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Abstract. Kyoji Saito’s notion of a free divisor was generalized by the first author to reduced
Gorenstein spaces and by Delphine Pol to reduced Cohen–Macaulay spaces. Starting point
is the Aleksandrov–Terao theorem: A hypersurface is free if and only if its Jacobian ideal is
maximal Cohen–Macaulay. Pol obtains a generalized Jacobian ideal as a cokernel by dualizing
Aleksandrov’s multi-logarithmic residue sequence. Notably it is essentially a suitably chosen
complete intersection ideal that is used for dualizing. Pol shows that this generalized Jacobian
ideal is maximal Cohen–Macaulay if and only if the module of Aleksandrov’s multi-logarithmic
differential k-forms has (minimal) projective dimension k − 1, where k is the codimension in
a smooth ambient space. This equivalent characterization reduces to Saito’s definition of
freeness in case k = 1. In this article we translate Pol’s duality result in terms of general
commutative algebra. It yields a more conceptual proof of Pol’s result and a generalization
involving higher multi-logarithmic forms and generalized Jacobian modules.

1. Introduction

Logarithmic differential forms along hypersurfaces and their residues were introduced by
Kyoji Saito (see [22]). They are part of his theory of primitive forms and period mappings
where the hypersurface is the discriminant of a universal unfolding of a function with isolated
critical point (see [23, 24]). The special case of normal crossing divisors appeared earlier in
Deligne’s construction of mixed Hodge structures (see [8]). Here the logarithmic differential
1-forms form a locally free sheaf. In general a divisor with this property is called a free divisor.
Further examples include plane curves (see [22, (1.7)]), unitary reflection arrangements and their
discriminants (see [29, Thm. C]) and discriminants of versal deformations of isolated complete
intersection singularities and space curves (see [17, (6.13)] and [30]). Free divisors also occur as
discriminants in prehomogeneous vector spaces (see [10]). In case of hyperplane arrangements
the study of freeness attracted a lot of attention (see [31]).

Let D be a germ of reduced hypersurface in Y ∼= (Cn, 0) defined by h ∈ OY . The OY -
modules Ωq(logD) of logarithmic differential q-forms along D and the OD-modules ωpD of regular
meromorphic differential p-forms on D fit into a short exact logarithmic residue sequence (see
[22, §2] and [2, §4])

0 // ΩqY
// Ωq(logD)

resqD // ωq−1
D

// 0.

Denoting by νD : D̃ → D the normalization of D, (νD)∗OD̃ ⊆ ω0
D (see [22, (2.8)]). For plane

curves Saito showed that equality holds exactly for normal crossing curves (see [22, (2.11)]).
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Granger and the first author (see [11]) generalized this fact and thus extended the Lê–Saito
Theorem (see [16]) by an equivalent algebraic property. They showed that (νD)∗OD̃ = ω0

D if
and only if D is normal crossing in codimension one, that is, outside of an analytic subset of Y
of codimension at least 3. The proof uses the short exact sequence

0 JDoo ΘY
〈−,dh〉
oo Der(− logD)oo 0oo

obtained as the OY -dual of the logarithmic residue sequence. It involves the Jacobian ideal
JD of D, the OY -module ΘY := DerC(OY ) ∼= (Ω1

Y )∗ of vector fields on Y and its submodule
Der(− logD) ∼= Ω1(logD)∗ of logarithmic vector fields along D. It is shown that ω0

D = J ∗D
and that JD = (ω0

D)∗ if D is a free divisor. In fact freeness of D is equivalent to JD being a
Cohen–Macaulay ideal by the Aleksandrov–Terao theorem (see [2, §2] and [28, §2]).

As observed by first author (see [27]) the inclusion (νD)∗OD̃ ⊆ ω
0
D can be seen as

(νD)∗ω
0
D̃
↪→ ω0

D.

He showed that (νX)∗ω
0
X̃

= ω0
X is equivalent to X being normal crossing in codimension one

for reduced equidimensional spaces X which are free in codimension one. Here freeness means
Gorenstein with Cohen–Macaulay ω-Jacobian ideal. As the latter coincides with the Jacobian
ideal for complete intersections (see [19, Prop. 1]), this generalizes the classical freeness of divisors
which holds true in codimension one.

Multi-logarithmic differential forms generalize Saito’s logarithmic differential forms replacing
hypersurfaces D ⊆ Y by subspaces X ⊆ Y of codimension k ≥ 2. They were first introduced
with meromorphic poles along reduced complete intersections by Aleksandrov and Tsikh (see
[5, 6]), later with simple poles by Aleksandrov (see [3, §3]) and recently along reduced Cohen–
Macaulay and reduced equidimensional spaces by Aleksandrov (see [4, §10]) and by Pol (see [21,
§4.1]). The precise relation of the forms with simple and meromorphic poles was clarified by Pol
(see [21, Prop. 3.1.33]). Here we consider only multi-logarithmic forms with simple poles.

The OY -modules Ωq(logX/C) of multi-logarithmic q-forms on Y along X depend on the
choice of divisors D1, . . . , Dk defining a reduced complete intersection C = D1 ∩ · · · ∩Dk ⊆ Y
such that X ⊆ C. Consider the divisor D = D1 ∪ · · · ∪Dk defined by h = h1 · · ·hk ∈ OY . Due
to Aleksandrov and Pol there is a multi-logarithmic residue sequence

(1.1) 0 // ΣΩqY
// Ωq(logX/C)

resq
X/C
// ωq−kX

// 0

where Σ = IC(D) is obtained from the ideal IC of C ⊆ Y and ωpX is the OX -module of
regular meromorphic p-forms on X (see [4, §10] and [21, §4.1.3]). Pol introduced an OY -module
Derk(− logX/C) of logarithmic k-vector fields on Y along X and a kind of Jacobian ideal JX/C
of X that fit into the short exact sequence dual to (1.1) for q = k

(1.2) 0 JX/Coo Θk
Y

〈−,αX〉
oo Derk(− logX/C)oo 0oo

where Θq
Y =

∧q
OY

ΘY and
[

αX
h1, . . . , hk

]
∈ ω0

X is a fundamental form of X (see [21, §4.2.2-3]).

Notably the duality applied here is −Σ = HomOY
(−,Σ). Pol showed that Cohen–Macaulayness

of JX/C serves as a further generalization of freeness. In fact the property is independent of C
(see [21, Prop. 4.2.21]) and JX/C coincides with the ω-Jacobian ideal in case X is Gorenstein
(see [21, §4.2.5]). By relating Σ- and OY -duality Pol established the following major result (see
[21, Thm. 4.2.22] or [20]). In particular it generalizes Saito’s original definition of freeness to the
case k > 1.
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Theorem 1.1 (Pol). Let X ⊆ C ⊆ Y ∼= (Cn, 0) where X is a reduced Cohen–Macaulay germ
and C a complete intersection germ, both of codimension k ≥ 1 in Y . Then

pdim(Ωk(logX/C)) ≥ k − 1

with equality equivalent to freeness of X.

In §2 we pursue the main objective of this article: a translation of Theorem 1.1 in terms of
general commutative algebra. The role of OY � OC = OY /IC is played by a map of Gorenstein
rings R→ R = R/I of codimension k ≥ 2. For dualizing we use

−I = HomR(−, I), −∨ = HomR(−, ωR), −∨ = HomR(−, ωR)

where ωR is a canonical module for R and ωR = R⊗RωR, which is a canonical module for R due
to the Gorenstein hypothesis (see Notation 2.1). Modelled after the multi-logarithmic residue
sequence (1.1) along X = C we define an I-free approximation of a finitely generated R-module
M as a short exact sequence

0 // IF
ι // M // W // 0

where F is free and W is an R-module. More precisely M plays the role of Ωq(logX/C)(−D)
which, as opposed to Ωq(logX/C), is independent of the choice of D. The I-dual sequence

0 Voo F∨
αoo M Iλoo 0oo

plays the role of the Σ-dual sequence (1.2) for X = C. In Proposition 2.13 we show that M is
I-reflexive if and only if W is the R-dual of V . Our main result is

Theorem 1.2. Let R be a Gorenstein local ring and let I be an ideal of R of height k ≥ 2 such
that R = R/I is Gorenstein. Consider an I-free approximation

0 // IF
ι // M

ρ
// W // 0

of an I-reflexive finitely generated R-module M with W 6= 0 and the corresponding I-dual

0 Voo F∨
αoo M Iλoo 0.oo

Then W = V ∨ and V is a maximal Cohen–Macaulay R-module if and only if G-dim(M) ≤ k−1.
In this latter case V = W∨ is (ωR-)reflexive. Unless α := R⊗α is injective, G-dim(M) ≥ k−1.

Due to the Gorenstein hypothesis, Theorem 1.2 applies to the complete intersection ring
R = OC , but in general not to R = OX . In §2.5 we describe a construction to restrict the support
of an I-free approximation to the locus defined by an ideal JER with I ⊆ J . Lemma 3.15 shows
that it is made in a way such that the multi-logarithmic residue sequence along X is obtained
from that along C by restricting with J = IX . Corollary 2.29 extends Theorem 1.2 to this
generalized setup.

In §3 we apply our results to multi-logarithmic forms. We define OY -submodules

Derq(− logX) ⊆ Θq
Y

of logarithmic q-vector fields on Y along X independent of C and show that

Derk(− logX) = Derk(− logX/C).

We further define Jacobian OX -modules J n−qX ⊆ OX ⊗OY
Θq−k
Y of X independent of C and Y

such that J dimX
X = JX/C . The Σ-dual of the multi-logarithmic residue sequence reads

0 J n−qX
oo Θq

Y
αX
oo Derq(− logX)oo 0oo
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where αX is contraction by αX . As a consequence of Corollary 2.29 we obtain the following
result which is due to Pol in case q = k (see [21, Prop. 4.2.17, Thm. 4.2.22]).

