis consisting of roots, then the Coxeter element ⌧ corre-
sponding to B is defined by

⌧ = se1se2 · · · sen .
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For a Coxeter element ⌧ , let �(t) = det(1 � ⌧
�1

t) be its characteristic polynomial, using a
suitable normalization.

If D is a Coxeter-Dynkin diagram, then we denote by �D(t) the characteristic polynomial of
the Coxeter element corresponding to the graph D. These polynomials can be computed as in
[E1] and one gets

�T�
↵1,...,↵m

(t) = (1 + t)
mY

i=1

1� t
↵i

1� t
� t

mX

i=1

1� t
↵i�1

1� t

mY

j=1
j 6=i

1� t
↵j

1� t
,

�T↵1,...,↵m
(t) = (1� t)2�m(1� t

↵1) · · · (1� t
↵m),

�T+
↵1,...,↵m

(t) = (1� 2t� 2t2 + t
3)

mY

i=1

1� t
↵i

1� t
+ t

2

mX

i=1

1� t
↵i�1

1� t

mY

j=1
j 6=i

1� t
↵j

1� t
.

(The last two formulas can also be found in [E2, p. 98], but note that, unfortunately, there is a
misprint in [E2, p. 98].)

Now we can state the main result of [EP].

Theorem 1. (i) For a Kleinian singularity not of type A2n we have

pf (t) =
�T�

↵1,...,↵m
(t)

�T↵1,...,↵m
(t)

.

(ii) For a Fuchsian singularity with g = 0 we have

pf (t) =
�T+

↵1,...,↵m
(t)

�T↵1,...,↵m
(t)

.

Remark 2. Unfortunately, the exclusion of the case A2n is only implicit in [EP] and was
forgotten in the statement of [EP, Theorem 1].

Remark 3. Note that we have T2,3,3 ⇠ T
�
3,3,3, T2,3,4 ⇠ T

�
2,4,4, T2,3,5 ⇠ T

�
2,3,6, where ⇠ means

equivalence under the braid group action, see [E6]. Similarly, one can show that the graphs
T2n�1, n � 1, and T2,2,n, n � 2, are equivalent under the braid group action to the extended
Coxeter-Dynkin diagrams of type A2n�1 and Dn+2 respectively.

3. Poincaré series of subgroups of SL2(C) and SL3(C)

LetG be a finite subgroup of SLn(C) for n = 2, 3. Consider the algebra of complex polynomials
C[x1, . . . , xn] graded by the degree for homogeneous ones. It is isomorphic to the symmetric
algebra

S := S(Cn) =
1M

k=0

S
k(Cn),

where S
k(Cn) denotes the k-th symmetric power of Cn. Let S

G be the algebra of invariant
polynomials with respect to G.

For n = 2, it is generated by 3 elements x, y, z which satisfy a relation R(x, y, z) = 0. The
elements x, y, z correspond to invariant polynomials and their degrees correspond to the weights
of these variables. Let cG denote the greatest common divisor of these weights. The weights of
the variables x, y, z, the number cG, and the polynomial R(x, y, z) are indicated in Table 1.

Now let G be one of the finite subgroups of SL3(C) of Table 3. Except in the cases (E)
and �(6 · 32), the algebra S

G is generated by 4 elements w, x, y, z which satisfy a relation
R(w, x, y, z). In the cases (E) and �(6 · 32), SG is generated by 5 elements w, x, y, z, u which
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satisfy two relations R1(w, x, y, z, u) = 0 and R2(w, x, y, z, u) = 0. The degrees of the invariants
and the polynomials R(w, x, y, z) and R1(w, x, y, z, u), R2(w, x, y, z, u) respectively can be found
in [YY]. The degrees of the invariant polynomials and the restriction to the hyperplane w = 0
of the polynomials R(w, x, y, z) and R1(w, x, y, z, u), R2(w, x, y, z, u) respectively are indicated
in Table 3. Let cG be the greatest common divisor of the weights of the remaining variables
x, y, z(, u) (with the weight of w excluded). The number cG is also indicated in Table 3. Note
that, except in the case (G), cG also divides the weight of w.

For n = 2, the algebra AG := S
G = C[x, y, z]/R(x, y, z) coincides with the coordinate algebra

Af of the corresponding singularity indicated in the last column of Table 1 up to the grading.
The grading is shifted by cG. For n = 3 and G one of the cases of Table 3 except the cases (E) and
�(6·32), the algebra AG := C[x, y, z]/R(0, x, y, z) coincides with the coordinate algebra Af of the
corresponding singularity indicated in the last column of Table 3 with the grading shifted by cG.
In the cases (E) and �(6 · 32), the algebra AG := C[x, y, z, u]/(R1(0, x, y, z, u), R2(0, x, y, z, u))
coincides with the coordinate algebra Af of the complete intersection singularity K

0
1,0 and �1

respectively, again with the grading shifted by cG. Let pG(t) be the Poincaré series of the algebra
of AG. Then we have

pG(t) = pf (t
cG) for G ⇢ SL2(C), pG(t) =

pf (tcG)

(1� tdegw)
for G ⇢ SL3(C).

The finite subgroups G ⇢ SLn(C) for n = 2, 3 under consideration have a natural n-
dimensional representation � which is irreducible (except in the cases G = Cl). Let �

⇤ be
its contragredient representation. Let �0, . . . , �l be the irreducible representations of G, where
�0 is the trivial representation. Let B = (bij) and B

⇤ = (b⇤ij) be the (l + 1) ⇥ (l + 1)-matrices
defined by decomposing the tensor products

�j ⌦ � =
M

i

bij�i and �j ⌦ �
⇤ =

M

i

b
⇤
ij�i

respectively into irreducible components.
For each integer k � 0, let ⇢k be the representation of G on S

k(Cn) induced by its natural

action on C
n. We have a decomposition ⇢k =

Pl
i=0

vki�i with vki 2 Z. We associate to ⇢k the
vector vm = (vm0, . . . , vml)t 2 Z

l+1. As in [K, p. 211] we define

PG(t) :=
1X

m=0

vmt
m
.

This is a formal power series with coe�cients in Z
l+1. We also put PG(t)i :=

P1
m=0

vmit
m.

Note that PG(t)0 is the usual Poincaré series pG(t) of the group G. Let V denote the set of all
formal power series x =

P1
m=0

xmt
m with xm 2 Z

l+1. This is a free module of rank l + 1 over
the ring R of formal power series with integer coe�cients.

Now let n = 2 and G ⇢ SL2(C) be a finite subgroup not of type C2n+1. Then cG = 2 and we
have

pf (t
2) = PG(t)0.

Moreover, we have �
⇤ = � and therefore B

⇤ = B. The irreducible representations of SL2(C) are
of the form ⇢m, m a non-negative integer. The Clebsch-Gordon formula reads in this case

⇢m ⌦ � = ⇢m+1 � ⇢m�1

setting ⇢�1 = 0 (cf., e.g., [FH, Exercise 11.11]). This yields the equation

Bvm = vm+1 + vm�1.
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Following [K, p. 222], one can easily derive from this equation that x = PG(t) is a solution of
the following linear equation in V :

((1 + t
2)I � tB)x = v0.

Let M(t) be the matrix (1 + t
2)I � tB and M0(t) be the matrix obtained by replacing the first

column of M(t) by v0 = (1, 0, . . . , 0)t. By Cramer’s rule we can derive the following theorem
[E4, Sect. 3] (see also [St]).

Theorem 4. For a finite subgroup G ⇢ SL2(C) not of type C2n+1 we have

pf (t
2) = PG(t)0 =

detM0(t)

detM(t)
=

det(t2I � ⌧)

det(t2I � ⌧a)
,

where ⌧ is the Coxeter element and ⌧a the a�ne Coxeter element of the corresponding root

system of type ADE associated to the singularity defined by the equation f = 0 with the same

name.

Now let n = 3 andG ⇢ SL3(C) be a finite subgroup. For a pair a, b of non-negative integers, let
�a,b be the unique irreducible, finite-dimensional representation of SL3(C) of [FH, Theorem 13.1].
By [FH, Proposition 15.25] and [FH, (13.5)], we have for a non-negative integer m (setting
��1,b = 0) the following Clebsch-Gordon formulas:

�m,0 ⌦ � = �m+1,0 � �m�1,1,

�m,0 ⌦ �
⇤ = �m�1,0 � �m,1.

Since �m,0 = ⇢m, we can derive from these formulas

vm+2 = Bvm+1 �B
⇤
vm + vm�1.

Therefore x = PG(t) is a solution of the following linear equation in V (see also [BI, BP]):

((1� t
3)I � tB + t

2
B

⇤)x = v0.

Let M(t) be the matrix (1 � t
3)I � tB + t

2
B

⇤ and M0(t) be the matrix obtained by replacing
the first column of M(t) by v0 = (1, 0, . . . , 0)t. Again Cramer’s rule yields

PG(t)0 =
detM0(t)

detM(t)
.

We have the following theorem:

Theorem 5. Let G ⇢ SL3(C) be one of the groups T , �(3 · 42), O, �(6 · 32), �(6 · 42),
�(6 · 62), (E), (F), (G), (H)=I, (I), (J), (K), or (L), let cG be the greatest common divisor

of the weights of the variables x, y, z(, u), and let ↵1, . . . ,↵m be the Dolgachev numbers of the

singularity corresponding to G. Moreover, let q
(e)
a,b(t) = (1� t)a(1� t

e)b for a, b, e 2 Z.

(i) For G = T,O, I (E6, E7, E8) we have cG = 1 and

detM0(t) = q
(2)

a,b(t)�T�
↵1,↵2,↵3

(t), detM(t) = (1� t)q(2)a,b(t)�T2,↵1,↵2,↵3
(t),

where (a, b) = (3, 0), (3, 1), (4, 0) respectively.
(ii) For G=(I), �(3 · 42), �(6 · 42) (E12, E14, Z11) we have cG = 1 and

detM0(t) = q
(4)

a,b(t)�T+
↵1,↵2,↵3

(t), detM(t) = (1� t)q(4)a,b(t)�T4,↵1,↵2,↵3
(t).

where (a, b) = (3, 0), (3, 2), (2, 3) respectively.
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G detM0(t) detM(t)
T (1� t)3�T�

2,3,3
(t) (1� t)4�T2,2,3,3(t)

�(3 · 42) (1� t)3(1� t
4)2�T+

3,3,4
(t) (1� t)4(1� t

4)2�T3,3,4,4(t)

O (1� t)3(1� t
2)�T�

2,3,4
(t) (1� t)4(1� t

2)�T2,2,3,4(t)

�(6 · 32) (1�t3)10

(1�t6)3 �T+
2,2,2,2,2,2

(t3) (1�t3)9

(1�t6)3�T2,2,2,2,2(t
3)

�(6 · 42) (1� t)2(1� t
4)3�T+

2,3,8
(t) (1� t)3(1� t

4)3�T2,3,4,8(t)

�(6 · 62) (1� t
3)7(1� t

6)�T+
2,2,2,4

(t3) (1� t
3)8(1� t

6)�T2,2,2,2,4(t
3)

(E) (1�t3)8

(1�t6)3�T+
2,2,4,4

(t3) (1�t3)9

(1�t6)3�T2,2,2,4,4(t
3)

(F) (1�t3)7

(1�t6)2�T+
4,4,4

(t3) (1�t3)8

(1�t6)2�T2,4,4,4(t
3)

(G) (1�t3)4(1�t6)(1�t9)
(1�t18) �T+

2,3,3,3
(t6) (1�t3)4(1�t6)(1�t9)2

(1�t18) �T2,3,3,3(t
6)

(H)=I (1� t)4�T�
2,3,5

(t) (1� t)5�T2,2,3,5(t)

(I) (1� t)3�T+
2,3,7

(t) (1� t)4�T2,3,4,7(t)

(J) (1�t3)8

(1�t6)2�T+
2,2,2,5

(t3) (1�t3)9

(1�t6)2�T2,2,2,2,5(t
3)

(K) (1�t3)6

(1�t6) �T+
2,4,7

(t3) (1�t3)7

(1�t6) �T2,2,4,7(t
3)

(L) (1�t3)7

(1�t6) �T+
2,4,5

(t3) (1�t3)8

(1�t6) �T2,2,4,5(t
3)

Table 5. Determinants of the matrices M0(t) and M(t)

(iii) For G=(K), (L), (F), �(6 ·62), (J), (E) (Q11, E13, U12, Z1,0, Q2,0,K
0
1,0) we have cG = 3

and

detM0(t) = q
(2)

a,b(t
3)�T+

↵1,...,↵m
(t3), detM(t) = (1� t

3)q(2)a,b(t
3)�T2,↵1,...,↵m

(t3),

where (a, b) = (6,�1), (7,�1), (7,�2), (7, 1), (8,�2), (8,�3) respectively.
(iv) For G = �(6 · 32) (�1) we have cG = 3, m = 6, ↵i = 2 for i = 1, . . . ,m, and

detM0(t) = (1� t
3)q(2)

9,�3
(t3)�T+

2,↵2,...,↵m
(t3), detM(t) = q

(2)

9,�3
(t3)�T↵2,...,↵m

(t3).

(v) For G=(G) (U1,0) we have cG = 6 and

detM0(t) = q(t3)�T+
↵1,↵2,↵3,↵4

(t6), detM(t) = (1� t
9)q(t3)�T↵1,↵2,↵3,↵4

(t6),

where q(t) = (1�t)4(1�t2)(1�t3)
(1�t6) .

Proof. The character tables of the tetrahedral and icosahedral group are given in [Art]. The
character table of the octahedral group can be found, e.g., in [HH]. From these tables, one can
calculate the matrices B. The matrices B for the remaining cases are given in [BP]. For the case
(D), only one example is treated. More complete results for the cases �(3n2) and �(6n2) can
be found in [LNR] and [EL] respectively. From these results, one can derive the corresponding
matrices B. The proof of the theorem is then obtained by a direct calculation from these matrices
using the computer algebra system Singular [DGPS]. ⇤

The results are summarized in Table 5.

Remark 6. Let G be one of the groups T,O, I. In this case, the matrix B is symmetric and we
have B

⇤ = B. Therefore

M(t) = (1� t
3)I � tB + t

2
B

⇤ = (1� t)((1 + t+ t
2)I � tB).
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To the Memory of Egbert Brieskorn. Among the most important events which inspired scientific interests of the
third author was (in late 1960s) Brieskorn’s discovery that 28 Milnor exotic spheres can be described by simple
algebraic equations, and (in the early 1980s) participation in the Brieskorn Singularities Seminar in Bonn.

Abstract. This is a survey paper discussing one specific (and classical) system of algebraic
equations - the so called “Prony system”. We provide a short overview of its unusually wide
connections with many di↵erent fields of Mathematics, stressing the role of Singularity Theory.
We reformulate Prony System as the problem of reconstruction of “Spike-train” signals of the
form F (x) =

Pd
j=1

aj�(x�xj) from the noisy moment measurements. We provide an overview

of some recent results of [1–3, 7, 8, 10, 11, 29, 53] on the “geometry of the error amplification”
in the reconstruction process, in situations where the nodes xj near-collide. Some algebraic-
geometric structures, underlying the error amplification, are described (Prony, Vieta, and
Hankel mappings, Prony varieties), as well as their connection with Vandermonde mappings
and varieties. Our main goal is to present some promising fields of possible applications of
Singularity Theory.

1. Introduction

In this paper we consider the classical Prony system of algebraic equations, with the real
unknowns aj , xj , j = 1, . . . , d, and with the right hand side formed by the known real “mea-
surements” m0, . . . ,m2d�1. This system has a form

(1.1)
dX

j=1

ajx
k

j
= mk, k = 0, 1, . . . , 2d� 1.

We denote by A = (a1, . . . , ad) 2 Rd and X = (x1, . . . , xd) 2 Rd, x1  x2  . . .  xd,
the unknowns in system (1.1), and denote by PA

d
(resp. PX

d
) the “parameter spaces” of the

unknowns A and X, respectively. Pd = PA

d
⇥ PX

d
denotes the total parameter space of (A,X).

The space (isomorphic to R2d) of the right-hand sides µ = (m0,m1, . . . ,m2d�1) of (1.1) is denoted
by Md.

In what follows we will usually identify (A,X) with a “spike-train signal”

(1.2) F (x) =
dX

j=1

aj�(x� xj).

Clearly, the moments mk(F ) =
R
xkF (x)dx, k = 0, 1, . . . , are given by mk(F ) =

P
d

j=1 ajx
k

j
, so

reconstructing F from its 2d�1 initial moments is equivalent to solving (1.1), with mk = mk(F ).

http://dx.doi.org/10.5427/jsing.2018.18u
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Prony system appears in many classical theoretical and applied mathematical problems. In
Section 2 we discuss some of these appearances. Explicit solution of (1.1) was given already
in [48] (see Section 3 below).

There exists a vast literature on Prony and similar systems. In particular, the bibliography
in [5] (1981) contains more than 50 pages. Most of recent applications are in Signal Processing.
As a very partial sample we mention that in [14] and in many other publications a method,
essentially equivalent to solving Prony system, was used in reconstructing signals with a “finite
rate of innovation”. In [45, 46] the applicability of Prony-type systems was extended to some
new wide and important classes of signals. In [12, 21] multidimensional Prony systems were
investigated via symmetric tensors, in particular, connecting them to the polynomial Waring
problem. In [25] Prony system appears in a general context of Compressed Sensing. In [6, 9]
Prony-like systems were used in reconstructing piecewise-smooth functions from their Fourier
data. Finally, in [6] the same reconstruction accuracy as for smooth functions was demonstrated
(thus confirming the Eckho↵ conjecture).

Some applications of Prony system are of major practical importance, and various algorithms
and numerical methods have been developed for its solution (see [47] and references therein).
However, in a (very important) case when some of the nodes xj nearly collide, while the mea-
surements are noisy, these collision singularities lead to major mathematical and numerical
di�culties. In particular, this happens in the context of the “super-resolution problem”, which
was investigated in many recent publications. See [1–3,7,8,10,11,17,18,22,24,26,41] as a small
sample.

Notice that the Prony system (1.1) is linear (with the Vandermonde matrix on the “nodes” X)
with respect to the “amplitudes” A, while it is highly nonlinear with respect to X. As the nodes
collide (or near-collide), the Vandermonde determinant vanishes. Even knowing the position of
the nodes, the reconstruction of the amplitudes is still ill-posed.

Thus singularities enter the solution process of the Prony system because of its geometric
nature, no matter what solution method do we use. We believe that using the tools of Singularity
Theory in this problem is well justified. In [11,53] we study the algebraic nature of nodes collision.
In particular, we include into consideration the “confluent Prony systems”, corresponding to
signals with multiple nodes, and with the derivatives of the �-function. We also introduce and
study in [11] the “bases of finite di↵erences” in the signal space Pd, which behave coherently as
the nodes collide.

In the present paper we give, following [1–3, 7, 8, 10, 11, 29, 53], a somewhat di↵erent point of
view on the problem, stressing the role of Singularity Theory in understanding of Prony systems
with noisy right-hand side. Below we discuss the following main topics:

1. In case of near-colliding nodes the initial measurements errors may be strongly amplified in the
solution, making it unfeasible. However, the possible error-a↵ected solutions are not distributed
uniformly, but rather tightly concentrated along certain algebraic sets, known a priori (“Prony
varieties” - see Sections 7 and 5 below).

Prony varieties are generalizations (via “making free” the amplitudes A) of the Vandermonde

mappings and varieties, introduced and studied in Singularity Theory in [4, 32] and other publi-

cations (see Section 4).

2. A related notion is that of “Prony scenarios” (Section 8), which predict the error behavior
along the Prony curves. An important part here is the description of the combinatorics of real

zeroes in polynomial pencils, actively studied in Singularity Theory - see [15,33–35].

3. In the presence of the measurement noise, statistical estimations of feasible solutions can be
used. These methods are considered in the literature as superior in accuracy, but their practical
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implementation is di�cult, because of complicated nonlinear minimization problems involved.
We expect that the tools developed in Singularity Theory for the study of “maxima of smooth
functions”, “cut-loci”, and similar objects, can be useful here (Section 6.1).

4. In the case of the real nodes X (mainly presented in this paper) hyperbolic polynomials
become a central topic in all the problems above. Hyperbolic polynomials and related objects are

actively studied in Singularity Theory (see [4, 15, 23, 32–35] as a partial sample), and we expect

some of the available results to be directly applicable to Prony systems.

Among other common topics with Singularity Theory we shortly discuss below rank stratifica-
tion of the space of Hankel-type matrices, solving parametric linear systems, polynomial Waring
problem, and finite di↵erences. We hope that the connections presented will proof useful in both
domains.

2. Some appearances of the Prony system

We outline here some prominent classical appearances of the Prony system.

2.1. Exponential Interpolation. This was the problem studied by Prony himself in [48]. We
consider an interpolation problem for a given function f(x) at the 2d consequent integer points
0, 1, . . . , 2d� 1, with the interpolant being the sum of the exponents

dX

j=1

aje
⇣jx.

We can choose freely 2d parameters aj , ⇣j , in order to fit the values

yk = f(k), k = 0, . . . , 2d� 1.

Substituting x = k, and denoting e⇣j by xj we get the Prony system of equations

dX

j=1

aje
k⇣j =

dX

j=1

ajx
k

j
= yk, k = 0, 1, . . . , 2d� 1.

2.2. Gauss quadratures. Let � be a measure on the real line R. For a given d we want to find
d points x1, . . . , xd 2 R, and d real coe�cients a1, . . . , ad such that the quadrature formula

(2.1)

Z
g(x)d� ⇡

dX

j=1

ajg(xj)

be accurate for g being any polynomial of degree at most 2d� 1. By linearity, it is su�cient to
get an equality in (2.1) only for g being the monomials xk, k = 0, 1, . . . , 2d � 1, and this leads
immediately to the Prony system

(2.2)
dX

j=1

ajx
k

j
= mk(�) :=

Z
xkd�, k = 0, 1, . . . , 2d� 1,

with the right-hand side given by the consecutive moments mk(�) of the measure �.

Another interpretation is that we are looking for an atomic measure (a spike-train signal)

�̃ =
P

d

j=1 aj�(x� xj) satisfying mk(�̃) = mk(�), k = 0, 1, . . . , 2d� 1.



412 GIL GOLDMAN, YEHONATAN SALMAN, AND YOSEF YOMDIN

2.3. Moment Theory and Padé approximations. The classical Hamburger Moment prob-
lem consists in providing necessary and su�cient conditions for a sequence

m = {m0,m1, . . . ,mk, . . .}
to be the sequence of the consecutive moments mk = mk(�) =

R
xkd�, k = 0, 1, . . . , of a non-

atomic positive measure � on the real line R, and in reconstructing � from m. The condition is
that all the Hankel-type matrices

(2.3) Md(m) =

2

666664

m0 m1 ... md�1

m1 m2 ... md

...
...

md�1 md ... m2d�2

3

777775
d = 0, 1, ...,

are positive definite. The proof essentially consists in Gaussian quadrature approximation of the
measure � by positive atomic measures �d =

P
d

j=1 ad,j�(x � xd,j), d = 0, 1, . . ., satisfying the
condition mk(�d) = mk, k = 0, 1, . . . , 2d� 1, i.e. solving the Prony systems

(2.4)
dX

j=1

ad,jx
k

d,j
= mk, k = 0, 1, . . . , 2d� 1, d = 0, 1, . . . ,

with the right-hand side given by the input sequence m = {m0,m1, . . . ,mk, . . .}.
Another point of view is provided by the Padé approximation approach. For a sequence m as

above consider a formal power series at infinity

(2.5) f(z) =
1X

k=0

mkz
�k�1.

The d-th (diagonal) Padé approximant of f(z) is a rational function Rd(z) =
Pd(z)
Qd(z)

with Pd, Qd

polynomials in z of the degrees d � 1 and d, respectively, such that the Taylor development of
Rd(z) at infinity has the form

(2.6) Rd(z) =
2d�1X

k=0

mkz
�k�1 +O(z�2d�1).

In other words, the first 2d Taylor coe�cients of Rd(z) are m0, . . . ,m2d�1.

Write Rd(z) as the sum of elementary fractions, and develop at infinity:

Rd(z) =
dX

j=0

ad,j
z � xd,j

=
dX

j=0

ad,j
z(1� xd,j

z
)
=

dX

j=0

ad,j
z

(1 +
xd,j

z
+ (

xd,j

z
)2 + . . .) =

=
1X

k=0

m̃kz
�k�1,

where

m̃k =
dX

j=1

ad,jx
k

d,j
, k = 0, 1, . . . .

Thus condition (2.6) becomes the Prony system (2.4).
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We do not discuss here other remarkable connections of the Prony system, provided by the
classical Moment Theory, in particular, with continued fractions and orthogonal polynomials,
see, for example, [42].

2.4. Polynomial Waring problem. We consider only the case of two variables (in more vari-
ables the calculations are, essentially, the same). Let P (x, y) =

P
m

i=0 bix
m�iyi be a homogeneous

polynomial of degree m in (x, y). We look for a representation of P as a sum of m-th powers of
d linear forms in (x, y):

(2.7) P (x, y) =
dX

j=1

(⌘jx+ ⇣jy)
m,

within an attempt to minimize d in this expression. This problem is actively studied today. Many
important results on generic and non-generic configurations in di↵erent degrees and dimensions
are available. For details we refer the reader to [12, 20, 21, 36, 40], and references therein, as a
very partial sample.

Let us put x = 1 in (2.7). We get

(2.8) P (1, y) =
mX

i=0

biy
i =

dX

j=1

(⌘j + ⇣jy)
m =

dX

j=1

⌘j(1 +
⇣j
⌘j

y)m.

Denoting in (2.8) the fraction ⇣j

⌘j
by ⇠j we get

mX

i=0

biy
i =

dX

j=1

⌘j(1 + ⇠jy)
m =

dX

j=1

⌘j

mX

i=0

(d
i
)⇠i

j
yi =

mX

i=0

yi
dX

j=1

⌘j(
d

i
)⇠i

j
.

Comparing the coe�cients of yi on the two sides we obtain
dX

j=1

⌘j(
d

i
)⇠i

j
= bi, i = 0, . . . ,m.

Finally, dividing by (d
i
) and denoting bi/(di ) by µi, we get the Prony system

dX

j=1

⌘j⇠
i

j
= µi, i = 0, . . . ,m.

3. Explicit solution of the Prony system

From now on, and till Section 6, we allow complex nodes and amplitudes (A,X). In Section 6
we return to the real case, and explain the role of hyperbolic polynomials in the solution process.

In order to solve explicitly Prony system

(3.1)
dX

j=1

ajx
k

j
= mk, k = 0, 1, . . . , 2d� 1,

consider the d-th diagonal Padé approximant Rd(z) of the moment generating function, defined
by (2.6) above.

Writing Rd(z) as Rd(z) =
Pd(z)
Qd(z)

with

Pd(z) = b0 + b1z + . . .+ bd�1z
d�1, Qd(z) = c0 + c1z + . . .+ cd�1z

d�1 + zd,
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substituting into (2.6), and comparing coe�cients, we obtain the following linear system of
equations for the coe�cients c = (c0, . . . , cd�1) of the denominator Q:

(3.2)

2

666664

m0 m1 ... md�1

m1 m2 ... md

...
...

md�1 md ... m2d�2

3

777775

2

666664

c0

c1
...

cd�1

3

777775
= �

2

666664

md

md+1

...

m2d�1

3

777775
.

with the Hankel matrix Md(µ), µ = (m0, . . . ,m2d�1).

Finding c from (3.2), we then find the coe�cients b = (b0, . . . , bd�1) of the numerator P as

b0 = m0c0, b1 = m0c1 +m1c0, . . . , bd�1 = m0cd�1 + . . .+mdc0.

This provides us explicitly the Padé approximant Rd(z) =
P (z)
Q(z) . In order to find aj , xj it remains

to represent Rd as the sum of the elementary fractions Rd(z) =
P

d

j=0
aj

z�xj
. Essentially, this

procedure appeared already in the Prony paper [48], and it remains a basis for most of recent
algorithms.

3.1. Solvability conditions. Solvability conditions for (3.2) (and for the Prony system) are
well known in the classical Moment Theory, in Padé approximations, and in other related fields,
sometimes in quite di↵erent forms. One of possible formulations, convenient for our setting, was
given in [11]. In order to present these conditions in a compact form, we allow complex nodes
and amplitudes, as well as multiple nodes. (Including multiple nodes requires a rather accurate
treatment, which we omit here. Details are given in [11]).

From the right hand side µ = (m0, . . . ,m2d�1) 2 Md we form the extended d⇥ (d+1) Hankel
matrix M̃d(µ).

Theorem 3.1. (See [11]). Prony system (3.1) is solvable if and only if the following condition

is satisfied: let the rank of M̃d(µ) be equal to r  d. Then the left-upper r ⇥ r minor of M̃d(µ)
is non-zero.

Thus solvability of (3.1) can be read out from the right-hand side µ through the “rank strat-
ification ⌃” of the moment space Md.

Rank stratification for various classes of matrices is very important in Singularity Theory,
and an extensive literature exists on this topic. Let us mention just [28, 38], which may be
directly related to our study of Prony system. Specifically, J. Mather’s theorem in [38] provides
conditions for existence of smooth (in parameters) solutions of parametric families of linear
systems (see also related results in [28]). We expect that Mather’s theorem can be applied to
the above system (3.2), providing a very important information on the behavior of solutions of
(3.2) as µ approaches the low rank strata of ⌃.

Let us mention also [31,37,43] where finite di↵erences, and semi-simplicial resolutions, appear
in study of Image singularities. They may be related to the study of the Prony mapping, via
bases of finite di↵erences in [11].

4. Prony, Vieta and Hankel mappings

In this section we suggest an algebraic-geometric picture capturing, to some extent, the math-
ematical structure of the solution procedure in Section 3. An important fact is that this picture
appears as a natural extension of a construction, well known in Singularity Theory: that of
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Vandermonde mapping and Vandermonde varieties, developed by Arnold, Givental, Kostov and
others in the 1980’s (see [4, 27, 32] and references therein).

Consider the following mappings:

1. The Prony map:

PM : Pd ! Md, PM(F ) = (m0(F ), . . . ,m2d�1(F )).

For each fixed amplitudes A = (a1, . . . , ad) the restriction of the Prony map to A⇥PX

d
coincides

with the corresponding Vandermonde map, as defined in [4, 27, 32].

We call the space of all monic polynomials of degree d, Q(z) = c0 + c1z+ . . .+ cd�1zd�1 + zd,
the polynomial space Vd.

2. The Vieta map:

VM : Pd ! Vd, V M(F ) = QF (z) = zd + �1(F )zd�1 + . . .+ �1(F ).

Here
�i(F ) = �i(x1, . . . , xd)

is the i-th symmetric polynomial in the nodes X of F , and Q(z) = QF (z) is the normalized
polynomial with the roots x1, . . . , xd. Notice that the Vieta map depends only on the nodes X
of F , but not on its amplitudes A.

3. The Hankel map:
HM : Md ! Vd.

This map associates to any µ = (m0, . . . ,m2d�1) 2 Md the polynomial Q 2 Vd obtained through
solving a linear system (3.2)

Notice that in the coordinates A,X in the signal space Pd the mappings PM and VM are
polynomial, while the mapping HM in the coordinates µ = (m0, . . . ,m2d�1) is rational, with
the denominator �(µ) = detMd(µ), as provided by the Cramer rule.

We can put the mappings above into a mapping diagram D:

Vd

Pd Md

VM

PM

HM

Now, a simple and basic fact, expressing the Prony solution algorithm, is the following:

Proposition 4.1. The mapping diagram D is commutative, i.e.

VM = HM � PM.

The proof was essentially given in Section 3 above.

The role of each of the three spaces in the solution process is di↵erent, and some important
structures may look quite di↵erently in these spaces. Below we give some examples.

5. Prony varieties

In this section we define, following [1–3], the “Prony varieties”, which play an important role
in the description of error amplification in solving Prony system.

Possessing the diagram D we can choose the easiest place to define the Prony varieties, which
is the moment space Md. For each d  q  2d� 1 and for a given µ 2 Md, the “moment Prony
variety” SM

q
(µ) is the coordinate subspace in Md, passing through the point µ, where the first

q + 1 moments m0, . . . ,mq are constant.
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The “signal Prony variety” SP
q
(µ) is the preimage under the Prony mapping PM of the

moment Prony variety SM
q

(µ). Thus in Pd this variety is defined by the system of equations

(5.1)
dX

j=1

ajx
k

j
= mk, k = 0, 1, . . . , q,

which is formed by the first q + 1 equations of the complete Prony system (3.1). This was
the original definition of the “Prony leaves” in [2] and in later publications. For each fixed
amplitudes A = (a1, . . . , ad) the signal Prony variety, intersected with A ⇥ PX

d
, coincides with

the corresponding Vandermonde variety, as defined in [4, 27, 32]. We believe that the results of
these papers may be important in study of Prony varieties, and we give more detail in [29].

The “polynomial Prony variety” SV
q
(µ) ⇢ Vd is the image under the Hankel map HM of the

moment Prony variety SM
q

(µ). We have the following fact:

Proposition 5.1. ( [29]) For q � d the polynomial Prony varieties SV
q
(µ) are a�ne subspaces

in Vd, defined by the linear equations

(5.2)

µd�1c1 + µd�2c2 + . . .+ µ0cd = �µd

µdc1 + µd�1c2 + . . .+ µ1cd = �µd+1

..........

µq�1c1 + µq�2c2 + . . .+ µq�dcd = �µq.

In the signal space we obtain in [29] the following description of the (node projections) of the
Prony varieties SP

q
, d  q  2d� 1:

Theorem 5.1. ( [29]) The projection SP,X

q
(µ) of the signal Prony variety SP

q
(µ) to the nodes

space PX

d
is defined in PX

d
by the equations (5.2), with cj , j = 1, . . . , d, replaced by the symmetric

polynomials �j(x1, . . . , xd).

