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PICARD GROUPS FOR LINE BUNDLES WITH CONNECTIONS

HELMUT A. HAMM AND LÊ DŨNG TRÁNG

To the memory of Egbert Brieskorn

Abstract. We study analogues of the usual Picard group for complex manifolds or non-
singular complex algebraic varieties but instead of line bundles we study line bundles with

connections. We choose an approach which works for both cases. We identify obstructions for
the existence of a connection, or a connection which is even integrable or regular (integrable),

and point out where one should be careful when passing from the analytic to the algebraic

case.

Introduction

It was Egbert Brieskorn who brought the authors together already in 1970 when he was
professor at Göttingen. As a result of the first meeting a cooperation started which lasted over
decades up to now, the main subject being theorems of Lefschetz type, we are therefore very
grateful to him! In this context it was natural for us to turn to the Picard group. In the present
paper we consider Picard groups of line bundles with a connection.

In order to be more precise, let X be a reduced complex analytic space. It is known that
the isomorphism classes of line bundles on X define a group, called the analytic Picard group
Pican(X) of X.

Remember that one can pass from a line bundle to the invertible sheaf of its sections, after
all we may work with invertible sheaves instead of line bundles because we have an equivalence
of categories.

If X is a complex manifold, it is natural to consider line bundles on the space X with a
connection or with an integrable connection. The isomorphism classes of these line bundles
define groups that we shall denote by Picanc (X) for line bundles with a connection and Picanci (X)
for line bundles with an integrable connection.

We are going to compare these groups with the original Picard group Pican(X) using certain
exact sequences. In particular, these give obstructions for the existence of a connection resp. an
integrable connection. As we will see these results are not really new (in the analytic case) but
the important point is that we use an elementary approach which also goes over to the algebraic
case without problems. It avoids hypercohomology (which is basic for Deligne cohomology) or
the curvature of differentiable connections. But in order to make the results plausible we relate
our approach to one which uses the well-known relation to Deligne cohomology.

An important special case is the one of compact Kähler manifolds. Here we show that we
can avoid to go back to (p,q)-forms explicitly but we can argue with the abstract framework of
Hodge theory. This has the advantage that we can easily pass afterwards to smooth complete
algebraic varieties which might not be projective. We prove that in the compact Kähler (or
complete algebraic) case every connection on a line bundle is automatically integrable - a fact
which may be surprising before seeing the proof (which is easy).
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The essential point for us is to pass to the algebraic case. As already said our approach goes
over easily. To work with hypercohomology, similar to Deligne cohomology, requires some care
but we discuss how to argue then. Also, we deal with regular (integrable) connections and study
different ways to describe the obstructions for their existence. After all we show that an algebraic
line bundle admits a regular integrable connection if and only if its complex first Chern class
vanishes - a result which does not follow from the Riemann-Hilbert correspondence!!

By the way, the theory of D-modules will not be considered here because it is only related to
the integrable case

At the end we discuss some illustrative examples.
Acknowledgement: The authors would like to thank the Deutsche Forschungsgemeinschaft

(SFB 878) for support.

1. Analytic Comparisons

1.1. Pican(X) and Picanc (X)

In this section letX be a complex manifold which is paracompact (e.g. Stein or compactifiable;
the condition is not automatically fulfilled, see [4]). A connection on an invertible OX -module
L is a C-linear morphism ∇ : L → Ω1

X ⊗OX L such that ∇(fs) = f∇(s) + df ⊗ s, see [5] I Déf.
2.4, p. 7.

If L = OX , a connection is defined by a form ω ∈ H0(X,Ω1
X): ∇(1) = ω, so ∇(f) = df + fω.

If L is trivial, s a nowhere vanishing section of L and ω ∈ H0(X,Ω1
X), there is a uniquely defined

connection ∇ on L such that ∇(s) = ω ⊗ s: we say that it is defined by ω with respect to s.
Two line bundles (L,∇), (L′,∇′) are called isomorphic if there is an isomorphism φ : L → L′
such that the diagram

L ∇→ Ω1
X ⊗OX L

φ ↓ id⊗ φ ↓
L′ ∇′

→ Ω1
X ⊗OX L′

is commutative.
The isomorphism classes of invertible OX -modules with connection form a group Picanc (X).

We have an exact sequence of sheaves:

0→ C∗X → O∗X → dOX → 0

where C∗X → O∗X is given by the inclusion and O∗X → dOX is defined by f 7→ df/f .
This latter morphism is surjective, because, if ω ∈ dOX,x, there is f ∈ OX,x such that ω = df .

Then ef ∈ O∗X,x has its image equal to ω. The rest of the sequence is exact because of Poincaré
Lemma.

This exact sequence of sheaves gives an exact sequence of cohomology:

. . .→ H0(X, dOX)→ H1(X,C∗X)→ H1(X,O∗X)→ H1(X, dOX)→ . . .

Here we only use the mapping H1(X,O∗X)→ H1(X, dOX) from the exact sequence (see also the
proof of Theorem 2.2.22 of [3]).

Now we can prove the following exact sequence in an elementary way. We will see that it can
also be obtained easily using hypercohomology (Deligne cohomology).

Theorem 1.1. We have an exact sequence:

H0(X,O∗X)→ H0(X,Ω1
X)→ Picanc (X)→ Pican(X)→ H1(X,Ω1

X)
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Proof. The map H0(X,O∗X) → H0(X,Ω1
X) is defined by g 7→ dg

g , H0(X,Ω1
X) → Picanc (X) by

ω 7→ (OX ,∇(f) = df + fω).
The map Pican(X) → H1(X,Ω1

X) is the composition of H1(X,O∗X) → H1(X, dOX) (see
above) and the natural map from H1(X, dOX) to H1(X,Ω1

X), since Pican(X) ' H1(X,O∗X).
Now, notice that we have a group structure on Picanc (X). According to Deligne in [5] p. 8,

consider the invertible sheaves (i.e. invertible OX -modules) L and L′ defined by the (si) and
(s′i) on an open covering U , with the connections ∇ and ∇′ defined by (αi) and (α′i) on the open
covering U , then L ⊗ L′ is invertible and defined by (si ⊗ s′i), and the connection ∇0 on this
invertible sheaf is defined by (αi + α′i).