Theorem 1.3. Let X ⊆ C ⊆ Y ∼= (Cn, 0) where X is a reduced Cohen–Macaulay germ
and C a complete intersection germ, both of codimension k ≥ 2 in Y . For k ≤ q < n,
ωq−kX = HomOX

(J n−qX , ωX) where ωX = HomOC
(OX ,OC)(D) and pdim(Ωq(logX/C)) ≥ k − 1.

Equality holds if and only if J n−qX is maximal Cohen–Macaulay. In this latter case J n−qX =

HomOX
(ωq−kX , ωX) is ωX-reflexive.

The analogy with the hypersurface case (see [22, (1.8)]) now raises the question whether J n−qX

being maximal Cohen–Macaulay for q = k implies the same for all q > k. An explicit description
of the Jacobian modules is given in Remark 3.25.

Acknowledgments. We thank Delphine Pol and the anonymous referee for helpful comments.

2. Residual duality over Gorenstein rings

For this section we fix a Cohen–Macaulay local ring R with n := dim(R) and an ideal I ER
with k := height(I) ≥ 2 defining a Cohen–Macaulay factor ring R := R/I. These fit into a short
exact sequence

(2.1) 0 // I // R
π // R // 0.

Note that (see [7, Thm. 2.1.2.(b), Cor. 2.1.4])

n− dim(R) = grade(I) = height(I) = k ≥ 2.

In particular I is a regular ideal of R and hence any R-module is R-torsion.
We assume further that R admits a canonical module ωR. Then also R admits a canonical

module ωR (see [7, Thm. 3.3.7]).

Notation 2.1. Abbreviating ωR := R⊗R ωR we deal with the following functors

−∗ := HomR(−, R), −∨ := HomR(−, ωR),

−I := HomR(−, IωR), −∨ := HomR(−, ωR).

In general ωR 6∼= ωR and −∨ is not the duality of R-modules. For an R-module N ,

N∗ = HomR(N,R)

but N∨ means either HomR(N,ωR) or HomR(N,ωR), depending on the context. For R-modules
M and N , we denote the canonical evaluation map by

δM,N : M → HomR(HomR(M,N), N), m 7→ (ϕ 7→ ϕ(m)).

Whenever applicable we use an analogous notation for R-modules. We denote canonical isomor-
phisms as equalities.

Lemma 2.2. Let N be an R-module. Then ExtiR(N,ωR) = 0 for i < k and N I = 0.

Proof. The first vanishing is due to Ischebeck’s Lemma (see [12, Satz 1.9]), the second holds
because ωR and hence IωR is torsion free (see [7, Thm. 2.1.2.(c)]) whereas N is torsion. �
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2.1. I-duality and I-free approximation.

Lemma 2.3. There is a canonical identification ωR = II and a canonical inclusion I ↪→ ωIR.
They combine to the map δI,IωR

: I → III which is an isomorphism if R is Gorenstein.

Proof. Applying −∨ to (2.1) and HomR(I,−) to IωR ↪→ ωR yields an exact sequence with a
commutative triangle

(2.2) Ext1
R(R,ωR) I∨oo ωR

µ
~~

oo R
∨

oo 0oo

II .
?�

OO

The diagonal map sends ε ∈ ωR to the multiplication map µ(ε) : I → IωR, x 7→ x · ε. With
Lemma 2.2 it follows that ωR = I∨ = II .

There is an isomorphismR ∼= EndR(ωR) sending each element to the corresponding multiplica-
tion map (see [7, Thm. 3.3.4.(d))]). Applying HomR(ωR,−) to IωR ↪→ ωR yields a commutative
square

(2.3) R ∼=
// EndR(ωR)

I
?�

OO

δ′ // ωIR.
?�

OO

If R is Gorenstein, then ωIR = HomR(R, I) = I and δ′ is an isomorphism.
Combined with the above identification ωR = II , δ′ defines a map δ : I → III . Since

δ(x)(µ(ε)) = δ′(x)(ε) = x · ε = µ(ε)(x) = δI,IωR
(x)(µ(ε))

for all x ∈ I and ε ∈ ωR, in fact δ = δI,IωR
. �

Definition 2.4. If F is a free R-module, then we call IF = I ⊗R F an I-free module. An
R-module M is called I-reflexive if δM,IωR

: M →M II is an isomorphism.

Proposition 2.5. Let F be a free R-module F . Then F∨ = (IF )I by restriction. The adjunction
map IF → F∨I is induced by the isomorphism δF,ωR

and identifies with δIF,IωR
. In case R is

Gorenstein, IF is I-reflexive.

Proof. Applying HomR(F,−) to µ in (2.2) yields F∨ = (IF )I by Hom-tensor adjunction.
Applying F ⊗R − to (2.3) yields a commutative square

F
δF,ωR

∼=
// F∨∨

IF
?�

OO

// F∨I
?�

OO
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where the bottom row is adjunction. In fact, using Lemma 2.3,

IF = I ⊗R F → F ⊗R ωIR = F ⊗R HomR(ωR, IωR)

= HomR(F ⊗R ωR, IωR)

= HomR(F ⊗R HomR(R,ωR), IωR)

= HomR(HomR(F ⊗R R,ωR), IωR)

= HomR(HomR(F, ωR), IωR) = F∨I ,

x · e 7→ (ψ 7→ x · ψ(e)).

Identifying F∨ = (IF )I using Lemma 2.3 yields with the map µ in diagram (2.2)

ε = ψ(e)↔ µ(ε) =⇒ x · ψ(e) = x · ε = µ(ε)(x).

Adjunction thus becomes identified with δIF,IωR
. The last claim is due to Lemma 2.3. �

Definition 2.6. Let M be a finitely generated R-module. We call a short exact sequence

(2.4) 0 // IF
ι // M

ρ
// W // 0

where F is free and IW = 0 an I-free approximation of M with support Supp(W ). We consider
W as an R-module. The inclusion map ι : IF ↪→ F = M defines the trivial I-free approximation

0 // IF // F // F/IF // 0.

A morphism of I-free approximations is a morphism of short exact sequences.

Lemma 2.7. For any I-free approximation (2.4), ι fits into a unique commutative triangle

(2.5) F

IF
. �

==

� � ι // M.

κ

OO

If ι−1 denotes the choice of any preimage under ι, then κ(m) = ι−1(xm)/x for any x ∈ I ∩Rreg.
If M is maximal Cohen–Macaulay, then κ is surjective. In particular, (2.4) becomes trivial if in
addition κ injective.

Proof. Applying HomR(−, F ) to (2.4) yields

Ext1
R(W,F ) HomR(IF, F )oo HomR(M,F )

ι∗oo HomR(W,F )oo 0.oo

By Ischebeck’s Lemma (see [12, Satz 1.9]), Ext1
R(W,F ) = 0 = HomR(W,F ) making ι∗ an

isomorphism. Then κ is the preimage of the canonical inclusion IF ↪→ F under ι∗. The formula
for κ follows immediately.

Since coker(κ) is a homomorphic image of F/IF , dim(coker(κ)) ≤ n−k ≤ n−2. IfM is max-
imal Cohen–Macaulay, then depth(coker(κ)) ≥ n−1 by the Depth Lemma (see [7, Prop. 1.2.9]).
This forces coker(κ) = 0 (see [7, Prop. 1.2.13]) and makes κ surjective. �
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By functoriality of the cokernel, any ϕ ∈ F∨ gives rise to a commutative diagram

(2.6) 0 // IωR // ωR
πω // ωR // 0

F

ϕ

OO

0 // IF

ϕ|IF

OO

- 

<<

ι // M

κ

OO

ρ
// W

ϕ

OO

// 0

with top exact row induced by (2.1) and bottom row (2.4). This defines a map

(2.7) W∨ F∨oo

ϕ ϕ.�oo

Applying HomR(F,−) to the upper row of (2.6) yields a short exact sequence

(2.8) 0 // F I // F∨ // F∨ // 0.

By Lemma 2.2 applying −I to (2.4) and (2.5) yields the exact diagonal sequence and the triangle
of inclusions with vertex F I in the following commutative diagram.

(2.9) 0 Voo F∨
αoo M I/F I

λoo 0oo

||

0 Voo � _

��

F∨
αoo

OOOO

M Iλoo

ιI

zz

OOOO

0oo

(IF )I

xx

F I?
_oo
?�

κI

OO

Ext1
R(W, IωR)

By Proposition 2.5, the identification F∨ = (IF )I in diagram (2.9) is given by

ϕ↔ ϕ|IF = ϕ ◦ κ ◦ ι
in diagram (2.6). It defines the map λ with cokernel α. For ψ ∈M I , λ(ψ) is defined by

λ(ψ)|IF = ψ ◦ ι.

With Ext1
R(W, IωR) also V is an R-module. Using (2.8) the Snake Lemma yields the short exact

upper row of (2.9). By Lemma 2.2 the commutative square HomR(IF ↪→M, IωR ↪→ ωR) reads

(IF )I� _

��

M IιIoo � _

��

(IF )∨ M∨.
ι∨

∼=
oo

This allows one to check equalities of maps M → ωR after precomposing with ι. It follows that

(2.10) ϕ ◦ κ ∈M I ⇐⇒ ϕ ∈ λ(M I) =⇒ ϕ = λ(ϕ ◦ κ)

for any ϕ ∈ F∨.
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Definition 2.8. We call the middle row

(2.11) 0 Voo F∨
αoo M Iλoo 0oo

of diagram (2.9) the I-dual of the I-free approximation (2.4). We set

(2.12) W ′ := Ext1
R(V, IωR).

