SINGULARITIES AND EXOTIC SPHERES ${ }^{1}$

FRIEDRICH HIRZEBRUCH

In: Conference Report 27/1996, Singularities 14.07.-20.07.1996, Mathematical Research Institute Oberwolfach, "Brieskorn-Day". 16.07.1996, Lecture on the occasion of the 60th birthday of Egbert Brieskorn, short version.

Report on the academic year 1965/66. Brieskorn is C.L.E. Moore Instructor at M.I.T., Jänich is at Cornell University, then at IAS in Princeton. I am in Bonn. There is an extensive correspondence. From 30.09.-07.10.1965 I'm at a conference in Rome (report on Brieskorn's simultaneous resolutions). Brieskorn's letter from 28.09 .1965 reaches me there: "I have made the somewhat confusing discovery in recent days that there may be 3-dimensional normal singularities that are topologically trivial. I discussed the example with Mumford this afternoon, and he had not found a mistake by this evening: here it is: $X=\left\{x \in \mathbf{C}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{3}=0\right\}$.". Proof by resolution and calculation of all invariants of the neighbourhood boundary. In the Proc. Nat. Aca. Sci. USA appears the more general example $x_{1}^{2}+\cdots+x_{k}^{2}+x_{k+1}^{3}=0$ (k odd).

Report on the extensive correspondence that follows, about Brieskorn's discovery of the work of Pham, which allows him to prove Milnor's assertion in a letter to Nash - Milnor to Nash on 13.04.1966: "The Brieskorn example is fascinating. After starting at if for a while, I think I know which manifolds of this type are spheres but the statement is complicated and a proof does not exist. Let $\sum\left(p_{1}, \ldots, p_{n}\right)$ be the locus $z_{1}^{p_{1}}+\cdots+z_{n}^{p_{n}}=0,\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1$ where $p_{j} \geq 2 \ldots$ " Then Milnor gives the condition a) or b) for the exponents. - Gradually it becomes clear to all parties that for the determination of the differentiable structure the calculation of the signature of $z_{1}^{p_{1}}+\cdots+z_{n}^{p_{n}}=1(n \geq 3, n$ odd $)$ is required. There are several letters from Brieskorn to me and vice versa. Brieskorn writes his paper for the Inventiones Vol. 2 (1966). In this context, he also studied $(2,3,5,30), 30=$ Coxeter number of E_{8}, and he finally accomplished the small resolutions of this singularity in curves according to the E_{8}-tree and thus the simultaneous resolution of the surface families $x_{1}^{2}+x_{2}^{3}+x_{3}^{5}+t^{30}=0$ (parameter t) and the remaining case of his paper in Math. Ann. of 1966 (about which I reported in Rome). Understanding was achieved within the framework of the root systems and the Weyl group (Brieskorn's letter to Mrs. Tjurina dated 13.09.1966) - Jänich had studied $O(n)$-manifolds $W^{2 n-1}(d)$ (two orbit types with isotropy groups $O(n-2), O(n-1)$ and orbit space $\left.D^{2}, S^{i}\right)$, and classified them as well as the knot manifolds $M^{2 n+1}(k)$ on which $O(n)$ operates (three orbit types $O(n-2), O(n-1), O(n)$ with orbit space $D^{4}, S^{3}-k, k$ (k the knot)). I bring the two located in the USA together by a report from March 1966, e.g. $W^{2 n-1}(d)$ is $\sum(2, \ldots, 2, d)$ and $M^{2 n+1}$ (torus knot 3,5$)$ is $\sum(2, \ldots, 2,3,5)$. Brieskorn writes on 29.03.1966: "Klaus Jänich and I had not noticed anything about this connection of our work, and I was completely overjoyed, how you brought things together."

I had the same joy here in Oberwolfach, to be able to tell about it.

[^0]
[^0]: ${ }^{1}$ Translated from the german article in: Tagungsbericht 27/1996, Singularitäten 14.07.-20.07.1996, Mathematisches Forschungsinstitut Oberwolfach.

