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A ZOO OF GEOMETRIC HOMOLOGY THEORIES

MATTHIAS KRECK

1. Introduction

A homology theory is on the one hand given by a spectrum - and from this point of view
homology theories are almost as general as spaces. Originally they occurred in a completely
different form by geometric constructions like simplicial or singular homology theories or later
bordism theories, K-theory (a cohomology theory) and others. In this note we introduce a zoo
of homology theories which both generalize singular homology and bordism theory in a natural
way. More precisely for each subset A of the natural numbers N we construct a homology theory
hA∗ which for A = N − {1} is ordinary mod 2 singular homology and for A = {0} is singular
bordism.

The theories in our zoo are all bordism groups, which generalize the case of smooth manifolds
by allowing singularities. There are many concepts of manifolds with singularities one could
use here. For our pupose the objects the author introduced some years ago, which are called
stratifolds, work particularly well [4]. The theory of stratifolds was further elaborated in [3]
in the thesis of the author’s PhD student Anna Grinberg. The zoo comes from forcing certain
strata indexed by the subset A to be empty.

Despite their simple construction computations of these groups seem to be very complicated.
We give a few simple examples. However there are no interesting applications so far and the zoo
looks a bit like a curiosity. But one never knows for what these theories might be good in the
future. We mention a concrete question which might be useful in connection with the Griffiths
group consisting of algebraic cycles in a smooth algebraic variety over the complex numbers
which vanish in singular homology.

I dedicate these notes to my friend Egbert Brieskorn. Egbert is (in a very different way like
our common teacher Hirzebruch) a person who had a great influence on me. When I had to
make a complicated decision I often had him in front of my eyes and asked myself: What would
Egbert suggest? Conversations with him were always intense and fruitful. I miss him very much.

When I thought about a subject for this note I also asked myself, what would Egbert say
about this or that mathematics. I have no idea what he would say about this zoo. But I hope
he would at least like the occurrence of manifolds with singularities. And it would probably find
his interest that if Y is a compact complex singular variety in a non-singular complex algebraic
variety X it admits a natural structure of a stratifold with all odd-dimensional strata empty and
so represents a homology class in the special case where A consists of all odd numbers.

I would like to thank Peter Lendweber for careful reading of a first version of these notes
leading to several clarifications and improvements.

2. Generalized homology theories and singular bordism

To motivate the construction let me recall the definition of singular bordism groups. Let
X be a topological space. Then a cycle is a pair f : M → X, where M is a closed smooth
n-dimensional manifold and f a continuous map. Two cycles (M,f) and (M ′, f ′) represent the
same bordism class if and only if there is a compact manifold W with ∂W = M + M ′, and an
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extension F : W → X of the maps f and f ′. This is an equivalence relation and the equivalence
classes form a group under disjoint union denoted by Nn(X), the n-th singular bordism group.
If g : X → Y is a continuous map it induces a homomorphism

g∗ : Nn(X)→ Nn(Y )

given by post-composition and this way we obtain for each n a functor from the category of
topological spaces to the category of abelian groups. By construction (using the cylinder as a
bordism) this is a homotopy functor, meaning that if g and g′ are homotopic, then g∗ = g′∗.

This functor is a homology theory, which normally is expressed as an extension to the category
of topological pairs fulfilling the Eilenberg-Steenrod axioms apart from the dimension axiom.
But an equivalent simple characterization is the following. As in the case of relative homology
groups one has to add data to a functor h∗, namely a boundary operator, which in our case is
the boundary operator for a Mayer-Vietoris sequence: for open subsets U and V of a topological
space a natural operator

d : hk(U ∪ V )→ hk−1(U ∩ V ).

Then a homology theory is a homotopy functor h∗ together with a natural boundary operator
as above, such that the Mayer-Vietoris sequence

...→ hk+1(U ∪ V )→ hk(U ∩ V )→ hk(U)⊕ hk(V )→ hk(U ∪ V )→ ....

is exact. Here the maps are given by the boundary operator, the induced maps of the inclusions
and the difference of the induced maps of the inclusions.

Examples of homology theories are singular homology and the npn-oriented bordism groups
N∗(X). In the latter case the boundary operator is given a follows. If f : M → U ∪ V is a
continuous map, then consider A, the complement of f−1(U) in M , and B, the complement of
f−1(V ) in M . These are disjoint closed subsets. Thus there is a smooth function ρ : M → R,
which on A is 0 and on B is 1. Let t ∈ (0, 1) be a regular value of ρ. Then d[(M,f)] is
represented by f |ρ−1(t) : ρ−1(t) → U ∩ V . The construction of singular bordism was carried
out in [2] on the category of pairs of spaces. The proof that our absolute bordism theory is a
homology theory uses the same ideas, see [1], Chapter II. For manifolds with singularities there
is a problem with this proof since then there are no bicollars in general. But it was shown in [4]
that there is a bicollar up to bordism. The same arguments apply to the generalized bordism
theories constructed below.