In the real case, the Vieta map VM provides a di↵eomorphism of the interior of SP,X

q
(µ)

to the interior of the intersection of the polynomial Prony varieties SV
q
(µ) with the set Hd of

hyperbolic polynomials in Vd. The inverse is given by the “root mapping” RM , which associates

to a hyperbolic polynomial Q 2 H�
d
its ordered roots x1 < . . . < xd.

For any q between d and 2d� 2 we can consider the parametrization of the polynomial Prony
varieties SV

q
through the last “free” moments mq+1, . . . ,m2d�1 in the right hand side of (3.2).

This is the restriction of the mapping HM to the the moment Prony varieties SM
q

(µ), i.e., to the
coordinate subspaces in Md, passing through the point µ, where the first q moments m0, . . . ,mq

are constant. We have:

Proposition 5.2. ( [29]) The restriction of the mapping HM to the the moment Prony varieties

SM
q

(µ) provides a rational parametrization of the polynomial Prony variety. It is a rational

mapping of degree 2d� q � 1.
For the moment Prony curves SM = SM

2d�2, which are the straight lines in Md parallel to the

coordinate axis Om2d�2, this restriction is linear in the last moment m2d�1, and it is provided

by the expression

(5.3) ci = Ci

1(µ̃)m2d�1 + Ci

2(µ̃),
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where µ̃ = (m0, . . . ,m2d�2), and Ci

1(µ̃) and Ci

2(µ̃) are constant along the moment Prony curves

SM
.

An important fact is that the moment Hankel matrix Md(µ) = Md(µ̃) is constant along the

moment Prony curves SM(µ).

6. Solvability over the reals

The requirement for all the amplitudes A and the nodes X of the reconstructed signal F to
be real is equivalent to requiring that all the moments µ =

�
m0(F ), . . . ,m2d�1(F )

�
2 Md are

real, and that all the roots of the reconstructed polynomial Q are real, i.e Q is hyperbolic. As
above, we denote by Hd ⇢ Vd the set of hyperbolic polynomials.

We define the “moment hyperbolicity set” H̃d ⇢ Md as the set of all µ 2 Md for which the
Hankel image HM(µ) belongs to the hyperbolicity set Hd ⇢ Vd. Equivalently,

H̃d = HM�1(Hd).

The following result is a partial case of the conditions of Prony solvability over the reals, obtained
in [29]:

Theorem 6.1. ( [29]). For a real moments vector µ 2 Md, with detMd(µ) nonzero, Prony

system (3.1) is solvable over the reals if and only if µ belongs to the moment hyperbolicity set

H̃d ⇢ Md.

6.1. Some statistical estimations for Prony solutions. For a real signal F , if its mo-
ments vector µ was corrupted by the noise to µ0, some roots of the reconstructed polynomial
Q = HM(µ0) could become complex. This makes the corresponding solution F 0 unfeasible.

This situation is common in practice, and usually the complex roots of Q are just projected
to the real line. (In fact, in most of publications instead of real roots, the roots on the unit circle
in the complex plane C are considered).

The same problem arises with the additional a priori known constraints on the feasible solu-
tions F . (In particular, in most of applications we have a priori upper bounds on the nodes and
amplitudes). We will denote by Z ⇢ Md the set consisting of the moments of all the feasible
signals F .

One of the most common statistical estimations methods is the maximum likelihood one (see
e.g. [55] and references therein). Consider, for example, a Gaussian noise model µ0 ⇠ N (µ,⌃)
where µ is unknown. Then the maximum likelihood estimator µ̂(µ0) of µ is any point z 2 Z ⇢ Md

that is nearest to the measurement µ0.

In Bayesian estimation, besides the assumed probability distribution for the noise (e.g. Gauss-
ian), we also assume a prior probability distribution of the moments vectors (or of the feasible
signals) with support on Z, and a fixed loss function L(µ̂(µ0), µ). Here the optimal Bayes esti-
mator µ̂(µ0) is given by the minimizer of the posterior risk

µ̂(µ0) = inf
µ̂2Z

E[L(µ̂, µ)|µ0] = inf
µ̂2Z

Z

Z

L(µ̂, µ)fµ|µ0(µ)dµ,

where fµ|µ0(µ) is the conditional density of µ given the measurement µ0.

Notice that minimisation is performed on an a priori known (and usually semi-algebraic) set Z.
In our initial example Z is the hyperbolicity domain H̃d ⇢ Md. The study of such minimization
problems is in the mainstream of Singularity Theory. Specifically, a rich geometric information on
the hyperbolicity domain, available today, may be useful (see [4, 32, 34] and references therein).
Another highly relevant topic in Singularity Theory is the study of singularities of maximal
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functions, cut loci, and related objects. Some “old” results are in [16, 39, 50–52, 54]1, and in
references therein. Some recent results are in [19, 49].

7. Error amplification and Prony curves

In this section we give a survey of recent results of [1], describing the geometry of error
amplification in the case where the nodes of a signal F form a cluster of size h ⌧ 1. The central
notion here is that of the ✏-error set E✏(F ).

Definition 7.1. The error set E✏(F ) ⇢ Pd is the set consisting of all the signals F 0 2 Pd with

|mk(F
0)�mk(F )|  ✏, k = 0, . . . , 2d� 1.

In other words, E✏(F ) comprises all the signals F 0 2 Pd which can appear in reconstruction
of F from its moments µ = (m0, . . . ,m2d�1), each moment mk corrupted by noise bounded by
✏.2

The goal here is a detailed understanding of the geometry of the error set E✏(F ), in the various
cases where the nodes of F near-collide.

7.1. The model space. For F 2 Pd, we denote by IF = [x1, xd], the minimal interval in R
containing all the nodes x1, . . . , xd. We put h(F ) = 1

2 (xd � x1) to be the half of the length of
IF , and put (F ) = 1

2 (x1 + xd) to be the central point of IF .

In case that h(F ) ⌧ 1, we say that the nodes of F form a cluster of size h or simply that F
forms an h-cluster.

For such signals F , consider the following “normalization”: shifting the interval IF to have its
center at the origin, and then rescaling IF to the interval [�1, 1]. For this purpose we consider,
for each  2 R and h > 0 the transformation

(7.1)  ,h : Pd ! Pd,

defined by (A,X) ! (A, X̄), with

X̄ = (x̄1, . . . , x̄d), x̄j =
1

h
(xj � ) , j = 1, . . . , d.

For a given signal F we put h = h(F ),  = (F ) and call the signal G =  ,h(F ) the model
signal for F . Clearly, h(G) = 1 and (G) = 0. Explicitly G is written as

G(x) =
dX

j=1

aj� (x� x̄j) .

With a certain misuse of notations, we will denote the space Pd containing the model signals G
by P̄d, and call it “the model space”. For F 2 Pd and G =  ,h(F ), the moments of G

(7.2) m̄k(F ) = mk(G) =
dX

j=1

aj x̄
k

j
, k = 0, 1, . . .

are called the model moments of F .

For a given F 2 Pd with the model signal G =  ,h(F ), we denote by Ē✏(F ) the “normalized”
error set:

Ē✏(F ) =  ,h(E✏(F )).

1Let us notice that the proof of one of the main results in [50] was incorrect, so the question remained open.
Very recently a partial confirmation of the claim of [50] was obtained in [13].

2 In contrast with Section 6.1, in [1] and here we make no probabilistic assumptions on the noise.
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The set Ē✏(F ) represents the error set E✏(F ) of F in the model space P̄d. Note that Ē✏(F ) is
simply a translated and rescaled version of E✏(F ).

The reason for mapping a general signal F into the model space is that in the case of the
nodes X forming a cluster of size h ⌧ 1, the moment coordinates centered at F ,

�
m0(F

0)�m0(F ), . . . ,m2d�1(F
0)�m2d�1(F )

�
,

turn out to be “stretched” in some directions, up to the order ( 1
h
)2d�1. In contrast, in the model

space P̄d, the coordinates system

�
m0(G

0)�m0(G), . . . ,m2d�1(G
0)�m2d�1(G)

�

is bi-Lipschitz equivalent to the standard coordinates (A, X̄) of P̄d, for all signals G with “well-

separated nodes” (see Theorem 7.2 below).

Throughout this section we will always use the maximum norm || · || on Md and on Pd and
on the nodes and amplitudes subspaces, PX

d
and PA

d
respectively. Explicitly:

For µ = (µ0, . . . , µ2d�1), µ0 = (µ0
0, . . . , µ

0
2d�1) 2 Md

||µ0 � µ|| = max k=0,1,...,2d�1|µ0
k
� µk|.

For F = (A,X), F 0 = (A0, X 0) 2 Pd,

||F � F 0|| = max (||A�A0||, ||X �X 0||).

7.2. Sketch of the results. We show that if the nodes of F form a cluster of size h ⌧ 1 and ✏
is of order h2d�1 or less then:
The ✏-error set Ē✏(F ) is a “curvilinear parallelepiped” ⇧, which closely follows the shape of the

appropriate Prony varieties passing through G. The width of ⇧ in the direction of the model

moment coordinate mk(G0)�mk(G) is of order ✏h�k.
Define the worst case reconstruction error of F as

⇢(F, ✏) = max F 02E✏(F )||F 0 � F ||.

In a similar way we define ⇢A(F, ✏) and ⇢X(F, ✏) as the worst case errors in reconstruction of the
amplitudes and the nodes of F , respectively:

⇢A(F, ✏) = max F 0=(A0,X0)2E✏(F )||A0 �A||,
⇢X(F, ✏) = max F 0=(A0,X0)2E✏(F )||X 0 �X||.

We show that the worst case reconstruction error of the amplitudes A and the signal F , ⇢A(F, ✏)
and ⇢(F, ✏), are of order ✏h�2d+1

, and, the worst case reconstruction error of the nodes X is of

order ✏h�2d+2
.

The above is shown in the following three steps:

(1) First we normalize the signal F into its model signal G =  ,h(F ), and describe in
Theorem 7.1 the e↵ect of this normalization on the image of the error set in Md. This
theorem provides a description of the error set in the “moment coordinates”, which are
not, in general, equivalent to the coordinates of the signal space, because of the discussed
singularities of the Prony mapping.

(2) The second step is to use a “Quantitative Inverse Function Theorem” in order to show
that the moment coordinates are bi-Lipschitz equivalent to the standard coordinates in
signal space, in a su�ciently large domain around G. To get accurate constants, we
improve in [1] some estimates of the norm of the inverse Jacobian JPM of the Prony
mapping, obtained in [10].
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(3) Finally, in order to get accurate bounds for the worst case error separately in the ampli-

tudes A, and in the nodes X of the reconstructed signal F , we provide in [1] accurate
estimates of the norm of the inverse Jacobian JPM composed with the projections into
the amplitudes and the nodes subspaces, PA

d
and PX

d
, of Pd.

7.3. The error set in the model signal space. For any G 2 P̄d and ✏,↵ > 0 we denote by
⇧✏,↵(G) the “curvilinear parallelepiped” consisting of all G0 2 P̄d satisfying

|mk(G
0)�mk(G)|  ✏↵k, k = 0, . . . , 2d� 1.

Notice that the Prony variety SP
q
(G) passing through G is defined by the equations

mk(G
0) = mk(G), k = 0, . . . , q,

and therefore, in the moments coordinates mk(G0) the parallelepiped ⇧✏,h(G) is ✏h�q close to
the Prony variety SP

q
(G).

Theorem 7.1. Let F 2 Pd form a cluster of size h = h(F ) and let  = (F ) be the center of

the cluster. Let G =  ,h(F ) be the model signal for F . Set ✏0 = (1+ ||)�2d+1✏ and h0 = h

1+|| .

Then for any ✏ > 0, the error set Ē✏(F ) is bounded between the following two parallelepipeds:

⇧
✏0, 1h

(G) ⇢ Ē✏(F ) ⇢ ⇧
✏,

1
h0
(G).

Specifically, for  = (F ) = 0,
Ē✏(F ) = ⇧✏,h(G).

Theorem 7.1 holds without any assumptions on the mutual relation of ✏ and h, or on the
distances between the nodes of F . It implies the following fact: the Prony varieties SP

q
(G) form

a “skeleton” of the error set Ē✏(F ), and, in case when ✏ and h tend to zero at a certain rate,

SP
q
(G) are the limits of Ē✏(F ).

Figures 1 and 2 illustrate the case d = 2, q = 2d� 2 = 2 of Theorem 7.1.

7.4. Applying quantitative Inverse Function Theorem. In order to apply this theorem,
we have to make explicit assumptions on the separation of the nodes X of the signal G, and on
the size of its amplitudes A:

Assume that the nodes x1, . . . , xd of a signal G 2 P̄d belong to the interval I = [�1, 1],
and for a certain ⌘ with 0 < ⌘  2

d�1 , d > 1, the distance between the neighboring nodes
xj , xj+1, j = 1, . . . , d� 1, is at least ⌘. We also assume that for certain m,M with 0 < m < M ,
the amplitudes a1, . . . , ad satisfy m  |aj |  M, j = 1, . . . , d. We call such signals (⌘,m,M)-
regular.

We want to show that for an (⌘,m,M)-regular signal G 2 P̄d the moment coordinates
m0(G0) � m0(G), . . . ,m2d�1(G0) � m2d�1(G) indeed form a coordinate system near G, which
agrees with the standard coordinates A, X̄ on P̄d.

Definition 7.2. For G a regular signal as above, and G0
denoting signals near G, the moment

coordinates are the functions fk(G0) = mk(G0)�mk(G), k = 0, ..., 2d� 1. The moment metric

d(G0, G00) on P̄d is defined through the moment coordinates as

d(G0, G00) = max 2d�1
k=0 |mk(G

00)�mk(G
0)|.

For any ⌫ 2 Md and R > 0 denote by QR(⌫) ⇢ Md the cube of radius R

(7.3) QR(⌫) = {⌫0 = (⌫00, . . . , ⌫
0
2d�1) 2 Md, |⌫0

k
� ⌫k|  R, k = 0, 1, . . . , 2d� 1}.

Theorem 7.2. Let G 2 P̄d be an (⌘,m,M) regular signal and ⌫ = PM(G). Then there are

constants R,C1, C2, depending only on d, ⌘,m,M , given explicitly in [1], such that:
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Figure 1. The projections of the error set Ē✏(F ) and a section of the Prony
curve SP

2 (G), for h = 0.1 and ✏ = h3.

Figure 2. The error set Ē✏(F ) and a section of SP
2 (G) for h = 0.05 and ✏ = h3.

Note the convergence of Ē✏(F ) into SP
2 (G).

(1) The inverse mapping PM�1
exists on QR(⌫) and provides a di↵eomorphism of QR(⌫)

to ⌦R(G) = PM�1(QR(⌫)).
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(2) The moment metric d(G0, G00) is bi-Lipschitz equivalent on ⌦R(G) to the maximum met-

ric ||G00 �G0|| in P̄d:

C1 d(G0, G00)  ||G00 �G0||  C2 d(G0, G00).

Assume now that the measurement error ✏  Rh02d�1, with h0 = h

1+|| as in Theorem 7.1.
Then

PM(Ē✏(F )) ✓ PM(⇧
✏,

1
h0
(G)) ⇢ QR(PM(G)).

Combing Theorems 7.1 and 7.2 we obtain that the error set Ē✏(F ) is a “deformed” paralelipiped
in P̄d as illustrated in figures 1 and 2 above.

We use regular signals G as above, to model signals with a “regular cluster”: For F 2 Pd with
h = h(F ) and  = (F ), we say that F forms an (h,, ⌘,m,M)-regular cluster if G =  ,h(F )
is an (⌘,m,M)-regular signal.

The next theorem shows that the ✏-error set is tightly concentrated around the Prony varieties.

Definition 7.3. For each 0  q  2d � 1 denote by SP
q,✏,↵

(G) the part of the Prony variety

SP
q
(G), consisting of all signals G0 2 SP

q
(G) with

|mk(G
0)�mk(G)|  ✏↵k, k = q + 1, . . . , 2d� 1.

Theorem 7.3. Let F 2 Pd form an (h,, ⌘,m,M)-regular cluster and let G =  ,h(F ) be the

model signal for F . Set h0 = h

1+|| . Then for any ✏  Rh02d�1
, the error set Ē✏(F ) is contained

within the �q-neighborhood of the part of the Prony variety SP
q,✏,

1
h0
(G), for

�q = C2

✓
1

h0

◆q

✏.

The constants R,C2 are defined in Theorem 7.2 above.

7.5. Worst case reconstruction error. We now present lower and upper bounds, of the same
order, for the worst case reconstruction error ⇢(F, ✏), defined, as above, by:

⇢(F, ✏) = max F 02E✏(F )||F 0 � F ||.

We state separate bounds for ⇢A(F, ✏) and ⇢X(F, ✏) - the worst case errors in reconstruction of
the amplitudes A = (a1, . . . , ad) and of the nodes X = (x1, . . . , xd) of F :

⇢A(F, ✏) = max F 02E✏(F )||A0 �A||, ⇢X(F, ✏) = max F 02E✏(F )||X 0 �X||.

Theorem 7.4. [Upper bound] Let F 2 Pd form an (h,, ⌘,m,M)-regular cluster. Then for

each positive ✏ 
⇣

h

1+||

⌘2d�1
R the following bounds for the worst case reconstruction errors are

valid:

⇢(F, ✏), ⇢A(F, ✏)  C2

✓
1 + ||

h

◆2d�1

✏, ⇢X(F, ✏)  C2h

✓
1 + ||

h

◆2d�1

✏,

where C2, R are the constants defined in Theorem 7.2.

Theorem 7.5. [Lower bound] Let F 2 P form an (h,, ⌘,m,M)-regular cluster then:

(1) For each positive ✏  C3h2d�1
we have the following lower bound on the worst case

reconstruction error of the nodes of F

K1✏

✓
1

h

◆2d�2

 ⇢X(F, ✏).
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(2) For each positive ✏  C4h2d�1
we have the following lower bound on the worst case

reconstruction error of F and of the amplitudes of F

K2✏

✓
1

h

◆2d�1

 ⇢(F, ✏), ⇢A(F, ✏).

Above, K1,K2, C3, C4 are constants not depending on h given explicitly in [1].

The lower and upper bounds given above are a special case of a more general result. In [1]
(Theorem 4.4) it is shown that the Prony variety SP

q
(G) can be reconstructed from the moment

measurements µ0 2 Md with improved accuracy of order ✏h�q.

8. Prony Scenarios

We keep the assumption that the nodes of our signal F form a regular cluster of a size
h ⌧ 1. By Theorem 7.3, the signal Prony curve SP(µ) approximates the error set E✏(F ) with
the accuracy of order ✏h�2d+2. Note that the accuracy of point solution is of order ✏h�2d+1.
Thus, the Prony curve SP(µ) provides a rather accurate prediction of the possible behavior of
all the noisy reconstructions of F .

In an actual solution procedure, the “true” Prony curve SP(µ) is not known. But from
the noisy measurements µ0 = (m0

0, . . . ,m
0
2d�1) we can reconstruct the Prony curve SP(µ0). This

curve, by Theorem 4.4 in [1], approximates the “true curve” SP(µ) with an accuracy of the same
(improved) order of ✏h�2d+2, with which SP(µ) approximates E✏(F ). Therefore, we can consider
this known curve SP(µ0) as a prediction (or a “scenario”) for all the noisy reconstructions of F .

Moreover, if we neglect possible errors of order ✏h�2d+2
, we can restrict the search of the

optimal Prony solution (by any method, in particular, via statistical estimations) to the curve

SP(µ0).

We do not try to give here a rigorous definition of the “Prony scenario”. Informally, this is
a collection of data on the Prony curve SP(µ0), which is necessary in order to find the optimal
Prony solution on this curve, taking into account the available a priori constraints. Certainly
we need an accurate description of the behavior of the nodes xj and the amplitudes aj along
SP(µ0) (or, better, along the polynomial Prony curve SV(µ0) ⇢ Vd), including description of the
intersection of SV(µ0) with the hyperbolicity set Hd.

Some general results in this direction were obtained in [29]:

Theorem 8.1. ( [29]) Assume that the matrix Md(µ0) is non-degenerate. Then in each case

where the nodes xi, xj collide on SP(µ0), the amplitudes ai and aj tend to infinity.

Theorem 8.2. ( [29]) Assume that the matrix Md(µ0) is non-degenerate, as well as its upper-left
(d � 1) ⇥ (d � 1) minor. Then on each unbounded component of SP,X(µ0), for the coordinate

m2d�1 on SP(µ0) tending to infinity, exactly one node (x1 or xd) tends to infinity, while the rest

of the nodes remain bounded.

The polynomial Prony curves SV can be considered as polynomials pencils. Some important
results on the behavior of the real roots in polynomial pencils are provided in [15,35]. The result
of [44] describing the behavior of roots in smooth 1-parametric families of polynomials may also
be relevant. These results naturally enter the framework of the Prony scenarios, and in [29] we
provide their more detailed treatment.
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9. Some open questions

We would like to specify some open problems in the line of this paper. Mostly they concern
the structure of the Prony varieties in the areas not covered by the inverse function theorem
(Theorem 7.2 above).

1. Description of the global topology and geometry of the Prony varieties. In the topological
study of the Vandermonde varieties in [4, 32] certain natural Morse functions were used. Can
this method be extended to the Prony varieties?

On the other hand, an explicit parametrization of the Prony varieties, described in Section
5 above, reduces the problem to the study of the intersections of the a�ne subspaces in the
polynomial space with the hyperbolic set Hd (which is motivated also by the considerations in
Section 8 above). This study looks natural also from the point of view of Singularity Theory.

2. Understanding connections between the Prony and the Vandermonde varieties. The last are
the fibers of a natural projection of the corresponding Prony varieties to the amplitudes. Is
this projection regular? What topological information on the Prony varieties can be obtained
from the known properties of the Vandermonde ones? Can information available on the Prony
varieties (in particular, their explicit parametrization, see Section 5 above) be useful in study of
the Vandermonde ones?

3. Behavior of the nodes x1, . . . , xd on the Prony varieties SP
q
(µ) ⇢ Pd near the collision

singularities. It would be important to describe an accurate asymptotic behavior of the distances
between the colliding nodes as we approach the collision point. This question can be split into
two: investigation of the intersection of the a�ne varieties SV

q
(µ) ⇢ Vd with the boundary of the

hyperbolic set Hd, and investigation of the behavior of the root mapping RM near the boundary
of Hd.

Already the case of the Prony curves is important and non-trivial.

4. Behavior of the amplitudes a1, . . . , ad on the Prony varieties SP
q
(µ) ⇢ Pd near the collision

singularities. In the case of the Prony curve, i.e. q = 2d�2, Theorem 8.1 above gives conditions
under which these amplitudes necessarily tend to infinity. It would be important to describe the
accurate asymptotic behavior of the amplitudes as we approach the collision point. We expect
that this question can be treated via methods from the classical Moment theory, combined with
the techniques of “bases of finite di↵erences” developed in [11, 53]. Also here the case of the
Prony curves is important.

5. Extending the description of the Prony varieties, and of the error amplification patterns, to

multi-cluster nodes configurations. This is a natural setting in robust inversion of the Prony
system. Generalized Prony methods as well as other reconstruction methods typically reduce
each cluster to a single node, thus forming a “reduced Prony system”. It is important to estimate
the accuracy of such an approximation (see [30] for some steps in this direction).

Because of the role of the Prony varieties in the analysis of the error amplification patterns, a
natural question is: To what extent do the Prony varieties of the reduced Prony system approxi-

mate the varieties of the “true” multi-cluster system?
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NONCOMMUTATIVE DEFORMATIONS OF THICK POINTS

OLAV ARNFINN LAUDAL

Abstract. Any commutative algebra is of course also an associative algebra, and we may
deform it as a non-commutative associative algebra. In particular this is of interest in sin-
gularity theory. It turns out that the versal base space of the non-commutative deformation
functor of a thick point, in an a�ne three-dimensional variety, has properties that are rather
astonishing. This base space is the main ingredient of a Toy Model for Quantum Theory,
published in several books and papers, see [10], [11], [12], [2].

In this paper I shall describe the problems related to the computation of the local moduli
suite, see [14], of the singularity consisting of an isolated point with a 3-dimensional tangent
space.

1. Introduction

The last time I met with Egbert Brieskorn was, I think, in 2007 at Oberwohlfach. We talked a
lot about his work on the legacy of Felix Hausdor↵. We were both children during the 2nd World
War, and we had both learned topology by reading the Grundzüge der Mengenlehre. I knew
very little about Hausdor↵’s alter ego, Paul Mongré, and I was fascinated about yet another
facet of this truly remarkable man, now well-documented by Brieskorn.

The reason why we sat down to talk, at the very end of a conference, was that Brieskorn had
some questions. I had talked about my wild idea of modeling quantum theory and cosmology,
using non-commutative deformation theory. We separated as good friends, even though I sensed
the wise man’s doubts about the endeavour.

It is therefore fitting that I, as a tribute to the always curious mathematician Egbert Brieskorn,
one of the central workers in singularity theory during my lifetime, shall explain what I think
he wanted to understand. It is a purely mathematical element of a Toy Model in physics; the
computation of the versal base space of the non-commutative deformation functor of a thick
point of imbedding dimension three.

It turns out that this base space is partitioned into a web of subspaces, the moduli suite
of the singularity, see [14]. There is a maximal entropy subspace, equal to the Hilbert scheme

Hilb(2)A3 = H̃/Z2, of two points in a�ne 3-space, and there is a minimal non-trivial room,
containing the quaternions Q

This H̃, the blow up of A3 ⇥ A3 in the diagonal �, turns out to be the base space of a
canonical family of associative k -algebras in dimension 4. The study of the corresponding
family of derivations leads to a natural way of introducing, on the tangent bundle of H̃, an
action of a Lie algebra containing the gauge group g, of the Standard Model. In particular
g/Rad = sl(2).

The fact that these results fit well with the set-up of the Standard Model, fusing our versions
of General Relativity, Yang-Mills and Quantum Field Theory, is part of another story, see [12],
[13], and [2].

http://dx.doi.org/10.5427/jsing.2018.18v
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2. Deformations and Noncommutativity

Non-commutativity comes up in algebraic geometry in many ways. In relation to deformation
theory, there are two levels, implying four di↵erent mathematical tools.

First, we may ask wether deformations of an algebraic object must necessarily be parametrized
by ”commuting” parameters, i.e. wether the classifying objects should be restricted to commu-
tative algebras, or should we accept non-commutative solutions?

Second, since any commutative algebra is also an associative algebra, should we restrict the
deformations of a commutative algebra only to the commutative ones, or may we accept a
non-commutative algebra as a deformation of a commutative one?

These questions comes up, in particular, in singularity theory. And here, in our story, it is
related philosophically to some very central questions in physics.

Is our understanding, and the mathematical models we have made of the Universe, suggesting
that not only Quantum Theory, but also our theory of gravity and space, the GRT, must be
modelled by some sort of non-commutative algebraic geometry? The literature on these questions
is huge, see [15] and later work of Majid, for a reasonably mathematical treatment, and references.

We shall first sketch the story of introducing noncommutative parameters. It turns out that
this is the first important step in developing a noncommutative algebraic geometry. The very
important fact, in the complex commutative case, that any finite-dimensional algebra is the sum
of the local rings of its points, has a nice generalization that we have called the Generalised
Burnside Theorem. This is a result that we shall use later, and that has been important in the
study of the minimal model program in classical algebraic geometry, see [1]. As a tribute to
the physics interested readers, we also add a short section on an algebraic geometric version of
entropy, to prepare for the main subject of this paper.

Since the goal of this paper is limited to a strictly mathematical result in deformation theory
of a thick point singularity, the main focus will be on the second question above. What can we
learn by deforming a commutative singularity to associative algebras?

2.1. Non-commutative Deformations of Modules. In [7], [8] and [9], we introduced non-
commutative deformations of families of modules of associative k-algebras, k a field. We shall
here recall the definitions, and the main results that will be used in the sequel.

Let a
r
denote the category of r-pointed not necessarily commutative k-algebras R. The

objects are the diagrams of k-algebras

kr
◆! R

⇡! kr

such that the composition of ◆ and ⇡ is the identity. Any such r-pointed k-algebra R is isomorphic
to a k-algebra of r ⇥ r-matrices (Ri,j). The radical of R is the bilateral ideal Rad(R) := ker⇡,
such that R/Rad(R) ' kr. The dual k-vector space of Rad(R)/Rad(R)2 is called the tangent
space of R.

The usual, category of commutative local Artinian k-algebras with residue field k, commonly
denoted by l, is of course the commutative part of a1. Fix a (not necessarily commutative)
associative k-algebra A and consider a right A-module M . The ordinary deformation functor,

Def
M

: l! Sets

is then defined.
Assuming Exti

A
(M,M) has finite k-dimension for i = 1, 2, it is well known, see [17], or [7],

that Def
M

has a pro-representing hull H, the formal moduli of M . Moreover, the tangent space
of H is isomorphic to Ext1

A
(M,M), and H can be computed in terms of Exti

A
(M,M), i = 1, 2

and their matric Massey products, see [7].
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In the general case, consider a finite family V = {Vi}ri=1 of right A-modules, and put
V := �r

i=1Vi. Assume that dimk Ext1
A
(Vi, Vj) < 1, and call any such family of A-modules

a swarm. We shall define a deformation functor,

DefV : a
r
! Sets,

generalising the functor Def
M

above. Given an object ⇡ : R = (Ri,j) ! kr of a
r
, consider the

k-vector space and left R-module (Ri,j ⌦k Vj). It is easy to see that

EndR((Ri,j ⌦k Vj)) ' (Ri,j ⌦k Homk(Vi, Vj)).

Clearly ⇡ defines a k-linear and left R-linear map

⇡(R) : (Ri,j ⌦k Vj)! �r

i=1Vi

inducing a homomorphism of R-endomorphism rings,

⇡̃(R) : (Ri,j ⌦k Homk(Vi, Vj))! �r

i=1Endk(Vi).

The right A-module structure on the V 0
i
s is defined by a homomorphism of k-algebras,

⌘0 : A! �r

i=1Endk(Vi) ⇢ (Homk(Vi, Vj)) =: Endk(V ).

Notice that this homomorphism also provides each Homk(Vi, Vj) with an A- bimodule structure.
Let DefV(R) 2 Sets be the set of isoclasses of homomorphisms of k-algebras,

⌘0 : A! (Ri,j ⌦k Homk(Vi, Vj))

such that, ⇡̃(R) � ⌘0 = ⌘0, where the equivalence relation is defined by inner automorphisms in
the R-algebra (Ri,j ⌦k Homk(Vi, Vj)) inducing the identity on �r

i=1Endk(Vi). One easily proves
that DefV has the same properties as the ordinary deformation functor and we may prove the
following, see [7]:

Theorem 2.1. The functor DefV has a pro-representable hull, i.e. an object H := H(V) of

the category of pro-objects â
r
of a

r
, together with a versal family

Ṽ = (Hi,j ⌦ Vj) 2 lim �
n�1

DefV(H/mn)

where m = Rad(H), such that the corresponding morphism of functors on a
r

 : Mor(H,�)! DefV

defined for � 2 Mor(H,R) by (�) = R ⌦� Ṽ , is smooth, and an isomorphism on the tangent

level. H is uniquely determined by a set of matric Massey products defined on subspaces

D(n) ✓ Ext1(Vi, Vj1)⌦ · · ·⌦ Ext1(Vjn�1 , Vk)

with values in Ext2(Vi, Vk).
Moreover, the right action of A on Ṽ defines a homomorphism of k-algebras,

⌘ : A �! O(V) := EndH(Ṽ ) = (Hi,j ⌦Homk(Vi, Vj)).

The k-algebra O(V), called the ring of observables of V, acts on the family of A-modules {Vi}ri=1,

extending the action of A.

If dimkVi < 1, for all i = 1, . . . , r, the operation of associating (O(V),V) to (A,V) is a

closure operation.

There is a very useful result, see [8], [9],[2],
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Theorem 2.2 (A Generalised Burnside Theorem). Let A be a finite-dimensional k-algebra, k
an algebraically closed field. Consider the family V = {Vi}ri=1 of all simple A-modules, then

⌘ : A �! O(V) = (Hi,j ⌦Homk(Vi, Vj))

is an isomorphism. Moreover the k-algebras A and H are Morita-equivalent.

We also prove that there exists, in the non-commutative deformation theory, an obvious
analogy to the notion of pro-representing (modular) substratum H0 of the formal moduli H, see
[5]. The tangent space of H0 is determined by a family of subspaces

Ext10(Vi, Vj) ✓ Ext1
A
(Vi, Vj), i 6= j

the elements of which should be called the almost split extensions (sequences) relative to the
family V, and by a subspace, that we denote,

T0(�) ✓
Y

i

Ext1
A
(Vi, Vi)

which is the tangent space of the deformation functor of the full subcategory of the category
of A-modules generated by the family V = {Vi}ri=1, see [6]. If V = {Vi}ri=1 is the set of all
indecomposable’s of some Artinian k-algebra A, we show that the above notion of almost split

sequence coincides with that of Auslander, see [16].

2.2. Local Moduli and Entropy. Consider an algebraic geometric object X, and let aut(X)
be the Lie algebra of infinitesimal automorphisms of X. The sub-Lie algebra aut0(X) that lifts
to the formal moduli of X, is a Lie ideal. Put a(X) := aut(X)/aut0(X), then if X(t) is a
deformation of some X along a parameter t, we find dimka(X(t))  dimka(X). One may phrase
this saying that an object X can never gain information when deformed. Moreover, deformation
is, obviously, not a reversible process, so information can get lost. This measure of information
losses, is related, as we shall see, to the notion of gain of entropy (en-ergy and tropos=transform)
coined by Clausius (1865) and generalised by Boltzmann and Shannon.