(i) Now let us prove the exactness. First, the function g ∈ H0(X,O∗X) is mapped onto
dg
g ∈ H

0(X,Ω1
X), and this in turn to the element of Picanc (X) represented by (OX ,∇), where

∇(f) := df + f dg
g . This is the inverse image of (OX , d) under the isomorphism ·g : OX → OX ,

so its class in Picanc (X) is trivial: we have a commutative diagram

H0(X,OX)
∇→ H0(X,Ω1

X) = H0(X,Ω1
X ⊗OX)

.g ↓ .g ↓
H0(X,OX)

d→ H0(X,Ω1
X) = H0(X,Ω1

X ⊗OX)

Suppose now that ω ∈ H0(X,Ω1
X) is mapped onto the trivial element of Picanc (X), which means

that (OX , d) is isomorphic to (OX , f 7→ df + ωf). The isomorphism gives a mapping from OX

onto itself, which is of the form ·g for some g ∈ H0(X,O∗X). Then, the image of 1 ∈ H0(X,OX)

is ω ∈ H0(X,Ω1
X) and by the multiplication by g, it is dg. Therefore ω = dg

g .

(ii) It is obvious that the composition of the two middle arrows gives the trivial mapping.
The kernel of the map Picanc (X) → Pican(X) defined by (L,∇) 7→ L is given by the pairs

(OX ,∇), so it coincides with the image of the morphism H0(X,Ω1
X) → Picanc (X) defined by

ω 7→ (OX ,∇(f) = df + fω). So, the middle part of the sequence is exact.
(iii) Now let L be an invertible sheaf which is in the kernel of Pican(X) → H1(X,Ω1

X). Let
U = (Ui)i∈I be a covering of X, such that L|Ui is isomorphic to OX |Ui by a map OX |Ui →
L|Ui which corresponds to 1 7→ si. Let gij be the complex analytic transition map defined on
Uij = Ui ∩ Uj from L|Ui to L|Uj . We have sj = gijsi on Ui ∩ Uj .

Since sj = gijsi = gijgkisk = gkjsk on Ui ∩ Uj ∩ Uk, we have gkj = gijgki on Ui ∩ Uj ∩ Uk.
The family (gij) defines a 2-cocycle of H1(X,O∗X), a fact which is well-known. Since

H1(U ,Ω1
X) ⊂ H1(X,Ω1

X)

cf. [9] Hilfssatz 12.4, p. 91, the image of L in H1(X,Ω1
X) being trivial, the 2-cocycle (dgij/gij)

is trivial, i.e. a coboundary. Therefore there are differential forms ωi and ωj defined respectively
on Ui and Uj , such that:

dgij
gij

= ωj − ωi

on Ui ∩ Uj .

Consider for each i the connection ∇̃i on OX |Ui defined by:

∇̃i(f) = df + fωi

This defines on L|Ui a connection:

∇i(fsi) = df ⊗ si + fωi ⊗ si,

which gives for f = 1:

∇i(si) = ωi ⊗ si.
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On Ui ∩ Uj , we have gijsi = sj . Therefore, on Ui ∩ Uj :

∇i(fgijsi) = d(fgij)⊗ si + fgijωi ⊗ si = gijdf ⊗ si + fdgij ⊗ si + fgijωi ⊗ si,

which implies, with f = 1, on Ui ∩ Uj :

∇i(gijsi) = dgij ⊗ si + gijωi ⊗ si.

Therefore:

∇i(sj) = gij(
dgij
gij

+ ωi)⊗ si = (
dgij
gij

+ ωi)⊗ gijsi = (ωj − ωi + ωi)⊗ sj

which yields:

∇i(sj) = ∇j(sj)

on Ui ∩ Uj .
Therefore the (∇i)i∈I define on L a connection ∇ and the class of the element L which lies

in the kernel of the map Pican(X)→ H1(X,Ω1
X) is the image of the class of (L,∇).

It remains to prove that the image of (L,∇) in H1(X,Ω1
X) in the above sequence vanishes.

Let (Ui)i∈I be an open covering of X such that L|Ui is isomorphic to OX |Ui by a map si 7→ 1.
We write ∇si = ωi ⊗ si. Let (gij) be the cocycle of transition functions such that sj = gijsi.
Then (dgij/gij) is a cocycle which represents an element of H1(X,Ω1

X). Since:

∇(sj) = ∇(gij ⊗ si) = dgij ⊗ si + gijωi ⊗ si = ωj ⊗ sj = gijωj ⊗ si,

we obtain:

dgij
gij

= ωj − ωi.

Therefore the class of the element given by the elements (dgij/gij) vanishes in H1(X,Ω1
X).

This shows that the above sequence is exact.

We shall give an interpretation of this exact sequence below.

Implicitly we have used:

Lemma 1.2. Let L be an invertible OX-module which is represented by a cocycle (gij) in
C1(U ,O∗X). Then, a connection ∇ on L is represented by an element (ωi) in C0(U ,Ω1

X) which

is mapped by δ : C0(U ,Ω1
X)→ C1(U ,Ω1

X) onto (
dgij
gij

) ∈ C1(U ,Ω1
X).

Note that (dωi) ∈ C0(U ,Ω2
X) is a cocycle, i.e. defines an element of H0(X,Ω2

X), which is the
curvature of ∇, see below.

Particularly easy is the case of Stein manifolds. Then H1(X,Ω1
X) = 0, because of Cartan’s

Theorem B, so from Theorem 1.1 we obtain:

Lemma 1.3. Let L be an invertible OX-module on a Stein manifold X. Then there is a complex
analytic connection on L.

In the following subsection we shall show how our reasoning above is related to the literature
(”Atiyah obstruction”).
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1.2. Atiyah obstruction.

Atiyah ([1] §2) has studied complex analytic connections on a holomorphic principal fibre
bundle P . Whereas differentiable connections always exist there is an obstruction to the existence
of a complex analytic one. In particular, there is an obstruction b(E) to the existence of a
complex analytic connection on the principal fibre bundle which corresponds to a holomorphic
vector bundle E (see [1] p. 194). We call it the Atiyah obstruction. In the case of a line bundle
L we have that b(L) ∈ H1(X,Ω1

X).
Here we use again invertible sheaves L instead of line bundles L. Then a complex analytic

connection on L corresponds to a connection on the sheaf L of holomorphic sections of L.
Let us recall the definition of b(L), see [1] p. 193. Let D(L) be the locally free OX -module

defined as follows:
as a CX -module, D(L) := L ⊕ (Ω1

X ⊗OX L), and the OX -module structure is given by:

f · (s, β) := (fs, fβ + df ⊗ s),

if f is a section of OX , s a section of L and β is a section of Ω1
X ⊗OX L.