3. Stratifolds

There are plenty of definitions of stratified spaces, starting from Whitney stratified spaces and
Mather’s abstract stratified spaces [5], which are both differential topological concepts, as well as
purely topological concepts. All of them have in common that it is a topological space together
with a decomposition into manifolds, which are called strata. Since we want to generalize bordism
of smooth manifolds we restrict ourselves to differential topological stratifolds.

Our approach to stratifolds is motivated by a definition of smooth manifolds in the spirit
of algebraic geometry as topological spaces together with a sheaf of functions, which in the
traditional definition corresponds to the smooth functions. Then a manifold is a Hausdorff
space M with countable basis together with a sheaf C of continuous functions, which is locally
diffeomorphic to Rn equipped with the sheaf of all smooth functions. Here a morphism between
spaces X and X ′ equipped with subsheaves of the sheaf of smooth functions is a continuous map
f such that if ρ′ is in the sheaf over X ′, then ρ′f is in the sheaf over X. An isomorphism or here
called diffeomorphism is a bijective map f such that f and f−1 are morphisms.

Having this in mind it is natural to generalize this by considering locally compact Hausdorff
spaces S with countable basis together with a sheaf C of continuous functions, such that for
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f1, ..., fk in C and f a smooth function on Rk, the composition f(f1, .., fk) is in C. A stratifold
is defined as a pair (S, C) such that the following properties are fulfilled. Given C one can define
the tangent space TxS at a point x ∈ S as the vector space of all derivations of the germs Γx(C)
of smooth functions at x. This gives a decomposition of S into subspaces

Sk := {x ∈ S | dimTxS = k}.

These subspaces are called the k-strata of S. The union of all strata of dimension ≤ k is called
the k-skeleton Σk.

Definition 1. An n-dimensional stratifold is a pair (S, C) as above such that
(1) For each k the stratum Sk together with the restriction SSk of the sheaf to it is a smooth
k-dimensional manifold, i.e. is locally diffeomorphic to Rk.
(2) All skeleta are closed subsets of S.
(3) All strata of dimension > n are empty.
(4) For each x ∈ S and open neighborhood U there is a so-called bump function ρ : S → R≥0 in
C, such that supp ρ ⊂ U and ρ(x) > 0.
(5) For each x ∈ Sk the restriction gives an isomorphism Γx(C)→ Γx(C|Sk).

A continuous map f : S → S ′ is called a morphism or smooth, if fρ ∈ C for each ρ ∈ C′. If
f is a homeomorphism and f and f ′ are smooth, then f is called a diffeomorphism.

A smooth map f induces, as for smooth manifolds, a linear map between the tangent spaces,
the differential. It is given by pre-composition with the map f mapping a derivation at x ∈ S
to a derivation of S ′ at f(x). This induced map is called the differential of f at x.

Whereas the other conditions are natural, one might wonder where the last condition comes
from. Looking at Mather’s abstract stratified spaces, he gives a decomposition of the space into
the strata plus additional data. Among them there are neighborhoods of the strata together
with retractions π to the strata. Then Mather defines smooth (also called controlled) functions
f as continuous functions such that the restriction of f to each stratum is smooth and there is
a smaller neighborhood such that π restricted to the smaller neighborhood commutes with f .
This implies our condition (5) and actually one can reconstruct the retraction π from our data
if (5) is fulfilled ([4], p. 18ff).

All smooth manifolds are stratifolds. In this note we will only use the following comparatively
simple class of stratifolds, which is similar to the construction of CW -complexes, which we call
polarizable stratifolds, abbreviated as p-stratifolds. A 0-dimensional p-stratifold is a 0-
dimensional smooth manifold. Let (S, C) be a (k − 1)-dimensional p-stratifold and W be a
k-dimensional manifold with boundary and f : ∂W → S a proper smooth map. Then we define
a k-dimensional p-stratifold (S ′ := W ∪f S, C′), where C′ is constructed as follows. Choose a
collar ϕ : ∂W × [0, 1) → U ⊂ W . Then f is in C′ if and only if f |S and f |W are smooth and
there is an open subset U ′ ⊂ U such that f commutes with the retraction to ∂W given by the
collar. The last condition guarantees condition (5) above. It is easy to check that this is a
k-dimensional stratifold.