In [14], studying moduli problems of singularities in (classical) algebraic geometry, we were
led to consider the notion of Modular Suite. This is a canonical partition {M↵}, of the versal
base space, M, of the deformation functor of an algebraic object, X. The di↵erent rooms,
M↵, correspond to the subsets of equivalence classes of deformations in M, along which the Lie
algebra a := aut/aut0 deforms as Lie-algebras, and therefore conserves its dimension. Working
with Thermodynamics, it occurred to me that the notion of entropy has an interesting parallel
in deformation theory. In fact I have proposed the following,

Definition 2.3. Fix an object X, and let X(t) corresponds to the point t 2M↵, then we shall

term Entropy, of the state t, the integer,

S(t) := dimk(M↵).

In this classical situation, assuming that the field is algebraically closed, and thatM is of finite
Krull dimension, the modular suite {M↵} is finite, with an inner room, the modular substratum

and an ambiant (open) maximal entropy stratum. But the structure of the modular suite may
be very complex, even for simple singularities X, see the example of the quasi homogenous plane
curve singularity x5

1 + x11
2 , in [14].

It is also clear that for any algebraic dynamics in M, the entropy will always stay or grow, see
again [14]. To be able to construct situations where the entropy is lowered, or the information
goes up, we must leave classical algebraic geometry, and venture into non-commutative algebraic
geometry, see [2].

In the general situation, where our algebras of observables are associative but not necessarily
commutative, the first interesting cases are deformations of associative algebras, see [13].
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2.3. Deformations of Associative Algebras. Given an associative k-algebra A, The tangent
space of the formal moduli of A, as an associative k-algebra is, by deformation theory, see [5],
and [14],

T? := A1(k,A;A) = HomF (ker⇢, A)/Der,

where, ⇢ : F ! A is any surjective homomorphism of a free k-algebra F , onto A, HomF

means the F -bilinear maps, and Der denotes the subset of the restrictions to I := ker⇢ of the
k-derivations from F to A.

As an example, let A = k[x1, .., xd] be the polynomial algebra, then we find,

A1(k,A;A) = HomF (ker⇢, A)

where F = k < x1, .., xd >, and ker⇢ =< [xi, xj ] >, and any element in A1(k,A;A) is a
generalised Poisson structure. The technique for this general deformation theory, can be found
in loc.cit. [5], see also [4], and we prove the same type of theorems as for modules over an
associative algebra,

Now, let us consider the rather innocent singularity,

U := k[x1, x2, x3]/(x1, x2, x3)
2,

as an associative algebra. U is, geometrically, an isolated point, with a 3-dimensional tangent
space. We shall be interested in the versal base space for the deformation-functor of U , as
associative algebra.

The tangent space of the formal moduli of the singularity

U := k[x1, x2, x3]/(x1, x2, x3)
2,

as an associative k-algebra is now,

T? := A1(k, U ;U) = HomF (ker⇢, U)/Der,

where, ⇢ : F ! U is the obvious surjection of the free k-algebra F = k < x1, x2, x3 >, with
ker⇢ = (x)2, generated as F bi-module by the family {xi,j := xixj}.

Any F -bilinear morphism � : (x)2 ! U , must be of the form,

�(xi,j) = a0
i,j

+
3X

l=1

al
i,j
xl

and the bilinearity is seen to imply that a0
i,j

= 0. Thus, the dimension of HomF (I, U) is 27.
Any derivation � 2 Der, must be given by,

�(xi) = b0
i
+

3X

l=1

bl
i
xl

and the restriction of this map, to the generators of I = (x)2, must have the form,

�(xi,j) = b0
j
xi + b0

i
xj ,

therefore determined by the b0
i
s. It follows that the tangent space T? is of dimension 27-3=24.

Now, let o, p 2 A3, be two points, o = (o1, o2, o3), p = (p1, p2, p3), with respect to the
coordinate system, x, and put,

�o,p(xi,j) = pjxi + oixj ,

then it is easy to see that the maps {�o,p} generate a 6-dimensional sub vector subspace T0 of
T?. Notice that, if o = p then �o,p, is a derivation, thus 0 in T?.
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Moreover, the rather unexpected happens. We may integrate the tangent subspace T0, and
obtain a family of flat deformations of U . In fact, it is easy to see that,

U(o, p) := k < x1, x2, x3 > /(xixj � oixj � pjxi + oipj),

is an associative k-algebra of dimension 4, and a deformation of U , in a direction of H. This
defines a family of associative H := k [o, p]-algebras,

U := H < x1, x2, x3 > /(xixj � oixj � pjxi + oipj).

Let us put,

xi,j := (xi � oi)(xj � pj) = xixj � oixj � pjxi + oipj , o := (o1, o2, o3), p = (p1, p2, p3) 2 H3,

Notice that if o = p then U(o, p) is isomorphic to U , as it should, and that, U(o, p) ' U(�o,�p).
Moreover, for any non-zero element  2 k, and any 3-vector c 2 A3, we have,

U(o, p) ' U(o,p), U(o, p) ' U(o� c, p� c).

Choosing c = 1/2(p + o), we find o0 := o � c = �(p � c) =: �p0, and it is easy to see that if
o0 6= 0 the sub Lie algebra generated by {x1, x2, x3} in U(o0, p0), is isomorphic to the standard
3-dimensional Lie algebra with relations, [y1, y2] = y2, [y1, y3] = y3, [y2, y3] = 0. Moreover,
choosing c = (p+ o), we find an isomorphism,

U(o, p) ' U(�p,�o) ' U(p, o),

which should be related to the obvious action of Z2 on H, which again might be related to the
CPT-equivalence in physics, see [12], (4.9).

Let ✏i,j,k and �i,j be the usual indices, the first one nonzero only for {i, j, k} = {1, 2, 3}, and
the last one the usual delta function. Then the algebra,

Q := k < x1, x2, x3 > /(xixj � ✏i,j,kxk + �i,j),

is isomorphic to the quaternions, which therefore is another non-trivial deformation of U . Notice
that we here have used the ordinary notation for summation, by repeating indexes. Notice, for
eventually later use that the discoverer of the Quaternions, Hamilton, wrote about his algebra
as the science of pure time, see [3].

Consider now the restriction to the subscheme H ��, of the family U, denoted by,

⌫0 : U0 ! H ��.

Let H̃ be the blown up of H, in �, and recall that,

H := Hilb(2)A3 = H̃/Z2.

Since for all non-zero  2 k, we have U(�+ u,�u+ �) ' U(u,�u) ' U(u,�u), this family
extends uniquely to a family,

⌫ : Ũ! H̃,

compatible with the action of Z2.
Let us compute the algebras U(o, p), and their Lie algebras of derivations, g(t) := Derk(U(t)).
First, the 4-dimensional k-algebras U(o, p), with relation,

xi,j = (xi � oi)(xj � pj),

with, o 6=p, are all isomorphic, since in this case there is an element ↵ 2 Glk(3) sending (o, p)
onto any other pair (o0, p0), with o0 6= p0. Let us see this, using the generalised Burnside theorem,
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see [12], (3.2). Obviously U(o, p) has only two simple representations, of dimension 1, call them
ko and kp. By the O-construction, there is an isomorphisme,

⌘ : U(o, p)!
✓

H1,1 ⌦ End(ko) H1,2 ⌦Homk(ko, kp)
H2,1 ⌦Homk(kp, ko) H2,2 ⌦ Endk(kp)

◆
,

where, H1,1 is a formal algebra with tangent space Ext1
U(o,p)(ko, ko), H2,2 is a formal algebra

with tangent space Ext1
U(o,p)(kp, kp), and H1,2, respectively H1,2, is a bi-module generated by

Ext1
U(o,p)(ko, kp)

?, respectively by Ext1
U(o,p)(kp, ko)

?. There are no problems computing the
Ext-groups. Recall that

Ext1
U(o,p)(V1, V2) = Derk(U(o, p), Homk(V1, V2))/Triv,

and that u 2 U(o, p) operates on � 2 Homk(V1, V2), as,

(u�)(v1) = u�(v1), (�u)(v1) = �(uv1).

In the general case (one may test it in the interesting case, o = (1, 0, 0), p = (0, 0, 0) above), we
obtain,

Ext1
U(o,p)(ko, ko) = Ext1

U(o,p)(kp, kp) = Ext1
U(o,p)(ko, kp) = 0, Ext1

U(o,p)(kp, ko) = k2.

Therefore,

⌘ : U(o, p)!
✓

k 0
< ⇠1, ⇠2 > k

◆

is an isomorphism. Here ⇠i · 1 = ⇠i. We may pick generators of this algebra,

x1 :=

✓
0 0
⇠1 0

◆
, x2 :=

✓
0 0
⇠2 0

◆
, x3 :=

✓
1 0
0 �1

◆
,

and obtain the relations corresponding to the choice of o = (0, 0,�1), p = (0, 0, 1). We have
therefore obtained an algebraic subspace H̃, of the miniversal base space M of the algebra
U , corresponding to the algebras U(o, p) that are all isomorphic. This subspace is therefore a
trivialising section of this miniversal base space.

Remark 2.4. Deformations of U(o,p)

Using the same technique as above, computing the deformations of one of these isomorphic

algebras, we may show that the tangent space of DefU(o,p) is trivial. In fact, as above, this

tangent space is given by,

A1(U(o, p), U(o, p)) = HomF (J, U(o, p))/Der,

where J = ker(⇡) and ⇡ : F ! U(o, p) is a surjective homomorphism of the free k-algebra

F = k < x1, x2, x3 > onto U(o, p). Obviously J = ker(⇡) is generated by the elements

{xi,j := xixj � oixj � pjxi + oipj},

and we have in J the relations,

xi,jxk + oixj,k + pjxi,k = xixj,k + ojxj,k + pkxi,j .

Let o = (1, 0, 0), p = (0, 1, 0), then an easy, but quite lengthy computation shows that these

relations implies that any bilinear homomorphism, c 2 HomF (J, U(o, p)), is the restriction of a

derivation, � 2 Derk(F,U(o, p)), proving that,

A1(U(o, p), U(o, p)) = 0.
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Notice that any automorphism of U is reduced to a substitution,

yi :=
3X

k=1

↵i,kxk,↵ := (↵i,k) 2 Glk(3).

If we change the coordinates, of the point pair (o, p), by the automorphism above, then with
obvious indexes,

Ux(o, p) ' Uy(↵(o),↵(p)).

3. Local Gauge Group

Borrowing notions from quantum physics, we shall call the principal Lie algebra bundle on
the space, H̃,

g := DerH(U)

the local gauge group of the H-representation ⇥H .

3.1. Computation of g, and its Action. Any element � 2 DerH(U) must be given by its
values on the coordinates,

�(xi) = �0
i
+ �1

i
x1 + �2

i
x2 + �3

i
x3, �j

i
2 H.

Now, let us define,
⇥̃

H̃
:= { 2 End

H̃
(U),(1) = 0}.

Oviously,
g ⇢ ⇥̃.

Any  2 ⇥̃
H̃

will correspond to i := (xi) 2 U, i = 1, 2, 3, i.e. to a matrix of the type,

M :=

0

BB@

0 0 0 0
0
1 1

1 2
1 3

1

0
2 1

2 2
2 3

2

0
3 1

3 2
3 3

3

1

CCA ,

where, i := (0
i
,1

i
,2

i
,3

i
),j

i
2 H. Moreover, it is clear that ⇥̃ is a Lie algebra, and that g is

a natural sub-Lie algebra, of this matrix algebra.
Put,

ō = (1, o1, o2, o3), p̄ = (1, p1, p2, p3),

and consider now the 4-vectors,

�i = (�0
i
, �1

i
, �2

i
, �3

i
), i = 1, 2, 3.

Suppose � 2 g, then computing in U, we find the formula,

�(xixj � oixj � pjxi + oipj) = (�i · ō)xj � (�i · ō)pj + xi(�j · p̄)� oi(�j · p̄)
which leads to,

� 2 DerH(U)

if and only if, �(xixj � oixj � pjxi + oipj) = 0, therefore, if and only if,

�i · ō = �i · p̄ = 0, i = 1, 2, 3.

Given a point t = (o, p) 2 H, let us compute the Lie algebra g(t) := Derk(U(t)). Any element
� 2 Derk(U(t)) must have the form,

�(xi) = �0
i
+ �1

i
x1 + �2

i
x2 + �3

i
x3, �p

i
2 k.

Put, as above, ō = (1, o1, o2, o3), p̄ = (1, p1, p2, p3), and consider the 4-vectors

�i = (�0
i
, �1

i
, �2

i
, �3

i
), i = 1, 2, 3.
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As above, we find that � 2 Derk(U(t)) if and only if �i · ō = �i · p̄ = 0, i = 1, 2, 3.
The tangent space ⇥H,t of H, at t, is represented by the space of all pairs of 3-vectors, (⇠, ⌫)

and we are interested in the action of g(t) on this tangent space. Since all U(o, p) are isomorphic,
there must, for any tangent, (⇠, ⌫), exist an isomorphism of k[✏]-algebras,

⌘ : U(o, p)⌦ k[✏]! U(o+ ⇠✏, p+ ⌫✏),

commuting with the projection onto U(o, p). It must be given by formulas,

⌘(xi) = xi + (xi)✏, (xi) = 0
i
+ 1

i
x1 + 2

i
x2 + 3

i
x3 2 U(o, p), i = 1, 2, 3.

Put i := (0
i
,1

i
,2

i
,3

i
), then,

 2 ⇥̃k.

A little computation now shows that we must have,

⇠i = i · o, ⌫i = i · p, i = 1, 2, 3.

Therefore, given a point t = (o, p), and the corresponding generators {xi, i = 1, 2, 3} of U(o, p),
any  2 ⇥̃k will correspond to i := (xi) 2 U(o, p), i = 1, 2, 3, and therefore to a tangent of H
at the point t = (o, p),

(⇠ =  · o, ⌫ =  · p) 2 ⇥H,t.

We therefore find an exact sequence of bundles on H̃,

0! g! ⇥̃
H̃
! ⇥

H̃
! 0.

The Lie algebra g, is now seen to operate naturally on ⇥̃
H̃
, corresponding to exactly the operation

above, drawn from the deformation theory of algebras. Any � 2 g, operates on  2 ⇥̃
H̃

as
�() = � · �  · �. Since � · o = � · p = 0, we find

�(⇠, ⌫) = (�(⇠), �(⌫)) := (�()o, �()p).

Observe that, since (o� p) = (o� p), the Lie algebra representation of g on the tangent space
⇥

H̃,t
, at the point t = (o, p), kills the subspace generated by the vectors {⇠ = (o�p), ⌫ = (o�p))}.

If o 6= p, it follows that ō and p̄, are linearly independent, in a 4-dimensional vector space,
therefore each vector �i, i = 1, 2, 3 is confined to a 2-dimensional vector space. Consequently,
g(t) := Derk(U(t)) is of dimension 6. Using the isomorphism, U(o, p) ' U(o�c, p�c), mentioned
above, we may choose coordinates such that o = (0, 0, 0), p = (1, 0, 0).

In fact, we may first put c = o, and reduce to the situation where o = 0, and p is a non-zero
3-vector. Any � 2 Derk(U(o, p)) will then be represented by a matrix of the form,

M :=

0

@
�11 �21 �31
�12 �22 �32
�13 �23 �33

1

A ,

where M(p) = 0, and we know that the Lie structure is the ordinary matrix Lie-products. Now,
clearly we may find a nonsingular matrix N such that N(p) = (1, 0, 0), and the Lie algebra of
matrices M , will be isomorphic to the Lie-algebra of the matrices, NMN�1, which are those
corresponding to p = e1 := (1, 0, 0), and we are working with U(0, e1). Notice that in this
picture, the fundamental vector op = (1, 0, 0). With this we find that, � 2 g(t) imply,

�0
i
= �1

i
= 0, i = 1, 2, 3.

The following result is now easily seen.
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Theorem 3.1. The Lie algebra g(t) is isomorphic to the Lie algebra of matrices of the form,

0

@
0 �21 �31
0 �22 �32
0 �23 �33

1

A .

The radical r, is generated by 3 elements, {u, r1, r2}, with

u =

0

@
0 0 0
0 1 0
0 0 1

1

A , r1 =

0

@
0 1 0
0 0 0
0 0 0

1

A , r2 =

0

@
0 0 1
0 0 0
0 0 0

1

A ,

where u /2 [g, g], [u, ri] = �ri, [r1, r2] = 0, and the quotient,

g(t)/r = sl(2).

with the usual generators h, e, f ,

h =

0

@
0 0 0
0 1 0
0 0 �1

1

A , e =

0

@
0 0 0
0 0 1
0 0 0

1

A , f =

0

@
0 0 0
0 0 0
0 �1 0

1

A .

In particular, we find that sl(2) ⇢ g(t).

Remark 3.2. The tangent space at a point t 2 H, decomposes into,

⇥H,t = �̃� c̃

where, �̃ = {(⇠, ⇠)}, c̃ = {(⌫,�⌫)}, ⇠, ⌫ 2 k3. We know that the action of g kills the tangent

vectors of the type ((o�p), (p�o)), or ((o�p), (o�p)), and the operator h, generating the Cartan

subalgebra of g, picks out two eigenvectors, together forming a unique homogenous coordinate

system for ⇥H,t,

{d1, d2, d3} ⇢ �̃, {c1, c2, c3} ⇢ c̃,

where, d3 = (o� p, o� p), c3 = (o� p, (p� o)), d1 and c1 positive eigenvectors for h, and d2 and

c2 negative eigenvectors for h.

With this done, we may write up the action of g on ⇥H .

3.2. Action of the Local Gauge Group in Canonical Coordinates. If

o = (0, 0, 0), p = (1, 0, 0),

then we have seen that the Lie algebra g(t) comes out isomorphic to the Lie algebra of matrices
of the form, 0

@
0 �21 �31
0 �22 �32
0 �23 �33

1

A .

The radical r, is generated by 3 elements, {u, r1, r2}, with

u =

0

@
0 0 0
0 1 0
0 0 1

1

A , r1 =

0

@
0 1 0
0 0 0
0 0 0

1

A , r2 =

0

@
0 0 1
0 0 0
0 0 0

1

A ,

where u /2 [g, g], and

[u, ri] = �ri, [r1, r2] = 0 and the quotient g(t)/r = sl(2).



NONCOMMUTATIVE DEFORMATIONS OF THICK POINTS 437

with the usual generators h, e, f ,

h = u0 =

0

@
0 0 0
0 1 0
0 0 �1

1

A , e = u1 =

0

@
0 0 0
0 0 1
0 0 0

1

A , f = u2 =

0

@
0 0 0
0 0 0
0 1 0

1

A .

In particular, we find that sl(2) ⇢ g(t).
Notice also that, in this case, the unique 0-tangent line at the point

t0 = (o, p), o = (0, 0, 0), p = (1, 0, 0),

killed by g, is represented by the pair d3 := ((1, 0, 0), (1, 0, 0)), and the unique light-velocity line
is represented by c3 := ((1, 0, 0), (�1, 0, 0)).

Let d1 := ((0, 1, 0), (0, 1, 0)), d2 := ((0, 0, 1), (0, 0, 1)) and let c1 := ((0, 1, 0), (0,�1, 0)),
c2 := ((0, 0, 1), (0, 0,�1)). Then {c1, c2, c3, d1, d2, d3} is a basis for the tangent space ⇥t0

, and

{d1, d2, d3} is a basis for �̃t0
.

We observe that the generator h of the Cartan subalgebra h ⇢ g acts in this basis as,

h =

0

BBBBBB@

1 0 0 0 0 0
0 �1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 �1 0
0 0 0 0 0 0

1

CCCCCCA

which makes the choice of basis above canonical, i.e. determines {c1, c2, d1, d2} as (±1) eigen-
vectors of h, in c̃, resp. in �̃. The actions of the gauge fields g can then be given canonically:
The generators, h, e, f 2 sl(2) ⇢ g act, in the above basis, like,

h =

0

BBBBBB@

1 0 0 0 0 0
0 �1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 �1 0
0 0 0 0 0 0

1

CCCCCCA
,

e =

0

BBBBBB@

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA
,

f =

0

BBBBBB@

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

1

CCCCCCA
.
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The generators, u, r1, r2 2 rad(g) act, in the above basis, like,

u =

0

BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

1

CCCCCCA
,

r1 =

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

1

CCCCCCA
,

r2 =

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

1

CCCCCCA
.
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honor of Prof. José Luis Vicente Cordoba, Sevilla 2001. Revista Matematica Iberoamericana.19 (2003),
1-72.

[10] O. A. Laudal (2003) The structure of Simpn(A) (Preprint, Institut Mittag-Le✏er, 2003-04.) Proceedings
of NATO Advanced Research Workshop, Computational Commutative and Non-Commutative Algebraic
Geometry. Chisinau, Moldova, June 2004.

[11] O. A. Laudal (2005) Time-space and Space-times Conference on Noncommutative Geometry and Repre-
sentatioon Theory in Mathematical Physics. Karlstad, 5-10 July 2004. Ed. Jürgen Fuchs, et al. American
Mathematical Society, Contemporary Mathematics, Vol. 391, 2005. ISSN: 0271-4132.

[12] O. A. Laudal (2011) Geometry of Time Spaces World Scientific, (2011).
[13] O. A. Laudal (2013) Mathematics in the 21st Century Springer Proceedings in Mathematics and Statistics,

ed. P.Cartier et al. Springer Basel 2014.
[14] O. A. Laudal and G. Pfister (1988) Local moduli and singularities Lecture Notes in Mathematics, Springer

Verlag, vol. 1310, (1988) DOI: 10.1007/BFb0078937

https://doi.org/10.1215/00127094-3449887
https://doi.org/10.1007/BFb0075462
https://doi.org/10.1007/BFb0078937


NONCOMMUTATIVE DEFORMATIONS OF THICK POINTS 439

[15] Shahn Majid. (1995) Algebraic Approach to quantum gravity. Relative Realism and Foundation of quantum
theory, Cambridge University Press (1995).

[16] I. Reiten. An introduction to representation theory of Artin algebras Bull. London Math. Soc. 17 (1985),
209–233. DOI: 10.1112/blms/17.3.209

[17] M. Schlessinger. Functors of Artin rings Trans. Amer. Math. Soc. 130 (1968), 208–222.

Olav Arnfinn Laudal, Matematisk institutt, University of Oslo, Pb. 1053, Blindern, N-0316 Oslo,

Norway

Email address: arnfinnl@math.uio.no

https://doi.org/10.1112/blms/17.3.209


Journal of Singularities
Volume 18 (2018), 440-454

Special volume in honor of the life
and mathematics of Egbert Brieskorn

DOI: 10.5427/jsing.2018.18w

STRATA OF DISCRIMINANTAL ARRANGEMENTS

ANATOLY LIBGOBER AND SIMONA SETTEPANELLA

In memory of Brieskorn

Abstract. We give an explicit description of the multiplicities of codimension two strata
of discriminantal arrangements introduced by Manin and Schechtman. As applications, we
discuss the connection of these results with properties of Gale transform and we calculate the
fundamental groups of the complements to discriminantal arrangements.

1. Introduction

In 1989, Manin and Schechtman ([13]) introduced a family of arrangements of hyperplanes
generalizing classical braid arrangements, which they called the discriminantal arrangements
(p.209 [13]). Such an arrangement B(n, k,A

0), n, k 2 N for k � 2 depends on a choice
A

0 = {H
0
1
, ..., H

0
n
} of a collection of hyperplanes in the general position in Ck, i.e., such that

dim
T

i2K,Card K=k
H

0

i
= 0. It consists of parallel translates of H

t1
1

, ..., H
tn
n

, (t1, ..., tn) 2 Cn

which fail to form a general position arrangement in Ck. B(n, k,A
0) can be viewed as a gen-

eralization of the pure braid group arrangement ([16]) with which B(n, 1) = B(n, 1,A0) coin-
cides. These arrangements have several beautiful relations with diverse problems in the areas
such as combinatorics (see [13] and also [4], which is an earlier appearance of discriminantal
arrangmements), the Zamolodchikov equation with its relation to higher category theory (see
Kapranov-Voevodsky [8]), and the vanishing of cohomology of bundles on toric varieties ([17]).

The aim of this note is to study the dependence of B(n, k,A
0) on the data A

0 = {H
0
1
, ..., H

0
n
}.

Paper [13] concerns the arrangements B(n, k,A
0) for which the intersection lattice is constant

when A
0 varies within a Zariski open set Z in the space of general position arrangements.

However [13] does not describe the set Z explicitly. It was shown in [6] that, contrary to what
was frequently stated (see for instance [15], sect. 8, [16] or [10]), the combinatorial type of
B(n, k,A

0) indeed depends on the arrangement A
0 . This was done by providing an example

of a discriminantal arrangement with a combinatorial type distinct from the one which occurs
when A

0 varies within the Zariski open set Z. Few years later, in [1], Athanasiadis provided
a full description of combinatorics of B(n, k,A

0) when A
0 belongs to Z. In particular, in this

case, codimension 2 strata of B(n, k,A
0) only have a multiplicity equal to 2 or k+2 . Following

[1], we call arrangements A0 in Z very generic.
Our main result describes a necessary and su�cient geometric condition on arrangement A0

assuring that B(n, k,A
0) admits codimension 2 strata of multiplicity 3.

This condition is given in terms of a notion of dependency for the arrangement A1 in Pk�1 of
hyperplanes H1,1, ...H1,n which are the intersections of projective closures of H

0
1
, ..., H

0
n
2 A

0

with the hyperplane at infinity. Consider three groups of s 2 Z�1 hyperplanes in P2s�2 such
that together these 3s hyperplanes are in general position in P2s�2. If the three subspaces
corresponding to this split in groups, each being the intersection of hyperplanes in each group,

2000 Mathematics Subject Classification. 52C35 52B35 20F36 14-XX 05B35.
Key words and phrases. discriminantal arrangements, braid groups, fundamental groups, Gale transform.
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span a hyperplane in P2s�2, we say that the arrangement of 3s hyperplanes in P2s�2 is dependent
(Definition 3.3 in Section 3). This dependence condition defines a proper Zariski closed subset
of the space of arrangements of 3s hyperplanes in P2s�2 in general position. Our main result
(Theorem 3.9) shows that B(n, k,A

0), k > 1 admits a codimenion two stratum of multiplicity
3 if and only if A1 is an arrangement in Pk�1 admitting a restriction1 which is a dependent
arrangement .

Subsequently, in Section 4, we interpret this result in terms of the Gale transform. The
relation between discriminantal arrangements and the Gale transform can be seen, at least
implicitly, already in paper [6]. From this view point our result asserts an equivalence of certain
types of collinearity: the dependency of A1 is equivalent to presence of dependencies in the Gale
transform which in turn is equivalent to the presence of strata of multiplicity 3 in an arrangement
B(n, k,A

0). We shall give a direct verification of such equivalences using the interpretation of
Gale transform of six-tuples of point in P2 in terms of del Pezzo surfaces given in [5]. More
precisely, an arrangement B(6, 3,A0) depends on arrangement at infinity A1, which in this case
is a six-tuple of lines in P2, or equivalently, a six-tuple (A1)⇤ of points in the dual plane. A
general position arrangement A1 is dependent if and only if the del Pezzo surface, which is the
blow up of P2 at six-tuple (A1)⇤, admits an Eckardt point (cf. subsection 4.2). On the other
hand, the interpretation of B(6, 3,A0) via Gale transform, described in subsection 4.1, shows that
presence in B(6, 3,A0) of codimension two strata of multiplicity 3 is equivalent to the following:
the Gale transform of (A1)⇤ is a six-tuple G(A1)⇤ such that blow up of P2 at G(A1)⇤ is a del
Pezzo surface admitting an Eckardt point. Hence the main result in the Theorem 3.9, in the case
of discriminantal arrangments B(6, 3,A0), becomes an invariance of existence of Eckardt points
in the Gale transform. We show that this can be verified directly (see subsection 4.2).

Finally we supplement R.Lawrence’s presentation ([10]) by giving a presentation of the fun-
damental group in the case of non very generic arrangements (i.e. for which A

0
/2 Z). In fact,

we give calculations yielding the braid monodromy and hence a presentation of the fundamental
group of the complement to a discriminantal arrangement in all cases.

Notice that in the case k = 1, the complement to the discriminantal arrangement B(n, 1)
coincides with the configuration space of ordered n-tuples of points in C. A natural generalization
of this configuration space to the case k � 2 is the space of arrangements of hyperplanes in Ck

in a general position. This is a Zariski open in the product of n copies of spaces of a�ne
hyperplanes in Ck. The fundamental group of this space is another natural candidate for a
generalization of the pure braid group. Our result shows the di�culty with a calculation of this
fundamental group: natural maps between spaces B(n, k,A

0) for various n, k, which in the case
k = 1 lead to the presentation of the pure braid group fail to be locally trivial fibrations and
hence fails to produce an exact sequence of fundamental groups. For example, intersections of
projective closures of arrangements in Ck with the hyperplane at infinity, yields a map from
the space of general position arrangements in Ck to the space of general position arrangements
in Pk�1. Our result shows that this map is a locally trivial fibration only over the space of
very general position arrangements in Pk�1. Calculation of the fundamental groups of spaces of
general position arrangements of lines will be addressed elsewhere.

The content of the paper is the following. In Section 2, we introduce several notions used later
and recall definitions from [13]. Section 3 contains one of the main results of this paper, Theorem
3.9, describing the codimension 2 strata of discriminantal arrangements having multiplicity 3 and
showing an absence of codimension 2 strata having a multiplicity di↵erent from 2, 3 and k+2. The
Section 4 contains the interpretation of the results in Section 3 in terms of the Gale transform.

1Here restriction is the standard restriction of arrangements to subspaces as defined in [16] (see also equation
(8) in this paper).
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The last Section describes the braid mondromy and fundamental groups of the complements to
discriminantal arrangements.

Finally, the authors2 wants to thank I.Dolgachev for a useful comment on the material in
Section 4, B. Guerville-Balle for useful comments and Max Planck Institute and University of
Hokkaido for hospitality during visits to these institutions where much of the work on this project
was done.

2. Preliminaries

2.1. Discriminantal arrangements. Let H
0

i
, i = 1, ..., n, be a general position arrangement in

Ck
, k < n, i.e., a collection of hyperplanes such that dim

T
i2K,

CardK=k

H
0

i
= 0. The space of parallel

translates S(H0
1
, ..., H

0
n
) (or simply S when the dependence on H

0

i
is clear or not essential) is the

space of n-tuples H1, ..., Hn such that either Hi \ H
0

i
= ; or Hi = H

0

i
for any i = 1, ..., n. One

can identify S with an n-dimensional a�ne space Cn in such a way that (H0
1
, ..., H

0
n
) corresponds

to the origin.
We will use the compactification of the arrangement (H0

1
, ...., H

0
n
) obtained by viewing the

ambient space Ck as Pk
\H1 endowed with a collection of hyperplanes H̄

0

i
which are projective

closures of a�ne hyperplanes H
0

i
. The condition of genericity is equivalent to

S
i
H̄

0

i
being a

normal crossing divisor in Pk. The space S can be identified with product L1 ⇥ . . . ⇥ Ln where
Li ' C is the pencil of hyperplanes spanned by H1 and H

0

i
parametrized by P1 with the

deleted point. The latter corresponds to H1 and the origin to H
0

i
. In particular, an ordering of

hyperplanes in A determines the coordinate system in S.
For a general position arrangement A in Ck formed by hyperplanes Hi, i = 1, ..., n, the trace

at infinity (denoted by A1) is the arrangement formed by hyperplanes H1,i = H̄
0

i
\ H1.

An arrangement A (or its trace A1) determines the space of parallel translates S(H0
1
, ..., H

0
n
)

(as a subspace in the space of n-tuples of hyperplanes in Pk).
For a general position arrangement A1, we consider the closed subset of S(H0

1
, ..., H

0
n
) formed

by those collections which fail to form a general position arrangement. This subset is a union of
hyperplanes with each hyperplane corresponding to a subset K = {i1, ..., ik+1} ⇢ {1, ..., n} and
consisting of n-tuples of translates of hyperplanes H

0
1
, ..., H

0
n
in which translates of H

0

i1
, ..., H

0

ik+1

fail to form a general position arrangement (equations are given by (3) below). Such a hyperplane
will be denoted DK . The corresponding arrangement will be denoted B(n, k,A) and called the
discriminantal arrangement corresponding to A.

The cardinality of B(n, k,A) is equal to
�

n

k+1

�
. Each hyperplane DK contains the k-dimensional

subspace T of S(H0
1
, ..., H

0
n
) formed by n-tuples of hyperplanes containing a fixed point in Ck.

Clearly, the essential rank, i.e. the dimension of the ambient space minus the dimension of inter-
section of the hyperlanes of the arrangement (cf. [20]), in the case of B(n, k,A) is n� k and the
arrangement induced by the arrangement of hyperplanes DK in the quotient of S(H0

1
, ..., H

0
n
) by

T is essential. It is called the essential part of the discriminantal arrangement.

2.2. Hyperplanes in B(n, k,A). Recall that an arbitrary arrangement A of hyperplanes
W1, ..., WN ⇢ Ck defines the canonical stratification of Ck in which strata are defined as follows.
Let L(A) be the intersection poset of subspaces in Ck, each being the intersection of a collection of
hyperplanes chosen among W1, ..., WN , and for each P 2 L(A), let ⌃P = {i 2 {1, ..., N}|P 2 Wi}

be the set of indices of hyperplanes Wi such that P = \i2⌃P Wi. Vice versa, given a sub-
set ⌃ ⇢ {1, ..., N}, we denote by w⌃ the subspace w⌃ = \i2⌃Wi. The stratum of P is the

2Acknowledgment: The first named author was supported by a grant from Simons Foundation and the
second maned one by JSPS Kakenhi [Grant Number 26610001 to S.S.].