Then we get an exact sequence of OX -modules

0→ Ω1
X ⊗OX L → D(L)→ L → 0

where the second arrow is given by β 7→ (0, β) and the third one by (s, β) 7→ s.
Applying Hom(L, · · · ) we obtain a long exact cohomology sequence

. . .→ H0(X,Hom(L, D(L))→ H0(X,Hom(L,L))→ H1(X,Hom(L,Ω1
X ⊗OX L))→ . . .

Now b(L) is defined as the image of 1 ∈ H0(X,OX) in H1(X,Ω1
X) under the mapping:

H0(X,OX)
'→ H0(X,Hom(L,L))→ H1(X,Hom(L,Ω1

X ⊗OX L))
'→ H1(X,Ω1

X)

(so the mapping depends on L !).

Lemma 1.4. b(L) = 0 if and only if L admits a connection.

Proof: A splitting of the first exact sequence above is given by an OX -linear mapping of the
form s 7→ (s,∇(s)), such that ∇ is a connection on L, and vice versa.

Look at the second exact sequence. The second arrow maps 1 onto b(L), by definition of b(L),
with the identifications made in the definition. The inverse images of 1 with respect to the first
arrow correspond to the splittings of the first exact sequence, i.e. to the connections on L. This
implies our statement.

Lemma 1.5. b(L) is the image of −[L] ∈ H1(X,O∗X) in H1(X,Ω1
X), i.e. b(L) is represented

by the cocycle −(
dgij
gij

).

Proof: Let U = (Ui) be an open Stein covering of X such that L|Ui is trivial. Let si be a
nowhere vanishing section of L|Ui. Then, sj = gijsi, where gij are the corresponding transition
functions. Let ∇i be the connection on L|Ui such that ∇i(si) = 0. Now, let us describe
H0(U , Hom(L,L))→ H1(U , Hom(L,Ω1

X ⊗OX L)) using the exact sequence of complexes:

0→ C ·(U , Hom(L,Ω1
X ⊗OX L))→ C ·(U , Hom(L, D(L))→ C ·(U , Hom(L,L))→ 0.

Consider (σi) ∈ C0(U , Hom(L, D(L)), where σi is the homomorphism L|Ui → D(L)|Ui which

maps si to (si, 0) (note that ∇i(si) = 0), i.e. sj = gijsi to (sj ,
dgij
gij
⊗ sj). Then (σi) is mapped

to (τi) ∈ C0(U , Hom(L,L)) with τi = id : L|Ui → L|Ui.
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The coboundary of (σi) is given by σj − σi : L|Ui ∩ Uj → D(L)|Ui ∩ Uj :

(σj − σi)(sj) = (0,−dgij
gij
⊗ sj),

so σj − σi can be identified with −dgij
gij
∈ H0(Ui ∩ Uj ,Ω

1
X).

Note that the relation established in the preceding lemma is taken up to sign as definition of
the Atiyah class in [18] Def. 4.2.18.

Corollary 1.6. An invertible sheaf L admits a connection if and only if its image in H1(X,Ω1
X)

is 0.

This corollary is consequence of Lemmas 1.4 and 1.5. This coincides with our result from
Theorem 1.1.

1.3. Picanc (X) and Picanci (X)

Recall that a connection ∇ is integrable if its curvature vanishes.
When L = OX and ∇(f) = df + fω, the value of the curvature R∇ of the connection ∇ on

L is dω (see I 3.2.2 of [5], p. 23).
More generally, recall that a connection is given by a C-linear morphism:

∇1 : L → Ω1
X ⊗ L = Ω1

X(L)

It defines a C-linear morphism:

∇2 : Ω1
X(L)→ Ω2

X(L)

by the formula: ∇2(ω ⊗ s) = dω ⊗ s− ω ∧∇(s) (see I (2.4) and (2.9) of [5]).

Definition 1.7. The connection ∇ = ∇1 is said to be integrable if ∇2 ◦ ∇1 = 0.

In particular, if s is a global nowhere vanishing section of L and if ∇ is defined by ω with
respect to s we have R∇(s′) = dω ⊗ s′ for every section of L. So ∇ is integrable if and only if
dω = 0.

Obviously we have, similarly to Lemma 1.2:

Lemma 1.8. Let L be an invertible OX-module which is represented by a cocycle (gij) in
C1(U ,O∗X). Then, an integrable connection ∇ on L is represented by an element (ωi) in

C0(U ,Ω1
X), ωj closed, which is mapped by δ : C0(U ,Ω1

X)→ C1(U ,Ω1
X) onto (

dgij
gij

) ∈ C1(U ,Ω1
X).

In particular the trivial connection d on OX is integrable. As we did for the group Picanc (X),
the isomorphism classes of analytic invertible sheaves with integrable connection form a group
Picanci (X) in which the neutral element is the class of (OX , d) and the product of the classes of
(L1,∇1) and of (L2,∇2) is the class of (L1 ⊗ L2,∇), where:

∇(s1 ⊗ s2) = ∇1(s1)⊗ s2 + s1 ⊗∇2(s2).

One can prove (see [5] using Théorème 2.17 Chap. I p. 12) that, if (L1,∇1) and (L2,∇2) are
integrable connections, the connection:

(L1 ⊗ L2,∇)

is also integrable. One can see this directly, too, using that the sum of closed forms is closed.
The curvature of a connection (L,∇) defines an OX -homomorphism:

L → Ω2
X ⊗ L
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Now Hom(L,Ω2
X ⊗L) ' H0(X,Hom(L,Ω2

X ⊗L)) ' H0(X,Ω2
X), so it is given by an element ω

of H0(X,Ω2
X). If this cohomology group vanishes, we have Picanci (X) ' Picanc (X).

One can prove the following proposition also by Deligne cohomology, see below, but it is much
easier to proceed directly.

Proposition 1.9. Let X be a complex manifold. We have an exact sequence

0→ Picanci (X)→ Picanc (X)→ H0(X,Ω2
X).

Proof. Let (L,∇) be an integrable connection.
Assume this connection is isomorphic to the trivial connection (OX , d), the class of the

connection (L,∇) is therefore the class of the trivial connection. This means that the map
Picanci (X)→ Picanc (X) is an injection.

The mapping Picanc (X) → H0(X,Ω2
X) associates the curvature of ∇ with the isomorphism

class of (L,∇). It is well-defined: if (L,∇) and (L′,∇′) are isomorphic and if we take local
sections of L and L′ which correspond each other with respect to the isomorphism, the two
connections are defined by the same differential forms with respect to these sections. The
exactness at Picanc (X) is obvious.