This way one obtains plenty of explicit stratifolds. For example let W be a compact manifold
with boundary and f the constant map from the boundary to a point. Then if we choose a collar
of the boundary and attach W to the point (equivalently collapse the boundary to a point) and
define the sheaf as above, we obtain a stratifold with 0-stratum a point and top-stratum the
interior of W . A special case of this is the cone over a smooth manifold.

If S is an n-dimensional p-stratifold and M is a m-dimensional smooth manifold then the
product S ×M is naturally an (n+m)-dimensional p-stratifold. In the construction above one
replaces W by W ×M and each attaching map f by f × id.
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We define an n-dimensional p-stratifold T with boundary as a pair of topological spaces
(T, ∂T ) together with the structure of an n-dimensional stratifold on T − ∂T , the structure of
an (n− 1)-dimensional stratifold on ∂T such that there is a homeomorphism ϕ : ∂T × [0, 1) onto
an open neigbourhood U ⊂ T of ∂T , which on ∂T is the identity, such that T − U is a closed
subset of T (implying that ∂T is an end) and its restriction to ∂T × (0, 1) is a diffeomorphism
of stratifolds onto U − ∂T . Such a homeomorphism ϕ is called a collar.

Using a collar one can glue p-stratifolds with boundary the same way one glues manifolds
over common boundary components. Thus one can define bordism groups and, if one adds a
continuous map to a topological space X, singular bordism groups.

The following observation is central for our construction of the zoo of bordism groups. If T
and T ′ are p-stratifolds with boundary whose stratum of dimension r is in both cases empty,
then the same holds for the glued stratifold. Similarly if S and S ′ are stratifolds with empty
k-stratum, then the same holds for the disjoint union. Let A ⊆ N be a set. Here N contains
0. An n-dimensional A-stratifold is a p-stratifold S such that for a ∈ N − A the stratum of
dimension n− a is empty. For example, if A = {0}, then an A-stratifold is a smooth manifold,
all strata except the top stratum being empty. Or, if A = N − {1}, then S is an A-stratifold if
the stratum of dimension n − 1 is empty. Or, if A consists of the even numbers, then S is an
A-stratifold if and only if the strata of odd codimension are empty.

4. The zoo and the main theorem

With this, it is possible to define the zoo of bordism theories.

Definition 2. Let X be a topological space and n a natural number and A ⊆ N. An n-
dimensional singular A-stratifold in X is a closed (compact without boundary) n-dimensional
A-stratifold S together with a continuous map f : S → X.

A singular A-bordism between two n-dimensional singular A-stratifolds (S, f) and (S, f ′)
is a compact singular A-stratifold T with boundary S + S ′ together with a continuous map
F : T → X extending f and f ′.

Since one can glue n-dimensional singular A-stratifolds over common boundary components,
singular A-bordism is an equivalence relation. Thus one can consider the equivalence classes,
which form a group under disjoint union denoted by NA

n (X). The proof is the same as in the
case of smooth manifolds.

If g : X → Y is a continuous map, the post-composition induces a homomorphism

g∗ : NA
n (X)→ NA

n (Y ),

which makes NA
n (X) a functor from the category of topological spaces and continuous maps to

the category of graded abelian groups and homomorphisms.
To formulate our main theorem, namely that for each A we obtain a homology theory, we

have to construct boundary operators. We have described above how this is done for bordism
groups of smooth manifolds. To generalize this to stratifolds one has to consider regular values
of smooth maps ρ from a p-stratifold S to R. A value t ∈ R is a regular value if the restriction
to all strata is a regular value. We note that by definition of the sheaf C, if S is constructed
inductively by attaching smooth manifolds W via a smooth map to the lower skeleta, t is also
a regular value of the restriction of ρ to the boundary of W . The reason is that ρ commutes
with the retractions given by the collar. This implies that the preimage of ρ restricted to W is a
smooth manifold with boundary and the restriction of the collar chosen on W is a collar on this
preimage. This implies that the preimage ρ−1(t) is in a natural way a p-stratifold of codimension
1. Furthermore, if f : S → X is a continuous map, we can consider its restriction to ρ−1(t).
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Finally, if S is an A-stratifold, then the codimensions of the strata of ρ−1(t) are unchanged and
so ρ−1(t) is again an A-stratifold.

