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Abstract. In the study of normal surface singularities the relation between analytical and

topological properties and invariants of the singularity is a very rich problem. This relation
is particularly close for surface singularities constructed from families of curves. We use these

Kulikov singularities to reexamine results of Némethi-Okuma and Tomaru.

Introduction

The first time I met Brieskorn was when I started my Ph.D. studies in Leiden and he was
spending some months there. Horst Knörrer was then also working there. Through his students
Brieskorn has influenced my career and work very much. And of course through his work, in the
first place through his book with Knörrer on plane algebraic curves [2]. This is a most remarkable
book, not only because of its value for money (Brieskorn negotiated a price below DM 50) and
its white cover, but mainly because its style and contents. Ever since curve singularities and
algebraic curves have been central in my work.

Trying to describe singularities one may ask the question:

Which discrete data are needed to know a singularity?

One interpretation of ‘knowing a singularity’ is that we can write down equations. As we only
have discrete data, such equations necessarily describe an equisingular family of singularities.

For plane curve singularities there are very satisfactory answers to the question, which can
be found in Brieskorn’s book [2]. There is the link of the singularity, which gives the embedded
topology (without the embedding one has only the number of components); another invariant
is the resolution graph. Since Brieskorn’s work on the exotic spheres as links of singularities
it is realised that in high dimension the abstract link contains not enough information. In
the surface case the situation is different. The topology of the link, encoded in the resolution
graph, is a strong invariant. For rational and minimally elliptic singularities it determines the
equisingularity class. For higher geometric genus this is no longer the case and the study of the
relation between analytical and topological properties and invariants of singularities is a very
rich problem.

To have a strong relation we have to look at special classes of singularities. In the work
of Neumann and Wahl (for an overview see [18]) and of Némethi two kind of restrictions are
imposed, an analytical one, that the singularity is Q-Gorenstein, and a topological one, that the
link is a rational homology sphere. Neumann and Wahl came even up with a way to write down
equations from the resolution graph, provided certain special numerical conditions are satisfied.
The so called splice type equations describe a complete intersection singularity in a particular
simple form, however not for a singularity with the original graph, but for its universal abelian
cover (which is a finite cover due to the rational homology sphere condition). In a recent paper
Némethi and Okuma [12] study which analytic structures can occur for a specific resolution
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graph, giving details for an example already mentioned by Némethi [11]. One of the occurring
structures is that of a Kodaira or Kulikov singularity.

Kodaira singularities were introduced by Karras [4], using a construction similar to the one
earlier described by Kulikov [6]. In my thesis [16] I introduced the term Kulikov singularities.
The construction starts from a (degenerating) 1-parameter family π : W → D of curves of genus
g. Let σ : W̃ → W be the blow up of W in r points of the special fibre W0, each point a
smooth point on a component occurring with multiplicity 1. Then the strict transform of the
special fibre can be blown down to a singular point p ∈ W . By definition (W,p) is a Kulikov
singularity. The study of properties of such singularities reduces in two ways to the study of
curves. The morphism π descends to a function on the singularity, which defines a general
hyperplane section. This curve singularity is more accessible and invariants like its multiplicity
and embedding dimension determine the corresponding invariants of the surface singularity. The
other occurrence of curves is by construction: the properties of the central fibre, considered as
curve of arithmetic genus g, are essential.

Kulikov introduced his construction to give a uniform construction of the unimodal and bi-
modal singularities. These are the simplest types of minimally elliptic singularities. For higher
genus Kulikov singularities should also be considered as simplest types. The generalisation of
Laufer’s minimally elliptic cycle [7] is the characteristic cycle, introduced by Karras for Kodaira
singularities [5] and in [16] in general. Tomaru studied for which Brieskorn singularities the
characteristic cycle is equal to the fundamental cycle [17] .

Karras’ work on Kodaira singularities of higher genus [5] and my work on Kulikov singularities
[16] was never published. When referred to, these singularities are mainly seen as singularities
where there is a function defining the fundamental cycle Z, which is moreover reduced at compo-
nents Ei with Ei ·Z < 0. In this paper I actually take this as definition (see Definition 2.1), being
the shortest, but it is the construction using a family of curves which gives a good understanding
of the singularity. As illustration I treat the results of Némethi and Okuma [12] and of Tomaru
[17] from this point of view.