In fact the following proposition shows that Picanci (X) is of topological nature:

Proposition 1.10. We have the isomorphism:

Picanci (X) ' H1(X,C∗).

Proof. According to Théorème 2.17 in chapter I of [5] there is an equivalence of categories
between the category of local systems of one-dimensional complex vector spaces on X with the
category of line bundles with an integrable connection.

The resulting bijection is compatible with the group structure given by the tensor product.
We can observe that the group H1(X,C∗) classifies the local systems of one dimensional

complex vector spaces on X (see Theorem 3.3 of [23]), up to isomorphism, because the local
transition functions are locally constant. The same is true for Picanci (X) as mentioned at the
beginning of this paragraph.

Corollary 1.11. Let f : X → Y be a holomorphic map between two complex manifolds such
that it induces an isomorphism H1(X,Z)→ H1(Y,Z), then:

Picanci (X) ' Picanci (Y ).

Proof: Note that
Ext1(H0(X,Z),C∗) = 0,

because the abelian group H0(X,Z) is free, and the Universal coefficient formula implies

H1(X,C∗) ' Hom(H1(X,Z),C∗).
So we get isomorphisms

Hom(H1(X,Z),C∗) ' H1(X,C∗) ' Picanci (X)

1.4. Relation to Deligne cohomology. The preceding subsection is closely related to special
cases of Deligne cohomology. We start by recalling the notion of Čech hypercohomology.

Let S · be a non-negative complex of sheaves of abelian groups on a topological space X. If
U is an open covering of X we can define Hk(U ,S ·) := Hk(C ·(U ,S ·)tot) where (C ·(U ,S ·))tot
is the total (or the simple) complex associated to the bi-graded complex C ·(U ,S ·) (see e.g. [3]
p. 14, p. 28). Taking the direct limit with respect to open coverings U , we get Ȟk(X,S ·) :=
lim
→

Hk(U ,S ·), see [3] p. 32. We can proceed in a slightly different way, similarly to [11] II 5.8
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p.223 in the case of sheaves : we consider only open coverings U = (Ux)x∈X with x ∈ Ux, put
Č ·(X,S ·) := lim

→
C ·(U ,S ·), then Ȟk(X,S ·) = Hk((Č ·(X,S ·))tot).

Now let X be as before and let U = (Ui) be an open covering of X. We assume that the
Ui are Stein, which can be achieved by refinement. Let Pican U be the group of isomorphism
classes of invertible OX -modules which are trivial on the Ui, and let Picanc U be the group of
isomorphism classes of such sheaves with connection. First, Pican U ' H1(U ,O∗X).

Let S · be the non-negative complex:

O∗X
g 7→ dg

g−→ Ω1
X → 0→ . . . .

Then we have a description of Picanc X as a (Čech) hypercohomology group:

Lemma 1.12. a) Picanc U ' H1(U ,S ·).
b) Picanc X ' Ȟ1(X,S ·) ' H1(X,S ·) (cf. [3] Theorem 2.2.20, p. 80).

Proof: a) Argue as in the proof of Lemma 1.2 (See 2.2).
b) Take the direct limit with respect to open Stein coverings U . The second isomorphism holds
because X is paracompact (see [3] Theorem 1.3.13, p. 32).

As a consequence, we obtain the exact sequence of Theorem 1.1 again:
We have an exact sequence of complexes:

0→ C ·+1(U ,Ω1
X)→ (C ·(U ,S ·))tot → C ·(U ,O∗X)→ 0

Note that H1(V,Ω1
X) = 0 for V = Ui0 ∩ . . .∩Uiq because V is Stein: recall that the intersection

of two open Stein subets is Stein, see [19] Prop. 51.7, p. 225. So we have exactness on the right.
This exact sequence induces a long exact cohomology sequence

. . .→ Hk(U ,O∗X)→ Hk(U ,Ω1
X)→ Hk+1(U ,S ·)→ Hk+1(U ,O∗X)→ . . .

After this take the direct limit and replace Čech (hyper)cohomology by the usual one.
In fact, using Proposition 2.2 below we have an easier proof.

Now let us turn to Deligne cohomology. Let us recall its definition (see [8] p. 45). Put
Z(p) := (2πi)pZ ⊂ C. Let Z(p)D be the following non-negative complex:

Z(p)X → Ω0
X → . . .→ Ωp−1

X → 0→ . . .

where the first arrow is the inclusion. Then the Deligne cohomology H∗D(X,Z(p)) is defined as
the hypercohomology H∗(X,Z(p)D).

Looking at the commutative diagram

Z(p)X → OX → Ω1
X → . . .→ Ωp−1

X

↓ ↓ ↓ ·(2πi)−p+1 ↓ ·(2πi)−p+1

0 → O∗X
f 7→ df

f→ Ω1
X → . . .→ Ωp−1

X

where the second verical arrow is given by f 7→ exp((2πi)−p+1f) we see that the complex above
is quasi-isomorphic to

0→ O∗X
f 7→ df

f→ Ω1
X → . . .→ Ωp−1

X → 0→ . . .

For p = 1, we obtain that Z(1)D is quasi-isomorphic to O∗X(−1), cf. [2] p. 2038, so
H1
D(X,Z(1)) ' H0(X,O∗X) and H2

D(X,Z(1)) ' Pican(X).
For p = 2, we get that Z(2)D is quasi-isomorphic to S ·(−1), cf. [8] p. 46, so Picanc (X) '

H2
D(X,Z(2)) because of Lemma 1.12 (see the remark of Deligne quoted in [2] at the bottom of

p. 2039).
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For p ≥ dim X + 1 the complex is quasi-isomorphic to 0 → O∗X → dOX → 0 → . . ., see
beginning of subsection 1.1; by Poincaré Lemma, it is also quasi-isomorphic to

0→ C∗X → 0→ . . . .

So H2
D(X,Z(p)) ' H1(X,C∗X) ' Picanci (X), using Proposition 1.10.

For p > 2, H2
D(X,Z(p)) does not depend on p:

Let π : Z(p + 1)D → Z(p)D be the projection, then Hk(X, ker π) ' Hk−p−1(X,Ωp
X) = 0,

k ≤ 3.

We obtain altogether, cf. [10] p. 156:

Lemma 1.13. a) H2
D(X,Z(1)) ' Pican(X).

b) H2
D(X,Z(2)) ' Picanc (X).

c) H2
D(X,Z(p)) ' Picanci (X) for p > 2.