Thus one can define the boundary operator in the Mayer-Vietoris sequence as for smooth
manifolds as follows. Let U and V be open subsets of a topological space X and f : S → U ∪ V
a singular A-stratifold. Then we consider the complements C of f−1(U) and D of f−1(V ) in M .
These are closed disjoint subsets of S. In a stratifold one has partitions of unity [4], Proposition
2.3, and so there is a smooth function ρ, which on C is zero and on D is 1. In a stratifold one
can apply Sard’s Theorem ([4], Proposition 2.6), and so there is a regular value t ∈ (0, 1). By
the considerations above ρ−1(t) is a codimension 1 stratifold and the restriction of f to it gives
a singular A-stratifold in U ∩ V . We will next show that this is well-defined and gives a natural
boundary operator.

Our main Theorem is the following:

Theorem 3. Let A be a subset of N. For open subsets U and V in a topological space X the
boundary operator

d : NA
n (U ∪ V )→ NA

n−1(U ∩ V )

is well-defined and natural.
The functor NA

n (X) together with the boundary operator d is a homology theory.

Proof. We first note that since a homotopy is a special bordism, the functor is a homotopy
functor. Thus one only has to prove that there is an exact Mayer-Vietoris sequence. This
amounts to showing that for all open subsets U and V of X the boundary operator

d : NA
n (U ∪ V )→ NA

n−1(U ∩ V )

is well-defined and natural and that the sequence is exact.
We begin with the proof that d is well-defined. In the case of bordism of smooth manifolds

this is easy using that ρ−1(t) has a bicollar. In the case of stratifolds this is not the case. But
it was shown in [4], Lemma B.1, page 197 that up to bordism one has a bicollar. This was
proved there for so-called regular stratifolds. The regularity was used only at one place, namely
to guarantee that the set of regular values is an open subset if S is compact [4], Proposition
4.3, page 44. Once this is the case, then the proof of [4], Lemma B.1 goes through without any
change for p-stratifolds.

Next we show that the set of regular values of ρ is an open set if S is a compact p-stratifold.
For this we consider the regular points, the points in S where the differential of ρ is non-trivial.
But x ∈ S is a regular point if and only its restriction to the interior of the attached manifold
W is regular. This restriction to W extends to ∂W and commutes with the retraction given by
a collar. This implies that the regular points form an open subset. The singular points are the
complement of the regular points (and so they are a closed subset) and the image of the singular
points are the singular values. The complement of the singular values are the regular values. If
S is compact, the image of a closed set is a closed and so the image of the singular points is
closed implying that the regular values form an open set. Thus the proof of [4], Lemma B.1 goes
through for p-stratifolds.

With this the proof that the boundary operator is well-defined is the same as in [4] for regular
stratifolds. The naturality follows more or less from the construction of the differential. Let
g : X → X ′ be a continuous map and U , V be open subsets of X, and U ′ and V ′ be open
subsets of X ′, such that g(U) ⊆ U ′ and g(V ) ⊆ V ′. Then for a singular A-stratifold f : S → X
we denote the complements of the preimages of U and V by C and D, similarly we denote the
complements of the preimage of U ′ and V ′ by C ′ and D′. We have chosen a smooth function
ρ, which on C is 0 and on D is 1. Now we consider gf and notice that C ′ ⊆ C and D′ ⊆ D.
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Thus we can take the same separating function for the definition of the boundary operator
d′ : NA

n (U ′ ∪ V ′)→ NA
n−1(U ′ ∩ V ′).

Lemma B.1 in [4] is also the key to the proof of the special case considered in [4], that the
Mayer-Vietoris sequence is exact. The case considered there is the case, where A = N − {1}.
That A is of that special form is nowhere used in this proof. The only thing that matters is that
all constructions used in the proof stay within the world of A-stratifolds. These constructions
are: gluing of stratifolds via parts of boundary components and taking the preimage of a regular
value. The definition of A-stratifolds using conditions on the existence of non-empty strata of a
certain codimension are compatible with these constructions. Thus the proof in [4] goes through.

�

One can enlarge this zoo even more by adding additional structure to the strata of a stratifold,
for example an orientation or a stable almost complex structure or a spin-structure or a framing.
In all these cases one obtains again a homology theory.

Now we mention a few special cases which show that the A-homology theories give a unified
picture of some of the most important homology theories which originally had rather different
constructions. To formulate the result let me remind the reader of the Postnikov tower of a
homology theory. As mentioned above one has a unified homotopy theoretic picture of homology
theories in terms of spectra S. Given a spectrum S and a topological space X one can consider
the stable homotopy groups πn(S ∧X), which form a homology theory. As with spaces one can
consider Postnikov towers of spectra. This is given by spectra Sk together with a map S → Sk,
where one requires that all stable homotopy groups of Sk vanish above degree k and the map
induces an isomorphism up to degree k.

