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ON A DISCRIMINANT KNOT GROUP PROBLEM OF BRIESKORN

MICHAEL LÖNNE

Abstract. Quite some time ago, at the singularity conference at Cargèse 1972, Brieskorn

asked the following question:
Is the local fundamental group πs

1(S −D) of the discriminant complement inside

the semi-universal unfolding S of an isolated hypersurface singularity constant for
s in the µ-constant stratum ΣE?

We review this question and give an affirmative answer in case of singular plane curve germs

of multiplicity at most 3.

1. Introduction

The question of Brieskorn was published in Astérisque 7-8, Colloque sur les singularités en
géometrie analytique. In that article Brieskorn gives a summary of the problems and questions
he considers central in the investigation of monodromy, and their answers which – as he writes
– will help much to arrive at a more profound understanding, [Bri73].

In Brieskorn’s view the local fundamental group of the discriminant complement – the dis-
criminant knot group as it will be called in the present article – lies at the heart of the study of
the algebraic monodromy and the intersection lattice of the Milnor fibre and should soon reveal
to contain more or less the same amount of information.

This optimism probably resulted in the spectacular success in the study of simple hypersurface
singularities where Brieskorn himself made important contributions, [Bri71a, Bri71b, BS72]. For
the simple singularities the algebra, the geometry and the combinatorial group theory are most
closely tied together and hope was widespread to get similar results for more general singularities
under suitable forms of relaxation.

However, the topology of the discriminant complement remains a mystery up to the present
day, and only little progress has been made on the problems Brieskorn addressed to it.

In this article we will review the problem stated in the abstract

Is the discriminant knot group πs1(S−D) of an isolated hypersurface singularity
constant for s in the µ-constant stratum?

At the time of writing the evidence in favour of a positive answer had two aspects. First in
the case of simple singularities the answer is trivially positive. Second, the homomorphic image
under algebraic monodromy is constant along the µ-constant stratum.

On the other hand an article of Pham [Pha73] presented at the very conference at Cargèse
was interpreted by Brieskorn as evidence in favour of a negative answer: Pham showed that
the topological type of the generic discriminant curve of certain plane curve singularities of
multiplicity m = 3 is not constant along the µ-constant stratum.
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In fact, Brieskorn proposes to study the discriminant knot group by the local Zariski hyper-
plane theorem as proved by Lê and Hamm [HL73]:

π1(S −D) ∼= π1(H −H ∩D),

where H is a plane in S parallel to a generic plane H0 6= H through the origin. H0 ∩D is called
a generic discriminant curve and H ∩D a corresponding unfolded generic discriminant curve.
The topological type of the former is constant along the µ-constant stratum if and only if the
topological type of the latter is constant along that stratum.

Therefore the result of Pham shows that the line of argument which Brieskorn had in mind
cannot work.

In this article, however, we will follow Brieskorns strategy and bridge the gap by using a
stronger form of the Zariski van Kampen method applicable to more general plane sections of
the discriminant.

We will turn the Pham examples into evidence for a positive answer to Brieskorns problem
by the following theorem.

Theorem 1. Suppose f is a plane curve singularity of multiplicity at most 3, then the discrim-
inant knot group is constant along the µ-constant stratum.

As remarked before, in the case of simple singularities the claim trivially holds true. By
classification this settles the case of multiplicity 2 and of plane curve singularities of Milnor
number at most 8.

As a direct corollary we can sharpen the result of [Lön10]. Suppose f is topologically equiv-
alent to a plane curve singularities of Brieskorn-Pham type of multiplicity 3

f ∼top y3 + xν+1 for some ν ≥ 2,

then f is a µ-constant deformation of the Brieskorn-Pham singularity and has the same distin-
guished Dynkin diagram
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Figure 1. Dynkin diagram of y3 + xν+1

where the set V of vertices is ordered by the lexicographic order of their double indices and the
set E of oriented edges contains the pair of corresponding vertices only in their proper order.

Since the discriminant knot group by Theorem 1 is the same for f and the Brieskorn-Pham
singularity we get from [Lön10, Thm1.1]. (Does it extend to all cases in [Lön07]?)