1. Invariants of surface singularities

The topological type of a normal complex surface singularity is determined by and determines
the resolution graph of the minimal good resolution. But a resolution graph can be defined for
any resolution, not necessarily good.

Definition 1.1. Let π : (M,E)→ (V, p) be a resolution of a surface singularity with exceptional
divisor E =

⋃r
i=1Ei. The resolution graph Γ is a weighted graph with vertices corresponding

to the irreducible components Ei. Each vertex has two weights, the self-intersection −bi = E2
i ,

and the arithmetic genus pa(Ei), the second traditionally written in square brackets and omitted
if zero. There is an edge between distinct vertices if the corresponding components Ei and Ej

intersect, weighted with the intersection number Ei · Ej (only written out if larger than one).

Other definitions, which record more information, are possible: one variant is to have an edge
for each intersection point P ∈ Ei ∩ Ej , with weight the local intersection number (Ei · Ej)P .
This is the more common definition in the case that the intersections are transverse.

The classes of the curves Ei form a preferred basis of H := H2(M,Z). Following algebro-
geometric tradition the elements of H are called cycles. They are written as linear combinations
of the Ei. The intersection form on M gives a negative definite quadratic form on H. Let
K ∈ H2(M,Z) be the canonical class. It can be written as rational cycle in HQ = H ⊗ Q by
solving the adjunction equations Ei ·(Ei+K) = 2pa(Ei)−2. The function −χ(A) = 1

2A·(A+K),
A ∈ H, makes H into a quadratic quadratic lattice, in the sense of [8, 1.4]. We prefer to work
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with the genus pa(A) = 1−χ(A). Note that the genus function determines the intersection form,
as

pa(A+B) = pa(A) + pa(B) +A ·B − 1 .

The data (H, pa) is equivalent to (H, {Ei · Ej}, {pa(Ei)}), encoded in the resolution graph Γ.
There are some important cycles on E, some of which only depend on the quadratic lattice,

while others depend on the analytic structure.

Definition 1.2. The fundamental cycle Z is the is the smallest positive cycle such that Ei ·Z ≤ 0
for all i. The maximal ideal cycle Zm is the smallest cycle occurring as compact part of the divisor
of a function f ∈ m(V,p). The canonical cycle ZK is the rational cycle on E, which is numerically
equivalent to the anticanonical class of the resolution M .

We recall that the geometric genus pg(V, p) is the dimension of R1π∗OM . This is equal to the
maximal value of h1(OD) over all positive cycles. In fact, there is a unique minimal cohomological
cycle with this maximal value (see [15, 4.8]). A topological lower bound for pg is the arithmetic
genus pa(V, p), which is the maximal value of pa(D) over all positive cycles. The genus pa(Z)
of the fundamental cycle is also a topological invariant of the singularity, which is called the
fundamental genus pf (V, p) [17].

Obviously pf ≤ pa ≤ pg, and all inequalities can be strict; the easiest example with pa > pf
is the case of an irreducible exceptional curve E of genus g > 1 and self-intersection −1.

Definition 1.3. The characteristic cycle C of a nonrational singularity is the smallest cy-
cle which realises the fundamental genus: it is the cycle C ≤ Z with pa(C) = pa(Z) and
pa(D) < pa(C) for all cycles 0 < D < C.

This cycle is a generalisation of Laufer’s minimally elliptc cycle and its existence is proved
in the same way. It was first introduced by Karras for Kodaira singularities [5]. The general
definition is in [16]; Tomaru also introduced it under the name minimal cycle [17].

2. Kulikov singularities

In this section we introduce the Kulikov construction, give some properties and discuss when
the resulting singularity is Gorenstein.

Definition 2.1. Let (V, p) be a normal surface singularity with fundamental cycle Z on the
minimal resolution. It is called a Kulikov singularity if there exists a function f : (V, p)→ (C, 0)
with (X, p) = (f−1(0), p) a reduced curve singularity with divisor on the minimal resolution of

the form Z + X̃, such that the strict (or proper) transform X̃ of X intersects the exceptional
set E transversally in smooth points on components having multiplicity one in the fundamental
cycle Z.