If we consider for example the Thom spectrum MO which represents singular bordism, then
the 0-th stage of the Postnikov tower is a homology theory, which has coefficients Z/2 in degree
0 and 0 in degree > 0. Thus this homology theory represents H∗(X;Z/2).

Returning to our zoo, we consider some special cases. For a positive integer k we consider
the set Ak := N− {1, ..., k}. For k =∞ we define A∞ = {0}. Then for n ≤ k an n-dimensional
Ak-stratifold is the same as a smooth manifold and so for n < k the bordism group NAk

n is equal
to the bordism group of manifolds Nk. In particular for k = ∞ the bordism groups NA∞

∗ (X)
are equal to the bordism group of smooth manifolds N∗(X). On the other hand for n ≥ k the
group is zero, since the cone over such a stratifold is a null bordism (the cone point is a stratum
of codimension n + 1 > k). This implies that for k = 1 the coefficients NA1

∗ are Z/2 in degree
0 and 0 else. Thus by the characterization of ordinary homology by the Eilenberg-Steerond
Axioms (which include the dimension axiom) NA1

∗ (X) is equivalent to H∗(X;Z/2) for X a
CW -complex. But since all p-stratifolds are homotopy equivalent to CW -complexes (all smooth
manifolds with boundary are relative CW -complexes and a p-stratifold is inductively obtained
by attaching smooth manifolds) this implies that the same holds for arbitrary topological spaces
(exercise) and we have shown:

Theorem 4. The homology theory NAk
∗ is equivalent to the homology theory given by the k-stage

of the Postnikov tower of the Thom spectrum MO. In particular

NA1
∗ (X) is equivalent to H∗(X;Z/2), and NA∞

∗ (X) = N∗(X).

This is a good place to remark that the same result is not true if we use regular stratifolds
instead of p-stratifolds. Then one also obtains homology theories. But although for A1 both
theories have the same coefficients, the theory based on regular stratifolds is only for CW -
complexes equivalent to ordinary singular homology with Z/2 coefficients. For more general
spaces this is not true, for example for 1-point compactifications of non-compact manifolds the
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theory is in general different (see [4], page 187; the argument there for integral homology works
also for Z/2-homology).

We finish this note with a potential application of our theories to the Griffiths group. As
mentioned before, one can add more structure to the strata of an A-stratifold. If we distinguish
a stable almost complex structure on all strata (there is no compatibility between the structures
on the different strata) we call the corresponding homology theory UA∗ (X).

In the discussion above, one obtains similar statements if one replaces non-oriented bordism
by unitary bordism U∗(X), MO by MU and Hk(X;Z/2) by Hk(X;Z).

Now, we consider the special case of an A-homology theory for Aeven-stratifolds with stable
almost complex strata, where Aeven consists of the set of even natural numbers. We have a
forgetful transformation (replace Aeven by N− {1} and use the orientation given by the almost
complex structure to obtain an element in integral homology)

ϕ : UAeven
2r (X)→ H2r(X;Z).

Question: What are the image and kernel of ϕ?

This might be useful in connection with the Griffiths group consisting of the kernel of the
natural transformation H : Z∗algX → H∗(X;Z) (the letter H stands for Hodge), where X is a non-
singular complex algebraic variety and Z∗algX is the ring of cycles modulo algebraic equivalence
on X. For simplicity we assume that X is compact, so that Poincaré duality holds and we can

consider the corresponding map in homology Zalg∗ X → H∗(X, ;Z). Totaro [6] has constructed a
canonical lift of this transformation over U∗(X)⊗U∗ Z. We will construct another lift.

Since a complex algebraic variety is in a natural way an Aeven p-stratifold [3], we obtain a
transformation

Zalg∗ X → UAeven
∗ (X).

If we compose this with the transformation given by the forgetful map ϕ above, the composition
of these two transformations is the Poincaré dual of the transformation H : Z∗algX → H∗(X;Z).
Thus one might try to do the same as Totaro did, to find elements in the kernel of

UAeven
∗ (X)→ H∗(X;Z)

which are in the image of Zalg∗ X → UAeven
∗ (X). Unfortunately we have nothing to say about this

at the moment. The reason why our lift might be interesting is that in contrast to U∗(X)⊗U∗ Z
our theory UAeven

∗ (X) is a homology theory, which might be a useful fact. On the other hand a
computation of UAeven

∗ (X) is probably very hard.
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