1.5. Pican(X) and Picanci (X)

The first exact sequence of §1.1 gives a long exact sequence which fits into a commutative
diagram:

Theorem 1.14. We have a commutative diagram with exact rows:

0 → H0(X,C∗
X) → H0(X,O∗

X) → H0(X, dOX) → Picanci (X) → Pican(X) → H1(X, dOX)
↓ ↓ ↓ ↓ ↓ ↓

0 → H0(X,C∗
X) → H0(X,O∗

X) → H0(X,Ω1
X) → Picanc (X) → Pican(X) → H1(X,Ω1

X)

Proof. The exactness of the upper line is consequence of Proposition 1.10 and the exactness of
the sequence 0→ C∗X → O∗X → dOX → 0.

Since the vertical map H0(X, dOX)→ H0(X,Ω1
X) is injective we conclude that

0→ H0(X,C∗X)→ H0(X,O∗X)→ H0(X,Ω1
X)

is exact. Because of Theorem 1.1 we conclude that the lower line is exact, too.

Remark: We may also argue using hypercohomology:
In the upper row compare O∗X → dOX → 0 with O∗X → 0, in the lower row O∗X → Ω1

X → 0
with O∗X → 0.

In particular, we observe that:

Lemma 1.15. If the complex manifold X is compact with an invertible OX-module L on X and
if ∇1 and ∇2 are two connections on L such that (L,∇1) ' (L,∇2), we must have ∇1 = ∇2.

Proof. We have (∇1 − ∇2)(s) = ω ⊗ s where ω ∈ H0(X,Ω1
X) is mapped to 0 ∈ Picanc (X).

So there is g ∈ H0(X,O∗X) such that ω = dg
g . Since H0(X,C∗) = H0(X,O∗X) because global

functions on X are locally constant on a compact space, we have that ω = 0.

Now let us drop the compactness condition again.

Lemma 1.16. a) An element x ∈ H2(X,Z) is sent onto 0 in H2(X,C) if and only if it is the
first Chern class of an invertible OX-module which can be endowed with an integrable connection.
b) If X is Stein, an invertible sheaf L admits an integrable complex analytic connection on X if
and only if the complex first Chern class vanishes.

Proof. a) We have a commutative diagram:

0 → Z → C → C∗ → 0
↓ ↓ ↓

0 → Z → OX → O∗X → 0
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with exact rows. This leads to a commutative diagram:

H1(X,C∗X) → H2(X,Z)
↓ ↓

H1(X,O∗X) → H2(X,Z)

The lower arrow associates to each invertible sheaf its first Chern class, therefore the upper
arrow associates to each invertible sheaf with an integrable connection the first Chern class of
the invertible sheaf. Now consider the upper row of the first diagram. It leads to an exact
sequence:

H1(X,C∗)→ H2(X,Z)→ H2(X,C),

which gives our result.
b) Note that we have H1(X,O∗X) ' H2(X,Z), too, because Hk(X,OX) = 0, k = 1, 2.

Remark: We can make Proposition 1.9 more precise: There is an exact sequence

0→ Picanci (X)→ Picanc (X)→ H0(X, dΩ1
X)→ H2(X,C∗X)

Compare the non-negative complexes O∗X → dOX → 0 and O∗X → Ω1
X → 0, see subsection

1.4. The cokernel is quasi-isomorphic to 0→ Ω1
X/dOX → 0, i.e. to 0→ dΩ1

X → 0.

1.6. Compact Kähler manifolds. In the case X is a compact Kähler manifold, we can apply
Hodge Theory.

We prefer an approach which can be transferred later on to the case of smooth complete
complex algebraic varieties which might not be Kähler:

We have Hk(X;C) ' Hk(X,Ω·X), by Poincaré lemma.
Let us look at the Hodge filtration F on Ω·: let F pΩ· be the subcomplex

0→ . . .→ 0→ Ωp
X → Ωp+1

X → . . .

The corresponding spectral sequence degenerates at E1, cf. [6] p. 28, so Hk−p(X,Ω≥p) =
Hk(X,F pΩ·) can be considered as a subspace F pHk(X;C) of Hk(X;C).

Let F pHk(X;C) be the image of F pHk(X;C) under conjugation in Hk(X;C). Assume p+q =
k. Then Hp,q(X) := F pHk(X;C) ∩ F qHk(X;C) ' F pHk(X;C)/F p+1Hk(X;C) ' Hq(X,Ωp

X).
In particular, H1,1(X) is a subspace of H2(X;C) which is isomorphic to H1(X,Ω1

X).

Then the first part of the following Lemma is well-known:

Lemma 1.17. Let X be a compact Kähler manifold, L an invertible sheaf on X.
a) (see [12] Ch. 3.3, p. 417) The complex first Chern class c1(L)C of L is in H1,1(X).
b) (see [1] Prop. 12, p. 196) With the identifications above, b(L) = −2πic1(L)C.

Proof. We have a commutative diagram with exact rows

0 → ZX → OX
f 7→e2πif→ O∗X → 0

↓ ·2πi ↓ ·2πi ↓
0 → CX → OX → dOX → 0

We get a commutative diagram

H1(X,O∗X) → H2(X;Z)
↓ ↓ ·2πi

H1(X, dOX) → H2(X;C)
↓

H1(X,Ω1
X)
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Note that dOX is quasiisomorphic to Ω≥1
X , hence we may replace H1(X, dOX) by F 1H2(X;C).

In particular, the middle horizontal arrow is injective.
a) Look at the images of (gij).
By [17] Theorem 4.3.1, p. 62, we have that the image in H2(X;C) is 2πic1(L)C.

The second commutative diagram shows that 2πic1(L)C ∈ F 1H2(X;C). Since the first Chern
class is real it is invariant under conjugation, so we obtain our statement.

b) By Lemma 1.5, the image of (gij) in H1(X,Ω1
X) is −b(L). If we identify H1,1 with

H1(X,Ω1
X) we obtain our statement because of a).

Note that the proof of b) in [1] loc. cit. works only if dim X = 1 because it uses an exact
sequence of the form

0→ CX → OX → Ω1
X → 0

Now in the Kähler case we have a stronger result than Lemma 1.16:

Lemma 1.18. Let X be a compact Kähler manifold, L an invertible sheaf on X. Then the
following conditions are equivalent:

a) L admits an integrable connection,
b) L admits a connection,
c) the first Chern class of L is a torsion element.

For b) ⇒ c) cf. [3] Cor. 2.2.25.

Proof. That the first Chern class is a torsion element means that the complex first Chern class
vanishes, because it is known that the cohomology group H2(X,Z) is finitely generated when X
is compact, hence triangulable.

a) ⇔ c): L admits an integrable connection if and only if the image of L in H1(X, dOX)
vanishes, by Theorem 1.14.