Such singularities are the result of a construction first given by Kulikov [Kulikov], to describe
the unimodal and bimodal singularities. He starts from a (degenerating) family π : W → D of
curves of genus g. This is a proper morphism of a non-singular surface to a small disc. The
special fibre W0 = π−1(0) over 0 ∈ D can be written as W0 = n1C1 + . . . nkCk, where the
Ci are the irreducible components of this fibre. The intersection matrix (Ci · Cj) is negative

semi-definite. Let σ : W̃ → W be the blow up of W in r points q1, . . . , qr, each a smooth point
of a component Ci which has multiplicity ni = 1 in W0. We denote the strict transform of a

component Ci by Ei. Then the special fibre W̃0 of π̃ = π ◦ σ can be written as

W̃0 = n1E1 + . . . nkEk + X̃1 + · · ·+ X̃r ,

where the X̃j are (−1)-curves. Now the intersection matrix (Ei · Ej) is negative definite and

E =
⋃
Ei can be blown down to a singular point p ∈W .
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Lemma 2.2. Kulikov’s construction results in a Kulikov singularity. Conversely, every Kulikov
singularity can be obtained by this construction.

Proof. The construction yields the minimal resolution if there are no (−1)-curves in the family
π : W → D except possibly curves containing a point qj . If there are other (−1)-curves we blow

them down without changing the resulting singularity. So we may assume that W̃ → W is the

minimal resolution of the singularity p ∈ W . We write W̃0 = Y + X̃ and have to show that Y
is the fundamental cycle of the singularity (W,p). We put Y = Z +D with D an effective cycle

supported on E. Then D does not intersect X̃, as each X̃i intersects Y in a component with

multiplicity one. Now 0 = D · W̃0 = D · (Z + D + X̃) = D · Z + D ·D ≤ 0, so D ·D = 0 and
therefore D = 0.

Conversely, given a function f : (V, p)→ (C, 0) with divisor Z + X̃ we compactify to a family

of curves, following Karras [1980,Thm 2.9]: in each point q ∈ E ∩ X̃ there are local coordinates

such that f is given by xy = 0, and X̃ by y = 0. We glue the blow-up of the origin to it: with
coordinates (u, y) we have two charts, given by (u, y) = (u, uη) = (xy, y). The glueing is by
identifying the (x, y) coordinates. Then u = xy extends the function f . �

Kulikov singularities are a special case of Kodaira singularities, defined by Karras [4, 5]. In
his construction it is allowed that points to be blown up coincide: one blows up consecutively,
and it is allowed to blow up the strict transform of the fibre in a point of intersection with a
previously blown up curve. Then the curve (X, p) = (f−1(0), p) is not necessarily a reduced
curve.

The advantage of the more strict definition of Kulikov singularities is that the curve (X, p) is
a general hyperplane section. The function f : (V, p)→ (C, 0) defines a smoothing of this curve
with Milnor number µ = 2g+ r−1. The structure of the hyperplane section is often much easier
to describe than that of the singularity itself. It allows conclusion about the multiplicity and
the embedding dimension of the singularity.

An alternative description of the construction starts from a minimal family π : W → D,
meaning thatW does not contain (−1)-curves. One then blows up points consecutively, each time
blowing up a point with multiplicity one in the special fibre. In each stage a (−1)-curve intersects
only one other curve, so in the final surface the (−1)-curves are ends, and their complement is

connected. Write as before W̃0 = Y + X̃ with X̃ the union of the (−1)-curves. Then the support
of Y can be blown down.

We have the following properties.

Proposition 2.3.

(1) For a Kulikov singularity the maximal ideal cycle Zm is equal to the fundamental cycle
Z.

(2) The fundamental genus is equal to the genus of the curves in the family used in the
construction: pf (V, p) = g.

(3) A rational singularity is Kulikov if and only if the fundamental cycle is reduced.
(4) The characteristic cycle of a nonrational Kulikov singularity is the strict transform of

the special fibre of the minimal family resulting in the singularity.