Theorem 2. Suppose f is topologically equivalent to a Brieskorn-Pham polynomial y3 + xν+1.
Then its discriminant knot group is presented by〈

ti, i ∈ V

∣∣∣∣∣ titj = tjti (i, j), (j, i) 6∈ E
titjti = tjtitj (i, j) ∈ E

titktjti = tjtitktj (i, j), (i, k), (j, k) ∈ E

〉
.
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A step beyond the result of this article might address the case of unimodal hypersurface
singularities. Possibly it is sufficient to look at the generic discriminant curve, since in the cases
not covered by our result, Greuel [Gre77, Gre78] has shown that at least the number of cusps of
the unfolded generic discriminant curve is constant along the µ-constant stratum.

2. Review of the results of Pham

In his article [Pha73] Pham provides a careful analysis of the generic discriminant curve in
case of a plane curve singularity of multiplicity 3

f = y3 − P (x)y +Q(x).

While skipping his calculation which we will mimic in the next section, here we only want to
introduce the minimum of notation to state his results and draw some first conclusions towards
the proof of our main theorem.

In addition to the well-known Milnor number

µ = dimC[X,Y ]/〈fx, fy〉,

Pham needs the analytic σ-invariant associated to the ideal generated by f and its derivatives
up to second order

σ = 1 + dimC[X,Y ]/〈f, fx, fy, fxx, fxy, fyy〉.

He also gives some useful formulas for calculations:

Lemma 3 ([Pha73] §1,p.366). If f is a function germ as above, the analytic invariant σ is given
by

σ = min{ordP, ordQ′}

and the Milnor number is given by

µ = ord(3Q′2 − PP ′2).

Instead of citing the main result in its full strength, which is a complete topological classifi-
cation of generic discriminant curves, we distill the essence, what we will need below.

Proposition 4 (cf. [Pha73]). The topological type of the generic discriminant curve only depends
on the topological invariant µ and the analytic invariant σ.

Corollary 5. The topological type of the unfolded generic discriminant curve only depends on
the topological invariant µ and the analytic invariant σ.

Proof. The topological type of the generic discriminant curve determines its Milnor number µ̃.
The number µ + µ̃ − 1 is the sum of three times the number of cusps and twice the number of
nodes of any corresponding unfolded discriminant curve, cf. [Pha73]. Since both cardinalities are
upper semi-continuous and the set with constant σ and µ is connected, they are both constant
along this set, and so is the topological type of the unfolded generic discriminant curve. �

Proposition 6. If f is a plane curve singularity of multiplicity 3 and

f 6∼top y3 + xν+1 for all ν,

then the discriminant knot group is constant along the µ-constant stratum.



458 MICHAEL LÖNNE

Proof. According to the classification by Arnol’d [Arn76] f is simple, of type Jk,i, k ≥ 2, i > 0,
or of type E6k+1, k ≥ 2. In the simple case the claim is trivially true as was remarked before.

In case of f ∈ Jk,i, k ≥ 2, i > 0 Arnol’d has given a normal form which by an analytic
equivalence – more precisely by a Tschirnhaus transformation – can be put in the form considered
by Pham:

y3 + y2xk + a(x)x3k+i, ord a = 0

∼an y3 − 1

3
yx2k +

2

27
x3k + a(x)x3k+i.

According to the lemma σ = 2k and thus σ is independent of a(x).
In case of f ∈ E6k+1 the normal form of Arnol’d is in the form considered by Pham, so from

y3 + yx2k+1 + a(x)x3k+2,

σ = 2k + 1 independent of a(x) is immediate by the lemma again.
In both cases we conclude with the corollary that the topological type of the unfolded generic

discriminant is constant along the µ-constant stratum. Therefore the fundamental groups of
their complements also do not change. The local Zariski theorem on hyperplane sections [HL73]
identifies these groups with the discriminant knot groups which are thus shown to be constant
along the µ-constant stratum. �

3. Existence of suitable non-generic discriminant curves

In this section we follow the path traced by Pham to obtain a non-generic reduced discriminant
curve which does not change its topological type under a small deformation along the µ-constant
stratum, although the analytic invariant σ changes.

In fact, as the last section will prove, it will suffice to do so for the Brieskorn-Pham polyno-
mials.