The composition PicanX → H1(X, dOX) → H2(X;C) is given by [L] 7→ 2πic1(L)C, see the
proof of the preceding lemma.

To prove a)⇔ c) it is therefore sufficient to show that the mapping H1(X, dOX)→ H2(X;C)
is injective, which has been done in the preceding proof.

Now b) ⇔ c), because we know that b) holds if and only if b(L) = 0 by Lemma 1.4. The rest
follows from the preceding lemma 1.17.

In the preceding Lemma 1.18, i.e. in the case of compact Kähler manifolds, we can sharpen
the fact that a) ⇔ b):

Theorem 1.19. If X is a compact Kähler manifold, a connection on an invertible sheaf is
integrable.

Proof. We have another connection ∇′ which is integrable, by Lemma 1.18. Then the difference
of the connections is the multiplication by a form ω ∈ H0(X,Ω1

X). By Hodge theory, the Hodge
spectral sequence degenerates at E1, so dω = 0. Hence the two connections have the same
curvature, so the original connection must be integrable, too.

2. Algebraic case

2.1. Suppose now that X is a smooth complex algebraic variety. The underlying analytic space
Xan is a paracompact complex manifold. One has an analogue of Theorem 1.14 but one has to
be careful with the upper row because one has no longer a Poincaré lemma. In fact we have to
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replace the sheaf dOX by the sheaf

cΩ1
X := ker(d : Ω1

X → Ω2
X)

of closed Pfaffian forms on X.

We will always use Zariski topology (even in the case of H0(X,C∗X) below) if we do not write
Xan. However, c1(X) := c1(Xan).

We will see that the following theorem can be proved using an algebraic analogue of Deligne
cohomology, too, i.e. using hypercohomology, but we can proceed in an elementary way:

Theorem 2.1. Let X be a smooth complex algebraic variety. Then we have a commutative
diagram with exact rows

0 → H0(X,C∗
X) → H0(X,O∗

X) → H0(X, cΩ1
X) → Picci(X) → Pic(X) → H1(X, cΩ1

X)
↓ ↓ ↓ ↓ ↓ ↓

0 → H0(X,C∗
X) → H0(X,O∗

X) → H0(X,Ω1
X) → Picc(X) → Pic(X) → H1(X,Ω1

X)

Proof. We can no longer use the exact sequence of the beginning of section 1.1. Therefore we
must proceed in a different way.

Let us check first that the lower row is exact.
Note that the sequence of sheaves: 0 → C∗X → O∗X → Ω1

X is exact, where O∗X → Ω1
X is

defined by h 7→ dh
h . In fact:

Suppose that h ∈ O∗X,x, where x is a closed point of X, dh
h = 0: Then han ∈ O∗Xan,x is

mapped to 0 ∈ Ω1
Xan,x, so han is constant, which implies that h is constant.

Therefore the sequence:

0→ H0(X,C∗X)→ H0(X,O∗X)→ H0(X,Ω1
X)

is exact.
The rest goes as in the proof of Theorem 1.1.
The upper row is treated in an analogous way. Note that the connection ∇ on OX :

∇(f) = df + fω

is integrable if and only if ω is closed, because the curvature of ∇ is dω.

Note that 0 → C∗X → O∗X → cΩ1
X → 0 is in general not exact, in contrast to the analytic

case: take X = C∗, ω := dz
z ∈

cΩ1
X .

Proposition 1.9 has an algebraic counterpart:

Proposition 2.2. Let X be a non-singular complex algebraic variety. We have an exact sequence

0→ Picci(X)→ Picc(X)→ H0(X,Ω2
X).

The proof is similar to the one of Proposition 1.9.

2.2. Use of Čech hypercohomology. Similarly as in the analytic case (see §1.4) we can
observe that Picc(X) is isomorphic to the first Čech hypercohomology group Ȟ1(X,S ·) of the
complex S ·:

O∗X → Ω1
X → 0→ . . .

on X (but not, up to a shift, of the complex ZX → OX → cΩ1
X → 0→ . . .).

For Čech hypercohomology, we refer to subsection (1.4).

More precisely:
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Lemma 2.3. If X is a non-singular complex variety, we have:

Picc(X) ' Ȟ1(X,S ·) ' H1(X,S ·).

Proof: Let U = (Ui) be a covering of X by open Zariski subsets of X. An element of H1(U ,S ·)
is given by an element ((ωi), (gij)) ∈ C0(U ,Ω1

X) ⊕ C1(U ,O∗X) such that (gij) is a cocycle, i.e.

gij = gikgkj on Ui ∩ Uj ∩ Uk, and ωj − ωi =
dgij
gij

on Ui ∩ Uj .

Assume now that L is an invertible OX -module on X which is endowed with a connection
∇. There is a Zariski open covering U of X such that for each Ui we have a trivialization of
L|Ui. Then L is represented by some cocycle (gij) in C1(U ,O∗X), and ∇|Ui corresponds to a

connection g 7→ dg + gωi on OUi . Then ωj − ωi =
dgij
gij

on Ui ∩ Uj , so we obtain an element of

H1(U ,S ·), hence of Ȟ1(X,S ·).
On the other hand, an element of Ȟ1(X,S ·) comes from an element of H1(U ,S ·) which is

represented by a cocycle (gij) and (ωi) for a suitable open Zariski covering U of X. Then (gij)
defines an invertible OX -module L, and (ωi) defines a connection on L.

One verifies that one obtains well-defined mappings between Picc(X) and Ȟ1(X,S ·). We
obtain Picc(X) ' Ȟ1(X,S ·).

Now in the case of sheaves we have isomorphisms Ȟk → Hk for k = 0, 1, see [11] II 5.9
Corollaire, p. 227 (note that X is not paracompact and that we are not only dealing with co-
herent algebraic sheaves!). This result still holds in the case of hypercohomology, as shown in
the following proposition. So our lemma is proved.

Proposition 2.4. Let X be a topological space and S · a non-negative complex of sheaves of
abelian groups on X. Then the homomorphism Ȟk(X,S ·) → Hk(X,S ·) is bijective for k ≤ 1
and injective for k = 2.