Lemma 2.9. For any I-free approximation (2.4) the map (2.7) factors through the map α in
(2.9) defining an inclusion ν : V →W∨, that is,

W∨ V? _
νoo F∨,

αoooo

ϕ ϕ.
�oo

Proof. By diagrams (2.6) and (2.9), equivalence (2.10) and exactness properties of Hom,

ϕ = 0 ⇐⇒ ϕ ◦ ρ = 0 ⇐⇒ ϕ ◦ κ ∈M I ⇐⇒ ϕ ∈ λ(M I) ⇐⇒ α(ϕ) = 0. �

Remark 2.10. By Lemma 2.2 applying HomR(W,−) to the upper row of diagram (2.6) yields

W∨ = coker HomR(W,πω) ∼= Ext1
R(W, IωR).

The inclusion of V in the latter in diagram (2.9) uses coker ιI ↪→ Ext1
R(W, IωR). The relation

with the inclusion ν in Lemma 2.9 is clarified by the double complex obtained by applying
HomR(−,−) to (2.4) and the upper row of (2.6). By Lemma 2.2 it expands to a commutative
diagram with exact rows and columns

0

��

0

��

Ext1
R(W, IωR)

��

(IF )Ioo

��

M IιIoo

��

0oo

��

0 (IF )∨oo

��

M∨
ι∨oo

��

0oo

HomR(W,πω)

��

(IF )∨ M∨oo W∨oo

∼=
��

0oo

Ext1
R(W, IωR).

An element α(ϕ) ∈ V with ϕ ∈ F∨ maps to ϕ|IF ∈ (IF )I , to ϕ ◦ κ ∈M∨ and to ϕ ∈W∨.

2.2. I-reflexivity over Gorenstein rings. In this subsection we assume that R is Gorenstein
and study I-reflexivity of modules M in terms of an I-free approximation (2.4). With the
Gorenstein hypothesis F∨ is free and hence

(2.13) Ext1
R(F∨,−) = 0.
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Proposition 2.11. Assume that R is Gorenstein. For any I-free approximation (2.4) and W ′
as in (2.12) there is a commutative square

M

δM,IωR

��

ρ
// // W

δ

��

M II ρ′
// // W ′

and δ is an isomorphism if and only if M is I-reflexive.

Proof. Consider the following commutative diagram whose rows are (2.4) and obtained by ap-
plying −I to the triangle with vertex F∨ in diagram (2.9).

(2.14) F

∼= δF,ωR

rr

0 // IF
, �

::

δIF,IωR
∼=
��

ι // M

κ

OO

δM,IωR

��

ρ
// W //

δ

��

0

0 // (IF )II
ιII // M II ρ′

// W ′ // 0

F∨I �
�

//

λI

::

F∨∨.

The latter is a short exact sequence by Lemma 2.2 and (2.13). The commutative squares in
diagram (2.14) are due to functoriality of δ and the cokernel. The claimed equivalence then
follows from the Snake Lemma. Proposition 2.5 yields the part of diagram (2.14) involving
δF,ωR

. This part is just added for clarification but not needed for the proof. �

Lemma 2.12. Assume that R is Gorenstein and consider an I-free approximation (2.4). Then
the maps ν from Lemma 2.9 and δ from Proposition 2.11 fit into a commutative square

W

δ

��

δW,ωR // W∨∨

ν∨

��

W ′ V ∨.
ξ

∼=
oo

Proof. Consider the double complex obtained by applying HomR(−,−) to the middle and top
rows of diagrams (2.9) and (2.6). By Lemma 2.2 and (2.13) it expands to a commutative diagram
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with exact rows and columns

0

��

0

��

0 //

��

F∨I
λI
//

��

M II ρ′
//

��

W ′ //

��

0

0 //

��

F∨∨
λ∨ //

(πω)∗

��

M I∨ //

��

0

0 // V ∨
α∨ // F∨∨

λ∨ //

��

M I∨

0.

The Snake Lemma yields an isomorphism ξ : V ∨ →W ′. Attaching the square of Proposition 2.11,
the relation δ(w) = ξ(ψ̃) is given by the diagram chase

m_

��

� // w_

��

δM,IωR
(m)

_

��

� // δ(w)

ψ_

��

� // ψ ◦ λ = δM,IωR
(m)

ψ̃ � // ψ̃ ◦ α = πω ◦ ψ.

Using implication (2.10), diagram (2.6) and Lemma 2.9, one deduces that, with x ∈ I ∩Rreg and
v = α(ϕ),

xϕ ◦ κ ∈M I =⇒ xϕ = λ(xϕ ◦ κ)

=⇒ xψ(ϕ) = ψ(xϕ) = (ψ ◦ λ)(xϕ ◦ κ)

= δM,IωR
(m)(xϕ ◦ κ) = x(ϕ ◦ κ)(m)

=⇒ ψ(ϕ) = (ϕ ◦ κ)(m)

=⇒ ψ̃(v) = (ψ̃ ◦ α)(ϕ) = (πω ◦ ψ)(ϕ) = (πω ◦ ϕ ◦ κ)(m) = ϕ(w)

= (ν ◦ α)(ϕ)(w) = ν(α(ϕ))(w) = ν(v)(w)

= δW,ωR
(w)(ν(v)) = ν∨(δW,ωR

(w))(v) = (ν∨ ◦ δW,ωR
)(w)(v)

=⇒ ψ̃ = (ν∨ ◦ δW,ωR
)(w)

=⇒ δ(w) = ξ(ψ̃) = (ξ ◦ ν∨ ◦ δW,ωR
)(w)

=⇒ δ = ξ ◦ ν∨ ◦ δW,ωR
. �
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Proposition 2.13. Assume that R is Gorenstein and consider an I-free approximation (2.4).
Then M is I-reflexive if and only if the map ν∨ ◦ δW,ωR

with ν from Lemma 2.9 identifies
W = V ∨.

Proof. The claim follows from Proposition 2.11 and Lemma 2.12. �

Lemma 2.14. Assume that R is Gorenstein and consider an I-free approximation (2.4). Then
the map ν from Lemma 2.9 fits into a commutative diagram

W∨ V

δV,ωR

��

νoo

W∨∨∨

δ∨W,ωR

OO

V ∨∨.
ν∨∨

oo

(ν∨◦δW,ωR
)∨

gg

Proof. For any v ∈ V and w ∈W we have

(δ∨W,ωR
◦ ν∨∨ ◦ δV,ωR

)(v)(w) = δ∨W,ωR
(ν∨∨(δV,ωR

(v)))(w)

= δ∨W,ωR
(δV,ωR

(v) ◦ ν∨)(w)

= (δV,ωR
(v) ◦ ν∨)(δW,ωR

(w))

= δV,ωR
(v)(δW,ωR

(w) ◦ ν)

= δW,ωR
(w)(ν(v))

= ν(v)(w)

and hence ν = δ∨W,ωR
◦ ν∨∨ ◦ δV,ωR

as claimed. �

Corollary 2.15. Assume that R is Gorenstein and consider an I-free approximation (2.4) of an
I-reflexive R-moduleM . Then V in diagram (2.9) is (ωR-)reflexive if and only if ν in Lemma 2.9
identifies V = W∨.

Proof. The claim follows from Proposition 2.13 and Lemma 2.14. �

2.3. R-dual I-free approximation. In this subsection we consider the R-dual of an I-free
approximation (2.4). The interesting part of the long exact Ext-sequence of −∨ applied to (2.4)
turns out to be

(2.15) 0 ExtkR(M,ωR)oo ExtkR(W,ωR)oo Extk−1
R (IF, ωR)

β
oo Extk−1

R (M,ωR)oo 0.oo

In fact, applying −∨ to (2.1) yields (see Lemma 2.17 and [7, Thm. 3.3.10.(c).(ii)])

ExtiR(IF, ωR) = F ∗ ⊗R ExtiR(I, ωR) = F ∗ ⊗R Exti+1
R (R,ωR) = 0 for i 6= 0, k − 1.

In case both R and R are Gorenstein, we will identify the map β to its image with the map α
in (2.9) (see Corollary 2.21). In §2.4 this fact will serve to relate the Gorenstein dimension of
M to the depth of V .

In order to describe the map β in (2.15) we fix a canonical module ωR of R with an injective
resolution (E•, ∂•),

0 // ωR // E0 ∂0
// E1 ∂1

// E2 ∂2
// · · · .

We use it to fix representatives

ExtiR(−, ωR) := Hi HomR(−, E•).
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Then (see [7, Thms. 3.3.7.(b), 3.3.10.(c).(ii)])

(2.16) Hi AnnE•(I) = Hi Hom(R,E•) = ExtiR(R,ωR) = δi,k · ωR
where

ωR := Hk AnnE•(I)

is a canonical module of R.
In the sequel we explicit the maps of the following commutative diagram

(2.17) ExtkR(W,ωR)

γ ∼=

��

Extk−1
R (IF, ωR)

β
oo

F ∗ ⊗R Extk−1
R (I, ωR)

χ∼=

OO

F ∗ ⊗R Hk−1(E•/AnnE•(I))

F∗⊗Hk−1(τ•)∼=

OO

F∗⊗ζ∼=
��

HomR(W,ωR) =W∨ V ′? _
ν′oo F ∗ ⊗R ωR

α′oooo

which defines the map ν′ ◦ α′ and its image V ′. The maps τ•, χ, ζ, γ and α′ are described in
Lemmas 2.16, 2.17, 2.18, 2.19 and Proposition 2.20 respectively.