STRATA OF DISCRIMINANTAL ARRANGEMENTS 443

submanifold of Ck defined as follows:

(1) SP = P \

[

⌃P ⇢⌃

w⌃.

If an arrangement A = {W1, ..., WN} in Ck is in the general position then the finite subset
in Ck, consisting of 0-dimensional strata, has cardinality

�
N

k

�
and its elements are in one to one

correspondence with the subsets of {1, ..., N} having cardinality k.
The multiplicity of a point p 2 SP considered as a point on the subvariety

S
i=1,...,N

Wi in

Ck is constant along the stratum. We call it the multiplicity of the stratum SP . It is equal to
cardinality of the set ⌃P .

As we noted, the hyperplanes of B(n, k,A) correspond to subsets of cardinality k + 1 in
{1, . . . , n}. Their equations can be obtained as follows. Let K,Card K = k + 1, be a subset in
{1, ..., n} and let

(2) ↵
j

1
y1 + . . . + ↵

j

k
yk = x

0

j
, j 2 {1, ..., n}

be the equation of hyperplane H
0

j
of arrangement A = {H

0
1
, . . . , H

0
n
} 2 Cn

\B(n, k,A) in selected

coordinates y1, ..., yk in Ck. The hyperplanes Hj , j 2 K, of an arrangement in S with equations

↵
j

1
y1 + . . . + ↵

j

k
yk = xj , j 2 K, will have non-empty intersection i↵

(3) det

0

@
↵

1
1

... ↵
1

k
x1

... ... ... ...

↵
k+1

1
... ↵

k+1

k
xk+1

1

A = 0.

This provides a linear equation in xj , j = 1, ..., k + 1, for the hyperplane DK corresponding to
K.

Let J be a subset in {1, . . . , n} of cardinality a,

(4) DJ = {(H1, . . . , Hn) 2 S such that \i2J Hi 6= ;}

and

(5) Pk+1(J) = {K ⇢ J such that Card K = k + 1}.

Then

(6) DJ =
\

K2Pk+1(J)

DK

is intersection of
�

a

k+1

�
hyperplanes. In particular DJ , Card J � k + 1, is a linear subspace and

the multiplicity of
S

Card K=k+1
DK at its generic point is

�
a

k+1

�
. Moreover, codim DJ is a � k.

2.3. Projections of discriminantal arrangements. Let ⌅ ⇢ {1, ..., n} be a subset of the
set of indices and let S(⌅) ⇢ S be the subspace of the space of translates of hyperplanes of
a general position arrangement H

0
1
, ..., H

0
n
consisting of translates of hyperplanes with indices

in ⌅. Let us consider the projection p⌅ : S ! S(⌅) obtained by omitting from a collection
of translates from S, the translates of hyperplanes with indices outside of ⌅. The image of a
subspace DJ , J ⇢ {1, ..., n} is a proper subspace i↵ Card J\⌅ � k+1 and in fact p⌅(DJ) = DJ\⌅.
In particluar, if DJ is a hyperplane i.e. CardJ = k + 1 then p⌅(DJ) is a hyperplane if and only
if J ⇢ ⌅.

The maps p⌅ restricted to the complement to the discriminantal arrangement S \ B(n, k,A)
for n � k + 3 are locally trivial fibrations if and only if k = 1. Due to their local triviality
they play a prominent role in the study of braid arrangements (cf. [2]). The failure of local
triviality for k � 2 can be seen as follows. Consider, for example, the simplest case k = 2. Let
A = {l

0
1
, .., l

0
4
, l

0
5
} be a quintuple of lines in C2 and ⌅ = {1, 2, 3, 4} ⇢ {1, 2, 3, 4, 5}. The fiber
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of p⌅ : C5
! C4 at a generic point {l1, ...., l4} in the complement C4

\ B(4, 2,A \ {l
0
5
}) is given

by all general position arrangements {l1, ...., l4, l5} such that l5 does not contain any of the 6
intersection points of li \ lj , 1  i < j  4, that is C with deleted 6 points. On the other hand,
one can select a generic point {l1, ...., l4} in the complement C4

\ B(4, 2,A \ {l
0
5
}) such that one

of the diagonals of quadrangle formed by lines l1, ...l4 will be parallel to l
0
5
. Hence the fiber of p⌅

at such a point will be C with only 5 points deleted. Similar special configurations are inevitable
for all n � k + 3, k � 2. This failure of local triviality brings serious complication in the study
of the topology of the complement S \ B(n, k,A) (see the last section for a description of the
fundamental groups).

Note, that some recent works (see for example [7]) refer to discriminantal arrangements in a
more narrow sense than used in this paper i.e. as the restriction arrangements to the fibers of
p⌅ given explicitly as

(7) p
�1

{1,...,l}(t1, ..., tl) = {(z1, ..., zn�l)|zi = zj or zi = tk, k = 1, ..., l, i, j = 1, ..., n � l}.

3. Codimension two strata having multiplicity 3

In this section we describe necessary and su�cient conditions which should be satisfied by
the trace at infinity A1 in order that the corresponding discriminantal arrangement will have
codimenion two strata having multiplicity 3. We shall start with the list of notations used
throughout this section, some already introduced in the last section.

Notations 3.1. Let’s fix the following notations.

• A
0 is a general position arrangement of n hyperplanes in Ck ( we use A

0 for the fixed
arrangement to distinguish it from A which will denote a general translate of A0),

• for each K subset of {1, ..., n} of Card K = k + 1, DK ⇢ Cn will denote the hyperplane
in B(n, k,A

0) corresponding to the subset K.
• As in subsection 2.1, hyperplanes in the trace at infinity A1 are denoted by H1,i.
• Let s � 2. Ki, i = 1, 2, 3, denote subsets of {1, ..., n} such that

Card Ki = 2s, Card Ki \ Kj = s, i 6= j,

i=3\

i=1

Ki = ;

(in particular Card
S

Ki = 3s).

Lemma 3.2. Let s � 2, n = 3s, k = 2s � 1. Let A
0 be a general position arrangement of n

hyperplanes in Ck and let Ki, i = 1, 2, 3 be a triple of subsets of {1, ..., n} as described in notations
3.1 above. Consider the triple of codimension s subspaces of the hyperplane at infinity H1
defined as follows: H1,i,j = \s2Ki\KjH1,s \ H1, i 6= j. If subspaces H1,i,j ⇢ H1 span a
proper subspace in H1 then codim

T
DKi = 2. Otherwise this codimension is equal to 3.

This lemma suggests the following:

Definition 3.3. A general position arrangement in P2s�2
, s � 2, is called dependent if it

is composed of 3s hyperplanes Wi which can be partitioned into 3 groups, each containing s

hyperplanes, such that 3 subspaces of dimension s � 2 , each being intersection of hyperplanes
in one group, span a proper subspace in P2s�2. We call these three s � 2-dimensional subspaces
dependent.

Remark that, with this terminology, the assumption of Lemma 3.2 is that the trace at infinity
of A0 is a dependent general position arrangement.

If s = 2 in Lemma 3.2, then H1,i,j are points in the 2-dimensional space P2. The condition
that these points span a proper subspace in H1, i.e., are collinear, corresponds to the case of
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H
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H
0
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H1,1,3
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H
0
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0
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H
0
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H
0
6

L2,3

l

H1

Figure 1.

Falk’s example of the special discriminantal arrangement in [6]. We shall illustrate the argument
in Lemma 3.2 by a discussion of this particular case since the argument for the proof of this
lemma is a generalization of the argument used in Example 3.4.

Example 3.4. Let us consider the case n = 6 and k = 3, that is a general position arrangement
A

0 = {H
0
1
, . . . , H

0
6
} in C3. In Lemma 3.2, this corresponds to s = 2 and, after possible rela-

belling, K1 = (1, 2, 3, 4), K2 = (3, 4, 5, 6), K3 = (1, 2, 5, 6). Then subspaces Li,j =
T

s2Ki\Kj
H

0
s

are lines L
0
1,3

= H
0
1
\H

0
2
, L

0
1,2

= H
0
3
\H

0
4
, L

0
2,3

= H
0
5
\H

0
6
with closures L̄

0

i,j
. In this case, (i.e.,

when dimH1 = 2), the assertion of Lemma 3.2 is that the points H1,i,j = L̄
0

i,j
\H1 span a line

l in H1. In other words, the points H1,i,j are collinear if and only if codim i=1,2,3

T
DKi = 2

(see Figure 1).
Indeed, an arrangement A = {H1, . . . , H6} of translates of planes in A

0 is a point in
DK1 \ DK2 i↵ pairwise intersections L1,3 \ L1,2 and L1,2 \ L2,3 in C3 of lines

L1,3 = H1 \ H2, L1,2 = H3 \ H4 and L2,3 = H5 \ H6

are non-empty. We claim that the collinearity condition implies that two pairs of these three lines
Li,j are coplanar if and only if all the three are. Indeed, since A consists of translates of planes
in A

0 the line Li,j has the same point at infinity H1,i,j as does the line L
0

i,j
. The condition

that H1,i,j span a line l 2 H1 implies that the closure of any plane containing two lines Li,j

intersects H1 in l. That is two planes containing respectively the pairs of lines L1,3, L1,2 and
L1,2, L2,3 are coincident. This implies that lines L1,3 and L2,3 have a non-empty intersection
i.e.

T
i=1,2,5,6

Hi 6= ; and hence A 2 DK3 .
Vice versa, if the points H1,i,j aren’t colinear, then it is possible to find configurations in

which, for example, L1,3 intersects both L1,2 and L2,3, but L1,2 \ L2,3 = ;, i.e. A 2 DK1 \ DK3

and A /2 DK2 .

Proof of Lemma 3.2. Consider first the case when subspaces H1,i,j span a proper hyperplane
in H1 which we shall denote H. Note that dim H1,i,j = s�2 and, as a consequence of A0 being
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in the general position, these subspaces do not intersect. In particular, the subspace which they
span has a dimension greater than 2s� 4, i.e., either it is a hyperplane or it is all the space H1.

Let A = {Hi} be an arrangement in Ck = C2s�1 which belongs to DK1 and DK2 (re-
call that hyperplanes Hi are translates of hyperplanes H

0

i
2 A

0 ). Hence
T

i2K1
Hi 6= ; andT

i2K2
Hi 6= ;. We claim that

T
i2K3

Hi 6= ;, which would imply that codim
T

i=1,2,3
DKi =

codim
T

i=1,2
DKi = 2. Let Li,j =

T
s2Ki\Kj ,

Hs, (i < j). Note that the codimension of each

linear subspace Li,j of C2s�1 is equal to s and Li,j \ H1 = H1,i,j .
Since A 2 DK1 , the subspaces L1,2 and L1,3 have a non-empty intersection. Therefore they

span in C2s�1 a hyperplane which we denote as L1. The intersection of L1 with H1 is the
hyperplane H spanned by H1,1,2 and H1,1,3. The hyperplane L1 is spanned by the intersection
point L1,2 \ L1,3 and the hyperplane H.

Similarly, since A 2 DK2 , both L1,2 and L2,3 have a point in common, they span the hy-
perplane L2 spanned by this point and the above hyperplane H which can be described as
the plane spanned by H1,1,2 and H1,1,3. Both hyperplanes L1 and L2 contain L1,2 and H.
Hence they coincide. Therefore L1,3 and L2,3, being both (s � 1)-dimensional subspaces in
L1 = L2, dimL1 = dimL2 = 2s � 2, must have a point in common and hence A 2

T
i=1,2,3

DKi .
Now assume that the triple H1,i,j spans H1. Let A 2 DK1 \ DK2 be su�ciently generic in

this space. We show that it does not belong to DK3 . Consider the family of s codimensional
subspaces in C2s�1 which compactification intersects the hyperplane at infinity at H1,2,3. The
selection of A determines subspaces L1,2, L1,3 ⇢ C2s�1 which have a common point and moreover
the subspace L2,3 which intersects L1,2. Since triple H1,i,j is not in a hyperplane in H1, P2s�1,
compactifying C2s�1 is spanned by H1,2,3 and the closures of subspaces L1,2, L1,3. Hence the
generic subspace L of codimension s containing H1,2,3 and intersecting L1,2 will have an empty
intersection with L1,3. The corresponding arrangement A

0 having L as the subspace L2,3 will
not belong to DK3 but will be in DK1 \ DK2 . This shows that DK1 \ DK2 /2 DK3 . ⇤

Let’s briefly recall here the basic notion of the restriction of an arrangement. For a subset
A

0
✓ A, let us denote by XA0 =

T
H2A0 H the intersection of its hyperplanes. The arrangement

(8) A
XA0 = {H \ XA0 | H 2 A \ A

0
, H \ XA0 6= ;}

is called a restriction of A to XA0 . Restrictions of A are in one-to-one correspondence with
the splits A = A

0 S
A

00 of the set of hyperplanes in A into a disjoint union. If A0 = ;, then the
restriction arrangement coincides with A.

Via the restriction of arrangements, the Lemma 3.2 leads to other examples of discriminantal
arrangements having codimension two strata with multiplicity 3.

Lemma 3.5. Let A
0 be a general position arrangement of n hyperplanes in Ck and A

0 be a
subarrangement of t hyperplanes in A

0. Assume that the trace at infinity of the restriction A
XA0

of A0 to XA0 is a dependent arrangement of 3s = n � t hyperplanes (in the sense of Def. 3.3).
Then B(n, k,A) admits a codimension two stratum of multiplicity 3.

Proof. Assume that A
0 = {H

0
1
, ..., H

0
t
} ⇢ A

0 = {H
0
1
, ..., H

0
n
} satisfies the conditions of lemma,

i.e., the restriction A
XA0 is an arrangement of 3s = n � t hyperplanes in XA0 ' Cn�t and its

trace at infinity A
XA0
1 is dependent, i.e., the discriminantal arrangement B(n � t, k � t,A

XA0 )
admits a codimension 2 stratum having the multiplicity 3. The dimension of this stratum is
3s � 2 where n � t = 3s and k � t = 2s � 1. By Lemma 3.2, there are subsets

Ki, i = 1, 2, 3, Card Ki = 2s = k � t + 1 of {t + 1, ..., n}

such that DKi 2 B(n � t, k � t,A
XA0 ) satisfy codim

T
i=1,2,3

DKi = 2. The above (3s � 2)-

dimensional stratum of the discriminantal arrangement of n � t hyperplanes in Ck�t is the
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transversal intersection of two submanifolds (each being an open subset of a linear subspace) of
Cn. One is the stratum of discriminantal arrangement B(n, k,A

0) having the dimension 3s�2+t

formed by hyperplanes DKi[{1,...,t}, i = 1, 2, 3, and another is the intersection of t hyperplanes
in S(H0

1
, ..., H

0
n
) defined by the vanishing of coordinates corresponding to H

0
1
, ..., H

0
t
. Hence the

multiplicity of this stratum of B(n, k,A
0) equals 3. This yields the lemma. ⇤

Corollary 3.6. If k � 3 and n � k + 3, then there exists a general position arrangement of n

hyperplanes in Ck such that the corresponding discriminantal arrangement admits a codimension
two stratum of multiplicity 3.

Proof. To apply Lemma 3.5, for a pair (n, k) such that there exist integers t � 0, s � 2 satisfying

(9) n = 3s + t k = 2s � 1 + t

consider a general position arrangement A0 of n hyperplanes in Ck such that the restriction of
trace A1 of A0 on intersection of its t hyperplanes is dependent. By Lemma 3.5, the discriminan-
tal arrangement corresponding to such A

0 will admit the required stratum. Given (n, k) 2 N2,
the relation (9) has a unique solution s = n � k � 1, t = 3k � 2n + 3 which satisfies s � 2, t � 0
i↵

(10) k + 3  n 
3

2
(k + 1), k � 3.

Note that given an arrangement B(n, k,A) admitting the codimension 2 strata of multiplicity
3, an extension of A to the arrangement of N � n hyperplanes by adding su�ciently generic
hyperplanes yields an arrangement A0 such that B(n, k,A) is the intersection of B(N, k,A

0) and
the coordinate subspace. It follows that B(N, k,A

0) admits strata of codimension 2 and the
multiplicity 3 as well. On the other hand, for n = k + 2, B(k + 2, k,A) has only one stratum of
multiplicity k + 2 i.e., the inequality n 6= k + 3 is sharp. ⇤

The following example illustrates the above two lemmas.

Example 3.7. Let A1 be a general position arrangement of 8 hyperplanes H1,i in P4 and A
X

1
its restriction to the plane X = H1,7\H1,8. The restricted arrangement AX

1 is an arrangement
in general position since A1 is in general position.

Assume that the double points H1,1 \ H1,2 \ H1,7 \ H1,8, H1,3 \ H1,4 \ H1,7 \ H1,8,
H1,5 \ H1,6 \ H1,7 \ H1,8 are co-linear.

Consider the hyperplanes

D1,2,3,4,7,8, D3,4,5,6,7,8, D1,2,5,6,7,8

in a discriminantal arrangement B(8, 5,A) corresponding to such A1 and the hyperplanes

D
0
1,2,3,4

, D
0
3,4,5,6

, D
0
1,2,5,6

in the discriminantal arrangement in 3-space H7\H8 for a generic choice of hyperplanes H7, H8

intersecting the hyperplane at infinity at H1,7, H1,8 respectively. Then the arrangement A of
8 hyperplanes in C5 including H7, H8 has a common point if and only if the arrangement of 6
planes in 3-space H7 \ H8 has a common point. Hence

(11) dimD1,2,3,4,7,8 \ D3,4,5,6,7,8 \ D1,2,5,6,7,8 = 2 + dimD
0
1,2,3,4

\ D
0
3,4,5,6

\ D
0
1,2,5,6

= 6

(the last equality uses the Example 3.4). Hence the discriminantal arrangement B(8, 5,A) has a
codimension two stratum of multiplicity 3.
This case illustrates the case considered in Theorem 3.9 (2) below, corresponding to the dependent
restriction arrangement of A1 given by hyperplanes H1,i\H1,7\H1,8, i = 1, . . . , 6 and s = 2.
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The next Lemma will be useful in the proof below showing the absence of codimension 2
strata having the multiplicity 4.

Lemma 3.8. For s � 2, there is no quadruple of subspaces Vi ⇢ P3s�2
, i = 1, 2, 3, 4 having

dimension 2s � 2 such that intersections Pi,j = Vi \ Vj , i 6= j satisfy
a) each Pi,j has dimension s � 2
b) any pair Pi,j , Pi,k, i 6= j 6= k 6= i spans a hyperplane in Vi, and
c) all three, Pi,j , Pi,k, Pi,l, belong to a hyperplane in Vi.

Proof. We shall start with the case s = 2. Assume that a configuration as in Lemma 3.8 does
exist and consider a quadruple of planes Vi, i = 1, ..., 4 in P4 such that

a) any two intersect at a single point,
b) all 6 points Pi,j = Vi \ Vj , i 6= j, obtained in this way are distinct, and
c) all three points, Pi,j , Pi,k, Pi,l, are colinear, i.e., span a line Li.
For a fixed k, the triple of points Pi,j ,i, j 6= k, outside of Vk, determines the triple of lines

Li ⇢ Vi, i 6= k spanned by points Pi,j , Pi,l, i, j, l 6= k. These lines Li, i 6= k by their definition are
pairwise concurrent (Li \Lj = Pi,j) and hence belong to a plane H. By assumption c), for each
i 6= k, the three points Pk,i = Vk \Vi are points on lines Li distinct from Pi,j , Pi,l. Hence H and
Vk have 3 distinct non-colinear points in common and therefore H = Vk, but this contradicts
dim Vk \ Vi = 0.

Now consider the case s > 2. Similar to the above, (s�2)-dimensional subspaces Pi,j = Vi\Vj

of P3s�2 determine the subspaces Li ⇢ Vi, i 6= k (for a fixed k) each being spanned by pairs

Pi,j , Pi,l, i, j, l 6= k

which are outside of Vk. Each Li is a hyperplane in Vi (i.e. dim Li = 2s � 3). Moreover, the
dimension of the subspace H of P3s�2 spanned by Li,j , Li,l, i, j, l 6= k, is 3s� 4. The subspace H

can be described as the subspace of P3s�2 spanned by triple of subspaces Pi,j , i, j 6= k. Now by
our assumption c), Vk contains an (s � 2)-dimensional subspace of Li,j , i, j 6= k, i.e., Pi,k. The
subspace hence is also a subspace of H. This implies that Vk ⇢ H. The dimension of intersection
Li,j and Vk, which are both subspaces of H, is equal to (2s � 3) + (2s � 2) � (3s � 4) = s � 1
and hence dim Vi \ Vk = s � 1. This is a contradiction. ⇤

Now we are ready for the main result of this section. It describes the codimension 2 strata
of discriminantal arrangements having the multiplicity 3 and shows an absence of codimension
2 strata having the multiplicity 4 (with obvious exceptions).

Theorem 3.9. Let A1 be a general position arrangement of hyperplanes in Pk�1 which is the
trace at infinity of a general position arrangement A0 in Ck.

1. The arrangement B(n, k,A
0) has

�
n

k+2

�
codimension 2 strata of multiplicity k + 2.

2. There is a one-to-one correspondence between
a) the dependent restrictions of subarrangements of A1, and
b) triples of hyperplanes in B(n, k,A

0) for which the codimension of their intersection is equal
to 2.

3. There are no codimension 2 strata having the multiplicity 4 unless k = 2. All codimension
2 strata of B(n, k,A

0) not mentioned in part 1, have a multiplicity which is either 2 or 3 (the
latter corresponding to triples of hyperplanes in b).

4. The codimension 2 strata of B(n, 2,A0) is independent of A0.

Proof. The statement (1) follows immediately from the discussion after (6) in section 2.2. If
J ⇢ {1, ..., n} is a subset of cardinality k + 2, then DJ is a codimension 2 subspace in Cn and
belongs to k + 2 hyperplanes DK , K ⇢ J .
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Next we shall determine the conditions on three di↵erent sets of k + 1 indices under which
codim DKi \ DKj \ DKl = 2.

Consider first the case when sets Ki, Kj , Kl, each having the cardinality k + 1, are such that
for one of them, say Ki, one has Ki \ (Ki \ (Kj [ Kl)) 6= ;, i.e., one of the set in this triple
is not in the union of other two. If r 2 Ki \ (Ki \ (Kj [ Kl)), then the hyperplanes in an
arrangement A 2 DKj \DKl with indices di↵erent from the indices in Kj [Kl can be chosen as
arbitrary parallel translates of hyperplanes in A

0, while Hr 2 A
0
,A

0
2 DKi is fixed by condition

A
0 being in DKi and the selection of hyperplanes with indices di↵erent from r but in Ki. Hence

DKi \ DKj \ DKl 6= DKj \ DKl , i.e., codim DKi \ DKj \ DKl = 3.
Now let us consider the alternative to the case considered in the previous paragraph. Hence

we have a triple Ki, Kj , Kl such that

(12) Ki = (Ki \ Kj)
[

(Ki \ Kl)

for any permutation of (i, j, k). Condition (12) for k = 2 implies that either Card(Ki \ Kj) = 2
or Card(Ki \Kl) = 2 that is either DKi \DKj = DKi[Kj or respectively DKi \DKl = DKi[Kl .
Since this imples that Card(Ki [Kj) = 4 (resp. Card(Ki [Kl) = 4), we obtain that DKi \DKj

(resp. DKi \ DKl) is a codimension 2 subspace of multiplicity 4 = k + 2 and part (4) follows.
Let L↵,� = (K↵ \ K�) \

T
s=i,j,k

Ks, t = Card
T

↵=i,j,k
K↵, l↵,� = Card L↵,� . Then (12)

implies that K� \
T

↵=i,j,k
K↵ = L↵,�

S
L�,� and since Card Ki = k + 1 we have

(13) l↵,� + l�,� + t = k + 1, ↵ 6= � 6= �.

Using these relations for allowable permutations of subscripts, yields:

(14) l↵,� =
k + 1� t

2
↵ 6= �, ↵, � 2 {i, j, k}.

For a triple of subsets Ki, Kj , Kl,Card Ki \Kj \Kl = t and a fixed arrangement A, consider
the map of the spaces of translates:

S(H0

1
, ..., H

0

n
) ! Ct = S(..., H0

r
, ...) r 2 Ki \ Kj \ Kl

which assigns to a collection of n parallel translates H
t1
1

, ..., H
tn
n

of H
0
1
, ..., H

0
n
in Ck, the inter-

sections of the hyperplanes with indices outside of Ki \Kj \Kl with the linear subspace which
is the intersection of t hyperplanes with indices in Ki \ Kj \ Kl.

This map has as its fiber over the set of translates H
t�

�
, the space

S(..., H0

↵
\ (

\

�2Ki\Kj\Kl

H
t�

�
), ...), ↵ 2 [1, ..., n] \ Ki \ Kj \ Kl

of translates in the (k�t)-dimenional space
T

�2Ki\Kj\Kl
H

t�

�
. If s is the dimension of the family

of arrangements which is the intersection of hyperplanes DK↵ , ↵ = i, j, l then the dimension of
the family of restrictions of arrangements to Ck�t is s � t. Hence

(15) codim DKi \ DKj \ DKl = codim DKi\
T

K↵
\ DKj\

T
K↵

\ DKl\
T

K↵
↵ = i, j, l

where the intersection on the right is taken in the space of parallel translates in
T

j2
T

Ki
H

0

j
.

Clearly t < k, and in the case when t = k � 1, we have li,j = 1, i.e., Card
S

Ki = k + 2 and
we are in the case (1), i.e., the codimension 2 stratum has the multiplicity k + 2. If t = 0, then
we have the case considered in Lemma 3.2 and we also see from this lemma that the intersection
of DKi , i = 1, 2, 3 has a codimension two stratum if and only if the assumptions of the theorem
are fulfilled. The rest of the part (2) of the theorem follows from Lemma 3.5 applied to the
restriction on

T
↵2Ki\Kj\Kl

H
0
↵
and the relation (15) (with s = l↵,�).
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Now consider the existence of a codimension 2 strata of multiplicity 4. Suppose that such
stratum exists and Ki, i = 1, ..., 4 are the corresponding subsets of {1, ..., n}. By the quadruples
analog of restriction (15), it is enough to consider the case

T
i=1,...,4

Ki = ;. Let

li,j,m = Card Ki \ Kj \ Km.

Then for any i, Card Ki [
T

j 6=i
Kj = Card

S
Ki, i.e., li,j,m + k + 1 is independent of (i, j, m).

Hence one infers from (13) the relation li,j,m = k+1

3
.

Note that codim
T

i=1,...,4
DKi = 2 if and only if codim DKi1

\ DKi2
\ DKi3

= 2 for all 4
triple 1  ij  4 of distinct integers. Applying part (2) of the theorem to each triple i1, i2, i3,
one infers the existence of a quadruple of subspaces as in Lemma 3.8. Hence this lemma implies
part (3).

⇤
Corollary 3.10. If a discriminantal arrangement B(n, k,A) satisfies n >

3

2
(k + 1) and admits

a codimension 2 stratum of multiplicity 3, then there exists a proper subarrangement A
0
⇢ A

such that B(n, k,A
0) admits a codimension 2 stratum of multiplicity 3.

Proof. It follows immediately from the above theorem and inequality (10). ⇤
3.1. Numerology of singularities of generic plane sections. Theorem 3.9 contains a com-
plete description of combinatorics of codimension 2 strata of discriminantal arrangements. In-
deed, the possible multiplicities of codimension two strata are

�
k+2

k+1

�
, 3 and 2. The number

of points of multiplicity 3 is the number of triples of strata satisfying condition 2a). It is an
interesting problem to determine the number of triple points which B(n, k,A) can have. It is
clear from Theorem 3.9 that this number can be arbitrary large when n ! 1, though even the
precise asymptotic is not clear.

4. The Gale transform and codimension two strata

4.1. The Gale transform and associated sets. In this subsection we shall discuss interpre-
tation of discriminantal arrangements using the Gale transform. Recall the following:

Definition 4.1. Let V be a vector space over C, dimV = k, li 2 V
⇤
, i = 1, ..., n, be n vectors in

the dual of the vector space V and let

(16) 0 ! V
L
! Cn

! W ! 0

be the exact sequence in which L(v) = (l1(v), ..., ln(v)). The Gale transform of collection li is
the collection mi 2 W, i = 1, ..., n, of images of the vectors ei of the standard basis in Cn.

The following is suggested by an argument in [6] (see also [17] and [3]).

Proposition 4.2. Let A be a central arrangement of Card A = n in a k-dimensional vector
space V such that the corresponding arrangement in Pk�1 is in the general position. Let li be the
elements in V

⇤ corresponding to the hyperplanes in A. The essential part of the discriminantal
arrangement consists of hyperplanes in W spanned by collections of n�k�1 vectors of the Gale
transform of vectors li 2 V

⇤.

Proof. Let f1, ..., fk be a basis in V , xj , j = 1, ..., k, be the coordinates in this basis, and let

li =
X

a
i

j
xj , j = 1, ..., k, i = 1, ..., n

be the equations of the hyperplanes of A. Denote by A = {a
i

j
} the corresponding matrix.

Translates of hyperplanes li1 = 0, ..., lik+1 = 0, by ci1 , ..., cik+1 respectively, have a non-empty

intersection if and only if the system of equations
P

a
is
j

xj = cis , s = i1, ..., ik+1, has a solution.
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This takes place if and only if the projection ⇡i1,...,ik+1(c) of the point c = (c1, . . . , cn) 2 Cn

on the subspace of Cn spanned by the vectors ei1 , ..., eik+1 belongs to the image of projection
⇡i1,...,ik+1(L(V )) of L(V ), which is equivalent to

(17) c 2 H⇡i1,...,ik+1
' Span(V, Ker⇡i1,...,ik+1

)

(here by an abuse of notation, we identified V with its image L(V ) in Cn). The hyperplanes
H⇡i1,...,ik+1

form the discriminantal arrangement in Cn and the relation V ⇢ H⇡i1,...,ik+1
shows

that the essential part of discriminantal arrangement is its restriction to W = Cn
/V . The

inclusion (17) is equivalent to c 2 Ker⇡i1,...,ik+1
mod V . The image Ker⇡i1,...,ik+1

2 Cn
/V = W

is spanned by the images of the Gale transform of li, i = 1, ..., n, and is the hyperplane in the
essential part of discriminantal arrangement. ⇤

Next recall the classical notion of associated sets (cf. [5], Ch.III):

Definition 4.3. Let V ,W be vector spaces such that dimV = k, dimW = n�k. Let f1, ..., fk and
g1, ..., gn�k be the bases of V, W respectively. The set of vectors l1, ..., ln in V and m1, ..., mn in W

are called associated if the matrices X and Y of coordinates of li, i = 1, ..., n, and mj , j = 1, ..., n,
satisfy:

(18) X · ⇤ ·
t
Y = 0,

where ⇤ is a diagonal matrix.

The sets in V and W are associated if and only if one is the Gale transform of another (see
the discussion in [5] p.33 where the association is discussed in projective setting, for example).

4.2. Discriminantal arrangements of planes in C3 and the Gale transform. One can ask
for the meaning of a codimension 2 strata with multiplicity three in discriminantal arrangements
described in the Theorem 3.9 in terms of the Gale transform. In the case, n = 6, k = 3, one
has a geometric interpretation (see [5] for geometric interpretations for some other values n, k)
of the Gale transform which allows one to show the following:

Proposition 4.4. The existence of a partition of 6-tuples of points in P2 into 3 pairs, each
pair defining a line, and such that these lines are concurrent lines, is an invariant of the Gale
transform.

Remark 4.5. After replacing hyperplanes by the points of a projective dual space, this propo-
sition is equivalent to the case n = 6, k = 3 of the main theorem (cf. also Example 3.4). This
equivalence follows from the classical description of the Gale transform recalled in the proof below.

The more general case, considered in the Lemma 3.2, can be interpreted as the following
property of the Gale transform (P2s�2)⇥3s

! (Ps)⇥3s.
The condition that there is a partition of 3s points in Ps into 3 groups of s points, each set

spanning a hyperplane in Ps and that, moreover, such that these hyperplanes belong to a pencil,
is equivalent to the condition that the Gale transform of this set of points in P2s�2 admits a
partition into 3 groups of cardinality s such that the triple of (s�1)-dimensional subspaces, each
spanned by an s-tuple in P2s�2, have a non-empty intersection.

This restatement follows immediately from the dualization of hyperplanes of the general posi-
tion arrangement. Indeed, 3s hyperplanes of the general position arrangement in C2s�1 consid-
ered in Lemma 3.2 define 3s hyperplanes P2s�2 or equivalently 3s points in the dual projective
space. The assumption of the dependency of 3s hyperplanes in P2s�2, after the dualization is
equivalent to requiring that 3 s�1-dimensional subspaces ⌘

s�1

1
, ⌘

s�1

2
, ⌘

s�1

3
⇢ P2s�2 each spanned

by one of 3 subsets of cardinality s (i.e. subsets Ki\Kj in notations of definition 3.3) have non-
empty intersection. Since n� k � 1 = 3s� (2s� 1)� 1 = s, by Proposition 4.2, the hyperplanes
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of the essential part of the discriminant arrangment are spanned by s -subsets of the set of 3s
points in Ps. Lemma 3.2 states that the dependency condition is equivalent to the existence of
the triple of hyperplanes in the discriminantal arrangement belonging to a pencil of hyperplanes
which gives our claim.

It would be interesting to have a geometric description of the Gale transform allowing one to
show this directly for s > 2.