Proof: (i) First we may reduce to the case that S · is a bounded complex:
Choose p > 0. Let π : S · → S≤p−1 be the canonical projection. Then the exact sequence
0→ ker π → S · → S≤p−1 → 0 of presheaf(!) complexes yields a short exact sequence of double
complexes:

Č ·(X, kerπ)→ Č ·(X),S ·)→ Č ·(X,S≤p−1)→ 0

cf. [11] II Th. 5.8.1, p. 204, hence a long exact sequence

Ȟq−1(X,S≤p−1)→ Ȟq−p(X,S≥p)→ Ȟq(X,S ·)→ Ȟq(X,S≤p−1)→ Ȟq−p+1(X,S≥p)

Now put p := 4. Since Ȟq(X,S≥p) = 0 for q < 0 we obtain Ȟq(X,S ·) ' Ȟq(X,S≤p−1) for q ≤ 2.
The same holds for H instead of Ȟ.

(ii) So we may assume that S · is a bounded complex. Then we proceed by induction on the
length of the complex, the case where the length is 0 being trivial.

Induction step: We may assume that S0 6= 0. Putting p = 1 we obtain a commutative diagram
with exact rows

Ȟq−1(X,S0) → Ȟq−1(X,S≥1) → Ȟq(X,S ·) → Ȟq(X,S0) → Ȟq(X,S≥1)
↓ ↓ ↓ ↓ ↓

Hq−1(X,S0) → Hq−1(X,S≥1) → Hq(X,S ·) → Hq(X,S0) → Hq(X,S≥1)

Using the fact that the case of a sheaf is established by [11] p. 227, see above, and the Five
Lemma we obtain the induction step.

Remark: The proof of the preceding Theorem gives the following exact sequence:

Ȟ0(X,O∗X)→ Ȟ0(X,Ω1
X)→ Ȟ1(X,S ·)→ Ȟ1(X,O∗X)→ Ȟ1(X,Ω1

X)
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This exact sequence can also be obtained as follows:
Look at the exact sequence of presheaf (!) complexes:

0→ Ω1
X{1} → S · → O∗X{0} → 0

where, for any presheaf T , the complex T {k} denotes the complex T · with T l = T for l = k
and = 0 otherwise.

This gives the long exact Čech cohomology sequence in question.

We can proceed in the same way to prove the exactness of the upper line of the diagram of
Theorem 2.1 by replacing Ω1

X by cΩ1
X . See Remark after Theorem 1.14.

We have special cases:

Lemma 2.5. Let X be complete, L an invertible OX-module on X.
a) Pic(X) ' Pican(Xan), similarly for Picc, Picci.
b) L admits an integrable connection if and only if c1(L) is a torsion element.
c) Every connection on L is integrable, so Picc(X) ' Picci(X).

Proof: a) This follows from GAGA (see [22] and also [20] p. 152/153) if X is projective. In
general, use [13] Théorème 4.4 instead of [22].

Instead of [20] we can also compare 2.1 and 2.2 with the corresponding analytic statements.
b), c): If X is projective we know that Xan is compact Kähler, so the results follows by GAGA
and Lemma 1.18, Theorem 1.19.

In general we know by [7] §5 that we can still apply Hodge theory to X, so Lemma 1.18 and
Theorem 1.19 still hold. In fact, the Hodge filtration is still defined via Ω·X .

For part b) of the lemma it will turn out that the hypothesis that X is complete is unnecessary,
see Corollary 2.11 below. For c) we must in general restrict to regular connections, see below
(Theorem 2.13).

Remember that compact Kähler manifolds are not automatically algebraic, cf. the case of
complex tori, see [21] Cor. p. 35.

Lemma 2.6. Let X be affine. Then every invertible OX-module on X admits a connection.

Proof: Obvious from Theorem 2.1, because H1(X,Ω1
X) = 0.

2.3. Regularity. It is useful to take the notion of regularity into account.

The regularity has been introduced by P.Deligne in [5] Chap II §4. For the sake of convenience
we define here the regularity of integrable connections on an invertible sheaf:

Definition 2.7. Let L be an invertible OX-module and ∇ an integrable connection on L. Then
∇ is called regular if there exists a smooth compactification X̄ of X such that D := X̄ \X is a
divisor with normal crossings and that, for all x ∈ D, there exists an open Zariski neighbourhood
V of x and there exists s ∈ H0(V, j∗L), s nowhere vanishing on V ′ := V \D, such that ∇(s|V ′) =
(α|V ′)⊗ (s|V ′) with α ∈ H0(V,Ω1

X̄
(log D)). Here j : X → X̄ is the inclusion.

Note that we can replace:
“there exists s ∈ H0(V, j∗L), s nowhere vanishing on V ′ = V \ D, such that ∇(s|V ′) =

(α|V ′)⊗ s|V ′”
by
“for any s ∈ H0(V, j∗L), s nowhere vanishing on V ′ = V \D, we have∇(s|V ′) = (α|V ′)⊗s|V ′”.
Here it is important that we deal with invertible sheaves!
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In fact, let s, s′ ∈ H0(V, j∗L), s, s′ nowhere vanishing on V ′ = V \D. Then s′ = hs, where h
is a rational function on V which has neither zeroes nor poles inside V ′. If ∇(s|V ′) = (α|V ′)⊗
(s|V ′) with α ∈ H0(V,Ω1

X̄
(log D)) we get ∇(s′|V ′) = (α′|V ′) ⊗ (s′|V ′) with α′ = dh

h + α ∈
H0(V,Ω1

X̄
(log D)).

As P. Deligne noticed, the notion of regularity does not depend on the compactification of X
such that the divisor at ∞ is a normal crossing divisor (see [5] p. 90).

We can define the Picard group PiccirX of regular integrable connections in an obvious way.
Now let us fix a compactification X̄ of X as in the preceding definition.

Lemma 2.8. There is an exact sequence:

H0(X,O∗X)→ H0(X̄, cΩ1
X̄(log D))→ Piccir(X)→ Pic(X)→ H1(X̄, cΩ1

X̄(log D))

Proof: The proof is analogous to the proof of Theorem 1.1.
But first observe that, for any invertible OX -module L, there is a Zariski open covering

U = (Ūi) of X̄ such that the restriction of L to Ui = Ūi \D is trivial.
For this, we may assume that X is connected, hence irreducible. One considers a non-empty

and therefore dense Zariski open subspace U of X on which L is trivial. On U , the restriction
L|U has a nowhere vanishing section s. This section extends to X̄ as a rational section s1 of
L. Let D1 be the divisor of this section - this makes sense because L is locally trivial. Now D1

extends to a divisor D̄1 on X̄. For any x ∈ X̄ there is an open affine neighbourhood V̄ such that
D̄1|V̄ is a principal divisor, i.e. divisor of some rational function φx. Then φ−1

x s1 is a nowhere
vanishing section of L|V with V := V̄ \D; it gives a trivialization of L|V .