Proof. Only the last property needs a proof. It suffices to consider the case that the strict
transform is the whole fundamental cycle. Suppose that C < Z and choose a computation
sequence Zj = Zj−1 + Eij from Z0 = C to Zk = Z. As pa(Zj) = pa(Z) for all j, each Eij is a
smooth rational curve with Eij ·Zj−1 = 1. This holds in particular for the last one and therefore

Eik · Z = 1 + E2
ik
< 0. This implies that Eik has multiplicity one in the fundamental cycle and
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Eik · = −Eik · X̃. After blowing down X̃ the strict transform of Eik has self-intersection (−1),
contradicting that the family we started from was a minimal family. �

To obtain a Gorenstein Kulikov singularity we have to perform the construction in special
points. Let π : W → D be a minimal family of curves of genus g. The relative dualising sheaf
ωW/D is isomorphic to ΩW . Let (ω) be the divisor of a global section. It consists of an horizontal,
non-compact part N and a divisor supported on the special fibre, determined up to a multiple
of this fibre. Suppose that each component of N intersects the special fibre only transversally
in components of multiplicity one. Now we perform the Kulikov construction starting from the
minimal family, blowing up at least these intersection points, in such a way that in the final

family π̃ : W̃ → D the pull back of ω has the same multiplicity m along all (−1)-curves Xi, and

that the horizontal part of its divisor intersects the special fibre only in X̃. Let f = π̃∗(t), with t
a coordinate function on D. Then the meromorphic two-form f−mω is holomorphic and nowhere
zero on U \ E, U a neighbourhood of E. Therefore the Kulikov singularity is Gorenstein.

Example 2.4. We give an example of a 1-parameter family of weighted homogeneous Gorenstein
singularities Va such that V0 is not Kulikov but Va is Kulikov for a 6= 0. It is the simplest of the
series of examples of Briançon and Speder of a family which is µ-constant, but not µ∗-constant
[1].

Consider

fa(x, z, t) = z3 + azx3 + tx4 + t9 .

The resolution graph is v−2

[3]

v−2

The exceptional divisor on the minimal resolution is E = E1 + E2 with E1 a curve of genus 3
with self-intersection −2, and E2 a rational (−2)-curve. The canonical model of E1 is the plane
quartic ηζ3 + aζξ3 + ξ4 + η4; this curve has a flex in P = (0 : 0 : 1), and the tangent η = 0
intersects the curve in Q = (−a : 0 : 1), so for a = 0 there is a hyperflex. The normal bundle
of E1 has P +Q as divisor, and E2 intersects E1 in Q. The general hyperplane section has two
branches for a 6= 0; the strict transform of one branch passes through P , and the other intersects
E2 in a smooth point of E. For a = 0 the curve is irreducible, its strict transform passes through
P = Q = E1 ∩ E2.

To construct this singularity we start from the trivial family W = E1 × D. A canonical
divisor is 3P × D + Q × D. After blowing up in P × {0} the multiplicity along the newly
introduced exceptional divisor is 4. Blowing up in Q × {0} gives multiplicity 2. We blow up
again in intersection point of special fibre and strict transform of section Q × D, resulting in
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multiplicity 4. By dividing with t4 we see that the singularity is Gorenstein withK = −4E1−2E2.
The functions t, x = t2ξ/η and z = t3ζ/η are holomorphic on neighbourhood of E, giving
(t3ζ/η)3 + a(t3ζ/η)(t2ξ/η)3 + t(t2ξ/η)4 + t9 = 0; this formula works also for a = 0. The blowing
up can be done in family over a base D × A, with a a coordinate on A. We first blow up in
P × 0× A, then in Q as lying on the strict transform of C × 0× A and then once again in the
intersection point with the strict transform of the appropriate section. For a = 0 this means
that we blow up in a double point of the special fibre, which is not allowed in the Kulikov
construction.

3. The characteristic cycle of Brieskorn-Pham singularities

The simplest type of quasi-homogeneous hypersurface singularities has an equation, which is
a sum of perfect powers, and is usually called a Brieskorn-Pham polynomial. We write in the
surface case

(3.1) xa + yb + tc

with a ≤ b ≤ c. It is well known how to get the resolution of this surface singularity from the
exponents a, b and c [14]. The precise form is not important for us now.