Proof. We shall use the projective setting which, in this case, relates 6-tuples of points in P2 to
another 6-tuples in another copy of P2. Recall that the smooth cubic surfaces in P3 (i.e., the
del Pezzo surfaces of degree 3) can be viewed as blow ups of a 6-tuples of points in P2 and the
classes of projective equivalence of 6-tuples of points in P2 correspond to isomorphism classes
of cubic surfaces. The 6-tuple of points in P2 is obtained by contracting 6 of 27 lines having
pairwise empty intersections. In terms of the blow up of 6 points in P2, each of 27 lines is one
of the following:

1. 6 exceptional curves of the blow up;
2. proper preimages of 15 lines defined by pairs of points;
3. proper preimages of 6 quadrics determined by a 5 points subset of the blown up 6-tuple.
6-tuples of lines as above on a cubic surface V correspond to the following homology classes

in H
2(V,Z):

(19) hi, i = 1, ..., 6, (hi, hj) = ��
i

j
.

Given such 6-tuple hi, one has a unique additional 6-tuple h
0
i
characterized by the following:

together with hi the collection h
0
i
form a double six, i.e., the following relations are satisfied:

(20) hihj = h
0
i
h

0
j
= ��

i

j
, hih

0
j
= 1� �

i

j
.

Using the description of 27 lines above in terms of lines and quadrics on P2 corresponding to
the lines on a del Pezzo surface, the second component h

0
i
of a double six, in which the first

component hi is formed by the 6-tuple of exceptional curves, can be described as follows. The
6-tuple h

0
i
consists of the proper preimages of quadrics labeled in the way which assigns to (the

class of) exceptional curve hP contracted to a point P 2 P2 (the class of) the quadric h
0
P
passing

through points of the 6-tuple of points in P2 distinct from P .
Now the existence of partition of 6-tuples as in Proposition 4.4 is equivalent to existence

of Eckardt point (i.e., a point common to a triple of lines on cubic surface) not involving the
exceptional curves and to show Proposition 4.4 one needs to show that such Eckardt point
exists also for the second component of a double six. But each line containing a pair of points
P, P

0 on the plane P obtained by contraction of a 6-tuples of disjoint exceptional curves on del
Pezzo surface will be passing through a pair of 6 points on the plane P0 obtained by contracting
proper preimages of 6 quadrics on P. Indeed, such a line through P 2 P will intersect the
proper preimage on the blow up of P of the quadric not containing P at exactly one point
(corresponding to the intersection point with this quadric distinct from the blown up point).
Since the blow up of 6 points and contracting proper preimages of 6 quadrics determined by
these 6 points is an isomorphism on the complement to quadrics which contains the concurrency
point of the triple of lines, the claim follows. ⇤

5. Fundamental groups of the complements to discriminantal arrangements

5.1. Nilpotent completion of the fundamental group. In this section we shall describe
the nilpotent completion of ⇡1(B(n, k,A)) in the case when A is not very generic and the corre-
sponding discriminantal arrangement admits a codimension two strata of multiplicity 3. This is
a direct consequence of [9] Prop.2.2 (see also [13]).
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Proposition 5.1. Completion of the group ring C[⇡1(Cn
\B(n, k,A))] with respect to the powers

of the augmentation ideals is the quotient of the algebra of non-commutative power series

C << XJ >>, J 2 Pk+1({1, . . . , n})

by the two-sided ideal generated by relations
(i) [XJ ,

P
I
XI ] for a pair of subsets J 2 Pk+1(K), with summation over

I 2 Pk+1(K), K ⇢ {1, ..., n},Card K = k + 2.

(ii) [XJ , XI +XJ +XK ] where I, J, K are subscripts corresponding to triples of hyperplanes in
the discriminantal arrangement, such that corresponding hyperplanes in A1 satisfy dependency
condition of Theorem 3.9 (2a).

(iii) [XJ , XK ] for any pair of sets with Card J, K � k + 3 and such that there does not exist
subset I such that triple I, J, K satisfies the conditions of Theorem 3.9 (2a).

5.2. Braid monodromy of discriminantal arrangements and ⇡1(S \B(n, k,A)). We shall
describe the fundamental group of the complement to a discriminantal arrangement. In fact, we
shall obtain the braid monodromy of the generic plane section of discriminantal arrangement,
which by the classical van Kampen procedure yields the presentation of the fundamental group.

We describe the braid monodromy of the generic section of B(n, k,A) in terms of a collection
of orderings of hyperplanes of B(n, k,A) constructed in terms of equations (2) of arrangement
A of hyperplanes in the general position H

0

j
, j = 1, ..., n as follows. The generic plane section

of B(n, k,A) can be described as subset of C2 with coordinates (s, t) depending on a choice of
generic a

n
, b

n
, c

n (specifying the plane section) consisting of points (s, t) such that the rank of
the (k + 1)⇥ n matrix:

(21)

0

@
↵

1
1

... ↵
1

k
a
1
t + b

1
s + c

1

... ... ... ...

↵
n

1
... ↵

n

k
a

n
t + b

n
s + c

n

1

A

is maximal. This plane is given in S by

(22) xi = a
i
t + b

i
s + c

i
.

For fixed ↵
i

j
, a

i
, b

i
, c

i
, i = 1, ..., n, j = 1, ..., k, and generic (t, s), the rank of this matrix is k + 1.

For a generic fixed s, there is a finite collection t1(s) < ... < t( n
k+1)

(s) of real numbers such that

the rank of (21) is k: each ti(s) corresponds to a k + 1 subset of {1, ..., n} labeling a hyperplane
in B(n, k,A). Moreover there will be finite collection of real numbers s1 < ... < sN , N �

�
n

k+2

�

such that for these s there will be strictly less than
�

n

k+1

�
constants t for which the rank of

(21) is less than k + 1. In fact, these values s correspond to projections on the s-coordinate
of multiple points of the arrangement of lines restriction of B(n, k,A) to the (s, t) plane. In
particular, to each si corresponds a subset Pi in the sequence 1, ...,

�
n

k+1

�
corresponding to the

set of (k + 1)-subsets yielding the same value t(si). The cardinality of the subset Pi is either
k + 2, 3 or 2 (according to the multiplicity of the singular point corresponding to si).

Recall (cf. for example [14] or [11]) that the real line Im(s) = 0 in the complex s-line
Cs ' C can be used to define in a canonical way the generators of the fundamental group
⇡1(Cs \

S
N

i=1
si) of the complement of N points in C. In details, the generator corresponding to

the point si, i = 1, ...., N is the loop from a base point s0, Im(s0) = 0, s0 << 0, to the point si,
circumventing each sj , j < i as a semi-circle into the halfplane Im(s) < 0 and returning back to
s0 after making the full circle around si. The braid monodromy for such a path is the product
of factors corresponding to each sj , j  i , i.e., the half twist �Pj corresponding to Pj for j < i

and the full twist �
2

Pi
.
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Theorem 5.2. 1.The braid monodromy of a generic plane section corresponding to section (22)
of B(n, k,A) is given by

(23) ⇧1kN�i where �i = �
�1

P1
...�

�1

Pk�1
�

2

Pk
�Pk�1 ...�P2�P1 .

2.The fundamental group ⇡1(Cn
\ B(n, k,A)) has the following presentation:

(24) �i(�j) = �j j = 1, ...,

✓
n

k + 1

◆
, i = 1, ..., N.

These statements are the standard applications of the results from the theory of braid mon-
odromy (cf., among others, [14],[11]). Di↵erent presentations can be obtained via Salvetti’s
presentation or Randell’s presentation for complement of hyperplane arrangements (see [19],
[18]). For A0 very generic, this yields a presentation equivalent to the one given in [10].
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ON A DISCRIMINANT KNOT GROUP PROBLEM OF BRIESKORN
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Abstract. Quite some time ago, at the singularity conference at Cargèse 1972, Brieskorn
asked the following question:

Is the local fundamental group ⇡s
1
(S �D) of the discriminant complement inside

the semi-universal unfolding S of an isolated hypersurface singularity constant for
s in the µ-constant stratum ⌃E?

We review this question and give an a�rmative answer in case of singular plane curve germs
of multiplicity at most 3.

1. Introduction

The question of Brieskorn was published in Astérisque 7-8, Colloque sur les singularités en
géometrie analytique. In that article Brieskorn gives a summary of the problems and questions
he considers central in the investigation of monodromy, and their answers which – as he writes
– will help much to arrive at a more profound understanding, [Bri73].

In Brieskorn’s view the local fundamental group of the discriminant complement – the dis-
criminant knot group as it will be called in the present article – lies at the heart of the study of
the algebraic monodromy and the intersection lattice of the Milnor fibre and should soon reveal
to contain more or less the same amount of information.

This optimism probably resulted in the spectacular success in the study of simple hypersurface
singularities where Brieskorn himself made important contributions, [Bri71a, Bri71b, BS72]. For
the simple singularities the algebra, the geometry and the combinatorial group theory are most
closely tied together and hope was widespread to get similar results for more general singularities
under suitable forms of relaxation.

However, the topology of the discriminant complement remains a mystery up to the present
day, and only little progress has been made on the problems Brieskorn addressed to it.

In this article we will review the problem stated in the abstract

Is the discriminant knot group ⇡
s
1(S�D) of an isolated hypersurface singularity

constant for s in the µ-constant stratum?

At the time of writing the evidence in favour of a positive answer had two aspects. First in
the case of simple singularities the answer is trivially positive. Second, the homomorphic image
under algebraic monodromy is constant along the µ-constant stratum.

On the other hand an article of Pham [Pha73] presented at the very conference at Cargèse
was interpreted by Brieskorn as evidence in favour of a negative answer: Pham showed that
the topological type of the generic discriminant curve of certain plane curve singularities of
multiplicity m = 3 is not constant along the µ-constant stratum.
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Key words and phrases. plane curve singularity, discriminant knot group, µ-constant stratum, braid

monodromy.
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In fact, Brieskorn proposes to study the discriminant knot group by the local Zariski hyper-
plane theorem as proved by Lê and Hamm [HL73]:

⇡1(S �D) ⇠= ⇡1(H �H \D),

where H is a plane in S parallel to a generic plane H0 6= H through the origin. H0 \D is called
a generic discriminant curve and H \D a corresponding unfolded generic discriminant curve.
The topological type of the former is constant along the µ-constant stratum if and only if the
topological type of the latter is constant along that stratum.

Therefore the result of Pham shows that the line of argument which Brieskorn had in mind
cannot work.

In this article, however, we will follow Brieskorns strategy and bridge the gap by using a
stronger form of the Zariski van Kampen method applicable to more general plane sections of
the discriminant.

We will turn the Pham examples into evidence for a positive answer to Brieskorns problem
by the following theorem.

Theorem 1. Suppose f is a plane curve singularity of multiplicity at most 3, then the discrim-
inant knot group is constant along the µ-constant stratum.

As remarked before, in the case of simple singularities the claim trivially holds true. By
classification this settles the case of multiplicity 2 and of plane curve singularities of Milnor
number at most 8.

As a direct corollary we can sharpen the result of [Lön10]. Suppose f is topologically equiv-
alent to a plane curve singularities of Brieskorn-Pham type of multiplicity 3

f ⇠top y
3 + x

⌫+1 for some ⌫ � 2,

then f is a µ-constant deformation of the Brieskorn-Pham singularity and has the same distin-
guished Dynkin diagram

��
HH

��
HH

��AA

��
HH

��
HH

��AA��AA ��AA

�

�

�

�

��

!!

�

�

�

�

!!
��
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t

t

t

t

11 12 1⌫

22 2⌫21

13

23

Figure 1. Dynkin diagram of y3 + x
⌫+1

where the set V of vertices is ordered by the lexicographic order of their double indices and the
set E of oriented edges contains the pair of corresponding vertices only in their proper order.

Since the discriminant knot group by Theorem 1 is the same for f and the Brieskorn-Pham
singularity we get from [Lön10, Thm1.1]. (Does it extend to all cases in [Lön07]?)

Theorem 2. Suppose f is topologically equivalent to a Brieskorn-Pham polynomial y3 + x
⌫+1.

Then its discriminant knot group is presented by
*
ti, i 2 V

�����

titj = tjti (i, j), (j, i) 62 E

titjti = tjtitj (i, j) 2 E

titktjti = tjtitktj (i, j), (i, k), (j, k) 2 E

+
.
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A step beyond the result of this article might address the case of unimodal hypersurface
singularities. Possibly it is su�cient to look at the generic discriminant curve, since in the cases
not covered by our result, Greuel [Gre77, Gre78] has shown that at least the number of cusps of
the unfolded generic discriminant curve is constant along the µ-constant stratum.

2. Review of the results of Pham

In his article [Pha73] Pham provides a careful analysis of the generic discriminant curve in
case of a plane curve singularity of multiplicity 3

f = y
3 � P (x)y +Q(x).

While skipping his calculation which we will mimic in the next section, here we only want to
introduce the minimum of notation to state his results and draw some first conclusions towards
the proof of our main theorem.

In addition to the well-known Milnor number

µ = dimC[X,Y ]/hfx, fyi,

Pham needs the analytic �-invariant associated to the ideal generated by f and its derivatives
up to second order

� = 1 + dimC[X,Y ]/hf, fx, fy, fxx, fxy, fyyi.

He also gives some useful formulas for calculations:

Lemma 3 ([Pha73] §1,p.366). If f is a function germ as above, the analytic invariant � is given
by

� = min{ordP, ordQ0}

and the Milnor number is given by

µ = ord(3Q02 � PP
02).

Instead of citing the main result in its full strength, which is a complete topological classifi-
cation of generic discriminant curves, we distill the essence, what we will need below.

Proposition 4 (cf. [Pha73]). The topological type of the generic discriminant curve only depends
on the topological invariant µ and the analytic invariant �.

Corollary 5. The topological type of the unfolded generic discriminant curve only depends on
the topological invariant µ and the analytic invariant �.

Proof. The topological type of the generic discriminant curve determines its Milnor number µ̃.
The number µ + µ̃ � 1 is the sum of three times the number of cusps and twice the number of
nodes of any corresponding unfolded discriminant curve, cf. [Pha73]. Since both cardinalities are
upper semi-continuous and the set with constant � and µ is connected, they are both constant
along this set, and so is the topological type of the unfolded generic discriminant curve. ⇤

Proposition 6. If f is a plane curve singularity of multiplicity 3 and

f 6⇠top y
3 + x

⌫+1 for all ⌫,

then the discriminant knot group is constant along the µ-constant stratum.
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Proof. According to the classification by Arnol’d [Arn76] f is simple, of type Jk,i, k � 2, i > 0,
or of type E6k+1, k � 2. In the simple case the claim is trivially true as was remarked before.

In case of f 2 Jk,i, k � 2, i > 0 Arnol’d has given a normal form which by an analytic
equivalence – more precisely by a Tschirnhaus transformation – can be put in the form considered
by Pham:

y
3 + y

2
x
k + a(x)x3k+i

, ord a = 0

⇠an y
3 � 1

3
yx

2k +
2

27
x
3k + a(x)x3k+i

.

According to the lemma � = 2k and thus � is independent of a(x).
In case of f 2 E6k+1 the normal form of Arnol’d is in the form considered by Pham, so from

y
3 + yx

2k+1 + a(x)x3k+2
,

� = 2k + 1 independent of a(x) is immediate by the lemma again.
In both cases we conclude with the corollary that the topological type of the unfolded generic

discriminant is constant along the µ-constant stratum. Therefore the fundamental groups of
their complements also do not change. The local Zariski theorem on hyperplane sections [HL73]
identifies these groups with the discriminant knot groups which are thus shown to be constant
along the µ-constant stratum. ⇤

3. Existence of suitable non-generic discriminant curves

In this section we follow the path traced by Pham to obtain a non-generic reduced discriminant
curve which does not change its topological type under a small deformation along the µ-constant
stratum, although the analytic invariant � changes.

In fact, as the last section will prove, it will su�ce to do so for the Brieskorn-Pham polyno-
mials.

We recall from [Pha73] the construction of the discriminant curve in direction of a linear
perturbation by a polynomial p(x)y + q(x). The critical set of the unfolding of

f = f(x, y) = y
3 � P0(x)y +Q0(x)

by �u+t(p(x)y+q(x)) is a curve in 4-space and the corresponding discriminant curve is obtained
by projection along the coordinates x, y, algebraically by elimination of x, y from

u = y
3 � Py +Q(1)

0 = �P
0
y +Q

0(2)

0 = 3y2 � P,(3)

where P = P0 + tp, Q = Q0 + tq.
But as Pham does, we take the detour by the projection along u and y which is easier to

obtain. The parameter u is eliminated by the sole use of (1) and from (2) and (3) we can
eliminate y to get

(4) 3Q02 � PP
02 = 0.

First we consider for an additional parameter s = 0 or s which is su�ciently small the case

Q = Q0 = x
⌫+1

, q = 0, P = P0 + tp = sx
� + tx.

The first step according to Pham is to compute the branches x(t). Recall the expansion of
(4) in terms of the variable t according to

3(Q0
0 + tq

0)2 � (P0 + tp)(P 0
0 + tp

0)2 = A0 +A1t+A2t
2 +A3t

3
.
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In the current situation we get the following vanishing orders of the Ai under the assumption of
s su�ciently small.

expansion vanishing order

A0 = 3Q02
0 � P0P

02
0 = 3(⌫ + 1)2x2⌫ � s

3
�
2
x
3��2

µ = min{2⌫, 3� � 2}

A1 = �xP
02
0 � 2P0P

0
0 = �s

2
�(� + 2)x2��1 2� � 1 for s 6= 0

A2 = �P0 � 2xP 0
0 = �s(2� + 1)x�

� for s 6= 0

A3 = �x 1

Under the assumption 3��2 � 2⌫ the Newton Polygon looks as below depending on whether
equality holds or not. ( The � are only present for s 6= 0. )

1

�

2� � 1

3� � 2
= 2⌫

1 2 3

\

\

\

\

\

\

\

\

\

s
c

c
s 1

�

2� � 1

3� � 2

2⌫

1 2 3

@

@

@

@

@

@

@@

c
c

c
s

s

The leading term corresponding to the compact face has no multiple root. This is obvious in
case of 3� � 2 > 2⌫ and for s = 0, therefore it is true also for s su�ciently small.

In particular, for s su�ciently small, the number of branches is constant and the leading term
of each branch has a non-vanishing coe�cient which varies continuously with s.

We consider now the case s = 0 in detail ( but claims hold true also for s small up to
continuous changes of the coe�cients ) and distinguish the following cases

(a) gcd(2⌫ � 1, 3) = gcd(2⌫ + 2, 3) = gcd(⌫ + 1, 3) = 1
(b) gcd(2⌫ � 1, 3) = gcd(⌫ + 1, 3) = 3,

gcd(3⌫ + 3, 2⌫ � 1) = gcd(6⌫ + 6, 2⌫ � 1) = gcd(2⌫ � 1, 9) = 3
(c) gcd(2⌫ � 1, 3) = gcd(⌫ + 1, 3) = 3, gcd(3⌫ + 3, 2⌫ � 1) = gcd(2⌫ � 1, 9) = 9

In case (a) there are two branches

(5) x(t) = 0, x(t) = c0t
3

2⌫�1 + h.o.t.

in cases (b) and (c) there are four branches

(6) x(t) = 0, x(t) = c0!
i
t

3
2⌫�1 + h.o.t., i = 0, 1, 2.

where c0 6= 0 is a numerical constant and ! a primitive root of unity of order 2⌫ � 1.
To continue along the lines of [Pha73] we check first that the hypothesis

P
0(x(t), t) = P

0
0(x(t)) + tp

0(x(t)) = P
0
0(x(t)) + t 6= 0 2 C

�
t

1
2⌫�1

 

holds true for every possible branch x(t).
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Therefore the following formula derived by Pham is valid in the field of fractions C
��
t

1
2⌫�1

��

associated to the integral domain C
�
t

1
2⌫�1

 
.

u = �2

3

P

P 0Q
0 +Q(7)

=
⇣
� 2

3
(⌫ + 1) + 1

⌘
x(t)⌫+1

.

In case (a) we plug in the expansions (5) to get

u(t) = 0, u(t) =
⇣
� 2

3
(⌫ + 1) + 1

⌘
c
⌫+1
0 t

3⌫+3
2⌫�1 + h.o.t.

The corresponding branches are reduced and not equal. Moreover the second expansion does
not have further essential summands, since the exponent of t is in its reduced form and has the
maximal possible denominator.

In case (b) we write 2⌫ � 1 = 3e with e coprime to 3 and get the expansions

u(t) = 0, u(t) =
⇣
� 2

3
(⌫ + 1) + 1

⌘
c
⌫+1
0 !

(⌫+1)i
t
3⌫+3
2⌫�1 + h.o.t., i = 0, 1, 2.

Again the corresponding branches are reduced and pairwise not equal. This time the reduced
form of the exponent has denominator e. Again this is the maximal possible denominator, since
the u-degree of the Weierstrass polynomial of the first branch is 1 and that of the other three
branches is the maximal denominator, but their sum is equal to the Milnor number which is
µ = 3e+ 1.

Thus in case (a) and case (b) we have found a perturbation such that the topological type of
corresponding discriminant curve does not vary for s su�ciently small.

In case (c) we write ⌫ � 5 = 9⇢, but we fail to argue as above. In fact, for s = 0 we get
expansions which parametrize the branches of the corresponding discriminant curve by a 3 : 1
map so this curve is non-reduced.

Hence we rerun the method of Pham with the modified perturbation

t(xy + x
3⇢+4), i.e. p = x, q = x

3⇢+4
.

The essential expansion of x in terms of t remains the same as before, since the new perturbation
only adds the points (1, 12⇢+8) and (2, 6⇢+6) to the support, which both lie above the Newton
polygon.

x(t) = 0, x(t) = c0!
i
t

3
2⌫�1 + h.o.t., i = 0, 1, 2.

The reduced form of the exponent is the inverse of 6⇢+ 3.
The formula (7) now gives (using c⌫ , c⇢ for the obvious constants)

u =
⇣
� 2

3
(⌫ + 1) + 1

⌘
x(t)⌫+1 +

⇣
� 2

3
(3⇢+ 4) + 1

⌘
tx(t)3⇢+4

= c⌫c
⌫+1
0 !

(⌫+1)i
t

⌫+1
6⇢+3 + c⇢c

3⇢+4
0 !

(3⇢+4)i
t

⌫+2
6⇢+3 + h.o.t.

We can now argue as before, that 6⇢ + 3 is the maximal possible denominator. Therefore no
further essential summand occurs, and we get reduced, pairwise distinct branches also in the
remaining case (c).

Let us summarize the results of the present section as follows.

Proposition 7. Suppose f = y
3 + x

⌫+1 and m is an integer with

2⌫  3m� 2, m  ⌫.

Then there exists a 3-parameter unfolding F (x, y;u, t, s), such that

(1) along u = t = 0 the unfolding is µ-constant,
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(2) for fix s su�ciently small, the discriminant curve of the unfolding Fs by the parameter
t is reduced and topologically equivalent to that of F0 and

(3) the analytic invariant � is ⌫ for s = 0 and m for s 6= 0 su�ciently small.

4. The Zariski theorem

In this final section we have to revisit the local Zariski and van Kampen theorem which avoids
the use of generic hyperplane sections, cf. the more extended exposition in [Lön10, Lön11].

Our main interest lies in the discriminant complement, so let us recall the basic setting: Given
a holomorphic function germ f = f(x, y) on the germ C2

, 0 of the a�ne plane with coordinates
x, y, we consider a versal unfolding, which can be given by a function germ on the a�ne space
germ (C2

, 0)⇥ (C, 0)⇥ (Ck
, 0)

F (x, y, u, v) = f(x, y)� u+
kX

i=1

vigi(x, y),

where the gi generate, as a vector space, the local ideal of function germs on C2
, 0 vanishing at

the origin up to elements in the Jacobian ideal of f . They are typically taken to be non-constant
monomials.

We get a diagram

(u, v1, ..., vk) 2 Ck+1
, 0 � D = {(u, v) |F�1

u,v(0) is singular}?y p
?y

(v1, ..., vk) 2 Ck
, 0 � B = {u |F0,v is not Morse}

The restriction p|D of the projection to the discriminant D is a finite map, such that the branch
set coincides with the bifurcation set B and the critical points are contained in the pre-image
B̃ = p

�1

(B). In particular, the origin is an isolated point in the intersection of D with the fibre
p
�1(0). If a hypersurface germ has this property we call it horizontal for the projection p.
The key observation is, that a suitable representative of the complement of B̃ is a trivial

disc bundle by p into which D is embedded as a smooth submanifold, which is a connected
topological cover by p. This situation, which can be treated also in the language of polynomial
covers, cf. [Han89], naturally gives rise to a braid monodromy homomorphism: The domain is
the fundamental group of the complement of B, its target is the group of mapping classes of the
punctured fibre, the image is called the braid monodromy group.

It coincides with the map of fundamental groups induced by the map of Lyashko Looijenga
under the natural identification of the mapping class group with the fundamental group of the
space of monic simple univariate polynomials of degree n at the corresponding base point:

Ck � B �! C[x],
v 7! pv,

which maps to monic univariate polynomials of degree µ with simple roots only, where these
roots correspond to the points of D which project to v.

To use the braid monodromy group of the fundamental group of the discriminant complement
we employ the argument of Zariski and van Kampen [vK33]. It relies on a choice of a geometric
basis in the fibre over the base point which is the customary tool to identify the action of the
group of isotopy classes of di↵eomorphisms on the fundamental group of the fibre with the right
Artin action of the abstract braid group on the free generators t1, . . . , tn given by

(tj)�j = tjtj+1t
�1
j , (tj+1)�j = tj , (ti)�j = ti, if i 6= j, j + 1.
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Theorem 8 (van Kampen). Given a horizontal hypersurface germ with braid monodromy group
generated by braids {�s} in Brn, the local fundamental group of the complement is finitely pre-
sented as

⇡1 = ht1, . . . , tn | t�1
i t

�s
i , 1  i  n, all �si.

The consideration above applies again to the hypersurface germ B in the a�ne space germ
Ck

, 0 provided we find a projection for which B is horizontal. In fact this puts a constraint on a
discriminant curve as we will see in the following proof.

Proposition 9. Let g1 be a bivariate polynomial germ vanishing at 0 such that the discriminant
curve of the unfolding

f � u+ tg1

is reduced. Then the fundamental group of the complement of a corresponding unfolded discrim-
inant curve is equal to the discriminant knot group of f .

Proof. Without loss of generality we may assume that g1 is the first of the functions in the
versal unfolding of f we consider. Hence the complement of the unfolded discriminant curve
is a vertical plane section of the discriminant. (At this point we could conclude with the local
Zariski hyperplane section theorem, if this vertical plane were known to be generic.)

By the van Kampen theorem, it su�ces to show that the two braid monodromy groups
are equal. They in turn are homomorphic images of the corresponding fundamental groups of
complements to the bifurcation set.

If the discriminant curve is reduced, then the corresponding curve in the a�ne space germ
Ck

, 0 does not belong to the bifurcation set, otherwise, the discriminant curve has less than µ

points over every t and is non-reduced.
We deduce that the bifurcation set is horizontal for the projection along the coordinate cor-

responding to g1, since the 0-fibre of that projection was just shown not to be in the bifurcation
set.

In particular the fundamental group in a generic vertical line is generated by elements corre-
sponding to a geometric basis. They also generate the fundamental group of the complement to
the bifurcation set by the van Kampen theorem.

Put di↵erently the fundamental group the smaller set surjects onto the fundamental group
of the complement to the bifurcation set. Hence both fundamental groups map to same braid
monodromy group.

Since a generic vertical line is the image under p of an unfolded discriminant curve associated
to g1 as in the beginning of the proof, we have precisely shown what was needed. ⇤

Proof of the main Theorem. Thanks to Prop.6 it su�ces to show that the discriminant knot
group is constant along each µ-constant stratum which contains a Brieskorn-Pham polynomial
y
3 + x

⌫+1.
Let f be any function in this stratum and �f its �-invariant. Since the analytic equivalence

class of f has a representative of the form

y
3 � P (x)y + x

⌫+1 with 2
3 (⌫ + 1)  ordP, degP  ⌫ � 1,

we deduce 2⌫  3�f � 2 and �f  ⌫.
Therefore by Prop.7 we can unfold the Brieskorn-Pham polynomial by a parameter s such

that the �-invariant is �f for s 6= 0, and there exists an associated family of discriminant curves
of constant topological type.

Because they are reduced, we can apply the previous proposition to see that corresponding
unfolded discriminant curves have a complement with fundamental group isomorphic to the
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respective discriminant knot groups. So by the same argument as in the proof of Prop.6 the two
discriminant knot groups are isomorphic.

Since f and any deformation of the Brieskorn-Pham polynomial with s small share the same �-
invariant, we may invoke Cor.5 to have topologically equivalent complements of unfolded generic
discriminant curves. Thus again the discriminant knot groups are isomorphic and therefore
constant along the µ-constant stratum of each Brieskorn-Pham polynomial. ⇤
Acknowledgement. The author wants to thank Patrick Popescu-Pampu for the invitation to
give a talk at Lille which ultimately caused this project to find its shape. He gratefully acknowl-
edges the financial support of the ERC 2013 Advanced Research Grant 340258-TADMICAMT.
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de l’É.N.S., 6(3), 1973.

[Lön07] Michael Lönne. Fundamental group of discriminant complements of Brieskorn-Pham polynomials. C. R.
Math. Acad. Sci. Paris, 345(2):93–96, 2007. DOI: 10.1016/j.crma.2007.05.022

[Lön10] Michael Lönne. Braid monodromy of some Brieskorn-Pham singularities. Internat. J. Math., 21(8):1047–
1070, 2010. DOI: 10.1142/S0129167X10006379

[Lön11] Michael Lönne. Bifurcation braid monodromy of plane curves. In Complex and di↵erential geometry,
volume 8 of Springer Proc. Math., pages 235–255. Springer, Heidelberg, 2011.

[Pha73] Frédéric Pham. Courbes discriminantes des singularités planes d’ordre 3. pages 363–391. Astérisque,
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SURFACE SINGULARITIES
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To the memory of Egbert Brieskorn

Abstract. Let us fix a normal surface singularity with rational homology sphere link and
one of its good resolutions. It is known that each coe�cient of the analytic Poincaré series
associated with the multivariable divisorial filtration is the topological Euler characteristic
of the complement of a certain linear subspace arrangement (determined by the divisorial
filtration). In this note we construct the topological analogue valid for the multivariable
topological series (zeta function) associated with the resolution graph. In this way the motivic
version of this topological series can also be considered.

1. Introduction

Let us fix a good resolution � of a normal surface singularity (X, o) with irreducible excep-
tional divisors {Ev}v2V . (For details and notations see 2.1.) We assume that the link is a rational
homology sphere. It is known that the coe�cients of the Poincaré series P (t) associated with the
multivariable {Ev}v–divisorial filtration can be identified with the topological Euler character-
istic of certain projectivized linear subspace arrangements [CDGZ04, CDGZ08, N07, N08, N12],
see section 2 and Corollary 3.1.3 here. More precisely, if P (t) =

P
l0 p(l

0)tl
0
(where the sum is

over the dual lattice L0 of �), then for each l
0 there exists a finite-dimensional vector space A(l0)

and for each v 2 V a linear subspace Av(l0) ⇢ A(l0) such that p(l0) = �top(P(A(l0) \ [vAv(l0))).
Let us denote this linear subspace arrangement {Av(l0)}v2V of A(l0) by Aan(l0).

In this note we prove the existence of the topological analogue of this fact, valid for the
multivariable topological series (zeta function) Z(t) =

P
l0 z(l

0)tl
0
. (For its definition see 4.1.)

Namely, for each l
0 we construct a finite-dimensional vector space T (l0) and linear subspace

arrangement {Tv(l0)}v2V of T (l0), such that the following facts hold:

(1) the arrangement Atop(l0) := {Tv(l0)}v2V of T (l0) depends only on the resolution graph;
(2) z(l0) = �top(P(T (l0) \ [vTv(l0)));
(3) for each l

0 the vector space A(l0) embeds linearly into T (l0) such that

Av(l
0) = A(l0) \ Tv(l

0) for every v 2 V.

These facts can be interpreted as follows. Each topological type (of normal surface singularities
with rational homology sphere link) with fixed dual resolution graph (or fixed lattice L and
dual lattice L

0) determines for any l
0
2 L

0 a ‘topological linear subspace arrangement’ Atop(l0).
Furthermore, any analytic structure supported on this topological type determines canonically
for any l

0
2 L

0 an ‘analytic linear subspace arrangement’ Aan(l0) inside T (l0) and cut out from
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57R57.

Key words and phrases. normal surface singularities, links of singularities, plumbing graphs, rational homology
spheres, Poincaré series, linear subspace arrangements.
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Atop(l0) by a subspace A(l0) ⇢ T (l0). The analytic linear subspace arrangement might depend
essentially on the analytic structure (since we know topologically equivalent pairs of analytical
types, for which one type satisfies Z(t) = P (t) while the other not, see e.g. [N08]).

In this way, (A(l0), {Av(l0)}v) ⇢ (T (l0), {Tv(l0)}v) looks a natural pairing. It immediately
induces (by taking the Euler characteristic of the corresponding spaces) the pairing of the two
series Z(t) and P (t). Though these two series looked apparently artificially paired in the earlier
articles, now, after the present setup, this fact is totally motivated and justified. Furthermore,
taking the periodic constants of the series Z and P , we get the pairing of the Seiberg–Witten
invariants of the link, respectively the equivariant geometric genera of (X, o), cf. [N12], hence
the pairing predicted by the Seiberg–Witten Invariant Conjecture is indeed very natural and
totally justified.

In particular, these steps provide a totally conceptual explanation for the appearance of the
Seiberg–Witten invariant in the theory of complex surface singularities.