We recall from [Pha73] the construction of the discriminant curve in direction of a linear
perturbation by a polynomial p(x)y + q(x). The critical set of the unfolding of

f = f(x, y) = y3 − P0(x)y +Q0(x)

by −u+t(p(x)y+q(x)) is a curve in 4-space and the corresponding discriminant curve is obtained
by projection along the coordinates x, y, algebraically by elimination of x, y from

u = y3 − Py +Q(1)

0 = −P ′y +Q′(2)

0 = 3y2 − P,(3)

where P = P0 + tp, Q = Q0 + tq.
But as Pham does, we take the detour by the projection along u and y which is easier to

obtain. The parameter u is eliminated by the sole use of (1) and from (2) and (3) we can
eliminate y to get

(4) 3Q′2 − PP ′2 = 0.

First we consider for an additional parameter s = 0 or s which is sufficiently small the case

Q = Q0 = xν+1, q = 0, P = P0 + tp = sxσ + tx.

The first step according to Pham is to compute the branches x(t). Recall the expansion of
(4) in terms of the variable t according to

3(Q′0 + tq′)2 − (P0 + tp)(P ′0 + tp′)2 = A0 +A1t+A2t
2 +A3t

3.
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In the current situation we get the following vanishing orders of the Ai under the assumption of
s sufficiently small.

expansion vanishing order

A0 = 3Q′20 − P0P
′2
0 = 3(ν + 1)2x2ν − s3σ2x3σ−2 µ = min{2ν, 3σ − 2}

A1 = −xP ′20 − 2P0P
′
0 = −s2σ(σ + 2)x2σ−1 2σ − 1 for s 6= 0

A2 = −P0 − 2xP ′0 = −s(2σ + 1)xσ σ for s 6= 0

A3 = −x 1

Under the assumption 3σ−2 ≥ 2ν the Newton Polygon looks as below depending on whether
equality holds or not. ( The ◦ are only present for s 6= 0. )
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The leading term corresponding to the compact face has no multiple root. This is obvious in
case of 3σ − 2 > 2ν and for s = 0, therefore it is true also for s sufficiently small.

In particular, for s sufficiently small, the number of branches is constant and the leading term
of each branch has a non-vanishing coefficient which varies continuously with s.

We consider now the case s = 0 in detail ( but claims hold true also for s small up to
continuous changes of the coefficients ) and distinguish the following cases

(a) gcd(2ν − 1, 3) = gcd(2ν + 2, 3) = gcd(ν + 1, 3) = 1
(b) gcd(2ν − 1, 3) = gcd(ν + 1, 3) = 3,

gcd(3ν + 3, 2ν − 1) = gcd(6ν + 6, 2ν − 1) = gcd(2ν − 1, 9) = 3
(c) gcd(2ν − 1, 3) = gcd(ν + 1, 3) = 3, gcd(3ν + 3, 2ν − 1) = gcd(2ν − 1, 9) = 9

In case (a) there are two branches

(5) x(t) = 0, x(t) = c0t
3

2ν−1 + h.o.t.

in cases (b) and (c) there are four branches

(6) x(t) = 0, x(t) = c0ω
it

3
2ν−1 + h.o.t., i = 0, 1, 2.

where c0 6= 0 is a numerical constant and ω a primitive root of unity of order 2ν − 1.
To continue along the lines of [Pha73] we check first that the hypothesis

P ′(x(t), t) = P ′0(x(t)) + tp′(x(t)) = P ′0(x(t)) + t 6= 0 ∈ C
{
t

1
2ν−1

}
holds true for every possible branch x(t).
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Therefore the following formula derived by Pham is valid in the field of fractions C
((
t

1
2ν−1

))
associated to the integral domain C

{
t

1
2ν−1

}
.

u = −2

3

P

P ′
Q′ +Q(7)

=
(
− 2

3
(ν + 1) + 1

)
x(t)ν+1.

In case (a) we plug in the expansions (5) to get

u(t) = 0, u(t) =
(
− 2

3
(ν + 1) + 1

)
cν+1
0 t

3ν+3
2ν−1 + h.o.t.

The corresponding branches are reduced and not equal. Moreover the second expansion does
not have further essential summands, since the exponent of t is in its reduced form and has the
maximal possible denominator.

In case (b) we write 2ν − 1 = 3e with e coprime to 3 and get the expansions

u(t) = 0, u(t) =
(
− 2

3
(ν + 1) + 1

)
cν+1
0 ω(ν+1)it

3ν+3
2ν−1 + h.o.t., i = 0, 1, 2.