Lemma 3.1. If c ≥ lcm(a, b), the Brieskorn-Pham singularity (3.1) is a Kulikov singularity of
genus g = (µ− r + 1)/2, where µ = (a− 1)(b− 1) is the Milnor number of the curve singularity
xa + yb and r = gcd(a, b) is the number of branches.

Proof. We construct the singularity with the Kulikov construction. We start with an affine
family of curves, whose equation is in fact given by a Brieskorn-Pham polynomial, but with
lower exponent c. Put d = lcm(a, b). Let r = gcd(a, b), then d = ab

r . Consider the family

ξa + ηb + tc−d = 0 as family of affine plane curves, parametrised by t, and complete it in the
weighted projective space with weights ( d

a ,
d
b , 1). The homogeneous equation is then

ξa +ηb + tc−dwd = 0. We resolve the singularity at the origin. We look at the chart ξ = 1. There
the equation is 1 + η̄b + tc−dw̄d = 0, modulo the action a

d (d
b , 1). For t = 0 we have 1 + η̄b = 0,

so there are indeed b
a/d = r points on the compactification of the special fibre. The coordinate

transformation from (ξ, η, 1) coordinates to (1, η̄, w̄) is ξ = w̄− d
a , η = η̄w̄− d

b . We blow up in the

r points at infinity on the special fibre. The functions x := ξt
d
a , y := ηt

d
a and t are holomorphic

in a neighbourhood of the strict transform of the special fibre, and generate the local ring of the
Kulikov singularity. They satisfy xa + yb + tc = 0. �

It follows that the family of curves obtained by resolving the singularity of ξa+ηb+tc−dwd = 0
is not minimal if c− d ≥ d = lcm(a, b). Furthermore the resolution graph of xa + yb + tc−d is a
subgraph of the resolution graph of xa + yb + tc.

Proposition 3.2. Write c = c0+c1d with 0 ≤ c0 < d. The characteristic cycle of the Brieskorn-
Pham singularity (3.1) has support on the subgraph corresponding to the singularity xa+yb+tc0+d

and is the fundamental cycle of that singularity. In particular, the characteristic cycle is equal
to the fundamental cycle if and only if d ≤ c < 2d.

Proof. If the family used in the construction above is not minimal, one can blow down each
component of the strict transform of the affine curve ξa + ηb = 0 and still have a family of
the same type. So the family is minimal if and only c − d < d. The result now follows from
Proposition 2.3.(4). �
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The Proposition was proved by Tomaru [17] using an explicit description of the resolution of
the singularity. As to this resolution, we note that there are r chains of c1 − 1 (−2)-curves from

the characteristic cycle to the components of X̃.

Remark 3.3. The above result extends with the same proof to the case of Brieskorn complete
intersections. A proof in the style of [17] was given by Meng, Yuan and Wang [9].

4. Singularities with a specific resolution graph

A recent paper Némethi and Okuma [12] concerns the problem of determining upper and
lower bounds for the geometric genus in terms of the resolution graph. The Authors study which
analytic structures can occur for a specific resolution graph, giving details for an example already
mentioned by Némethi [11]. Here we rederive their results from our point of view.

The main feature of the example is that the topological upper bound for pg is not realised.
The maximal pg occurs for a non Gorenstein Kulikov singularity and for a Gorenstein splice type
singularity.

The singularity considered has an integral homology sphere link. The resolution graph for the
minimal good resolution is: v−3 v−1

v−2

−13 v−1

v−2

v−3

This graph satisfies the semigroup condition of Neumann and Wahl [13] so there exist singularities
of splice type with this graph, with pg = 3. The defining equations of this complete intersection
singularity have ‘leading’ forms

(4.1) z21z2 + z23 + z34 , z31 + z22 + z24z3 .

On the minimal resolution the exceptional curve is an irreducible two-cuspidal rational curve,
of self-intersection −1. Therefore the resolution graph for the minimal resolution is simply:

(4.2)

v−1

[2]

with a possibly singular central curve. This is the same graph as when the exceptional divisor is
a smooth curve of genus two. We note that there exists a Gorenstein Kulikov singularity with
this graph, namely the hypersurface z2 = y5 + x10; it has the maximal geometric genus: pg = 4.