Lemma 2.16. For any injective R-module E there is a canonical isomorphism

τ : E/AnnE(I)→ HomR(I, E), e 7→ − · e = (x 7→ x · e).

In particular, there is a canonical isomorphism τ• : E•/AnnE•(I)→ HomR(I, E•).

Proof. Applying the exact functor HomR(−, E) to (2.1) yields a short exact sequence

0← HomR(I, E)← HomR(R,E)← HomR(R,E)← 0.

Identifying E = HomR(R,E), e 7→ − · e, and hence

(2.18) HomR(R,E) = AnnE(I)

yields the claim. �

Lemma 2.17. For any i ∈ N there is a canonical isomorphism

F ∗ ⊗R ExtiR(I, ωR) ∼=

χi // ExtiR(IF, ωR)

F ∗ ⊗R Hi HomR(I, E•) // Hi HomR(IF,E•)

ϕ⊗ [ψ]
� // [ϕ|IF · ψ̃(1)] = [(κ ◦ ι)∗(ϕ) · ψ̃(1)]

where ψ̃ ∈ HomR(R,E•) extends ψ ∈ HomR(I, E•). We set χ := χk−1.

Proof. For any i ∈ N there is a sequence of canonical isomorphisms

F ∗ ⊗R Hi HomR(I, E•) = HomR(F,Hi HomR(I, E•))

= Hi HomR(F,HomR(I, E•))

= Hi HomR(IF,E•),
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the latter one being Hom-tensor adjunction, sending

ϕ⊗ [ψ] 7→ (f 7→ ϕ(f) · [ψ] = [ϕ(f) · ψ])

7→ [f 7→ ϕ(f) · ψ]

7→ [x · f 7→ ϕ(f) · ψ(x) = ϕ(x · f) · ψ̃(1)] = [ϕ|IF · ψ̃(1)]

where x ∈ I and f ∈ F . �

Lemma 2.18. There is a connecting isomorphism

ζ : Hk−1(E•/AnnE•(I))→ Hk AnnE•(I) = ωR,

[e] 7→ [∂k−1(e)].

Proof. The connecting homomorphism ζ in degree k of the short exact sequence

0→ AnnE•(I)→ E• → E•/AnnE•(I)→ 0

is an isomorphism since E• is a resolution and hence Hi(E•) = 0 for i ≥ k − 1 ≥ 1. �

Lemma 2.19. For any R-module N there is a canonical isomorphism

γ : Hk HomR(N,E•)→ HomR(N,Hk AnnE•(I)) = N∨,

[φ] 7→ (n 7→ [φ(n)]).

Proof. Fix an R-projective resolution (P?, δ?) of N and consider the double complex

A?,• := HomR(P?, E
•) = HomR(P?,HomR(R,E•)) = HomR(P?,AnnE•(I))

whose alternate representation is due to Hom-tensor adjunction and (2.18). It yields two spectral
sequences with the same limit. By exactness of HomR(P?,−) and (2.16) and using the alternate
representation the E2-page of the first spectral sequence identifies with

′Ep,q2 = Hp(H?,q(A?,•)) = Hp HomR(P?, H
q AnnE•(I)) = δk,q ·Hp HomR(P?, ωR).

By exactness of HomR(−, E•) the E2-page of the second spectral sequence reads
′′Ep,q2 = Hq(Hp,•(A?,•)) = Hq HomR(HpP?, E

•) = δp,0 ·Hq HomR(N,E•).

So both spectral sequences degenerate. The resulting isomorphism ′′E0,k
2 → ′E

0,k
2 is γ. �

Proposition 2.20. Assume that R is Gorenstein and consider an I-free approximation (2.4).
Then the map α′ in diagram (2.17) is induced by

ν′ ◦ α′ : F ∗ ⊗R ωR = F ∗ ⊗R Hk AnnE•(I)→ HomR(W,Hk AnnE•(I)) = W∨,

ϕ⊗ [a] 7→ ϕ · [a],

where ϕ 7→ ϕ is (2.7) with ωR = R. In particular, ExtkR(M,R) = 0 if ν′ is surjective.

Proof. The proof is done by chasing diagram (2.17) and the diagram

0 // HomR(W,Ek−1)
ρ∗
//

(∂k−1)∗
��

HomR(M,Ek−1)
ι∗ //

(∂k−1)∗
��

HomR(IF,Ek−1) //

(∂k−1)∗
��

0

0 // HomR(W,Ek)
ρ∗

// HomR(M,Ek)
ι∗ // HomR(IF,Ek) // 0.

This latter defines the connecting homomorphism β in (2.15) on representatives as

(ρ∗)−1 ◦ (∂k−1)∗ ◦ (ι∗)−1,

where (ι∗)−1 denotes the choice of any preimage under ι∗.



RESIDUAL DUALITY OVER GORENSTEIN RINGS 285

Let ϕ ⊗ [e] ∈ F ∗ ⊗R Hk−1(E•/AnnE•(I)). Then by Lemmas 2.16, 2.17, 2.18 and 2.19, and
diagram (2.6) with ωR = R

[κ∗(ϕ) · e] �H
k−1(ι∗)

//
_

��

[(ι∗ ◦ κ∗)(ϕ) · e]

[((ρ−1)∗ ◦ κ∗)(ϕ) · ∂k−1(e)]
_

γ

��

� Hk(ρ∗)
// [κ∗(ϕ) · ∂k−1(e)] ϕ⊗ [− · e]

_

χ

OO

ϕ⊗ [e]
_

F∗⊗Hk−1(τ•)

OO

_

F∗⊗ζ

��

(π ◦ ϕ ◦ κ ◦ ρ−1) · [∂k−1(e)] = ϕ · [∂k−1(e)] ϕ⊗ [∂k−1(e)]
�ν′◦α′oo

where ρ−1 denotes the choice of any preimage under ρ. By diagram (2.6) and Lemma 2.18
the ambiguity of this choice is cancelled when multiplying (ρ−1)∗ ◦ κ∗(ϕ) = ϕ ◦ κ ◦ ρ−1 with
∂k−1(e) ∈ AnnE•(I).

The particular claim follows from diagram (2.17) and the exact sequence (2.15). �

Corollary 2.21. Assume that both R and R are Gorenstein and consider an I-free approxima-
tion (2.4). Then identifying ωR = ωR (see diagrams (2.9) and (2.17)) makes

α′ = α, V ′ = V, Extk−1
R (M,R) ∼= ker(α) = M I/F I .

In particular, if M is I-reflexive, then ExtkR(M,R) = 0 if and only if V is (ωR-)reflexive.

Proof. Let ϕ 7→ ϕ be (2.7) with ωR = R. Pick free generators ε ∈ ωR and ε̃ ∈ ωR inducing the
identification ωR = ωR by sending ε = πω(ε) 7→ ε̃. Then

F∨ ⊗R R = F ∗ ⊗R ωR = F ∗ ⊗R ωR, W∨ = W∨,

(ϕ · ε)⊗ 1↔ ϕ⊗ ε↔ ϕ⊗ ε̃, ϕ · ε↔ ϕ · ε̃.

By diagram (2.6) and Lemma 2.9 the map F∨ ⊗R R→W∨ induced by ν ◦ α sends

(ϕ · ε)⊗ 1 7→ ϕ · ε = πω ◦ ((ϕ ◦ κ ◦ ρ−1) · ε) = (π ◦ ϕ ◦ κ ◦ ρ−1) · πω(ε) = ϕ · ε.

By Proposition 2.20 this map coincides with ν′ ◦ α′ subject to the above identifications. This
shows that α′ = α and V ′ = V . By the exact sequence (2.15), the commutative diagram (2.17)
and the exact upper row of diagram (2.9),

Extk−1
R (M,R) = ker(β) ∼= ker(α′) = ker(α) = M I/F I ,

ExtkR(M,R) = coker(β) ∼= coker(ν′) = W∨/ν′(V ′).

In particular ExtkR(M,R) = 0 if and only if ν′ identifies V ′ = W∨ or, equivalently, if ν identifies
V = W∨. The particular claim now follows with Corollary 2.15. �
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2.4. Projective dimension and residual depth. Assume that R is Gorenstein. Then ev-
ery finitely generated R-module M has finite Gorenstein dimension G-dim(M) < ∞ (see [18,
Thm. 17]). Recall that if M has finite projective dimension pdim(M) <∞, then

G-dim(M) = pdim(M)

(see [18, Cor. 21]). Consider an I-free approximation (2.4) of an R-module M . In the following
we relate the case of minimal Gorenstein dimension of M to Cohen–Macaulayness of V , proving
our main result.

Lemma 2.22. Assume that R is Gorenstein and consider an I-free approximation (2.4) with
W 6= 0. Then W is a maximal Cohen–Macaulay R-module if and only if G-dim(M) ≤ k.
In this case G-dim(M) ≤ k − 1 if and only if ExtkR(M,R) = 0. If R is Gorenstein, then
G-dim(M) ≥ k − 1 unless α in diagram (2.9) is injective.

Proof. By hypothesis M 6= 0 is finitely generated over the Gorenstein ring R. It follows that
(see [18, Thm. 17, Lem. 23.(c)])

(2.19) G-dim(M) = max
{
i ∈ N

∣∣ ExtiR(M,R) 6= 0
}
<∞.

The Auslander–Bridger Formula (see [18, Thm. 29]) then states that

(2.20) depth(M) = depth(R)−G-dim(M) = dim(R)−G-dim(M) = n−G-dim(M).

By the Depth Lemma (see [7, Prop. 1.2.9]) applied to the short exact sequence (2.1)

n− k + 1 = depth(R) + 1 ≥ min {depth(R),depth(I)− 1}+ 1 = depth(I)

≥ min
{

depth(R),depth(R) + 1
}

= n− k + 1

and hence

(2.21) depth(IF ) = depth(I) = n− k + 1.