Again the corresponding branches are reduced and pairwise not equal. This time the reduced
form of the exponent has denominator e. Again this is the maximal possible denominator, since
the u-degree of the Weierstrass polynomial of the first branch is 1 and that of the other three
branches is the maximal denominator, but their sum is equal to the Milnor number which is
µ = 3e+ 1.

Thus in case (a) and case (b) we have found a perturbation such that the topological type of
corresponding discriminant curve does not vary for s sufficiently small.

In case (c) we write ν − 5 = 9ρ, but we fail to argue as above. In fact, for s = 0 we get
expansions which parametrize the branches of the corresponding discriminant curve by a 3 : 1
map so this curve is non-reduced.

Hence we rerun the method of Pham with the modified perturbation

t(xy + x3ρ+4), i.e. p = x, q = x3ρ+4.

The essential expansion of x in terms of t remains the same as before, since the new perturbation
only adds the points (1, 12ρ+8) and (2, 6ρ+6) to the support, which both lie above the Newton
polygon.

x(t) = 0, x(t) = c0ω
it

3
2ν−1 + h.o.t., i = 0, 1, 2.

The reduced form of the exponent is the inverse of 6ρ+ 3.
The formula (7) now gives (using cν , cρ for the obvious constants)

u =
(
− 2

3
(ν + 1) + 1

)
x(t)ν+1 +

(
− 2

3
(3ρ+ 4) + 1

)
tx(t)3ρ+4

= cνc
ν+1
0 ω(ν+1)it

ν+1
6ρ+3 + cρc

3ρ+4
0 ω(3ρ+4)it

ν+2
6ρ+3 + h.o.t.

We can now argue as before, that 6ρ + 3 is the maximal possible denominator. Therefore no
further essential summand occurs, and we get reduced, pairwise distinct branches also in the
remaining case (c).

Let us summarize the results of the present section as follows.

Proposition 7. Suppose f = y3 + xν+1 and m is an integer with

2ν ≤ 3m− 2, m ≤ ν.
Then there exists a 3-parameter unfolding F (x, y;u, t, s), such that

(1) along u = t = 0 the unfolding is µ-constant,



ON A DISCRIMINANT KNOT GROUP PROBLEM OF BRIESKORN 461

(2) for fix s sufficiently small, the discriminant curve of the unfolding Fs by the parameter
t is reduced and topologically equivalent to that of F0 and

(3) the analytic invariant σ is ν for s = 0 and m for s 6= 0 sufficiently small.

4. The Zariski theorem

In this final section we have to revisit the local Zariski and van Kampen theorem which avoids
the use of generic hyperplane sections, cf. the more extended exposition in [Lön10, Lön11].

Our main interest lies in the discriminant complement, so let us recall the basic setting: Given
a holomorphic function germ f = f(x, y) on the germ C2, 0 of the affine plane with coordinates
x, y, we consider a versal unfolding, which can be given by a function germ on the affine space
germ (C2, 0)× (C, 0)× (Ck, 0)

F (x, y, u, v) = f(x, y)− u+

k∑
i=1

vigi(x, y),

where the gi generate, as a vector space, the local ideal of function germs on C2, 0 vanishing at
the origin up to elements in the Jacobian ideal of f . They are typically taken to be non-constant
monomials.

We get a diagram

(u, v1, ..., vk) ∈ Ck+1, 0 ⊃ D = {(u, v) |F−1

u,v(0) is singular}y p
y

(v1, ..., vk) ∈ Ck, 0 ⊃ B = {u |F0,v is not Morse}

The restriction p|D of the projection to the discriminant D is a finite map, such that the branch
set coincides with the bifurcation set B and the critical points are contained in the pre-image

B̃ = p
−1

(B). In particular, the origin is an isolated point in the intersection of D with the fibre
p−1(0). If a hypersurface germ has this property we call it horizontal for the projection p.

The key observation is, that a suitable representative of the complement of B̃ is a trivial
disc bundle by p into which D is embedded as a smooth submanifold, which is a connected
topological cover by p. This situation, which can be treated also in the language of polynomial
covers, cf. [Han89], naturally gives rise to a braid monodromy homomorphism: The domain is
the fundamental group of the complement of B, its target is the group of mapping classes of the
punctured fibre, the image is called the braid monodromy group.