Examples show that usually the identity Z(t) = P (t) can happen even if Atop(l0) 6= Aan(l0).
For each l

0 having a quasiprojective space T (l0) \ [vTv(l0), instead of its topological Euler
characteristic, has big advantages. Indeed, this provides a new source of invariants: one can
replace �top(T (l0) \ [vTv(l0)) by several stronger invariants of this space, e.g. cohomology ring,
the mixed Hodge structures, or the class in the Grothendieck ring of varieties. For the details
of this last version see subsection 4.4.

2. Preliminaries. Divisorial filtration and its multivariable series

2.1. Notations regarding a resolution. Let (X, o) be the germ of a complex analytic nor-
mal surface singularity, and let us fix a good resolution � : eX ! X of (X, o). We denote
the exceptional curve ��1(o) by E, and let [v2VEv be its irreducible components. Set also
EI :=

P
v2I

Ev for any subset I ⇢ V. For more details see [N07, N12, N99b].

Let � be the dual resolution graph associated with �; it is a connected graph. Then M := @ eX
can be identified with the link of (X, o), it is also an oriented plumbed 3–manifold associated
with �. It is known that (X, o) locally is homeomorphic with the real cone over M , and M

contains the same information as �. We will assume that M is a rational homology sphere, or,
equivalently, � is a tree and all genus decorations of � are zero. We use the same notation V for
the set of vertices, and �v for the valency of a vertex v.

L := H2( eX,Z), endowed with its negative definite intersection form I = ( , ), is a lattice.
It is freely generated by the classes of 2–spheres {Ev}v2V . The dual lattice L

0 := H
2( eX,Z)

is generated by the (anti)dual classes {E
⇤
v
}v2V defined by (E⇤

v
, Ew) = ��vw (where �vw stays

for the Kronecker symbol). The intersection form embeds L into L
0. Then H1(M,Z) ' L

0
/L,

abridged by H. Usually one also identifies L
0 with those rational cycles l

0
2 L ⌦ Q for which

(l0, L) 2 Z, or, L0 = HomZ(L,Z).
There is a natural (partial) ordering of L0 and L: we write l

0
1 � l

0
2 if l01 � l

0
2 =

P
v
rvEv with

all rv � 0. We set L�0 = {l 2 L : l � 0} and L>0 = L�0 \ {0}.
Set C := {

P
l
0
v
Ev 2 L

0
, 0  l

0
v
< 1}. For any l

0
2 L

0 write its class in H by [l0], and or any
h 2 H let rh 2 L

0 be its unique representative in C.
All the Ev–coordinates of any E

⇤
u
are strict positive. We define the Lipman cone as

S
0 := {l

0
2 L

0 : (l0, Ev)  0 for all v}.

It is generated over Z�0 by {E
⇤
v
}v.

Finally, let ✓ : H ! bH denote the isomorphism [l0] 7! e
2⇡i(l0,·) between H and its Pontrjagin

dual bH.
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2.1.1. The module Z[[L0]]. We denote by Z[t] := Z[t1, . . . , ts], respectively by
Z[[t]] := Z[[t1, . . . , ts]], the ring of polynomials, respectively the ring of formal power series,
in variables {tv}

s

v=1, where s = |V|. Set also the ring of Laurent polynomials Z[t][t�1
1 , . . . , t

�1
s

]
too.

Then the formal Laurent series additive group Z[[t±1]] := Z[[t±1
1 , . . . , t

±1
s

]] is a Z[t][t�1
1 , . . . , t

�1
s

]–

module. It is contained in the larger module Z[[t±1/d]] = Z[[t±1/d
1 , . . . , t

±1/d
s ]], the module of

formal Laurent series in variables t
±1/d
v , where d := |H|. Z[[L0]] embeds into Z[[t±1/d]] as a

submodule: it consists of the Laurent series with monomials of type

tl
0
= t

l
0
1
1 · · · t

l
0
s
s , where l

0 =
P

v
l
0
v
Ev 2 L

0
.

In this way Z[[L]] identifies with Z[[t±1]]. Z[[L0]] also admits several Z–submodules corresponding
to di↵erent cones of L0; e.g. Z[[L0

�0]] and Z[[S 0]], consisting of series with monomials of type tl
0

with l
0
2 L

0
�0, or l

0
2 S

0 respectively. Both Z[[L0
�0]] and Z[[S 0]] have natural ring structure as

well.
Z[[S 0]] is a usual formal power series ring in variables tE

⇤
v : its elements are

(2.1.2) �(f)(t) := f(tE
⇤
1 , . . . , tE

⇤
s ), where f(x1, . . . , xs) 2 Z[[x]] = Z[[x1, . . . , xs]].

Definition 2.1.3. Any series S(t) =
P

l0 al0t
l
0
2 Z[[L0]] decomposes in a unique way as

(2.1.4) S =
X

h2H

Sh, where Sh =
X

[l0]=h

al0t
l
0
.

Sh is called the h-component of S. In fact, if F (t) := �(f)(t) for some f 2 Z[[x]] then

(2.1.5) Fh(t) =
1

|H|
·

X

⇢2 bH

⇢(h)�1
· f(⇢([E⇤

1 ])t
E

⇤
1 , . . . , ⇢([E⇤

s
])tE

⇤
s ).

Indeed, if l0 :=
P

nvE
⇤
v
and

Q
x
nv
v

is a monomial of f , then �(
Q

x
nv
v
)(t) = tl

0
and the Fourier

transform (1/d)
P
⇢
⇢(h)�1

⇢([l0])tl
0
is tl

0
if [l0] = h and it is zero otherwise.

2.2. Natural line bundles. Some line bundles on eX are distinguished. They are provided by
the splitting of the cohomological exponential exact sequence (see e.g. [N07, 4.2]):

0 ! H
1( eX,O eX) ! Pic( eX)

c1
�! L

0
! 0.

The first Chern class c1 has a natural section on the subgroup L, namely l 7! O eX(l). One shows
that this section has a unique extension O(·) to L

0. We call a line bundle natural if it is in
the image of this section. Hence, by definition, a line bundle is natural if and only if one of its
powers has the form O eX(l) for some l 2 L.

The natural line bundle associated with l
0
2 L

0 will be denoted by O eX(l0).

2.3. The universal abelian covering. Let c : (Xa, o) ! (X, o) be the universal abelian
covering of (X, o), the unique normal singular germ corresponding to the regular covering of
X \ {o} associated with ⇡1(X \ {o}) ! H1(X \ {o},Z) = H. It has a natural H = L

0
/L–action.

Since eX \E ⇡ X \ {o}, ⇡1( eX \E) = ⇡1(X \ {o}) ! H defines a regular Galois covering of eX \E

as well. This has a unique extension ec : Z ! eX with Z normal and ec finite. In other words,
ec : Z ! eX is the normalized pullback of c via �. The (reduced) branch locus of ec is included
in E, and the Galois action of H extends to Z as well. Since E is a normal crossing divisor,
the only singularities what Z might have are cyclic quotient singularities. Let r : eZ ! Z be a
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resolution of these singular points such that (ec � r)�1(E) is a normal crossing divisor. We have
the following diagram:

(2.3.1)

eZ r
�! Z

 a
�! (Xa, o)??yec

??yc

( eX, o)
�

�! (X, o)

Set �a =  a � r and p = ec � r. One verifies (see [N07, Lemma 4.2.3]) p
⇤(l0) is an integral cycle

for any l
0
2 L

0.
One can recover the natural line bundles via the universal abelian covering as follows.

(2.3.2) p⇤OeZ = ec⇤OZ =
M

l02C

O eX(�l
0) (O eX(�l

0) being the ✓([l0])-eigenspace of ec⇤OZ).

2.4. The divisorial filtration. The series H(t) and P (t). We will define an L–filtration of
the local ring of (X, o) and a compatible H–equivariant L0–filtration of the local ring of (Xa, o).
Fore more see [N12].

Definition 2.4.1. The L
0–filtration on OXa,o is defined as follows. For any l

0
2 L

0, we set

(2.4.2) F(l0) := {f 2 OXa,o | div(f � �a) � p
⇤(l0)}.

Notice that the natural action of H on (Xa, o) induces an action on OXa,o, which keeps F(l0)
invariant. Therefore, H acts on OXa,o/F(l0) as well. For any l

0
2 L

0, let h(l0) be the dimension
of the ✓([l0])-eigenspace (OXa,o/F(l0))✓([l0]). Then one defines the Hilbert series H(t) by

(2.4.3) H(t) :=
X

l02L0

h(l0) · tl
0
2 Z[[L0]].

By [N07, Prop. 4.3.3], for any l
0
2 L

0 there exists a unique minimal s(l0) 2 S
0 such that

l
0
 s(l0) and [l0] = [s(l0)]. Since for any f 2 OXa,o, that part of div(f � �a), which is supported

by the exceptional divisor of �a, is in the Lipman cone of eZ, we get

(2.4.4) F(l0) = F(s(l0)).

For a fixed l
0 we write [l0] = h. If l0 > 0 one has the exact sequence

(2.4.5) 0 ! OeZ(�p
⇤(l0)) ! OeZ ! Op⇤(l0) ! 0.

The ✓(h)-eigenspace constitutes the exact sequence

(2.4.6) 0 ! O eX(�l
0) ! O eX(�rh) ! Ol0�rh(�rh) ! 0.

In particular, for l0 > 0,

(2.4.7) h(l0) = dim
⇣

H
0( eZ,OeZ)

H0( eZ,OeZ(�p⇤(l0)))

⌘

✓(h)
= dim

H
0( eX,O eX(�rh))

H0( eX,O eX(�l0))
.

Example 2.4.8. In (2.4.7) if l0 2 L then rh = 0. Hence the 0–component of H(t) is

H0(t) =
X

l2L

dim
OX,o

{f 2 OX,o : divE(f � �) � l}
tl.

This is the Hilbert series of OX,o associated with the divisorial filtration

L 3 l 7! F0(l) = {f 2 OX,o : divE(f � �) � l}

of all irreducible exceptional divisors of �.
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2.4.9. Next, we define the Poincaré series P (t) =
P

l02L0 p(l0)tl
0
associated with the filtration

{F(l0)}l0 as

(2.4.10) P (t) = �H(t) ·
Y

v

(1� t
�1
v

).

Using (2.4.7) one verifies that for any l
0
2 S

0 one has

(2.4.11) p(l0) =
X

I⇢V
(�1)|I|+1 dim

H
0( eX,O eX(�l

0))

H0( eX,O eX(�l0 � EI))
.

The series P (t) is supported in S
0, and the following ‘invertion identities’ hold [N12, Prop. 3.2.4]:

(2.4.12) h(l0) =
X

l2L, l 6�0

p(l0 + l).

2.4.13. A reformulation of P (t). For l0 � rh 2 L>0 from (2.4.6) follows that

h(l0) = �(Ol0�rh(�rh))� h
1(O eX(�l

0)) + h
1(O eX(�rh)).

Since �(Ol0�rh(�rh)) = �(l0)� �(rh), this reads as

h(l0) = �(l0)� h
1(O eX(�l

0))� �(rh) + h
1(O eX(�rh)).

Hence, using the definition of P , we get

(2.4.14) P (t) =
X

l02S0

X

I⇢V
(�1)|I|+1

⇣
�(l0 + EI)� h

1(O eX(�l
0
� EI))

⌘
tl

0
.

2.4.15. The definition of P by Campillo, Delgado and Gusein-Zade [CDGZ04, CDGZ08].
The infinite-dimensional arrangement {F(l0 + EI)}I in the infinite-dimensional linear space

F(l0) can be reduced to a finite-dimensional arrangement as follows. Since all these subspaces
contain F(l0 + E), and F(l0)/F(l0 + E) is finite-dimensional, it is natural to set the series

(2.4.16) L(t) :=
X

l02L0

dim (F(l0)/F(l0 + E))✓([l0]) · t
l
0
2 Z[[L0]].

Since F(l0) = F(l0+Ev) if (l0, E⇤
v
) > 0, one obtains that L(t)

Q
v
(tv�1) is an element of Z[[L0

�0]].
Hence the next infinite power series in Z[[L0

�0]] is well-defined:

(2.4.17) P (t) := �
L(t)

Q
v
(tv � 1)

1� tE
= �L(t)

Y

v

(tv � 1) ·
X

k�0

tkE .

Since hh(l0) = 0 for l0  0 one has L(t) = �H(t)(1� t�E) and P (t) = �H(t) ·
Q

v
(1� t

�1
v

), cf.
(2.4.10).

Example 2.4.18. Consider the cyclic quotient singularity whose minimal resolution � has only
one irreducible component E with self-intersection�n (n � 2). ThenH = Zn,OXa,o = C{z1, z2}.
Moreover, E⇤ = E/n. The action of H is given by h ⇤ zi = ✓(E⇤)(h)zi; hence, zi1z

j

2 is in the
✓(E⇤)i+j–eigenspace. Below, for a character � of this action on C{z} we denote the corresponding
eigenspace by C{z}�.

Therefore, the Poincaré series of the H–eigenspaces (with deg(zi) =
1
n
2

1
n
Z) is

P ((C{z}✓([qE
⇤])

, t) =
X

k�0

(1 + q + nk)tk+
q
n , and P (C{z}, t) =

X

`�0

(1 + `)t`/n.

(2.4.19)
X

⇢2 bH

P (C{z}⇢, t) · ⇢ =
1

(1� ✓(E⇤) · tE⇤)2
2 Z[[t]][ bH];
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eZ = Z is just the blow up �a of Xa at 0 with exceptional divisor eE a (�1)-curve. Since
ec⇤(E) = n eE, we get that F(k0E) contains all the monomials of degree � nk

0. We claim that
this inclusion is, in fact, an isomorphism. Indeed, if f =

P
i+j=nk0 ciz

i

1z
j

2 2 C{z}, such that
f is not identically zero, then �

⇤
a
(f) will have vanishing order exactly nk

0 (and never higher)
along eE, independently of the choice of the coe�cients ci 2 C. Therefore, for k

0 = k + q/n

(k 2 Z), (F(k0E)/F(k0E + E))✓([qE⇤]) can be identified with the vector space of monomials of

degree nk + q (0  q < p), and P (t) = 1/(1� t
E

⇤
)2. Its h–components are

(2.4.20)
X

h2H

Ph(t) · h =
1

(1� [E⇤] · tE⇤)2
2 Z[[t]][H].

Note that (1 � [E⇤] · tE
⇤
)�2 agrees exactly with the H–decomposition

P
h2H

Zh(t) · h of the
topological series Z(t), which will be considered in 4.1.

3. Linear subspace arrangements associated with the filtration

3.1. Fix a normal surface singularity as in 2.3, one of its resolutions and the filtration {F(l0)}l02L0 ,
F(l0) ⇢ OXa,o, from 2.4.1. For any l

0
2 L

0, the linear space

(F(l0)/F(l0 + E))✓([l0]) = H
0(O eX(�l

0))/H0(O eX(�l
0
� E))

naturally embeds into
T (l0) := H

0(OE(�l
0)).

Let its image be denoted by A(l0). Furthermore, for every v 2 V , consider the linear subspace
Tv(l0) of T (l0) given by

Tv(l
0) := H

0(OE�Ev (�l
0
� Ev)) = ker (H0(OE(�l

0)) ! H
0(OEv (�l

0)) ) ⇢ T (l0).

Then the image Av(l0) of

H
0(O eX(�l

0
� Ev)/H

0(O eX(�l
0
� E))

in T (l0) satisfies Av(l0) = A(l0) \ Tv(l0). This fact follows from the following diagram:

H
0(O eX(�l

0
� E)) = H

0(O eX(�l
0
� E))

# #

0 ! H
0(O eX(�l

0
� Ev)) ! H

0(O eX(�l
0)) ! H

0(OEv (�l
0))

0 ! H
0(OE�Ev (�l

0
� Ev)) ! H

0(OE(�l
0)) ! H

0(OEv (�l
0))

Tv(l0) ,! T (l0)

# #

Definition 3.1.1. The (finite-dimensional) arrangement of linear subspaces Atop(l0) = {Tv(l0)}v
in T (l0) is called the ‘topological arrangement’ at l0 2 L

0. The arrangement of linear subspaces
Aan(l0) = {Av(l0) = Tv(l0) \A(l0)}v in A(l0) is called the ‘analytic arrangement’ at l0 2 L

0. The
corresponding projectivized arrangement complements will be denoted by P(T (l0)\[vTv(l0)) and
P(A(l0) \ [vAv(l0)) respectively.

If l0 62 S
0 then there exists v such that (Ev, l

0) > 0, that is h
0(OEv (�l

0)) = 0, proving that
Tv(l0) = T (l0). Hence Av(l0) = A(l0) too. In particular, both arrangement complements are
empty.
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The connection with the series P is provided by the following topological Euler characteristic
formula.

Lemma 3.1.2. Assume that {V↵}↵2⇤ is a finite family of linear subspaces of a finite-dimensional
linear space V . For I ⇢ ⇤ set VI := \↵2IV↵ (where V; = V ). Then

�top(P(V \ [↵V↵)) =
X

I⇢⇤

(�1)|I| dimVI .

If ⇤ 6= ;, then this also equals
P

I
(�1)|I|+1codim(VI ⇢ V ).

Proof. Use the inclusion–exclusion principle and dimVI = �top(PVI). ⇤

Corollary 3.1.3. For any l
0
2 S

0 one has

p(l0) = �top(P(A(l0) \ [vAv(l
0)) ).

Proof. Use (2.4.11) and 3.1.2. ⇤

The corresponding dimensions of the linear subspaces in Aan(l0) are as follows.

Lemma 3.1.4. For any l
0
2 L

0 one has:

dim A(l0) = h(l0 + E)� h(l0), dim \v2IAv(l
0) = h(l0 + E)� h(l0 + EI).

Thus, we can expect that the analytic arrangement is rather sensitive to the modification of
the analytic structure, and in general, does not coincide with the topological arrangement.

Note that dim A(l0) is the l
0–coe�cient of the series L(t), cf. paragraph 2.4.15.

Since the series P (t) and H(t) determine each other (see (2.4.12)), once the analytic Poincaré
series P (t) is fixed all the dimensions involved in Aan(l0) (for all l0) are determined.

Example 3.1.5. We will write Zmin 2 L for the minimal (or fundamental) cycle, which is the
minimal non–zero cycle of S 0

\ L [A62, A66]. Yau’s maximal ideal cycle Zmax 2 L defines the
divisorial part of the pullback of the maximal ideal mX,o ⇢ OX,o, i.e.

�
⇤mX,o · O eX = O eX(�Zmax) · I,

where I is an ideal sheaf with 0–dimensional support [Y80].
Consider the complete intersection singularity in (C4

, 0) given by

z
2
1 + z

3
2 � z

2
3z4 = z

2
4 + z

3
3 � z

2
2z1 = 0.

Its graph is

s
�2 �1s �2

�3

�13 �1

E0

�3 E2

s
E3

E1 E4

s s s
s

One verifies that div(zi) = E
⇤
i
for 1  i  4; Zmin = E

⇤
0 is not the compact part of a divisor

of an analytic function; Zmax = 2E⇤
0 = min{E⇤

2 , E
⇤
3}. We wish to find p(Zmax). Note that

T (Zmax) = H
0(OE(�Zmax)) ' H

0(OE0(�Zmax)) ' C3. On the other hand, A(Zmax) is the
image of H0(O(�Zmax)) = mX,o. Since z1, z4 and m2

X,o
are contained in H

0(O(�Zmax � E),
A(Zmax) is 2–dimensional, generated by the classes of z2 and z3. (To see the linear independence
of their classes, check their divisors.) Hence A(Zmax) 6= T (Zmax).

Moreover, [vAv(Zmax) is the union of the two coordinate axes. Hence P(C2
\ (C [C)) = C⇤

and p(Zmax) = 0.
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Although A(Zmax) 6= T (Zmax), they still can be compared. Indeed, T (Zmax) = H
0(OE0(2))

and [vTv(Zmax) is a union of two 2–planes (corresponding to global sections of OE0(2) vanishing
at the two intersection points of E0 with the other components). Hence

T \ [vTv = (Av \ [vAv)⇥ C,
and �top(P(T \ [vTv)) = 0 too.

Here T0 = 0, which is contained in A, and A intersects all the other strata of {Av}v generically.
This quarantees that �top(P(A \ [vAv)) = �top(P(T \ [vTv)) holds.

3.1.6. Our next goal is to show that whenever the link of the singularity is a rational homology
sphere the topological arrangement Atop is indeed topological, it depends only on the combina-
torics of the resolution graph.

We will need the following technical definition.

Lemma 3.1.7. (1) For any l
0
2 L

0 and subset I ⇢ V there exists a unique minimal subset
J(l0, I) ⇢ V which contains I, and has the following property:

(3.1.8) there is no v 2 V \ J(l0, I) with (Ev, l
0 + EJ(l0,I)) > 0.

(2) J(l0, I) can be found by the next algorithm: one constructs a sequence {Im}
k

m=0 of subsets
of V, with I0 = I, Im+1 = Im [ {v(m)}, where the index v(m) is determined as follows.
Assume that Im is already constructed. If Im satisfies (3.1.8) we stop and m = k.
Otherwise, there exists at least one v with (Ev, l

0 + EIm) > 0. Take v(m) one of them
and continue the algorithm with Im+1. Then Ik = J(l0, I).

Proof. For (1) notice that if J1 and J2 satisfies the wished requirement (3.1.8) of J(l0, I) then
J1 \ J2 satisfies too. Part (2) is a version of the usual Laufer type algorithm (see [La72, La77]
or [N07, Prop. 4.3.3]). ⇤
Proposition 3.1.9. Assume that the resolution graph is a tree of rational curves. For any
l
0
2 L

0 and I ⇢ V write J(I) := J(l0, I). Then the following facts hold.

(a) One has the following commutative diagram with exact rows

0 ! H
0(OE�EJ(I)

(�l
0
� EJ(I))) ! H

0(OE(�l
0))

k⇣ H
0(OEJ(I)

(�l
0)) ! 0

0 ! H
0(OE�EI (�l

0
� EI)) ! H

0(OE(�l
0)) ! H

0(OEI (�l
0))

\v2I Tv(l0) ,! T (l0)

# i# j

where j is an isomorphism (hence \v2I Tv(l0) = \v2J(I) Tv(l0)), i is injective and k is
surjective.

(b) dim \v2J(I)Tv(l0) = �(OE�EJ(I)
(�l

0
� EJ(I))) = �(l0 + E)� �(l0 + EJ(I)).

(c) In particular, if J(I1) = J(I2) then \v2I1Tv(l0) = \v2I2Tv(l0), and if J(I1)  J(I2) then
\v2I1Tv(l0) ! \v2I2Tv(l0). Therefore, J(I) is the unique maximal subset Imax ⇢ V, such
that I ⇢ Imax, and \v2ITv(l0) = \v2ImaxTv(l0).

(d) Part (b) for I = ; reads as follows:

dim T (l0) = dim \v2J(;)Tv(l
0) = �(l0 + E)� �(l0 + EJ(;)).

Hence, if l
0
2 S

0 then dim T (l0) = �(l0, E) + 1.
(e) codim (\v2ITv(l0) ,! T (l0) ) = �(l0 + EJ(I))� �(l0 + EJ(;)).

In particular, the arrangement complement is non–empty if and only if J(;) = ; (if and
only if l

0
2 S

0).
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Proof. First we prove the following fact: let F  E be an e↵ective non–zero cycle and we
assume that for any Ew  F one has (Ew, l

0)  0. Then h
1(OF (�l

0)) = 0. The proof runs
over induction: choose Ew from the support of F such that (F � Ew, Ew)  1, then use the
cohomological long exact sequence of OF (�l

0) ! OF�Ew(�l
0).

From the definition, \v2ITv(l0) = H
0(OE�EI (�l

0
�EI)). To prove (a) note that this group is

stable along the steps of the algorithm 3.1.7(2). Hence j is an isomorphism. Similarly, along these
steps i is injective. Since h1(OE�EJ (�l

0
�EJ)) = 0 by the above fact , k is onto and (b) follows

too. For (c) use (b) and the fact that �(l0 + J(I2)) > �(l0 + J(I1)) whenever J(I1)  J(I2). ⇤
Corollary 3.1.10. The arrangement Atop(l0) depends only on the combinatorial data of the
graph.

At topological Euler characteristic level one has:

Corollary 3.1.11. If the graph is a tree of rational curves and l
0
2 S

0 then

�top(P(T (l0) \ [vTv(l
0)) ) =

X

I⇢V
(�1)|I|+1

�(l0 + EJ(l0,I)).

Proof. Use Lemma 3.1.2 and Proposition 3.1.9(b). ⇤
Example 3.1.12. Consider the situation of the Example 3.1.5, and set l

0 = Zmin. Then
T (Zmin) = C2 and [vTv(Zmin) consists of the union of two di↵erent lines. Therefore, at topo-
logical Euler characterisitc level, �top(P(T (Zmin \[vTv(Zmin)) ) = 0. At Zmin the complement
of the analytic arrangement is empty.

Example 3.1.13. Using special vanishing theorems and computation sequences of rational and
elliptic singularities (cf. [N99, N99b]) one can prove the following results as well (the details will
be published elsewhere, see also [N]).

(I) Assume the following situations:

(a) either (X, o) is rational, � is arbitrary resolution, and l
0
2 S

0 is arbitrary,
(b) or (X, o) is minimally elliptic singularity with H

1( eX,Z) = 0, � is a resolution whose
elliptic cycle equals E, and we also assume that for the fixed l

0
2 S

0 there exists a
computation sequence {xi}i for Zmin, which contains E as one of its terms, and it
jumps (that is, (xi, E1) = 2) at some E1 with (E1, l

0) < 0.

Then the topological and analytic arrangements at l0 agree, Atop(l0) = Aan(l0).
(II) For minimally elliptic singularities it can happen that Atop(l0) 6= Aan(l0), even for the

minimal resolution. E.g., in the case of the minimal good resolution of {x2 + y
3 + z

7 = 0}, or
in the case of minimal resolution of {x2 + y

3 + z
11 = 0} (which is good), for l = Zmin one has

dim(T (Zmin)) = 2 and dim(A(Zmin)) = 1.

Remark 3.1.14. For any l
0
2 S

0 one has the exact sequence

0 ! A(l0) ! T (l0) ! H
1(O eX(�l

0
� E)) ! H

1(O eX(�l
0))

Hence, Aan(l0) = Atop(l0) whenever H1(O eX(�l
0
�E)) = 0. This can occur, e.g. if l0 =

P
v
avE

⇤
v

with av � 0, in which case H
1(O eX(�l

0
� E)) = 0 by the Grauert–Riemenschneider Vanishing

Theorem.

4. The topological series Z(t).

4.1. Using the notations of Subsection 2.1 (and under the above assumption H
1( eX,Z) = 0) we

define the following combinatorial/topological ‘candidate’ for P (t). Sometimes we do not make
distinction between a rational function and their Taylor expansion at the origin.
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Definition 4.1.1. The series Z(t) 2 Z[[S 0]] is defined as the Taylor expansion at the origin of
the rational function in variables xv = tE

⇤
v (cf. 2.1.2)

(4.1.2) Z(t) := Taylor expansion at 0 of �(z)(t), where z(x) :=
Y

v2V
(1� xv)

�v�2
.

That is,

(4.1.3) Z(t) = Taylor expansion at 0 of
Y

v

(1� tE
⇤
v )�v�2

.

We call this form the first appearance of Z(t).
By (2.1.5), its h-component Zh(t) is the expansion of

(4.1.4)
1

|H|
·

X

⇢2 bH

⇢(h)�1
·

Y

v2V
(1� ⇢([E⇤

v
])tE

⇤
v )
�v�2

.

4.2. We start the list of its properties by the following observation. If ⌃ is a topological space,
let Sa⌃ (a � 0) denote its symmetric product ⌃a

/Sa. For a = 0, by convention, S0⌃ is a point.
Then, by Macdonald formula [Macd62],

(4.2.1)
X

a�0

�top(S
a⌃)xa = (1� x)��(⌃)

.

Let E�
v
denote the regular part of Ev ' P1. Then �top(E�

v
) = 2� �v.

Corollary 4.2.2. The second appearance of Z(t), cf. [CDGZ04, CDGZ08]. With the
notation xa = x

a1
1 · · ·x

as
s
,

(4.2.3) z(x) =
Y

v

X

av�0

�top(S
avE

�
v
)xav

v
=
X

a�0

Y

v

�top(S
avE

�
v
)xa

.

4.3. In the next paragraphs we provide another interpretation of Z(t). For the definition of
the cycle J(l0, I) associated with l

0
2 L

0 and I ⇢ V see 3.1.7.

Theorem 4.3.1. The third appearance of Z(t).

(4.3.2) Z(t) =
X

l02S0

X

I⇢V
(�1)|I|+1

�(l0 + EJ(l0,I))t
l
0
.

This formula can be compared with (2.4.14) valid for P (t).

Proof. With the notation l
0 =

P
v
avE

⇤
v
set

(4.3.3) y(x) :=
X

a�0

X

I

(�1)|I|+1
�(l0 + EJ(l0,I))x

a
.

We wish to show that y(x) = z(x). In the proof we use induction over |V|. The verification of
the |V| = 1 case is left to the reader. Hence, we assume |V| > 1. Fix a vertex w 2 V so that
�w = 1. Let �0 := � \ {w}, and let u be that vertex of �0 which is adjacent to w in �. Let x0

be the x–vector associated with V(�0). Clearly, one has

z�(x) = z�0(x0) · (1� xu)/(1� xw).

We will establish similar identity for y�. For this we write l
0
0 := R(l0) =

P
v 6=w

avE
⇤,�0
v

for any

l
0 =

P
v
avE

⇤
v
(here E⇤,�0

v
is the anti-dual of Ev in �0). This is the restriction, the dual operator

L(�)0 ! L(�0)0 of the inclusion L((�0) ! L(�). Hence, for Z 2 L(�0)

(4.3.4) (l0, Z) = (l00, Z) and (�E
⇤,�0
u

, Z) = (Ew, Z).
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First, we fix some l
0
2 S

0 and a subset I ⇢ V with w 62 I. If w 2 J(l0, I), we may assume (cf.
the notations of 3.1.7) that Ik�1 = J(l0, I)\w. Since (l0, Ew)  0, �w = 1 and (l0+EIk�1 , Ew) > 0,
we get that, in fact, (l0 + EIk�1 , Ew) = 1. Hence

�(l0 + EJ(l0,I)) = �(l0 + EJ(l0,I)\w).

Comparing the two algorithms on � and �0 we get that J(l0, I) \ w = J
�0(l00, I), and

�(l0 + EJ(l0,I)\w)� �(l0 + EI) = �(l00 + EJ�0 (l00,I)
)� �(l00 + EI).

By (4.3.4) one also has �(l0+EI)��(l0) = �(l00+EI)��(l00). All these implies the next identity,
where in the right hand side all invariants are considered in �0:

(4.3.5) �(l0 + EJ(l0,I))� �(l0) = �(l00 + EJ�0 (l00,I)
)� �(l00).

The same is true if w 62 J(l0, I). Next, fix again l
0
2 S

0 and take I ⇢ V with w 2 I.
We need to distinguish two cases. In the first case we assume that (l0, Eu) = 0. This

happens exactly when l
0
0 � E

⇤,�0
u

62 S
0(�0). In this case, for any K ⇢ V \ {u,w} one has

J(l0,K [ w}) = J(l0,K [ {w, u}). Indeed, (l0 + EK[w, Eu) � (Ew, Eu) = 1, hence in the very
first step of the algorithm of J(l0,K [ w) we can add Eu. Thus,

(4.3.6)
X

M 62w

(�1)|M |
�(l0 + EJ(l0,M[w)) = 0.

Next, assume that l00 � E
⇤,�0
u

2 S
0(�0). Then, compared the two algorithms we get

J(l0, I) = J
�0(l00 � E

⇤,�0
u

, I \ w) [ w,

�(l0 + EJ(l0,I))� �(l0 + EI) = �(l00 � E
⇤,�0
u

+ E
J�0 (l00�E

⇤,�0
u ,I\w)

)� �(l00 � E
⇤,�0
u

+ EI\w).

Finally, (4.3.4) implies

�(l0 + Ew + EI\w)� �(l0 + Ew) = �(l00 � E
⇤,�0
u

+ EI\w)� �(l00 � E
⇤,�0
u

).

Hence

(4.3.7) �(l0 + EJ(l0,I))� �(l0 + Ew) = �(l00 � E
⇤,�0
u

+ E
J�0 (l00�E

⇤,�0
u ,I\w)

)� �(l00 � E
⇤,�0
u

).

Since for any constant c, one has
P

I:I 63w
(�1)|I|+1

c =
P

I:I3w
(�1)|I|+1

c = 0, the identities
(4.3.5), (4.3.6) and (4.3.7) read as

X

a�0

X

I 63w

(�1)|I|+1
�(l0 + EJ(l0,I))x

a = y�0(x0) ·
X

nw�0

x
aw
w

;

X

a�0

X

I3w

(�1)|I|+1
�(l0 + EJ(l0,I))x

a = �y�0(x0)xu ·

X

nw�0

x
aw
w

.

Hence y�(x) = y�0(x0)(1� xu)/(1� xw). ⇤
Corollary 4.3.8. The forth appearance of Z(t).

Z(t) =
X

l02S0

�top(P(T (l0) \ [vTv(l
0)) ) · tl

0
.

Proof. Combine Corollary 3.1.11 and Proposition 4.3.1. ⇤
This formula can be compared with the statement of Corollary 3.1.3 valid for P (t).

Example 4.3.9. Using Example 3.1.13 and Corollaries 3.1.3 and 4.3.8 we obtain that
P (t) = Z(t) in the following cases (see also [N08]):

(a) (X, o) is rational, and � is arbitrary resolution,
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(b) or (X, o) is minimally elliptic singularity, and it satisfies the assumptions of Theo-
rem 3.1.13.