( =⇒ ) Using (2.21) and (2.20) the Depth Lemma applied to the short exact sequence (2.4)
gives

G-dim(M) = n− depth(M) ≤ n−min {depth(IF ),depth(W )} ≤ n− (n− k) = k.

(⇐= ) Using (2.20) and (2.21) the Depth Lemma applied to the short exact sequence (2.4)
gives

n− k = dim(R) ≥ dim(W ) ≥ depth(W ) ≥ min {depth(M),depth(IF )− 1} ≥ n− k.

By (2.19) this latter inequality becomes G-dim(M) ≤ k − 1 if and only if ExtkR(M,R) = 0
(see [18, Lem. 23.(c)]).

If R is Gorenstein and α is not injective, then Extk−1
R (M,R) 6= 0 by Corollary 2.21 and hence

G-dim(M) ≥ k − 1 by (2.19). �

We can now conclude the proof of our main result.

Proof of Theorem 1.2. Since M is I-reflexive, W = V ∨ by Proposition 2.13.
( =⇒ ) Suppose that V is maximal Cohen–Macaulay. Then also W is maximal Cohen–

Macaulay and V is (ωR-)reflexive (see [7, Prop. 3.3.3.(b).(ii), Thm. 3.3.10.(d).(iii)]). By Corol-
lary 2.21 ExtkR(M,R) = 0 and by Lemma 2.22 G-dim(M) = k − 1.

(⇐= ) Suppose that G-dim(M) ≤ k−1. By Lemma 2.22W is maximal Cohen–Macaulay and
Extk(M,R) = 0. By Corollary 2.21 V = W∨ is (ωR-)reflexive and maximal Cohen–Macaulay
(see [7, Prop. 3.3.3.(b).(ii)]).

The last claim is due to Lemma 2.22. �
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2.5. Restricted I-free approximation. In this subsection we describe a construction that
reduces the support of an I-free approximation (2.4) and preserves I-reflexivity of M under
suitable hypotheses. In §3.2 this will be related to the definition of multi-logarithmic differential
forms and residues along Cohen–Macaulay spaces (see [4, §10] and [21, Ch. 4]).

Fix an ideal J E R with I ⊆ J and set S := R and T := R/J . By hypothesis S is Cohen–
Macaulay and hence (see [7, Prop.1.2.13])

(2.22) Ass(S) = Min Spec(S).

Lemma 2.23. There is an inclusion

SuppS(T ) ∩Ass(S) ⊆ AssS(T ).

In particular, equality in HomS(N,S) for any T -module N , or in HomS(N,T ) for any S-module
N , can be checked at AssS(T ).

Proof. The inclusion follows from (2.22) and Min SuppS(T ) ⊆ AssS(T ). For any T -module N
(see [7, Exe. 1.2.27])

AssS(HomS(N,S)) = SuppS(N) ∩Ass(S) ⊆ SuppS(T ) ∩Ass(S) ⊆ AssS(T )

and the first particular claim follows, the second holds for a similar reason. �

Definition 2.24. For any S-module N we consider the submodule supported on V (J)

NT := HomS(T,N) = AnnN (J) ⊆ N.

For an I-free approximation (2.4) its J-restriction is the I-free approximation

(2.23) 0 // IF
ιJ // MJ

ρT // WT
// 0

defined as its image under the map Ext1
R(W, IF )→ Ext1

R(WT , IF ).

In explicit terms it is the source of a morphism of I-free approximations

(2.24) 0 // IF
ι // M

ρ
// W // 0

0 // IF
ιJ // MJ

?�

OO

ρT // WT

?�

OO

// 0.

The right square is obtained as the pull-back of ρ and WT ↪→ W , whose universal property
applied to ι and 0: IF → WT gives the left square. The analogue of κ in (2.5) for the J-
restriction (2.23) is the composition

(2.25) κJ : MJ = IF :M J ⊆M κ // F.

By Lemma 2.2 and the Snake Lemma, applying −I to (2.24) yields (see Definition 2.8)

(2.26) 0 Voo

����

F∨
αoo M Iλoo � _

��

0oo

0 V Too F∨
αT
oo M I

J
λJ
oo 0oo

where the bottom row

(2.27) 0 V Too F∨
αT
oo M I

J
λJ
oo 0oo
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is the I-dual (2.11) of the J-restriction (2.23). In diagram (2.26), we denote

(2.28) U := ker(V � V T ).

The J-restriction behaves well under the following hypothesis on T .

(2.29) Tp =

{
Sp if p ∈ AssS(T ),

0 if p ∈ Ass(S) \AssS(T ).

This is due to the following

Remark 2.25. Our constructions commute with localization. As special cases of the J-restriction
and its I-dual we record

(ιJ , ρT ) =

{
(ι, ρ) if T = S,

(idIF , 0) if T = 0,
(λJ , αT ) =

{
(λ, α) if T = S,

(idF∨ , 0) if T = 0.

Localizing (2.24) and (2.26) at the image of p ∈ Ass(S) under the map Spec(S) → Spec(R)
yields these special cases under hypothesis (2.29).

In the setup of our applications in §3 condition (2.29) holds true due to the following

Lemma 2.26. If S is reduced and T is unmixed with dim(T ) = dim(S), then condition (2.29)
holds and AssS(T ) ⊆ Ass(S).

Proof. By hypothesis on T and (2.22)

(2.30) AssS(T ) = Min SuppS(T ) ⊆ Min Spec(S) = Ass(S).

By hypothesis on S, for any p ∈ Ass(S), Sp is a field with factor ring Tp. If p ∈ AssS(T ), then
Tp 6= 0 and hence Tp = Sp. Otherwise, p 6∈ SuppS(T ) by (2.30) and hence Tp = 0. �

Lemma 2.27. Assume that R is Gorenstein and consider the J-restriction (2.23) of an I-free
approximation. If T satisfies condition (2.29), then for U as defined in (2.28)

α−1(U) = {ϕ ∈ F∨ | ϕ ◦ κ(M) ⊆ JωR}.

In particular, JV ⊆ U .

Proof. Let ϕ ∈ F∨ and denote by ϕT the map ϕ in diagram (2.6) for the J-restriction (2.23).
Consider the map ψ defined by the commutative diagram

(2.31) W
ψ
//

ϕ

%%

T ⊗R ωR

WT

ϕT //
?�

OO

S ⊗R ωR.

OOOO

By Lemma 2.23 and since ωR ∼= R both ϕT = 0 and ψ = 0 can be checked at AssS(T ). There
the vertical maps in diagram (2.31) induce the identity by condition (2.29) and Remark 2.25.
With diagram (2.26), Lemma 2.9 applied to (2.23) and diagram (2.6) it follows that

α(ϕ) ∈ U ⇐⇒ αT (ϕ) = 0 ⇐⇒ ϕT = 0 ⇐⇒ ψ = 0 ⇐⇒ ϕ ◦ κ(M) ⊆ JωR.

This proves the equality and the inclusion follows with JV = Jα(F∨) = α(JF∨). �

Proposition 2.28. Assume that R is Gorenstein and consider the J-restriction (2.23) of an
I-free approximation. If T satisfies condition (2.29), then with M also MJ is I-reflexive.
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Proof. By Lemma 2.27 there is a short exact sequence

(2.32) 0→ U/JV → V/JV → V T → 0.

By condition (2.29) and Remark 2.25

JSp =

{
0 if p ∈ AssS(T ),

Sp if p ∈ Ass(S) \AssS(T ),

(V � V T )p =

{
idVp

if p ∈ AssS(T ),

0 if p ∈ Ass(S) \AssS(T ),

and hence

∀p ∈ Ass(S) : (JV )p = JSpVp = Up =⇒ (U/JV )p = 0

=⇒ dim(U/JV ) < dim(S) = depth(ωR).

Then (U/JV )∨ = 0 by Ischebeck’s Lemma (see [12, Satz 1.9]). Using sequence (2.32) and
Hom-tensor adjunction it follows that

(V T )∨ = (V/JV )∨ = (T ⊗S V )∨ = (V ∨)T .

Denote by νT the map ν from Lemma 2.9 applied to the J-restriction (2.23). We obtain a
diagram

(2.33) WT

(ν∨◦δW,ωR
)T

// (V ∨)T

WT

δWT ,ωR// (WT )∨∨
(νT )∨

// (V T )∨.

By Lemma 2.23 and since ωR ∼= S, its commutativity can be checked at AssS(T ). By con-
dition (2.29) and Remark 2.25 top and bottom horizontal maps in diagram (2.33) identify at
AssS(T ). Diagram (2.33) thus commutes and Proposition 2.13 yields the claim. �

The Cohen–Macaulay property is invariant under restriction of scalars S → T and by Hom-
tensor adjunction HomS(−, ωS) = HomT (−, ωT ) on T -modules where (see [7, Thm. 3.3.7.(b)])

(2.34) ωT = HomS(T, ωS).

Combining Theorem 1.2 and Proposition 2.28 yields (see diagram (2.26))

Corollary 2.29. In addition to the hypotheses of Theorem 1.2, let J E R with J ⊆ I be such
that T = R/J satisfies condition (2.29) and WT 6= 0. Consider the J-restriction (2.23) with
I-dual (2.27). Then WT = HomT (V T , ωT ) and V T is a maximal Cohen–Macaulay T -module if
and only if G-dim(MJ) ≤ k−1. In this latter case V T = HomT (WT , ωT ) is ωT -reflexive. Unless
T ⊗ αT (and hence α) is injective G-dim(MJ) ≥ k − 1. �

Finally we mention a construction analogous to Definition 2.24 not used in the sequel.