We first analyse the Gorenstein condition. On the minimal resolution M adjunction gives
for the exceptional curve that ωE = ωM ⊗ OE(E). The singularity is Gorenstein if and only if
ωM = OM (−3E). This happens if and only if ωE = OE(−2E), that is, if the conormal bundle
of E is a theta characteristic.

Lemma 4.1. A singularity with resolution graph (4.2) satisfies 2 ≤ pg ≤ 4. If pg = 4 then it is
a Gorenstein Kulikov singularity. If pg = 3 it is either non Gorenstein Kulikov of multiplicity 3
or a non Kulikov complete intersection.

Proof. To analyse the possible values for pg we look at a computation sequence. Here one
compares the different O(−kE) via the short exact sequences

0 −→ O(−(k + 1)E) −→ O(−kE) −→ OE(−kE) −→ 0

As H1(X̃,O(−3E)) = 0 one gets the exact sequences

0 −→ H1(X̃,O(−E)) −→ H1(X̃,O) −→ H1(E,OE) −→ 0
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H0(E,OE(−E)) −→ H1(X̃,O(−2E)) −→ H1(X̃,O(−E)) −→ H1(E,OE(−E)) −→ 0

and the isomorphism H1(X̃,O(−2E)) ∼= H1(E,OE(−2E)).
This gives 2 ≤ pg ≤ 4. If pg = 4 then OE(−2E) = ωE , so the singularity is Gorenstein.

Moreover, the theta characteristic is odd. Indeed, on a smooth genus two curve the divisor
of a Weierstrass point is an odd theta characteristic. The Kulikov construction starting from a
trivial family and blowing just one Weierstrass point lying on the central fibre, yields the example
z2 = y5 + x10.

A two-cuspidal rational curve has only one theta characteristic, which is even [3]. This can
also be seen from the description of the pencil with this special fibre in the list of Namikawa and
Ueno [10]: their example is y2 = (x3 + t)((x−1)3 + t), and one sees that three Weierstrass points
come together in cusp. This shows that there cannot be a singularity with this exceptional divisor
with pg = 4. But any computation with the quadratic lattice H cannot distinguish between such
a curve and a smooth curve.

A non Gorenstein Kulikov singularity is obtained by blowing up one smooth point of the special
fibre; for a smooth curve this point should not be a Weierstrass point. By construction the general
hyperplane section is a curve with Milnor fibre of genus two, so δ = 2. The only irreducible non
Gorenstein curve singularity is the monomial curve (t3, t4, t5). Therefore the surface singularity
has multiplicity 3 and embedding dimension 4. In this case H0(E,OE(−E)) = C, so pg = 3.

If the singularity is Gorenstein, but not Kulikov, then pg = 3 and the curve E has an even theta
characteristic. For a smooth E there exists a quasi-homogeneous singularity. Let y2 = f6(x, x̄)
be a hyperelliptic curve E, and write f6 = PQ with P , Q of degree 3. Consider the divisor
(P ) = 2D, with D a divisor of degree 3 on E, consisting of three Weierstrass points. Then
OE(D − KE) is an even theta characteristic. The graded ring

⊕
H0(E,OE(k(D − KE))) is

generated by z = xP , z̄ = x̄P , w = yP and v = P 2. The equations are then

w2 = Q(z, z̄), v2 = P (z, z̄) .

The singularity with two-cuspidal curve as exceptional curve is a superisolated complete inter-
section singularity. The graded tangent cone is obtained in the same way as above, by taking
P = x3, Q = x̄3. We have to add terms of lowest degree to make the singularity isolated,
resulting in splice diagram equations of the form (4.1):

w2 = z̄3 + vz2, v2 = z3 + wz̄2 .

�

Finally a quasi-homogeneous singularity with pg = 2 is obtained from a divisor D−KE withD
a general effective divisor of degree 3 on a smooth curve E. The graded ring

⊕
H0(E,OE(k(D−

KE))) has 7 generators. The same ring for the two-cuspidal rational curve gives a weighted
tangent cone of a singularity in C7.
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