It coincides with the map of fundamental groups induced by the map of Lyashko Looijenga
under the natural identification of the mapping class group with the fundamental group of the
space of monic simple univariate polynomials of degree n at the corresponding base point:

Ck − B −→ C[x],

v 7→ pv,

which maps to monic univariate polynomials of degree µ with simple roots only, where these
roots correspond to the points of D which project to v.

To use the braid monodromy group of the fundamental group of the discriminant complement
we employ the argument of Zariski and van Kampen [vK33]. It relies on a choice of a geometric
basis in the fibre over the base point which is the customary tool to identify the action of the
group of isotopy classes of diffeomorphisms on the fundamental group of the fibre with the right
Artin action of the abstract braid group on the free generators t1, . . . , tn given by

(tj)σj = tjtj+1t
−1
j , (tj+1)σj = tj , (ti)σj = ti, if i 6= j, j + 1.
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Theorem 8 (van Kampen). Given a horizontal hypersurface germ with braid monodromy group
generated by braids {βs} in Brn, the local fundamental group of the complement is finitely pre-
sented as

π1 = 〈t1, . . . , tn | t−1i tβsi , 1 ≤ i ≤ n, all βs〉.

The consideration above applies again to the hypersurface germ B in the affine space germ
Ck, 0 provided we find a projection for which B is horizontal. In fact this puts a constraint on a
discriminant curve as we will see in the following proof.

Proposition 9. Let g1 be a bivariate polynomial germ vanishing at 0 such that the discriminant
curve of the unfolding

f − u+ tg1

is reduced. Then the fundamental group of the complement of a corresponding unfolded discrim-
inant curve is equal to the discriminant knot group of f .

Proof. Without loss of generality we may assume that g1 is the first of the functions in the
versal unfolding of f we consider. Hence the complement of the unfolded discriminant curve
is a vertical plane section of the discriminant. (At this point we could conclude with the local
Zariski hyperplane section theorem, if this vertical plane were known to be generic.)

By the van Kampen theorem, it suffices to show that the two braid monodromy groups
are equal. They in turn are homomorphic images of the corresponding fundamental groups of
complements to the bifurcation set.

If the discriminant curve is reduced, then the corresponding curve in the affine space germ
Ck, 0 does not belong to the bifurcation set, otherwise, the discriminant curve has less than µ
points over every t and is non-reduced.

We deduce that the bifurcation set is horizontal for the projection along the coordinate cor-
responding to g1, since the 0-fibre of that projection was just shown not to be in the bifurcation
set.

In particular the fundamental group in a generic vertical line is generated by elements corre-
sponding to a geometric basis. They also generate the fundamental group of the complement to
the bifurcation set by the van Kampen theorem.

Put differently the fundamental group the smaller set surjects onto the fundamental group
of the complement to the bifurcation set. Hence both fundamental groups map to same braid
monodromy group.

Since a generic vertical line is the image under p of an unfolded discriminant curve associated
to g1 as in the beginning of the proof, we have precisely shown what was needed. �

Proof of the main Theorem. Thanks to Prop.6 it suffices to show that the discriminant knot
group is constant along each µ-constant stratum which contains a Brieskorn-Pham polynomial
y3 + xν+1.

Let f be any function in this stratum and σf its σ-invariant. Since the analytic equivalence
class of f has a representative of the form

y3 − P (x)y + xν+1 with 2
3 (ν + 1) ≤ ordP, degP ≤ ν − 1,

we deduce 2ν ≤ 3σf − 2 and σf ≤ ν.
Therefore by Prop.7 we can unfold the Brieskorn-Pham polynomial by a parameter s such

that the σ-invariant is σf for s 6= 0, and there exists an associated family of discriminant curves
of constant topological type.

Because they are reduced, we can apply the previous proposition to see that corresponding
unfolded discriminant curves have a complement with fundamental group isomorphic to the
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respective discriminant knot groups. So by the same argument as in the proof of Prop.6 the two
discriminant knot groups are isomorphic.

Since f and any deformation of the Brieskorn-Pham polynomial with s small share the same σ-
invariant, we may invoke Cor.5 to have topologically equivalent complements of unfolded generic
discriminant curves. Thus again the discriminant knot groups are isomorphic and therefore
constant along the µ-constant stratum of each Brieskorn-Pham polynomial. �
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