Remark 2.30. Assume that J satisfies the hypotheses on I and consider an I-free approxima-
tion (2.4) where W is already a T -module. Then WT = W and MJ = M and the image of
(2.4) under the map Ext1

R(W, IF ) → Ext1
R(W,JF ) is a J-free approximation that fits into a



290 M. SCHULZE AND L. TOZZO

commutative diagram with cartesian left square

0 // JF // MJ // W // 0

0 // IF //
?�

OO

M //
?�

OO

W // 0

where MJ/MJ
∼= JF/IF . In particular, MJ = MJ if and only if I = J .

3. Application to logarithmic forms

In this section results from §2 are used to give a more conceptual approach to and to generalize
a duality of multi-logarithmic forms found by Pol [21] as a generalization of result by Granger
and the first author [11].

Let Y be a germ of a smooth complex analytic space of dimension n. Then Y ∼= (Cn, 0) and
OY ∼= C{x1, . . . , xn} by a choice of coordinates x1, . . . , xn on Y . We denote by

Q− := Q(O−)

the total ring of fractions of O−. In this section we set −∗ := HomOY
(−,OY ).

Let Ω•Y denote the De Rham algebra on Y , that is,

OY → Ω1
Y , f 7→ df,

is the universally finite C-linear derivation of OY (see [25, §2] and [15, §11]) and ΩqY =
∧q

OY
Ω1
Y

for all q ≥ 0. In terms of coordinates Ω1
Y
∼=
⊕n

i=1 OY dxi and hence

ΩqY =

q∧
OY

Ω1
Y
∼=

⊕
i1<···<iq

OY dxi1 ∧ · · · ∧ dxiq

is a free OY -module. By definition the dual

(Ω1
Y )∗ = DerC(OY ) =: ΘY

∼=
n⊕
i=1

OY
∂

∂xi

is the module of C-linear derivations on OY , or of vector fields on Y . The module of q-vector
fields on Y is then the free OY -module

(ΩqY )∗ =

q∧
OY

ΘY =: Θq
Y
∼=

⊕
i1<···<iq

OY
∂

∂xi1
∧ · · · ∧ ∂

∂xiq
.

Notation 3.1. We set N := {1, . . . , n} and Nq
< :=

{
j ∈ Nq

∣∣ j1 < · · · < jq
}
. For j ∈ Nq and

f = (f1, . . . , f`) ∈ O`
Y we abbreviate

dxj := dxj1 ∧ · · · ∧ dxjq ,
∂

∂xj
:=

∂

∂xj1
∧ · · · ∧ ∂

∂xjq
,

j
î

:= (j1, . . . , ĵi, . . . , jq), df = df1 ∧ · · · ∧ df`.

The perfect pairing

(3.1) Θq
Y × ΩqY → OY , (δ, ω) 7→ 〈δ, ω〉,

then satisfies

(3.2)

〈
∂

∂xj
, dxk

〉
= δj,k := δj1,k1 · · · δjq,kq .
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3.1. Log forms along complete intersections. Let C ⊆ Y be a reduced complete intersection
of codimension k ≥ 1. Then OC = OY /IC where IC = IC/Y is the ideal of C ⊆ Y . Let
h = (h1, . . . , hk) ∈ Ok

Y be any regular sequence such that IC = 〈h1, . . . , hk〉. Geometrically
C = D1 ∩ · · · ∩Dk where Di := {hi = 0} for i = 1, . . . , k.

Notation 3.2. We denote D := D1 ∪ · · · ∪Dk = {h = 0} where h := h1 · · ·hk,

−(D) := −⊗OY
OY

1

h
, −(−D) := −⊗OY

OY h,

Σ = ΣC/D/Y := IC(D) =

k∑
i=1

hi
h

OY ⊆ QY , −Σ := HomOY
(−,Σ).

Note that Σ = OY in case k = 1.

The following definition due to Aleksandrov (see [3, §3] and [21, Def. 3.1.4]) generalizes Saito’s
logarithmic differential forms (see [22]) from the hypersurface to the complete intersection case.

Definition 3.3. The module of multi-logarithmic differential q-forms on Y along C is defined
by

Ωq(logC) = ΩqY (logC) :=
{
ω ∈ ΩqY

∣∣∣ dIC ∧ ω ⊆ ICΩq+1
Y

}
(D)

=
{
ω ∈ ΩqY (D)

∣∣∣ ∀i = 1, . . . , k : dhi ∧ ω ∈ ΣΩq+1
Y

}
where the equality is due to the Leibniz rule. Observe that

ΣΩqY ⊆ Ωq(logC) ⊆ QY ⊗OY
ΩqY

with Ωq(logC)(−D) ⊆ QY ⊗OY
ΩqY independent of D (see [21, Prop. 3.1.10]).

Extending Saito’s theory (see [22, §1-2]) Aleksandrov (see [3, §3-4,6]) gives an explicit de-
scription of multi-logarithmic differential forms and defines a multi-logarithmic residue map.
We summarize his results.

Proposition 3.4. An element ω ∈ ΩqY (D) lies in Ωq(logC) if and only if there exist g ∈ OY
inducing a non zero-divisor in OC , ξ ∈ Ωq−kY and η ∈ ΣΩqY such that

gω =
dh

h
∧ ξ + η.

This representation defines a multi-logarithmic residue map

resqC : Ωq(logC)→ QC ⊗OC
Ωq−kC , ω 7→ ξ

g
,

that fits into a short exact multi-logarithmic residue sequence

(3.3) 0 // ΣΩqY
// Ωq(logC)

resqC // ωq−kC
// 0

where ωpC is the module of regular meromorphic p-forms on C. �

Corollary 3.5. For q < k, Ωq(logC) = ΣΩqY and Ωn(logC) = ΩnY (D). �

Remark 3.6. The multi-logarithmic residue map can be written in terms of residue symbols as

resqC(ω) =

[
hω
h

]
(see [27, §1.2]1). In particular reskC(dhh ) =

[
dh
h

]
∈ ωkC is the fundamental form

of C (see [13, §5]). �

1This remark was made in the first author’s talk “Normal crossings in codimension one” at the 2012 Oberwol-
fach conference “Singularities” (see [26]).
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Higher logarithmic derivation modules play a prominent role in arrangement theory (see for
instance [1]). Here we extend the definitions of Granger and the first author (see [9, §5]) and by
Pol (see [21, Def. 3.2.1]) as follows.

Definition 3.7. We define the module of multi-logarithmic q-vector fields on Y along C by

Derq(− logC) = DerqY (− logC) :=
{
δ ∈ Θq

Y

∣∣∣ 〈δ,∧kdIC ∧ Ωq−kY

〉
⊆ IC

}
=
{
δ ∈ Θq

Y

∣∣∣ 〈δ, dh ∧ Ωq−kY

〉
⊆ IC

}
where the equality is due to the Leibniz rule. Observe that

ICΘq
Y ⊆ Derq(− logC).

Lemma 3.8. We can identify the functors on OY -modules (see Notation 2.1)

−Σ = −(−D)IC , (Σ⊗OY
−)Σ = −∗,

and hence −ΣΣ = −ICIC .

Proof. Since OY (D) is invertible and by Hom-tensor adjunction

−Σ = HomOY
(−, IC(D)) = HomOY

(−,HomOY
(OY (−D), IC)) = −(−D)IC

By Lemma 2.3 in case k ≥ 2, OY = IICC = ΣΣ and again by Hom-tensor adjunction

(Σ⊗OY
−)Σ = HomOY

(Σ⊗OY
−,Σ) = HomOY

(−,ΣΣ) = −∗. �

Lemma 3.9. Any elements δ ∈ Derq(− logC) and ω ∈ Ωq(logC) pair to 〈δ, ω〉 ∈ Σ.

Proof. Let g, ξ and η be as in Proposition 3.4. Then by definition

g〈δ, hω〉 = 〈δ, hgω〉 = 〈δ, dh ∧ ξ + hη〉 = 〈δ, dh ∧ ξ〉+ h〈δ, η〉 ∈ IC .
Since g induces a non zero-divisor in OC = OY /IC this implies that 〈δ, hω〉 ∈ IC and hence
〈δ, ω〉 ∈ 1

hIC = Σ. �

The following proofs for q ≥ k ≥ 1 proceed along the lines of Saito’s base case q = k = 1 (see
[22, (1.6)]) or Pol’s generalization to q = k ≥ 1 (see [21, Prop. 3.2.13]).

Lemma 3.10. If ω ∈ ΩqY (D) with 〈Derq(− logC), ω〉 ⊆ Σ, then ω ∈ Ωq(logC).

Proof. For every ` ∈ {1, . . . , k} and j ∈ Nq+1
< consider

δ`j :=

q+1∑
i=1

(−1)i+1 ∂h`
∂xji

∂

∂xj
î

∈ Θq
Y .

For every i ∈ Nq−k

dh ∧ dxi =
∑
k∈Nq

<

∂(h, xi)

∂xk
dxk,

where ∂(h,xi)

∂xk
is the q × q-minor of the Jacobian matrix of (h, xi) with column indices k, and

hence using (3.2) 〈
δ`j , dh ∧ dxi

〉
=

q+1∑
i=1

(−1)i+1 ∂h`
∂xji

∑
k∈Nq

<

∂(h, xi)

∂xk

〈
∂

∂xj
î

, dxk

〉

=

q+1∑
i=1

(−1)i+1 ∂h`
∂xji

∂(h, xi)

∂xj
î

=
∂(h`, h, xi)

∂xj
= 0.
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It follows that δ`j ∈ Derq(− logC) for all ` = 1, . . . , k and j ∈ Nq+1
< .