More generally, the identity Z(t) = P (t) is true for any splice quotient singularity [N12]. Note
that Z(t) = P (t) can happen even if Aan(l0) 6= Atop(l0); see Example 3.1.5, which is a splice
quotient singularity.

Remark 4.3.10. There is another incarnation of Z(t), which uses weighted cubes. This
realizes a connection with the lattice complex of the lattice cohomology, for details of this, see
e.g. [N11].

The set of q–cubes (where q 2 Z�0) consists of pairs (l0, I) 2 L
0
⇥ P(V), |I| = q, where P(V)

denotes the power set of V. ⇤q = (l0, I) can be identified with the ‘vertices’ {l0 +
P

j2I0 Ej)I0 ,
where I

0 runs over all subsets of I, of a q–cube in L
0
⌦ R. One defines the weight function

(4.3.11) w : L0
! Q, w(k) := �(l0) = �(l0, l0 +K)/2.

This extends to a weight–function defined on the set of all q–cubes

w(⇤q) = w((l0, I)) = max
I0⇢I

�
w(l0 +

X

j2I0

Ej)
 
.

Then the fifth appearance of Z(t) is

(4.3.12) Z(t) =
X

l02L0

⇣ X

I2P(V)

(�1)|I|+1
w((l0, I))

⌘
tl

0
.

4.4. The extension of Z(t) in the Grothendieck ring. The information contained in Z(t)
can be improved if we replace in the ‘forth appearance’

Z(t) =
X

l02S0

�top(P(T (l0) \ [vTv(l
0)) · tl

0

the topological Euler characteristic of P(T (l0) \ [vTv(l0)) with the class of this space in the
Grothendieck group of complex quasi–projective varieties. (In the analytic case the extension of
P (t) to the series

P
l02S0 [P(A(l0) \[vAv(l0))] · tl

0
with coe�cients in the Grothendieck ring was

already considered e.g. in [CDGZ07].)
Let L be the class of the 1–dimensional a�ne space. Then, by inclusion–exclusion principle

(as the analogue of 3.1.2) one has the following. If {V↵}↵2⇤ is a finite family of linear subspaces
of a finite-dimensional linear space V , and for I ⇢ ⇤ one writes VI := \↵2IV↵, then

[V \ [↵V↵] =
X

I

(�1)|I|Ldim(VI), [P(V \ [↵V↵)] = (
X

I

(�1)|I|Ldim(VI))/(L� 1).

According to this, one defines

(4.4.1) Z(L, t) =
X

l02S0

[P(T (l0) \ [vTv(l
0))] · tl

0
,

which, using 3.1.9 reads as

Z(L, t) = 1

L� 1
·

X

l02S0

X

I⇢V
(�1)|I| L�(l

0+E)��(l0+EJ(l0,I)) tl
0

=
X

l02S0

X

I⇢V
(�1)|I| ·

L�(l
0+E)��(l0+EJ(l0,I)) � 1

L� 1
tl

0
.

(4.4.2)

Note that limL!1 Z(L, t) = Z(t). The analogue of the topological/combinatorial identity (4.1.3)
is the following.
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Theorem 4.4.3.

(4.4.4) Z(L, t) =
Q

(u,v)2E (1� tE
⇤
u � tE

⇤
v + LtE⇤

u+E
⇤
v )

Q
v2V (1� tE⇤

v )(1� LtE⇤
v )

.

Proof. Follow the steps and all the identities of the proof of 4.3.1. ⇤
This formula was reproved in the Master Thesis of János Nagy as well [Nagy16]. In this

Thesis also several cohomological properties of the linear subspace arrangement complements
are studied.
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Abstract. In the study of normal surface singularities the relation between analytical and
topological properties and invariants of the singularity is a very rich problem. This relation
is particularly close for surface singularities constructed from families of curves. We use these
Kulikov singularities to reexamine results of Némethi-Okuma and Tomaru.

Introduction

The first time I met Brieskorn was when I started my Ph.D. studies in Leiden and he was
spending some months there. Horst Knörrer was then also working there. Through his students
Brieskorn has influenced my career and work very much. And of course through his work, in the
first place through his book with Knörrer on plane algebraic curves [2]. This is a most remarkable
book, not only because of its value for money (Brieskorn negotiated a price below DM 50) and
its white cover, but mainly because its style and contents. Ever since curve singularities and
algebraic curves have been central in my work.

Trying to describe singularities one may ask the question:

Which discrete data are needed to know a singularity?

One interpretation of ‘knowing a singularity’ is that we can write down equations. As we only
have discrete data, such equations necessarily describe an equisingular family of singularities.

For plane curve singularities there are very satisfactory answers to the question, which can
be found in Brieskorn’s book [2]. There is the link of the singularity, which gives the embedded
topology (without the embedding one has only the number of components); another invariant
is the resolution graph. Since Brieskorn’s work on the exotic spheres as links of singularities
it is realised that in high dimension the abstract link contains not enough information. In
the surface case the situation is di↵erent. The topology of the link, encoded in the resolution
graph, is a strong invariant. For rational and minimally elliptic singularities it determines the
equisingularity class. For higher geometric genus this is no longer the case and the study of the
relation between analytical and topological properties and invariants of singularities is a very
rich problem.

To have a strong relation we have to look at special classes of singularities. In the work
of Neumann and Wahl (for an overview see [18]) and of Némethi two kind of restrictions are
imposed, an analytical one, that the singularity is Q-Gorenstein, and a topological one, that the
link is a rational homology sphere. Neumann and Wahl came even up with a way to write down
equations from the resolution graph, provided certain special numerical conditions are satisfied.
The so called splice type equations describe a complete intersection singularity in a particular
simple form, however not for a singularity with the original graph, but for its universal abelian
cover (which is a finite cover due to the rational homology sphere condition). In a recent paper
Némethi and Okuma [12] study which analytic structures can occur for a specific resolution

http://dx.doi.org/10.5427/jsing.2018.18z
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graph, giving details for an example already mentioned by Némethi [11]. One of the occurring
structures is that of a Kodaira or Kulikov singularity.

Kodaira singularities were introduced by Karras [4], using a construction similar to the one
earlier described by Kulikov [6]. In my thesis [16] I introduced the term Kulikov singularities.
The construction starts from a (degenerating) 1-parameter family ⇡ : W ! D of curves of genus
g. Let � : fW ! W be the blow up of W in r points of the special fibre W0, each point a
smooth point on a component occurring with multiplicity 1. Then the strict transform of the
special fibre can be blown down to a singular point p 2 W . By definition (W, p) is a Kulikov
singularity. The study of properties of such singularities reduces in two ways to the study of
curves. The morphism ⇡ descends to a function on the singularity, which defines a general
hyperplane section. This curve singularity is more accessible and invariants like its multiplicity
and embedding dimension determine the corresponding invariants of the surface singularity. The
other occurrence of curves is by construction: the properties of the central fibre, considered as
curve of arithmetic genus g, are essential.

Kulikov introduced his construction to give a uniform construction of the unimodal and bi-
modal singularities. These are the simplest types of minimally elliptic singularities. For higher
genus Kulikov singularities should also be considered as simplest types. The generalisation of
Laufer’s minimally elliptic cycle [7] is the characteristic cycle, introduced by Karras for Kodaira
singularities [5] and in [16] in general. Tomaru studied for which Brieskorn singularities the
characteristic cycle is equal to the fundamental cycle [17] .

Karras’ work on Kodaira singularities of higher genus [5] and my work on Kulikov singularities
[16] was never published. When referred to, these singularities are mainly seen as singularities
where there is a function defining the fundamental cycle Z, which is moreover reduced at compo-
nents Ei with Ei ·Z < 0. In this paper I actually take this as definition (see Definition 2.1), being
the shortest, but it is the construction using a family of curves which gives a good understanding
of the singularity. As illustration I treat the results of Némethi and Okuma [12] and of Tomaru
[17] from this point of view.

1. Invariants of surface singularities

The topological type of a normal complex surface singularity is determined by and determines
the resolution graph of the minimal good resolution. But a resolution graph can be defined for
any resolution, not necessarily good.

Definition 1.1. Let ⇡ : (M,E) ! (V, p) be a resolution of a surface singularity with exceptional
divisor E =

Sr
i=1

Ei. The resolution graph � is a weighted graph with vertices corresponding
to the irreducible components Ei. Each vertex has two weights, the self-intersection �bi = E

2

i ,
and the arithmetic genus pa(Ei), the second traditionally written in square brackets and omitted
if zero. There is an edge between distinct vertices if the corresponding components Ei and Ej

intersect, weighted with the intersection number Ei · Ej (only written out if larger than one).

Other definitions, which record more information, are possible: one variant is to have an edge
for each intersection point P 2 Ei \ Ej , with weight the local intersection number (Ei · Ej)P .
This is the more common definition in the case that the intersections are transverse.

The classes of the curves Ei form a preferred basis of H := H2(M,Z). Following algebro-
geometric tradition the elements of H are called cycles. They are written as linear combinations
of the Ei. The intersection form on M gives a negative definite quadratic form on H. Let
K 2 H

2(M,Z) be the canonical class. It can be written as rational cycle in HQ = H ⌦ Q by
solving the adjunction equations Ei ·(Ei+K) = 2pa(Ei)�2. The function ��(A) = 1

2
A·(A+K),

A 2 H, makes H into a quadratic quadratic lattice, in the sense of [8, 1.4]. We prefer to work
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with the genus pa(A) = 1��(A). Note that the genus function determines the intersection form,
as

pa(A+B) = pa(A) + pa(B) +A ·B � 1 .

The data (H, pa) is equivalent to (H, {Ei · Ej}, {pa(Ei)}), encoded in the resolution graph �.
There are some important cycles on E, some of which only depend on the quadratic lattice,

while others depend on the analytic structure.

Definition 1.2. The fundamental cycle Z is the is the smallest positive cycle such that Ei ·Z  0
for all i. Themaximal ideal cycle Zm is the smallest cycle occurring as compact part of the divisor
of a function f 2 m(V,p). The canonical cycle ZK is the rational cycle on E, which is numerically
equivalent to the anticanonical class of the resolution M .

We recall that the geometric genus pg(V, p) is the dimension of R1
⇡⇤OM . This is equal to the

maximal value of h1(OD) over all positive cycles. In fact, there is a unique minimal cohomological
cycle with this maximal value (see [15, 4.8]). A topological lower bound for pg is the arithmetic
genus pa(V, p), which is the maximal value of pa(D) over all positive cycles. The genus pa(Z)
of the fundamental cycle is also a topological invariant of the singularity, which is called the
fundamental genus pf (V, p) [17].

Obviously pf  pa  pg, and all inequalities can be strict; the easiest example with pa > pf

is the case of an irreducible exceptional curve E of genus g > 1 and self-intersection �1.

Definition 1.3. The characteristic cycle C of a nonrational singularity is the smallest cy-
cle which realises the fundamental genus: it is the cycle C  Z with pa(C) = pa(Z) and
pa(D) < pa(C) for all cycles 0 < D < C.

This cycle is a generalisation of Laufer’s minimally elliptc cycle and its existence is proved
in the same way. It was first introduced by Karras for Kodaira singularities [5]. The general
definition is in [16]; Tomaru also introduced it under the name minimal cycle [17].

2. Kulikov singularities

In this section we introduce the Kulikov construction, give some properties and discuss when
the resulting singularity is Gorenstein.

Definition 2.1. Let (V, p) be a normal surface singularity with fundamental cycle Z on the
minimal resolution. It is called a Kulikov singularity if there exists a function f : (V, p) ! (C, 0)
with (X, p) = (f�1(0), p) a reduced curve singularity with divisor on the minimal resolution of
the form Z + eX, such that the strict (or proper) transform eX of X intersects the exceptional
set E transversally in smooth points on components having multiplicity one in the fundamental
cycle Z.

Such singularities are the result of a construction first given by Kulikov [Kulikov], to describe
the unimodal and bimodal singularities. He starts from a (degenerating) family ⇡ : W ! D of
curves of genus g. This is a proper morphism of a non-singular surface to a small disc. The
special fibre W0 = ⇡

�1(0) over 0 2 D can be written as W0 = n1C1 + . . . nkCk, where the
Ci are the irreducible components of this fibre. The intersection matrix (Ci · Cj) is negative

semi-definite. Let � : fW ! W be the blow up of W in r points q1, . . . , qr, each a smooth point
of a component Ci which has multiplicity ni = 1 in W0. We denote the strict transform of a
component Ci by Ei. Then the special fibre fW0 of ⇡̃ = ⇡ � � can be written as

fW0 = n1E1 + . . . nkEk + eX1 + · · ·+ eXr ,

where the eXj are (�1)-curves. Now the intersection matrix (Ei · Ej) is negative definite and
E =

S
Ei can be blown down to a singular point p 2 W .
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Lemma 2.2. Kulikov’s construction results in a Kulikov singularity. Conversely, every Kulikov
singularity can be obtained by this construction.

Proof. The construction yields the minimal resolution if there are no (�1)-curves in the family
⇡ : W ! D except possibly curves containing a point qj . If there are other (�1)-curves we blow

them down without changing the resulting singularity. So we may assume that fW ! W is the
minimal resolution of the singularity p 2 W . We write fW0 = Y + eX and have to show that Y
is the fundamental cycle of the singularity (W, p). We put Y = Z +D with D an e↵ective cycle
supported on E. Then D does not intersect eX, as each eXi intersects Y in a component with
multiplicity one. Now 0 = D · fW0 = D · (Z +D + eX) = D · Z +D ·D  0, so D ·D = 0 and
therefore D = 0.

Conversely, given a function f : (V, p) ! (C, 0) with divisor Z + eX we compactify to a family
of curves, following Karras [1980,Thm 2.9]: in each point q 2 E \ eX there are local coordinates
such that f is given by xy = 0, and eX by y = 0. We glue the blow-up of the origin to it: with
coordinates (u, y) we have two charts, given by (u, y) = (u, u⌘) = (xy, y). The glueing is by
identifying the (x, y) coordinates. Then u = xy extends the function f . ⇤

Kulikov singularities are a special case of Kodaira singularities, defined by Karras [4, 5]. In
his construction it is allowed that points to be blown up coincide: one blows up consecutively,
and it is allowed to blow up the strict transform of the fibre in a point of intersection with a
previously blown up curve. Then the curve (X, p) = (f�1(0), p) is not necessarily a reduced
curve.

The advantage of the more strict definition of Kulikov singularities is that the curve (X, p) is
a general hyperplane section. The function f : (V, p) ! (C, 0) defines a smoothing of this curve
with Milnor number µ = 2g+ r�1. The structure of the hyperplane section is often much easier
to describe than that of the singularity itself. It allows conclusion about the multiplicity and
the embedding dimension of the singularity.

An alternative description of the construction starts from a minimal family ⇡ : W ! D,
meaning thatW does not contain (�1)-curves. One then blows up points consecutively, each time
blowing up a point with multiplicity one in the special fibre. In each stage a (�1)-curve intersects
only one other curve, so in the final surface the (�1)-curves are ends, and their complement is

connected. Write as before fW0 = Y + eX with eX the union of the (�1)-curves. Then the support
of Y can be blown down.

We have the following properties.

Proposition 2.3.

(1) For a Kulikov singularity the maximal ideal cycle Zm is equal to the fundamental cycle
Z.

(2) The fundamental genus is equal to the genus of the curves in the family used in the
construction: pf (V, p) = g.

(3) A rational singularity is Kulikov if and only if the fundamental cycle is reduced.
(4) The characteristic cycle of a nonrational Kulikov singularity is the strict transform of

the special fibre of the minimal family resulting in the singularity.

Proof. Only the last property needs a proof. It su�ces to consider the case that the strict
transform is the whole fundamental cycle. Suppose that C < Z and choose a computation
sequence Zj = Zj�1 + Eij from Z0 = C to Zk = Z. As pa(Zj) = pa(Z) for all j, each Eij is a
smooth rational curve with Eij ·Zj�1 = 1. This holds in particular for the last one and therefore
Eik · Z = 1 + E

2

ik < 0. This implies that Eik has multiplicity one in the fundamental cycle and
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Eik · = �Eik · eX. After blowing down eX the strict transform of Eik has self-intersection (�1),
contradicting that the family we started from was a minimal family. ⇤

To obtain a Gorenstein Kulikov singularity we have to perform the construction in special
points. Let ⇡ : W ! D be a minimal family of curves of genus g. The relative dualising sheaf
!W/D is isomorphic to ⌦W . Let (!) be the divisor of a global section. It consists of an horizontal,
non-compact part N and a divisor supported on the special fibre, determined up to a multiple
of this fibre. Suppose that each component of N intersects the special fibre only transversally
in components of multiplicity one. Now we perform the Kulikov construction starting from the
minimal family, blowing up at least these intersection points, in such a way that in the final
family ⇡̃ : fW ! D the pull back of ! has the same multiplicity m along all (�1)-curves Xi, and
that the horizontal part of its divisor intersects the special fibre only in eX. Let f = ⇡̃

⇤(t), with t

a coordinate function on D. Then the meromorphic two-form f
�m

! is holomorphic and nowhere
zero on U \ E, U a neighbourhood of E. Therefore the Kulikov singularity is Gorenstein.

Example 2.4. We give an example of a 1-parameter family of weighted homogeneous Gorenstein
singularities Va such that V0 is not Kulikov but Va is Kulikov for a 6= 0. It is the simplest of the
series of examples of Briançon and Speder of a family which is µ-constant, but not µ⇤-constant
[1].

Consider
fa(x, z, t) = z

3 + azx
3 + tx

4 + t
9
.

The resolution graph is

v�2

[3]

v�2

The exceptional divisor on the minimal resolution is E = E1 + E2 with E1 a curve of genus 3
with self-intersection �2, and E2 a rational (�2)-curve. The canonical model of E1 is the plane
quartic ⌘⇣

3 + a⇣⇠
3 + ⇠

4 + ⌘
4; this curve has a flex in P = (0 : 0 : 1), and the tangent ⌘ = 0

intersects the curve in Q = (�a : 0 : 1), so for a = 0 there is a hyperflex. The normal bundle
of E1 has P +Q as divisor, and E2 intersects E1 in Q. The general hyperplane section has two
branches for a 6= 0; the strict transform of one branch passes through P , and the other intersects
E2 in a smooth point of E. For a = 0 the curve is irreducible, its strict transform passes through
P = Q = E1 \ E2.

To construct this singularity we start from the trivial family W = E1 ⇥ D. A canonical
divisor is 3P ⇥ D + Q ⇥ D. After blowing up in P ⇥ {0} the multiplicity along the newly
introduced exceptional divisor is 4. Blowing up in Q ⇥ {0} gives multiplicity 2. We blow up
again in intersection point of special fibre and strict transform of section Q ⇥ D, resulting in
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multiplicity 4. By dividing with t
4 we see that the singularity is Gorenstein withK = �4E1�2E2.

The functions t, x = t
2
⇠/⌘ and z = t

3
⇣/⌘ are holomorphic on neighbourhood of E, giving

(t3⇣/⌘)3 + a(t3⇣/⌘)(t2⇠/⌘)3 + t(t2⇠/⌘)4 + t
9 = 0; this formula works also for a = 0. The blowing

up can be done in family over a base D ⇥ A, with a a coordinate on A. We first blow up in
P ⇥ 0 ⇥ A, then in Q as lying on the strict transform of C ⇥ 0 ⇥ A and then once again in the
intersection point with the strict transform of the appropriate section. For a = 0 this means
that we blow up in a double point of the special fibre, which is not allowed in the Kulikov
construction.

3. The characteristic cycle of Brieskorn-Pham singularities

The simplest type of quasi-homogeneous hypersurface singularities has an equation, which is
a sum of perfect powers, and is usually called a Brieskorn-Pham polynomial. We write in the
surface case

(3.1) x
a + y

b + t
c

with a  b  c. It is well known how to get the resolution of this surface singularity from the
exponents a, b and c [14]. The precise form is not important for us now.

Lemma 3.1. If c � lcm(a, b), the Brieskorn-Pham singularity (3.1) is a Kulikov singularity of
genus g = (µ� r + 1)/2, where µ = (a� 1)(b� 1) is the Milnor number of the curve singularity
x
a + y

b and r = gcd(a, b) is the number of branches.

Proof. We construct the singularity with the Kulikov construction. We start with an a�ne
family of curves, whose equation is in fact given by a Brieskorn-Pham polynomial, but with
lower exponent c. Put d = lcm(a, b). Let r = gcd(a, b), then d = ab

r . Consider the family
⇠
a + ⌘

b + t
c�d = 0 as family of a�ne plane curves, parametrised by t, and complete it in the

weighted projective space with weights ( da ,
d
b , 1). The homogeneous equation is then

⇠
a+⌘

b+ t
c�d

w
d = 0. We resolve the singularity at the origin. We look at the chart ⇠ = 1. There

the equation is 1 + ⌘̄
b + t

c�d
w̄

d = 0, modulo the action a
d (

d
b , 1). For t = 0 we have 1 + ⌘̄

b = 0,
so there are indeed b

a/d = r points on the compactification of the special fibre. The coordinate

transformation from (⇠, ⌘, 1) coordinates to (1, ⌘̄, w̄) is ⇠ = w̄
� d

a , ⌘ = ⌘̄w̄
� d

b . We blow up in the

r points at infinity on the special fibre. The functions x := ⇠t
d
a , y := ⌘t

d
a and t are holomorphic

in a neighbourhood of the strict transform of the special fibre, and generate the local ring of the
Kulikov singularity. They satisfy x

a + y
b + t

c = 0. ⇤

It follows that the family of curves obtained by resolving the singularity of ⇠a+⌘
b+t

c�d
w

d = 0
is not minimal if c� d � d = lcm(a, b). Furthermore the resolution graph of xa + y

b + t
c�d is a

subgraph of the resolution graph of xa + y
b + t

c.

Proposition 3.2. Write c = c0+c1d with 0  c0 < d. The characteristic cycle of the Brieskorn-
Pham singularity (3.1) has support on the subgraph corresponding to the singularity xa+y

b+t
c0+d

and is the fundamental cycle of that singularity. In particular, the characteristic cycle is equal
to the fundamental cycle if and only if d  c < 2d.

Proof. If the family used in the construction above is not minimal, one can blow down each
component of the strict transform of the a�ne curve ⇠

a + ⌘
b = 0 and still have a family of

the same type. So the family is minimal if and only c � d < d. The result now follows from
Proposition 2.3.(4). ⇤
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The Proposition was proved by Tomaru [17] using an explicit description of the resolution of
the singularity. As to this resolution, we note that there are r chains of c1 � 1 (�2)-curves from
the characteristic cycle to the components of eX.

Remark 3.3. The above result extends with the same proof to the case of Brieskorn complete
intersections. A proof in the style of [17] was given by Meng, Yuan and Wang [9].

4. Singularities with a specific resolution graph

A recent paper Némethi and Okuma [12] concerns the problem of determining upper and
lower bounds for the geometric genus in terms of the resolution graph. The Authors study which
analytic structures can occur for a specific resolution graph, giving details for an example already
mentioned by Némethi [11]. Here we rederive their results from our point of view.

The main feature of the example is that the topological upper bound for pg is not realised.
The maximal pg occurs for a non Gorenstein Kulikov singularity and for a Gorenstein splice type
singularity.

The singularity considered has an integral homology sphere link. The resolution graph for the
minimal good resolution is:

v�3 v�1

v�2

�13 v�1

v�2

v�3

This graph satisfies the semigroup condition of Neumann andWahl [13] so there exist singularities
of splice type with this graph, with pg = 3. The defining equations of this complete intersection
singularity have ‘leading’ forms

(4.1) z
2

1
z2 + z

2

3
+ z

3

4
, z

3

1
+ z

2

2
+ z

2

4
z3 .

On the minimal resolution the exceptional curve is an irreducible two-cuspidal rational curve,
of self-intersection �1. Therefore the resolution graph for the minimal resolution is simply:

(4.2)

v�1

[2]

with a possibly singular central curve. This is the same graph as when the exceptional divisor is
a smooth curve of genus two. We note that there exists a Gorenstein Kulikov singularity with
this graph, namely the hypersurface z

2 = y
5 + x

10; it has the maximal geometric genus: pg = 4.
We first analyse the Gorenstein condition. On the minimal resolution M adjunction gives

for the exceptional curve that !E = !M ⌦ OE(E). The singularity is Gorenstein if and only if
!M = OM (�3E). This happens if and only if !E = OE(�2E), that is, if the conormal bundle
of E is a theta characteristic.

Lemma 4.1. A singularity with resolution graph (4.2) satisfies 2  pg  4. If pg = 4 then it is
a Gorenstein Kulikov singularity. If pg = 3 it is either non Gorenstein Kulikov of multiplicity 3
or a non Kulikov complete intersection.

Proof. To analyse the possible values for pg we look at a computation sequence. Here one
compares the di↵erent O(�kE) via the short exact sequences

0 �! O(�(k + 1)E) �! O(�kE) �! OE(�kE) �! 0

As H1( eX,O(�3E)) = 0 one gets the exact sequences

0 �! H
1( eX,O(�E)) �! H

1( eX,O) �! H
1(E,OE) �! 0
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H
0(E,OE(�E)) �! H

1( eX,O(�2E)) �! H
1( eX,O(�E)) �! H

1(E,OE(�E)) �! 0

and the isomorphism H
1( eX,O(�2E)) ⇠= H

1(E,OE(�2E)).
This gives 2  pg  4. If pg = 4 then OE(�2E) = !E , so the singularity is Gorenstein.

Moreover, the theta characteristic is odd. Indeed, on a smooth genus two curve the divisor
of a Weierstrass point is an odd theta characteristic. The Kulikov construction starting from a
trivial family and blowing just one Weierstrass point lying on the central fibre, yields the example
z
2 = y

5 + x
10.

A two-cuspidal rational curve has only one theta characteristic, which is even [3]. This can
also be seen from the description of the pencil with this special fibre in the list of Namikawa and
Ueno [10]: their example is y2 = (x3+ t)((x�1)3+ t), and one sees that three Weierstrass points
come together in cusp. This shows that there cannot be a singularity with this exceptional divisor
with pg = 4. But any computation with the quadratic lattice H cannot distinguish between such
a curve and a smooth curve.

A non Gorenstein Kulikov singularity is obtained by blowing up one smooth point of the special
fibre; for a smooth curve this point should not be a Weierstrass point. By construction the general
hyperplane section is a curve with Milnor fibre of genus two, so � = 2. The only irreducible non
Gorenstein curve singularity is the monomial curve (t3, t4, t5). Therefore the surface singularity
has multiplicity 3 and embedding dimension 4. In this case H

0(E,OE(�E)) = C, so pg = 3.
If the singularity is Gorenstein, but not Kulikov, then pg = 3 and the curve E has an even theta

characteristic. For a smooth E there exists a quasi-homogeneous singularity. Let y2 = f6(x, x̄)
be a hyperelliptic curve E, and write f6 = PQ with P , Q of degree 3. Consider the divisor
(P ) = 2D, with D a divisor of degree 3 on E, consisting of three Weierstrass points. Then
OE(D � KE) is an even theta characteristic. The graded ring

L
H

0(E,OE(k(D � KE))) is
generated by z = xP , z̄ = x̄P , w = yP and v = P

2. The equations are then

w
2 = Q(z, z̄), v

2 = P (z, z̄) .

The singularity with two-cuspidal curve as exceptional curve is a superisolated complete inter-
section singularity. The graded tangent cone is obtained in the same way as above, by taking
P = x

3, Q = x̄
3. We have to add terms of lowest degree to make the singularity isolated,

resulting in splice diagram equations of the form (4.1):

w
2 = z̄

3 + vz
2
, v

2 = z
3 + wz̄

2
.

⇤

Finally a quasi-homogeneous singularity with pg = 2 is obtained from a divisor D�KE withD
a general e↵ective divisor of degree 3 on a smooth curve E. The graded ring

L
H

0(E,OE(k(D�

KE))) has 7 generators. The same ring for the two-cuspidal rational curve gives a weighted
tangent cone of a singularity in C7.
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Abstract. We discuss the Bethe ansatz in the Gaudin model on the tensor product of finite-
dimensional sl2-modules over the field Fp with p elements, where p is a prime number. We
define the Bethe ansatz equations and show that if (t0

1
, . . . , t0k) is a solution of the Bethe ansatz

equations, then the corresponding Bethe vector is an eigenvector of the Gaudin Hamiltonians.
We characterize solutions (t0

1
, . . . , t0k) of the Bethe ansatz equations as certain two-dimensional

subspaces of the space of polynomials Fp[x]. We consider the case when the number of pa-
rameters k equals 1. In that case we show that the Bethe algebra, generated by the Gaudin
Hamiltonians, is isomorphic to the algebra of functions on the scheme defined by the Bethe
ansatz equation. If k = 1 and in addition the tensor product is the product of vector repre-
sentations, then the Bethe algebra is also isomorphic to the algebra of functions on the fiber
of a suitable Wronski map.

1. Introduction

The Gaudin model is a certain collection of commuting linear operators on the tensor product
V = ⌦

n
i=1Vi of representations of a Lie algebra g. The operators are called the Gaudin Hamil-

tonians. The Bethe ansatz is a method used to construct common eigenvectors and eigenvalues
of the Gaudin operators. One looks for an eigenvector in a certain form W (t), where W (t) is
a V -valued function of some parameters t = (t1, . . . , tk). One introduces a system of equations
on the parameters, called the Bethe ansatz equations, and shows that if t0 is a solution of the
system, then the vector W (t0) is an eigenvector of the Gaudin Hamiltonians, see for example
[B, G, FFR, MV1, MV2, MTV1, MTV4, RV, SchV, SV1, V1, V2, V3]. The Gaudin model
has strong relations with the Schubert calculus and real algebraic geometry, see for example
[MTV2, MTV3, So].

All that is known in the case when the Lie algebra g is defined over the field C of complex
numbers. In the paper we consider the case of the field Fp with p elements, where p is a prime
number, cf. [SV3]. We carry out the first steps of the Bethe ansatz, the deeper parts of the
Gaudin model over a finite field remain to be developed. We consider the case of the Lie algeba
sl2, where the notations and constructions are shorter and simpler.

It is known that over C, the Gaudin model is a semi-classical limit of the KZ di↵erential
equations of conformal field theory, and the construction of the multidimensional hypergeometric
solutions of the KZ di↵erential equations lead, in that limit, to the Bethe ansatz construction
of eigenvectors of the Gaudin Hamiltonians, see [RV]. The Fp-analogs of the hypergeometric
solutions of the KZ di↵erential equations were constructed recently in [SV3], see also [V5]. Thus
the constructions of this paper may be thought of as a semi-classical limit of the constructions
in [SV3].

In Section 2 we define the Bethe ansatz equations and show that if (t01, . . . , t
0
k) is a solution of

the Bethe ansatz equations, then the corresponding Bethe vector is an eigenvector of the Gaudin

Supported in part by NSF grant DMS-1665239.
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Hamiltonians. In Section 3 we characterize solutions (t01, . . . , t
0
k) of the Bethe ansatz equations

as certain two-dimensional subspaces of the space of polynomials Fp[x]. In Section 4 we consider
the case in which the number k of the parameters equals 1. In that case we show that the Bethe
algebra, generated by the Gaudin Hamiltonians, is isomorphic to the algebra of functions on the
scheme defined by the Bethe ansatz equation, see Theorem 4.2. If k = 1 and in addition the
tensor product is the product of vector representations, then the Bethe algebra is also isomorphic
to the algebra of functions on the fiber of a suitable Wronski map, see Corollary 4.9.

The author thanks W.Zudilin for useful discussions and the Hausdor↵ Institute for Mathe-
matics in Bonn for hospitality in May-July of 2017.

2. sl2 Gaudin model

2.1. sl2 Gaudin model over C. Let e, f, h be the standard basis of the complex Lie algeba sl2
with [e, f ] = h, [h, e] = 2e, [h, f ] = �2f . The element

⌦ = e⌦ f + f ⌦ e+
1

2
h⌦ h 2 sl2 ⌦ sl2(2.1)

is called the Casimir element. Given n, for 1 6 i < j 6 n let ⌦(i,j)
2 (U(sl2))⌦n be the element

equal to ⌦ in the i-th and j-th factors and to 1 in other factors. Let z0 = (z01 , . . . , z
0
n) 2 Cn have

distinct coordinates. For s = 1, . . . , n introduce

Hs(z
0) =

X

l 6=s

⌦(s,l)

z0s � z
0
l

2 (U(sl2))
⌦n

,(2.2)

the Gaudin Hamiltonians, see [G]. For any s, l, we have
⇥
Hs(z

0), Hl(z
0)
⇤
= 0,(2.3)

and for any x 2 sl2 and s we have

[Hs(z
0), x⌦ 1⌦ · · ·⌦ 1 + · · ·+ 1⌦ · · ·⌦ 1⌦ x] = 0.(2.4)

Let V = ⌦
n
i=1Vi be a tensor product of sl2-modules. The commutative subalgebra of End(V )

generated by the Gaudin Hamiltonians Hi(z0), i = 1, . . . , n, and the identity operator Id is called
the Bethe algebra of V . If W ⇢ V is a subspace invariant with respect to the Bethe algebra, then
the restriction of the Bethe algebra to W is called the Bethe algebra of W , denoted by B(W ).

The general problem is to describe the Bethe algebra, its common eigenvectors and eigenval-
ues.

2.2. Irreducible sl2-modules. For a nonnegative integer i denote by Li the irreducible i+ 1-
dimensional module with basis vi, fvi, . . . , f i

vi and action h.f
k
vi = (i�2k)fk

vi for k = 0, . . . , i;
f.f

k
vi = f

k+1
vi for k = 0, . . . , i � 1, f.f i

vi = 0; e.vi = 0, e.fk
vi = k(i � k + 1)fk�1

vi for
k = 1, . . . , i.