Now let ω =
∑
k∈Nq

<

ak
h dxk ∈ ΩqY (D) where ak ∈ OY . For all ` = 1, . . . , k and j ∈ Nq+1

<

〈
δ`
j
, ω
〉

=

q+1∑
i=1

(−1)i+1 ∂h`
∂xji

∑
k∈Nq

<

ak
h

〈
∂

∂xj
î

, dxk

〉
=

q+1∑
i=1

(−1)i+1 ∂h`
∂xji

aj
î

h

by (3.2) and hence

dh` ∧ ω =

n∑
j=1

∂h`
∂xj

dxj ∧
∑
k∈Nq

<

ak
h
dxk =

∑
j∈Nq+1

<

q+1∑
i=1

∂h`
∂xji

aj
î

h
dxji ∧ dxj

î

=
∑

j∈Nq+1
<

q+1∑
i=1

(−1)i+1 ∂h`
∂xji

aj
î

h
dxj =

∑
j∈Nq+1

<

〈
δ`j , ω

〉
dxj .

If 〈Derq(− logC), ω〉 ⊆ Σ, then dh` ∧ ω ∈ ΣΩqY for all ` = 1, . . . , k and hence ω ∈ Ωq(logC). �

Proposition 3.11. There are chains of OY -submodules of QY ⊗OY
ΩqY and QY ⊗OY

Θq
Y

ΩqY ⊆ ΣΩqY ⊆ Ωq(logC) ⊆ ΩqY (D) ⊆ ΣΩqY (D),(3.4)

ΣΘq
Y ⊇ Θq

Y ⊇ Derq(− logC) ⊇ ICΘq
Y ⊇ Θq

Y (−D)(3.5)

that are Σ-duals of each other.

Proof. Tensoring with QY makes both chains collapse. The cokernels of all inclusions are there-
fore torsion whereas Σ is torsion free. Applying −Σ thus results in a chain of OY -modules again.
In case of (3.4) this yields

(ΩqY )Σ ⊇ (ΣΩqY )Σ ⊇ ΩqY (logC)Σ ⊇ ΩqY (D)Σ ⊇ (ΣΩqY (D))Σ

and, with Lemma 3.8 and freeness of ΩqY and Θq
Y , the chain of OY -submodules of QY ⊗OY

Θq
Y

ΣΘq
Y ⊇ Θq

Y ⊇ ΩqY (logC)Σ ⊇ ICΘq
Y ⊇ Θq

Y (−D).

For every δ ∈ Ωq(logC)Σ and ξ ∈ Ωq−k, dhh ∧ ξ ∈ Ωq(logC) by Proposition 3.4, hence

〈δ, dh ∧ ξ〉 = h

〈
δ,
dh

h
∧ ξ
〉
∈ hΣ = IC

and δ ∈ Derq(− logC). With Lemma 3.9, it follows that ΩqY (logC)Σ = Derq(− logC).
By the same reasoning −Σ applied to (3.5) yields a chain of OY -modules

(ΣΘq
Y )Σ ⊆ (Θq

Y )Σ ⊆ Derq(− logC)Σ ⊆ (ΣΘq
Y )(−D)Σ ⊆ Θq

Y (−D)Σ

that can be rewritten as the chain of OY -submodules of QY ⊗OY
ΩqY

ΩqY ⊆ ΣΩqY ⊆ Derq(− logC)Σ ⊆ ΩqY (D) ⊆ ΣΩqY (D).

The missing equality Derq(− logC)Σ = Ωq(logC) follows from Lemmas 3.9 and 3.10. �
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3.2. Log forms along Cohen–Macaulay spaces. Let X ⊆ Y be a reduced Cohen-Macaulay
germ of codimension k ≥ 2. Then OX = OY /IX where IX := IX/Y denotes the ideal X ⊆ Y .
There is a reduced complete intersection C ⊆ Y of codimension k such that X ⊆ C and hence
IX ⊇ IC (see [21, Prop. 4.2.1]). Set X ′ := C \X such that C = X ∪X ′. The link with §2.5 is
made by setting

S := OC , T := OX .

By Lemma 2.26 condition (2.29) holds and

(3.6) QC =
∏

p∈AssOC
(OX)

OX,p ×
∏

p∈AssOC
(OX′ )

OX′,p = QX ×QX′ .

This decomposition extends to differential forms as follows.

Lemma 3.12. We have QXdIC = QXdIX ⊆ QX ⊗OY
Ω1
Y and hence

QC ⊗OC
ΩpC = QX ⊗OX

ΩpX ⊕QX′ ⊗OX′ ΩpX′ .

Proof. By (3.6) we may localize at p ∈ AssOC
(OX). We may further assume p = 1 since

exterior product commutes with extension of scalars. Let p 7→ q under Spec(OC) → Spec(OY ).
Then IC,q = IX,q by (3.6) and hence uIX ⊆ IC for some u ∈ OY \ q. By the Leibniz rule
udIX ⊆ dIC + IXdu and hence the first claim. Since Ω1

C = Ω1
Y /(OY dIC + ICΩ1

Y ) this yields
Ω1
C,p = Ω1

X,p and the second claim follows. �

The following fact is well-known (see [27, (2.14)]); we only sketch a proof.

Lemma 3.13. The modules of regular differential p-forms on X and C are related by

ωpX = HomOC
(OX , ω

p
C) ⊆ ωpC .

Proof. Kersken explicitly describes (see [14, (1.2)])

(3.7) ωpX =

{[
ξ
h

] ∣∣∣∣ ξ ∈ Ωp+kY , IXξ ⊆ ICΩp+kY , dIX ∧ ξ ⊆ ICΩp+k+1
Y

}
where

[
ξ
h

]
= 0 if and only if ξ ∈ ICΩp+kY . In particular, ωpX ⊆ HomOC

(OX , ω
p
C) ⊆ ωpC and

equality in ωpC can be checked at Ass(OC). Lemma 3.12 yields the claim. �

The following modules of differential forms on Y due to Aleksandrov (see [4, Def. 10.1] and
[21, Def. 4.1.3]) are defined by the relations in (3.7).

Definition 3.14. The module of multi-logarithmic differential q-forms on Y along X relative
to C is defined by

Ωq(logX/C) = ΩqY (logX/C) :=
{
ω ∈ ΩqY

∣∣∣ IXω ⊆ ICΩqY , dIX ∧ ω ⊆ ICΩq+1
Y

}
(D)

=
{
ω ∈ ΩqY (D)

∣∣∣ IXω ⊆ ΣΩqY , dIX ∧ ω ⊆ ΣΩq+1
Y

}
.

Observe that
ΣΩqY ⊆ Ωq(logX/C) ⊆ Ωq(logC)

with Ωq(logX/C)(−D) ⊆ QY ⊗OY
ΩqY independent of D (see [21, Prop. 4.1.5]).

Lemma 3.15. There is an equality Ωq(logX/C) = ΣΩqY :Ωq(logC) IX . In other words,

Ωq(logX/C)(−D) = IXΩqY :Ωq(logC) IX .
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Proof. There are obvious inclusions

ΣΩqY ⊆ Ωq(logX/C) ⊆ ΣΩqY :Ωq(logC) IX ⊆ Ωq(logC).

By Proposition 3.4 and Lemma 3.12

ω ∈ ΣΩqY :Ωq(logC) IX =⇒ IX resqC(ω) ⊆ resqC(ΣΩqY ) = 0

=⇒ resqC(ω) ∈ QX ⊗OX
Ωq−kX

=⇒ 0 = dIX ∧ resqC(ω) = resq+1
C (dIX ∧ ω)

=⇒ dIX ∧ ω ⊆ ΣΩq+1
Y

=⇒ ω ∈ Ωq(logX/C). �

The idea of Remark 3.6 is used by Aleksandrov (see [4, §10]) to define multi-logarithmic
residues along X as the restriction of those along C. The bottom sequence of the diagram in the
following Proposition 3.16 appears in his work (see [4, Thm. 10.2]); Pol proved exactness on the
right (see [21, Prop. 4.1.21]). An alternative argument is suggested by §2.5. The following data

(3.8) R := OY , I := IC , J := IX , F := ΩqY , M := Ωq(logC)(−D), ρ :=
1

h
resqC

give rise to an I-free approximation (2.4) with J-restriction (2.23). By Corollary 3.5 W = 0 if
q < k and (2.4) is trivial for q = n. We are therefore concerned with the case k ≤ q < n. By
Lemmas 3.13 and 3.15 (see Definition 2.24 and (2.25))

(3.9) WT = ωq−kX , MJ = Ωq(logX/C)(−D).

Now twisting diagram (2.24) by D yields the following result.

Proposition 3.16. Applying Ext1
OY

(ωq−kX ↪→ ωq−kC ,ΣΩqY ) to the multi-logarithmic residue se-
quence (3.3) yields a commutative diagram with exact rows and cartesian right square

(3.10) 0 // ΣΩqY
// Ωq(logC)

resqC // ωq−kC
// 0

0 // ΣΩqY
// Ωq(logX/C)

?�

OO

resq
X/C
// ωq−kX

?�

OO

// 0

where ωpX is the module of regular meromorphic p-forms on X. �

3.3. Higher log vector fields and Jacobian modules. Pol gives a description of resqX/C
preserving the analogy with the definition of resqC in Proposition 3.4 (see [21, §4.2.1]). As
suggested by Remark 3.6 the role of dhh ∈ Ωk(logC) is played by a preimage αX

h ∈ Ωk(logX/C)

of the fundamental form
[
αX
h

]
∈ ω0

X of X (see [13, §5]).