For m = (m1, . . . ,mn) 2 Zn
>0, denote |m| = m1 + · · ·+mn and L

⌦m = Lm1 ⌦ · · ·⌦Lmn . For
J = (j1, . . . , jn) 2 Zn

>0, with js 6 ms for s = 1, . . . , n, the vectors

fJvm := f
j1vm1 ⌦ · · ·⌦ f

jnvmn(2.5)

form a basis of L⌦m. We have

f.fJvm =
nX

s=1

fJ+1svm, h.fJvm = (|m|� 2|J |)fJvm,

e.fJvm =
nX

s=1

js(ms � js + 1)fJ�1svm.
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For � 2 Z, introduce the weight subspace L
⌦m[�] = { v 2 L

⌦m
| h.v = �v} and the singular

weight subspace SingL⌦m[�] = { v 2 L
⌦m[�] | h.v = �v, e.v = 0}. We have the weight

decomposition L
⌦m = �

|m|
k=0L

⌦m[|m|� 2k]. Denote

Ik = {J 2 Zn
>0 | |J | = k, js 6 ms, s = 1, . . . , n}.

The vectors (fJv)J2Ik form a basis of L⌦m[|m|� 2k].

By (2.4), the Bethe algebra B(L⌦m) preserves each of the subspaces L
⌦m[|m| � 2k] and

SingL⌦m[|m| � 2k]. If w 2 L
⌦m is a common eigenvector of the Bethe algebra, then for any

x 2 sl2 the vector x.w is also an eigenvector with the same eigenvalues. These observations show
that in order to describe B(L⌦m), its eigenvectors and eigenvalues it is enough to describe for
all k the algebra B(SingL⌦m[|m|� 2k]), its eigenvectors and eigenvalues.

2.3. Bethe ansatz on SingL⌦m
⇥
|m|�2k

⇤
over C. Given k, n 2 Z>0, m = (m1, . . . ,mn) 2 Zn

>0.
Let z0 = (z01 , . . . , z

0
n) 2 Cn have distinct coordinates. The system of the Bethe ansatz equations

is the system of equations

X

j 6=i

2

ti � tj
�

nX

s=1

ms

ti � z0s

= 0, i = 1, . . . , k,(2.6)

on t = (t1, . . . , tk) 2 Ck. If (t01, . . . , t
0
k, z

0
1 , . . . , z

0
n) 2 Ck+n

p has distinct coordinates, denote

�s(t
0
, z

0) =
X

l 6=s

msml/2

z0s � z
0
l

�

kX

i=1

ms

z0s � t
0
i

, s = 1, . . . , n.(2.7)

For any function or di↵erential form F (t1, . . . , tk), denote

Symt[F (t1, . . . , tk)] =
X

�2Sk

F (t�1 , . . . , t�k), Antt[F (t1, . . . , tk)] =
X

�2Sk

(�1)|�|F (t�1 , . . . , t�k).

For J = (j1, . . . , jn) 2 Ik define the weight function

WJ(t, z) =
1

j1! . . . jn!
Symt

"
nY

s=1

jsY

i=1

1

tj1+···+js�1+i � zs

#
.(2.8)

For example,

W(1,0,...,0) =
1

t1 � z1
, W(2,0,...,0) =

1

t1 � z1

1

t2 � z1
,

W(1,1,0,...,0) =
1

t1 � z1

1

t2 � z2
+

1

t2 � z1

1

t1 � z2
.

The function

Wk,n,m(t, z) =
X

J2Ik

WJ(t, z)fJvm(2.9)

is the L
⌦m[|m|� 2k]-valued vector weight function.

Theorem 2.1 ([RV, B], cf. [SV1]). If (t0, z0) = (t01, . . . , t
0
k, z

0
1 , . . . , z

0
n) is a solution of the

Bethe ansatz equations (2.6), then the vector Wk,n,m(t0, z0) lies in SingL⌦m[|m|� 2k] and is an

eigenvector of the Gaudin Hamiltonians, moreover,

Hi(z
0).Wk,n,m(t0, z0) = �i(t

0
, z

0)Wk,n,m(t0, z0), i = 1, . . . , n.(2.10)
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The eigenvector Wk,n,m(t0, z0) is called the Bethe eigenvector. On the Bethe eigenvectors see,
for example, [SchV, MV1, MV2, V1, V2, V3].

The fact that Wk,n,m(t0, z0) in Theorem 2.1 lies in SingL⌦m[|m| � 2k] may be reformulated
as follows. For any J 2 Ik�1, we have

nX

s=1

(js + 1)(ms � js)WJ+1s(t
0
, z

0) = 0,(2.11)

where we set WJ+1s(t
0
, z

0) = 0 if J + 1s /2 Ik.

2.4. Proof of Theorem 2.1. We sketch the proof following [SV1]. The intermediate statements
in this proof will be used later when constructing eigenvectors of the Bethe algebra over Fp. The
proof is based on the following cohomological relations.

Given k, n 2 Z>0 and a multi-index J = (j1, . . . , jn) with |J | 6 k, introduce a di↵erential
form

⌘J =
1

j1! · · · jn!
Antt

h
d(t1 � z1)

t1 � z1
^ · · · ^

d(tj1 � z1)

tj1 � z1
^

d(tj1+1 � z2)

tj1+1 � z2
^ . . .

^
d(tj1+···+jn�1+1 � zn)

tj1+···+jn�1+1 � zn
^ · · · ^

d(tj1+···+jn � zn)

tj1+···+jn � zn

i
,

which is a logarithmic di↵erential form on Cn
⇥ Ck with coordinates z, t. If |J | = k, then for

any z
0
2 Cn we have on {z

0
}⇥ Ck the identity

⌘J

��
{z0}⇥Ck = WJ(t, z

0)dt1 ^ · · · ^ dtk.(2.12)

Example 2.1. For k = n = 2 we have

⌘(2,0) =
d(t1 � z1)

t1 � z1
^

d(t2 � z1)

t2 � z1
,

⌘(1,1) =
d(t1 � z1)

t1 � z1
^

d(t2 � z2)

t2 � z2
�

d(t2 � z1)

t2 � z1
^

d(t1 � z2)

t1 � z2
.

Introduce the logarithmic di↵erential 1-forms

↵ =
X

16i<j6n

mimj

2

d(zi � zj)

zi � zj
+

X

16i<j6k

2
d(ti � tj)

ti � tj
�

nX

s=1

kX

i=1

ms
d(ti � zs)

ti � zs
,

↵
0 =

X

16i<j6k

2
d(ti � tj)

ti � tj
�

nX

s=1

kX

i=1

ms
d(ti � zs)

ti � zs
.

We shall use the following algebraic identities for logarithmic di↵erential forms.

Theorem 2.2 ([SV1]). We have

↵
0
^ ⌘J =

nX

s=1

(js + 1)(ms � js)⌘J+1s ,(2.13)

for any J with |J | = k � 1, and

↵ ^

X

J2Ik

⌘JfJvm =
X

i<j

⌦(i,j) d(zi � zj)

zi � zj
^

X

|J|=k

⌘JfJvm.(2.14)

Proof. Identity (2.13) is Theorem 6.16.2 in [SV1] for the case of the Lie algebra sl2. Identity
(2.14) is Theorem 7.5.2” in [SV1] for the case of the Lie algebra sl2. ⇤
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If (t0, z0) is a solution of the Bethe ansatz equations, then ↵
0
|(t0,z0) = 0 and formulas (2.13),

(2.12) give (2.11). Similarly, if (t0, z0) is a solution of the Bethe ansatz equations, then

↵|(t0,z0) =
nX

s=1

�s(t
0
, z

0)dzs

and formulas (2.14) and (2.12) give (2.18). Theorem 2.1 is proved.

2.5. Bethe ansatz on SingL⌦m
⇥
|m|� 2k

⇤
over Fp. Given

k, n 2 Z>0, m = (m1, . . . ,mn) 2 Zn
>0,

let p be a prime number. Consider the Lie algebra sl2 as an algebra over the field Fp and the
sl2-modules Lms , s = 1, . . . , n, over Fp. Let z

0 = (z01 , . . . , z
0
n) 2 Fn

p have distinct coordinates.
The Gaudin Hamiltonians Hs(z0) of formula (2.2) define commuting Fp-linear operators on the
Fp-vector space L

⌦m = ⌦
n
s=1Lms . By formula (2.4) the Gaudin Hamiltonians preserve the Fp-

subspaces SingL⌦m[|m|� 2k] and we may study eigenvectors of the Gaudin Hamiltonians on a
subspace SingL⌦m[|m|� 2k].

Consider the system of Bethe ansatz equations

X

j 6=i

2

ti � tj
�

nX

s=1

ms

ti � z0s

= 0, i = 1, . . . , k,(2.15)

as a system of equations on t = (t1, . . . , tk) 2 Fk
p. If (t01, . . . , t

0
k, z

0
1 , . . . , z

0
n) 2 Fk+n

p has distinct
coordinates, denote

�s(t
0
, z

0) =
X

l 6=s

msml/2

z0s � z
0
l

�

kX

i=1

ms

z0s � t
0
i

2 Fp, s = 1, . . . , n.(2.16)

Theorem 2.3. Let p be a prime number and p > |m|. Let t
0
2 Fk

p be a solution of the Bethe

ansatz equations (2.15). Then the vector Wk,n,m(t0, z0) is well-defined and lies in the subspace

SingL⌦m[|m|� 2k], that is, the equations

nX

s=1

(js + 1)(ms � js)WJ+1s(t
0
, z

0) = 0,(2.17)

hold, also the vector Wk,n,m(t0, z0) satisfies the equations

Hs(z
0).Wk,n,m(t0, z0) = �s(t

0
, z

0)Wk,n,m(t0, z0), s = 1, . . . , n.(2.18)

Proof. The proof of Theorem 2.3 is the same as the proof of Theorem 2.1 since identities (2.13)
and (2.14) hold over half integers and can be projected to Fp. ⇤

3. Two-dimensional spaces of polynomials

3.1. Two-dimensional spaces of polynomials over C. For a function g(x) denote g
0 = dg

dx .
For functions g(x), h(x) define the Wronskian

Wr(g(x), h(x)) = g
0(x)h(x)� g(x)h0(x).

Theorem 3.1 ([SchV], cf. [MV2]). Let k 2 Z>0, m = (m1, . . . ,mn) 2 Zn
>0. Let (t0, z0) 2 Ck+n

have distinct coordinates. Denote

y(x) =
kY

i=1

(x� t
0
i ), T (x) =

nY

s=1

(x� z
0
s)

ms .(3.1)

We have the following two statements.
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(i) If (t0, z0) is a solution of the Bethe ansatz equations (2.6), then k 6 |m|+1, 2k 6= |m|+1,
and there exists a polynomial ỹ(x) 2 C[x] of degree |m|+ 1� k such that

Wr(ỹ(x), y(x)) = T (x).(3.2)

(ii) If there exists a polynomial ỹ(x) satisfying equation (3.2), then k 6 |m|+1, 2k 6= |m|+1
and (t0, z0) is a solution of the Bethe ansatz equations (2.6).

Proof. We will use the proof below in the proof of the p-version of Theorem 3.1. Equation (3.2)
is a first order di↵erential equation with respect to ỹ(x). Then

✓
ỹ(x)

y(x)

◆0
=

T (x)

y(x)2
(3.3)

and

ỹ(x) = y(x)

Z
T (x)

y(x)2
dx = y(x)

Z
T (x)

Qk
i=1(x� t

0
i )

2
dx.(3.4)

We have the unique presentation T (x) = Q(x)
Qk

i=1(x� t
0
i )

2+R(x) with P (x), Q(x) 2 C[x] such
that Q(x) = 0 if 2k > |m| and Q(x) = a|m|�2kx

|m|�2k + · · ·+ a0 is of degree |m|� 2k otherwise;
degR(x) < 2k. We have the unique presentation

R(x)
Qk

i=1(x� t
0
i )

2
=

kX

i=1

✓
ai,2

(x� t
0
i )

2
+

ai,1

x� t
0
i

◆
,(3.5)

where

ai,2 =
T (x)

Qk
j 6=i(x� t

0
j )

2

����
x=t0i

, ai,1 =
d

dx

 
T (x)

Qk
j 6=i(x� t

0
j )

2

!����
x=t0i

.(3.6)

We have

d

dx

 
T (x)

Qk
j 6=i(x� t

0
j )

2

!����
x=t0i

=

0

@
nX

s=1

ms

t
0
i � z0s

�

X

j 6=i

2

t
0
i � t

0
j

1

A T (t0i )Qk
j 6=i(t

0
i � t

0
j )

2
.

Since (t0, z0) has distinct coordinates we conclude that ai,1 = 0 for i = 1, . . . , k, if and only if
(t0, z0) is a solution of (2.6).

Let (t0, z0) be a solution of (2.6). By formula (3.4) we have

ỹ(x) =
kY

i=1

(x� t
0
i )

 
c�

kX

i=1

ai,2

x� t
0
i

!
, if 2k > |m|,(3.7)

ỹ(x) =
kY

i=1

(x� t
0
i )

 
a|m|�2k

|m|� 2k + 1
x
|m|�2k+1 + · · ·+ a0x+ c�

kX

i=1

ai,2

x� t
0
i

!
,

if 2k 6 |m|, where c 2 C is an arbitrary number. In each of the two cases we may choose c so
that deg ỹ(x) 6= deg y(x). Using the identity

Wr(x↵
, x

�) = (↵� �)x�+��1(3.8)

we obtain in this case that

deg ỹ(x) + deg y(x) = |m|+ 1.(3.9)

Hence k 6 |m|+ 1 and k 6= |m|+ 1� k. The first part of the theorem is proved.
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Let there exist a polynomial ỹ(x) satisfying equation (3.2). Adding to ỹ(x) the polynomial
y(x) with a suitable coe�cient if necessary we may assume that deg ỹ(x) 6= deg y(x). Then (3.9)
implies k 6 |m|+ 1 and k 6= |m|+ 1� k.

By formula (3.3) we have

⇣
ỹ(x)

y(x)

⌘0
= a|m|�2kx

|m|�2k + · · ·+ a0 +
kX

i=1

⇣
ai,2

(x� t
0
i )

2
+

ai,1

x� t
0
i

⌘
if 2k 6 |m|(3.10)

and

⇣
ỹ(x)

y(x)

⌘0
=

kX

i=1

⇣
ai,2

(x� t
0
i )

2
+

ai,1

x� t
0
i

⌘
if 2k > |m|.(3.11)

The function ỹ(x)
y(x) has a unique decomposition into the sum of a polynomial and simple fractions.

The term by term derivative of that decomposition equals the right-hand side of (3.10) or (3.11).
Hence all of coe�cients ai,1 must be zero. Hence the roots of y(x) satisfy the Bethe ansatz
equations. ⇤

Remark. This construction assigns to a solution (t0, z0) of the Bethe ansatz equations the
two-dimensional subspace hỹ(x), y(x)i of the space of polynomials C[x] such that deg y(x) =
k, deg ỹ(x) = |m|� k+1, Wr(y(x), ỹ(x)) = T (x). That subspace is a point of the Grassmannian
of two-dimensional subspaces of C[x].

3.2. Two-dimensional spaces of polynomials over Fp.

Theorem 3.2. Let k 2 Z>0, m = (m1, . . . ,mn) 2 Zn
>0. Let p > |m| + 1, p > n + k. Let

(t0, z0) 2 Fk+n
p have distinct coordinates. Denote

y(x) =
kY

i=1

(x� t
0
i ), T (x) =

nY

s=1

(x� z
0
s)

ms 2 Fp[x].(3.12)

We have the following two statements.

(i) If (t0, z0) is a solution of the Bethe ansatz equations (2.15), then k 6 |m|+1, 2k 6= |m|+1,
and there exists a polynomial ỹ(x) 2 Fp[x] of degree |m|+ 1� k such that

Wr(ỹ(x), y(x)) = T (x).(3.13)

(ii) If there exists a polynomial ỹ(x) 2 Fp[x] satisfying equation (3.13), then k 6 |m| + 1,
2k 6= |m|+ 1 and (t0, z0) is a solution of the Bethe ansatz equations (2.15).

Proof.

Lemma 3.3. Let p be a prime number. Let d1, . . . , dk 2 Z>0 with di 6 2 for all i. Let

t
0
1, . . . , t

0
k 2 Fp be distinct and T (x) 2 Fp[x]. Then there exists a unique presentation

T (x)
Qk

i=1(x� t
0
i )

di

= Q(x) +
kX

i=1

diX

j=1

ai,j

(x� t
0
i )

j
,(3.14)

where Q(x) 2 Fp[x] and

ai,j =
d
j�1

dxj�1

 
T (x)

Qk
l 6=i(x� t

0
l )

dl

!����
x=t0i

.(3.15)
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Proof. The uniqueness is clear. Let us show the existence. Lift t01, . . . , t
0
k, T (x) to t

1
1, . . . , t

1
k 2 Z,

T
1(x) 2 Z[x]. We have

T
1(x)

Qk
i=1(x� t

1
i )

di

= Q
1(x) +

kX

i=1

diX

j=1

a
1
i,j

(x� t
1
i )

j
,(3.16)

where Q
1(x) 2 Z[x] and

a
1
i,j =

d
j�1

dxj�1

 
T

1(x)
Qk

j 6=i(x� t
1
j )

dj

!����
x=t0i

.(3.17)

It is easy to see that for j = 1, 2 and all i the coe�cient a1i,j has a well-defined projection to Fp.
By projecting (3.16) to Fp we obtain a presentation of (3.14). ⇤

The proof of Theorem 3.2 is based on Lemma 3.3 and is analogous to the proof of Theorem
3.1. If (t0, z0) is a solution of (2.15), then

✓
ỹ(x)

y(x)

◆0
=

T (x)
Qk

i=1(x� t0)2
= Q(x) +

kX

i=1

ai,2

(x� t
0
i )

2
,

where ai,2 are given by (3.15); Q(x) 2 Fp[x], Q(x) = 0 if 2k > |m| and

Q(x) = a|m|�2kx
|m|�2k + · · ·+ a0

is of degree |m|� 2k + 1 if 2k 6 |m|, see Section 3.1.
If 2k 6 |m|, then

ỹ(x) =
kY

i=1

(x� t
0
i )

 
a|m|�2k

|m|� 2k + 1
x
|m|�2k+1 + · · ·+ a0x�

kX

i=1

ai,2

x� t
0
i

!

is a polynomial of degree |m|�k+1 satisfying (3.2). Notice that the polynomial in the brackets
is well-defined since p > |m|+ 1. If 2k > |m|, then

ỹ(x) = �

kY

i=1

(x� t
0
i )

 
kX

i=1

ai,2

x� t
0
i

!

is a polynomial satisfying (3.13) of degree < k. Formula (3.8) and inequality p > k + n imply
(3.9). The first part of Theorem 3.2 is proved.

Let there exist a polynomial ỹ(x) satisfying equation (3.13). Adding to ỹ(x) a suitable
polynomial of the form c(xp)y(x) for some c(x) 2 Fp[x] if necessary, we may assume that
deg ỹ(x)� deg y(x) 6⌘ 0 mod p. Then (3.9) holds, k 6 |m|+ 1 and k 6= |m|+ 1� k.

By formula (3.3) and Lemma 3.3 we have

⇣
ỹ(x)

y(x)

⌘0
= a|m|�2kx

|m|�2k + · · ·+ a0 +
kX

i=1

⇣
ai,2

(x� t
0
i )

2
+

ai,1

x� t
0
i

⌘
if 2k 6 |m|(3.18)

and
⇣
ỹ(x)

y(x)

⌘0
=

kX

i=1

⇣
ai,2

(x� t
0
i )

2
+

ai,1

x� t
0
i

⌘
if 2k > |m|.(3.19)

The function ỹ(x)
y(x) has a unique decomposition into the sum of a polynomial and simple fractions.

The term by term derivative of that decomposition equals the right-hand side of (3.18) or (3.19).
Hence all of coe�cients ai,1 must be zero. Hence the roots of y(x) satisfy the Bethe ansatz
equations. ⇤
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Remark. This construction assigns to a solution (t0, z0) of the Bethe ansatz equations (2.15)
the two-dimensional subspace hỹ(x), y(x)i of the space of polynomials Fp[x] such that

deg y(x) = k, deg ỹ(x) = |m|� k + 1, Wr(y(x), ỹ(x)) = T (x).

That subspace is a point of the Grassmannian of two-dimensional subspaces in Fp[x].

4. Example: the case k = 1

4.1. Gaudin model on SingL⌦m[|m| � 2]. Let m = (m1, . . . ,mn) 2 Zn
>0 and p > |m| + 1.

Consider the Gaudin model on SingL⌦m[|m| � 2] over Fp . That means that k = 1 in the
notations of the previous sections. A basis of L⌦m[|m|� 2] is formed by the vectors

f
(s) = vm1 ⌦ · · ·⌦ vs�1 ⌦ fvms ⌦ vs+1 ⌦ · · ·⌦ vmn , s = 1, . . . , n.(4.1)

We have

SingL⌦m[|m|� 2] =
n nX

s=1

csf
(s)

| cs 2 Fp and
nX

s=1

mscs = 0
o
.(4.2)

For s = 1, . . . , n, define the vectors ws 2 SingL⌦m[|m|� 2] by the formula

ws = f
(s)

�
ms

|m|

nX

l=1

f
(l)
.(4.3)

We have

w1 + · · ·+ wn = 0.(4.4)

By [V4, Lemma 4.2], any n� 1 of these vectors form a basis of SingL⌦m[|m|� 2].
Let z0 = (z01 , . . . , z

0
n) 2 Fn

p have distinct coordinates. For i = 1, . . . , n, the Gaudin Hamilton-
ian Hi(z0) acts on L

⌦m[|m|� 2] by the formulas:

f
(s)

7!

X

j 6=i

mimj/2

z
0
i � z

0
j

f
(s) +

1

z
0
i � z0s

(msf
(i)

�mif
(s)), s 6= i,(4.5)

f
(i)

7!

X

j 6=i

mimj/2

z
0
i � z

0
j

f
(i) +

X

j 6=i

1

z
0
i � z

0
j

(mif
(j)

�mjf
(i)).

Hence

ws 7!

X

j 6=i

mimj/2

z
0
i � z

0
j

ws +
1

z
0
i � z0s

(mswi �miws), s 6= i,(4.6)

wi 7!

X

j 6=i

mimj/2

z
0
i � z

0
j

wi +
X

j 6=i

1

z
0
i � z

0
j

(miwj �mjwi).

Recall that the Bethe algebra of SingL⌦m[|m|� 2] is the subalgebra of End(SingL⌦m[|m|� 2])
generated by the Gaudin Hamiltonians Hi(z0), i = 1, . . . , n, and the identity operator. We
denote it by B(z0,m).
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4.2. Bethe ansatz equation and algebra A(z0,m). Let m = (m1, . . . ,mn) 2 Zn
>0 and

p > |m| + 1. Let z
0 = (z01 , . . . , z

0
n) have distinct coordinates. The Bethe ansatz equations

of SingL⌦m[|m|� 2] is the single equation

m1

t� z
0
1

+ · · ·+
mn

t� z0n

= 0.(4.7)

Write

m1

t� z
0
1

+ · · ·+
mn

t� z0n

=
P (t)Qn

s=1(t� z0s)
,(4.8)

where

P (t) = P (t, z0,m) =
nX

s=1

ms

Y

l 6=s

(t� z
0
l ).(4.9)

Let AFp be the a�ne line over Fp with coordinate t. Denote U = AFp � {z
0
1 , . . . , z

0
n}. Let

O(U) be the ring of rational functions on the a�ne line AFp regular on U . Introduce the algebra

A(z0,m) = O(U)/(P (t)), dimFp A(z0,m) = n� 1.(4.10)

Here (P (t)) is the ideal generated by P (t). Let us 2 A(z0,m), s = 1, . . . , n, be the image of
ms
t�z0

s
in A(z0,m). The elements us span A(z0,m) as a vector space and

u1 + · · ·+ un = 0.(4.11)

We have

uius =
1

z
0
i � z0s

(msui �mius), s 6= i,(4.12)

uiui =
X

j 6=i

1

z
0
i � z

0
j

(miuj �mjui).

For a function g(t) 2 O(U) denote [g(u)] its image in A(z0,m). The elements [1], [t], . . . , [tn�2]
form a basis of A(z0,m) over Fp. The defining relation in A(z0,m) is P ([t]) = 0. The following
formulas express the elements [ti] in terms of the elements us.

Lemma 4.1. We have

[1] =
�1

|m|
(z01u1 + · · ·+ z

0
nun),(4.13)

[t] =
1

|m|2

 
nX

s=1

z
0
sms

! 
nX

s=1

z
0
sus

!
+

�1

|m|

 
nX

s=1

(z0s)
2
us

!
,

[ti] =
�1

|m|

iX

j=1

nX

s=1

(z0s)
j
ms[t

i�j ] +
�1

|m|

nX

s=1

(z0s)
i+1

us, i > 0.

⇤

These formulas are related to formulas for the bsl2-action on tensor products of modules dual
to Verma modules, see [SV2] and in particular to formula (11) in [SV2].
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4.3. Isomorphism of A(z0,m) and B(z0,m). Define the isomorphism of vectors spaces

↵ : A(z0,m) ! SingL⌦m[|m|� 2], us 7! ws, s = 1, . . . , n,(4.14)

in particular, we have

h1i := ↵([1]) =
�1

|m|
(z01w1 + · · ·+ z

0
nwn).(4.15)

Theorem 4.2. The map

[1] 7! Id, us 7! Hs(z
0)�

X

j 6=s

msmj/2

z0s � z
0
j

Id, s = 1, . . . , n,(4.16)

extends to an algebra isomorphism

� : A(z0,m) ! B(z0,m),(4.17)

such that ↵(gh) = �(g).↵(h) for any g, h 2 A(z0,m).

Proof. The proof follows from comparing (4.6) and (4.12). ⇤

Remark. Theorem 4.2 says that the isomorphism ↵ of vector spaces and the isomorphism �

of algebras establish an isomorphism between the B(z0,m)-module SingL⌦m[|m| � 2] and the
regular representation of the algebra A(z0,m).

Example 4.1. Theorem 4.2 in particular says that if P (t) is irreducible then B(z0,m) ⇠= Fpn�1 ,
where Fpn�1 is the field with p

n�1 elements.
For example, if n = 3, m = (1, 1, 1), then

P (t, z0) = 3t2 � 2(z01 + z
0
2 + z

0
3)t+ z

0
1z

0
2 + z

0
1z

0
3 + z

0
2z

0
3 .

If p = 5, then P (t, z0) is irreducible in F5[t] for all distinct z01 , z
0
2 , z

0
3 2 F5 and B(z0,m) ⇠= F25.

Corollary 4.3. We have

dimFp B(z
0
,m) = n� 1.(4.18)

Corollary 4.4. The operators �([1]) = Id, �([ti]), i = 1, . . . , n � 2, form a basis of the vector

space B(z0,m) over Fp. The operator

{t} := �([t]) =
1

|m|2

 
nX

s=1

z
0
sms

!0

@
nX

s=1

z
0
s

0

@Hs(z
0)�

X

j 6=s

msmj/2

z0s � z
0
j

Id

1

A

1

A(4.19)

+
�1

|m|

0

@
nX

s=1

(z0s)
2

0

@Hs(z
0)�

X

j 6=s

msmj/2

z0s � z
0
j

Id

1

A

1

A

generates B(z0,m) as an algebra with defining relation P ({t}) = 0.

Corollary 4.5. We have

0

@Hs(z
0)�

X

j 6=s

msmj/2

z0s � z
0
j

Id

1

A .h1i = ws, s = 1, . . . , n.(4.20)
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4.4. Eigenvectors of B(z0,m) and the polynomial P (t). The elements of the algebraA(z0,m)
have the form Q([t]), where Q(t) 2 Fp[t], degQ(t) < n�1. An element Q([t]) is an eigenvector of
all multiplication operators of A(z0,m) if and only if Q([t]) is an eigenvector of the multiplication
by [t]. If t0 2 Fp is the eigenvalue, then ([t]� t

0)Q([t]) = 0, that is,

(t� t
0)Q(t) = const P (t), const 2 Fp.(4.21)

Hence the set of eigenlines of all multiplication operators of A(z0,m) is in one-to-one correspon-
dence with the set of distinct roots of the polynomial P (t), namely, a root t0 with decomposition
(t� t

0)Q(t) = P (t) corresponds to the line generated by the element Q([t]).

Corollary 4.6. The set of eigenlines of B(z0,m) are in one-to-one correspondence with the set

of distinct roots of the polynomial P (t), namely, a root t
0
with decomposition (t� t

0)Q(t) = P (t)
for some Q(t) 2 Fp[t] corresponds to the line generated by the vector

!(t0, z0) := Q({t}).h1i 2 SingL⌦m[|m|� 2].(4.22)

⇤

Thus we have two ways to construct the eigenlines of B(z0,m) from roots t0 of the polynomial
P (t). The first is given by Theorem 2.1 and the eigenline is generated by the vector

W1,n,m(t0, z0) =
nX

s=1

1

t0 � zs
f
(s) =

nX

s=1

1

t0 � zs
ws.(4.23)

The second is given by Corollary 4.6 and the eigenline is generated by the vector Q({t}).h1i.

Theorem 4.7. The two eigenlines coincide, more precisely, we have

W1,n,m(t0, z0) = constQ({t}).h1i, const 2 Fp.(4.24)

Proof. We need to show that ([t]� t
0)↵�1(W1,n,m(t0, z0)) = 0 in A(z0,m). Indeed

([t]� t
0)↵�1(W1,n,m(t0, z0)) =

nX

s=1

ms

t0 � zs

h
t� t

0

t� zs

i
=

nX

s=1

ms

t0 � zs
[1]�

nX

s=1

h
ms

t� zs

i
= 0

due to the Bethe ansatz equation (4.7) and formula (4.11).
⇤

4.5. Algebra C(T ). In this section, p is a prime number, p > n+ 1. Fix a monic polynomial

T (x) = x
n + �1x

n�1 + �2x
n�2 + · · ·+ �n 2 Fp[x].(4.25)

We consider the two-dimensional subspaces V ⇢ Fp[x] consisting of polynomials of degree n and
1 such that Wr(g1(x), g2(x)) = constT (x), where g1(x), g2(x) is any basis of V and const 2 Fp.
Such a subspace V has a unique basis of the form

g1(x) = x
n + a1x

n�1 + · · ·+ an�2x
2 + a0, g2 = x� t(4.26)

with

Wr(g1(x), g2(x)) = (n� 1)T (x).(4.27)

Equation (4.27) is equivalent to the system of equations

(n� r � 1)ar � (n� r + 1)ar�1t� (n� 1)�r = 0, r = 1, . . . , n� 1,(4.28)

an � (n� 1)�n = 0,
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where a0 = 1. Expressing a1 from the first equation in terms of t, then expressing a2 from
the first and second equations in terms of t and so on, we can reformulate system (4.28) as the
system of equations

ar �
n� 1

2
(ntr + (n� 1)�1t

r�1 + · · ·+ (n� r)�r) = 0, r = 1, . . . , n� 2,(4.29)

nt
n�1 + (n� 2)�1t

n�2 + · · ·+ 2�2t+ �1 = 0,(4.30)

an + �n = 0.(4.31)

Notice that equation (4.30) is the equation dT
dt (t) = 0, where T (x) is defined in (4.25).

Let I ⇢ Fp[t, a1, . . . , an�2, an] be the ideal generated by n polynomials staying in the left-hand
sides of the equations of the system (4.28). Define the algebra

C(T ) = Fp[t, a1, . . . , an�2, an]/I.(4.32)

Let J ⇢ Fp[t] be the ideal generated by dT
dt (t). Define the algebra

C̃(T ) = Fp[t]/J.(4.33)

Lemma 4.8. We have an isomorphism of algebras

C̃(T ) ! C(T ), [t] 7! [t].(4.34)

⇤
Let m0 = (1, . . . , 1) 2 Zn

>0. Let z0 = (z01 , . . . , z
0
n) 2 Fn

p be a point with distinct coordinates.

The Bethe ansatz for SingL⌦m0

[|m0
|� 2] has the form

1

t� z
0
1

+ · · ·+
1

t� z0n

=
R(t)

T (t)
= 0,(4.35)

where

T (t) =
nY

s=1

(t� z
0
s), R(t) =

dT

dt
(t).(4.36)

Hence for this T (x) we have

C̃(T ) = A(z0,m0).(4.37)

Corollary 4.9. For T (t) and R(t) as in (4.36) we have

A(z0,m0) ⇠= B(z0,m0) ⇠= C(T )(4.38)

and the B(z0,m)-module SingL⌦m0

[|m0
| � 2] is isomorphic to the regular representation of the

algebra C(T ).

4.6. Wronski map. Let Xn be the a�ne space of all two-dimensional subspaces V ⇢ Fp[x],
each of which consists of polynomials of degree n and 1. The space Xn is identified with the
space of pairs of polynomials given by formula (4.26). Let Fp[x]n ⇢ Fp[x] be the a�ne subspace
of monic polynomials of degree n. Introduce the Wronski map

Wn : Xn ! Fp[x]n, hg1(x), g2(x)i 7!
1

n� 1
Wr(g1(x), g2(x)),(4.39)

cf. [MTV3]. The algebra C(T ) is the algebra of functions on the fiber W
�1(T ) of the Wronski

map.
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Example 4.2. Let n = 3 and T (x) = x
3+�1x

2+�2x+�3. Then W
�1
3 (T ) consists of one point if

the discriminant �2
1�3�2 of dT

dx (x) equals zero; W
�1
3 (T ) consists of two points if the discriminant

is a nonzero square, and is empty otherwise. Thus, p2 points of X3 have one preimage, p�1
2 p

2

points have two preimages, and p�1
2 p

2 points have none. Cf. Example 4.1.
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