Definition 3.17. Let 1X := (1, 0) ∈ QX ×QX′ = QC (see Lemma 3.12). A fundamental form
of X in Y is an αX = αX/C/Y ∈ ΩkY such that αX = 1Xdh ∈ QC ⊗OY

ΩkY .

Such a fundamental form exists and the explicit description of multi-logarithmic differential
forms in Proposition 3.4 generalizes verbatim (see [21, Prop. 4.2.6]).

Proposition 3.18. An element ω ∈ ΩqY (D) lies in Ωq(logX/C) if and only if there exist g ∈ OY
inducing a non zero-divisor in OC , ξ ∈ Ωq−kY and η ∈ ΣΩqY such that

gω =
αX
h
∧ ξ + η
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and the map resqX/C in (3.10) is defined by resqX/C(ω) = ξ
g . �

In the same spirit we extend Definition 3.7. We start with the first option as definition.

Definition 3.19. We define the module of multi-logarithmic q-vector fields on Y along X by

Derq(− logX) = DerqY (− logX) :=
{
δ ∈ Θq

Y

∣∣∣ 〈δ,∧kdIX ∧ Ωq−kY

〉
⊆ IX

}
.

The following result completes the analogy with Definition 3.7. In particular Derk(− logX)

is Pol’s module Derk(− logX/C) (see [21, Def. 4.2.8]) which is thus independent of C.

Lemma 3.20. We have

Derq(− logC) ⊆
{
δ ∈ Θq

Y

∣∣∣ 〈δ, αX ∧ Ωq−kY

〉
⊆ IX

}
= Derq(− logX)

=
{
δ ∈ Θq

Y

∣∣∣ 〈δ, αX ∧ Ωq−kY

〉
⊆ IC

}
.

Proof. By Definition 3.17 αX = 1Xdh = dh ∈ QX ⊗OY
ΩkY . For δ ∈ Θq

Y and ξ ∈ Ωq−kY

〈δ, αX ∧ ξ〉 ∈ IX ⇐⇒ 0 = 〈δ, αX ∧ ξ〉 =
〈
δ, αX ∧ ξ

〉
=
〈
δ, dh ∧ ξ

〉
= 〈δ, dh ∧ ξ〉 ∈ QX

where δ ∈ QX⊗OY
Θq
Y and ξ ∈ QX⊗OY

Ωq−kY . The claimed inclusion follows. Using the Leibniz
rule and that QXdIC = QXdIX ⊆ QX ⊗OY

Ω1
Y by Lemma 3.12

0 =
〈
δ, dh ∧ ξ

〉
∈ QX ⇐⇒ 0 =

〈
δ,∧kdIC ∧ ξ

〉
=
〈
δ,∧kdIX ∧ ξ

〉
= 〈δ,∧kdIX ∧ ξ〉 ⊆ QX ⇐⇒

〈
δ,∧kdIX ∧ ξ

〉
⊆ IX .

This proves the first equality. With IC = IX∩IX′ the second equality follows from αX ∈ IX′ΩkY
(see [21, Prop. 4.2.5]). �

Using Proposition 3.18 and Lemma 3.20 we obtain the following analogue of Lemma 3.9 and
of the equality Derq(− logC) = Ωq(logC)Σ from Proposition 3.11.

Lemma 3.21. For δ ∈ Derq(− logX) and ω ∈ Ωq(logX/C) we have 〈δ, ω〉 ∈ Σ. �

Lemma 3.22. There is an equality Derq(− logX) = Ωq(logX/C)Σ. �

The following proposition extends Proposition 3.11 and includes the counterpart of Lemma 3.10.

Proposition 3.23. There are chains of OY -submodules of QY ⊗OY
ΩqY and QY ⊗OY

Θq
Y

ΩqY ⊆ ΣΩqY ⊆ Ωq(logX/C) ⊆ Ωq(logC) ⊆ ΩqY (D) ⊆ ΣΩqY (D),

ΣΘq
Y ⊇ Θq

Y ⊇ Derq(− logX) ⊇ Derq(− logC) ⊇ ICΘq
Y ⊇ Θq

Y (−D)

that are Σ-duals of each other.

Proof. By Lemma 3.8 and Proposition 3.11 M in (3.8) is I-reflexive. By Proposition 2.28 and
(3.9) Ωq(logX/C)(−D) is therefore IC-reflexive and, again by Lemma 3.8, Ωq(logX/C) Σ-
reflexive. The claim follows with Proposition 3.11 and Lemmas 3.20 and 3.22. �

Definition 3.24. Contraction with αX defines a map

αX : Θq
Y → OX ⊗OY

Θq−k
Y = HomOY

(Ωq−kY ,OX), δ 7→ (ω 7→ 〈δ, αX ∧ ω〉).
Taking p+ q = n we define the pth Jacobian module of X as the OX -module

J pX := αX(Θq
Y ).
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The Jacobian module J dimX
X agrees with Pol’s Jacobian ideal JX/C (see [21, Not. 4.2.14])

which coincides with the ω-Jacobian ideal if X is Gorenstein (see [21, Prop. 4.2.34]).

Remark 3.25. In explicit terms

αX : Θq
Y →

⊕
i∈Nq−k

<

OXdxi, δ 7→
∑

i∈Nq−k
<

〈
δ, αX ∧ dxi

〉
dxi.

In case X = C, αC = dh and〈
δ, dh ∧ dxi

〉
=
∑
j∈Nq

<

∂(h, xi)

∂xj

〈
δ, dxj

〉
.

In particular, J dimC
C is the Jacobian ideal of C.

Lemma 3.26. If k ≤ q ≤ n, then ωq−kX 6= 0 and, unless q = n, OX ⊗ αX is not injective.

Proof. This can be checked at smooth points of X = C where h = (x1, . . . , xk) and αX = dh.
Here ωq−kX = Ωq−kX 6= 0 and 0 6= ∂

∂xj
∈ ker(OX ⊗ αX) if {1, . . . , k} 6⊆ {j1, . . . , jq}. �

By Lemma 3.20 there is a short exact sequence (see [21, Prop. 4.2.16] for q = k)

(3.11) 0 J n−qX
oo Θq

Y
αX
oo DerqY (− logX)oo 0.oo

Lemma 3.27. There is a pairing

J n−qX ⊗ ωq−kX → HomOC
(OX ,OC)(D) = ωX ,

(
αX(δ), resqX/C(ω)

)
7→ 〈δ, ω〉.

Proof. By Lemma 3.21 the pairing ΩqY (D) × Θq
Y → OY (D) obtained from (3.1) maps both

ΩqY (logX/C)×DerqY (− logX) and ΣΩqY ⊗Θq
Y to Σ. Using the bottom row of (3.10) and (3.11)

this yields a pairing J n−qX ⊗ ωq−kX → OY (D)/Σ = OC(D) = ωC . Both J n−qX and ωq−kX are
supported on X and applying HomOC

(OX ,−) yields the claim (see (2.34)). �

We can now prove our main application.

Proof of the Theorem 1.3. By Lemmas 3.8 and 3.22 sequence (3.11) in terms of (3.8) is the I-
dual J restriction (2.27) twisted by D, that is, V T = J n−qX and αT = αX up to a twist by D.
With (3.9) and Lemma 3.26 the claim now reduces to Corollary 2.29. The identifications are
induced by the pairing in Lemma 3.27. �

Proposition 3.28. The OX-modules J n−qX depend only on X.

Proof. We identify J n−qX = Θq
Y /DerqY (− logX) by the exact sequence (3.11). Any isomorphism

Y ′ ∼= Y of minimal embeddings of X induces an isomorphism ϕ : OY ∼= OY ′ over OX identifying
IX/Y ∼= IX/Y ′ . There are induced compatible isomorphisms Θq

Y
∼= Θq

Y ′ and ΩpY
∼= ΩpY ′ over ϕ

resulting in an isomorphism over ϕ

DerqY (− logX) ∼= DerqY ′(− logX).

Any general embedding X ⊆ Y ′ arises from a minimal embedding X ⊆ Y up to isomorphism
of the latter as Y ′ = Y × Z where Z ∼= (Cm, 0) and hence

IX/Y ′ = OY ⊗̂mZ + IX/Y ⊗̂OZ .
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Pick coordinates z1, . . . , zm on Z and abbreviate dz := dz1∧· · ·∧dzm and ∂
∂z := ∂

∂z1
∧· · ·∧ ∂

∂zm
.

Then there are decompositions

Ωq+mY ′ = OZ⊗̂ΩqY ∧ dz ⊕ Ω̃q+mY ′ , Θq+m
Y ′ = OZ⊗̂Θq

Y ∧
∂

∂z
⊕ Θ̃q+m

Y ′

where the modules with tilde are generated by basis elements not involving dz and ∂
∂z respec-

tively. Fundamental forms of X in Y ′ and Y can be chosen compatibly as

αX/C/Y ′ = αX/C/Y ∧ dz ∈ Ωk+m
Y ′ .

With Lemma 3.20 this yields inclusions

DerqY (− logX) ∧ ∂

∂z
+ Θ̃q+m

Y ′ ⊆ Derq+mY ′ (− logX) ⊇ IX/Y ′Θq+m
Y ′ ⊇ mZ⊗̂Θq

Y ∧
∂

∂z

and a cartesian square

OZ⊗̂Θq
Y
� �

−∧ ∂
∂z

// Θq+m
Y ′

DerqY (− logX) + mZ⊗̂Θq
Y
� � //

?�

OO

Derq+mY ′ (− logX).
?�

OO

It gives rise to an isomorphism of OX -modules

Θq+m
Y ′ /Derq+mY ′ (− logX) ∼= OZ⊗̂Θq

Y /(DerqY (− logX) + mZ⊗̂Θq
Y
∼= Θq

Y /DerqY (− logX). �
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