The first arrow is induced by the homomorphism j∗O∗X → cΩ1
X̄(log D) which is defined as

follows. Locally, a section g of j∗O∗X is of the form h−1g̃, where h, g̃ are regular functions which

do not vanish inside X. Then the image is defined to be dg
g = dg̃

g̃ −
dh
h which is indeed a closed

logarithmic form.
Assume now that g ∈ H0(X,O∗X) is given. Then the image in Piccir(X) is given by OX ,

together with the connection f 7→ df + f dg
g . This is isomorphic to OX , together with the

connection f 7→ df , so we have the trivial element of Piccir(X).
On the other hand, suppose that ω ∈ H0(X̄, cΩ1

X̄(log D)) is mapped onto the trivial element

of Piccir(X). Then there is a g ∈ H0(X,O∗X) such that ω = dg
g .

This shows the exactness at H0(X̄, cΩ1
X̄(log D)).

Then, an element of Pic X is represented by a cocycle (gij) on a covering U as defined before.
This covering comes from an affine covering Ū of X̄, where each gij extends as a rational function

with poles inside D which is a regular and non-vanishing function on Ūi ∩ Ūj \D. Then
dgij
gij

is

a closed logarithmic form on Ūi ∩ Ūj : After refining U if necessary we may assume that we can

write gij = h−1
ij g̃ij where hij and g̃ij are regular on Ūi∩ Ūj and without zeroes in Ui∩Uj . Then:

dgij
gij

=
dg̃ij
g̃ij
− dhij

hij

is a closed logarithmic form. This defines the map:

PicX → H1(X̄, cΩ1
X̄(log D)).

On the other hand, a regular integrable connection on OX is of the form g 7→ dg + gω with
ω ∈ H0(X̄,c Ω1

X̄
(log D)), and the map from H0(X̄,c Ω1

X̄
(log D)) into Piccir(X) is given by:

ω 7→ (OX ,∇)
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where ∇(g) = dg + gω . Then, the composition:

H0(X̄,c Ω1
X̄(log D))→ Piccir(X)→ PicX

is zero. Let (L,∇) a regular integrable connection on the invertible OX -module L where L is
isomorphic to OX . The pair (L,∇) is isomorphic to (OX ,∇0) for some connection ∇0, and there
is a closed logarithmic form ω ∈ H0(X̄,c Ω1

X̄
(log D)), such that ∇0(g) = dg + gω. This proves

the exactness of the sequence at Piccir(X).
Now fix an element of PicX whose image in H1(X̄, cΩ1

X̄(log D)) is trivial. Such an element
is given by an affine covering U and a cocycle

(
dgij
gij

)

such that:
dgij
gij

= ωj − ωi

where ωi is a closed form in cΩ1
X̄(log D) over the Zariski open subset Ui of X.

As we did in the proof of Theorem 1.1, the element (ωi) defines a regular integrable connection
∇ on an invertible OX -module L and the image of the isomorphism class of L is the element of

H1(X̄, cΩ1
X̄(log D)) given by the cocycle (

dgij
gij

).

It remains to prove that the composition:

Piccir(X)→ PicX → H1(X̄, cΩ1
X̄(log D))

is zero. As in the proof of Theorem 1.1, an element of Piccir(X) is given by (L|Ui,∇|Ui)i such

that (L|Ui,∇|Ui) is isomorphic over the Zariski open subspace Ui to (OUi , ∇̃i) where:

∇̃i(f) = df + ωif

for some ωi ∈ H0(Ui,
cΩ1

X̄(log D)), and, if the element (gij) is the cocycle which defines L, we
have:

dgij
gij

= ωj − ωi.

Since the forms ωi are closed, reasoning as in the proof of Theorem 1.1, we obtain our assertion.

Remarks. 1. In fact, at the beginning we have shown that j∗L is an invertible j∗OX -module,
j : X → X̄ being the inclusion.
2. Again we can prove the lemma by showing that PiccirX ' Ȟ1(X̄, T ·) ' H1(X̄, T ·), where
T · is the non-negative complex

j∗O∗X
g 7→ dg

g−→ cΩ1
X̄(log D) −→ 0 −→ . . .

with j : X → X̄ being the inclusion.

In this context it is useful to have:

Lemma 2.9. PicX ' H1(X̄, j∗O∗X).

Proof: It is sufficient to show that R1j∗O∗X = 0. An element of (R1j∗O∗X)x is represented by
an element of H1(U ∩X,O∗X), where U is an open neighbourhood of x, so by a line bundle L
on U ∩X. After shrinking U if necessary we know that L is trivial, by the proof of Lemma 2.8.
This implies our assertion.

Theorem 2.10. Let L be an invertible OX-module on X. Then L admits a regular integrable
connection if and only if its first Chern class is a torsion element.
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Proof: Since the integral cohomology of X is an abelian group of finite type, the implication
⇒ is proved by Lemma 1.16.

Now, consider the implication ⇐.
Suppose first that c1(L) = 0.
Let X̄ be a smooth compactification of X such that D := X̄ \X is a normal crossing divisor.

Suppose that D has r irreducible components. Then L extends to an algebraic invertible sheaf
L′ on X̄ with first Chern class c1(L′) = 0.

To prove this, we consider the diagram with exact rows:

Zr → Pic X̄ → PicX → 0
↓' ↓ c1 ↓ c1

H2(X̄an, Xan;Z) → H2(X̄an;Z) → H2(Xan;Z)

Let [L] be the class of L. We have assumed that its first Chern class is c1(L) = 0. Let L1

be a invertible OX̄ -module whose class has its image equal to [L]. The first Chern class of L1

comes from an element of H2(X̄an, Xan;Z) which corresponds to an element of Zr whose image
in Pic X̄ is L2 which has the same first Chern class as L1. The invertible sheaf L′ := L1 ⊗ L−1

2

has a first Chern class equal to 0 and it extends L.
On the complete non-singular variety X̄ we have obtained an invertible sheaf L′ which extends

L and has first Chern class c1(L′) = 0. By Lemma 2.5 the invertible sheaf L′ is endowed with a
integral connection ∇′. The restriction of ∇′ to L is a regular integral connection.

If c1(L) = c, c being a torsion element, by Lemma 1.16 there is an analytic invertible sheaf L′
with integrable connection on Xan having c as first Chern class. By Deligne’s existence theorem
(Théorème 5.9 Chap. II of [5] p. 97) we can find an invertible sheaf L1 on X with an integrable
connection such that Lan

1 = L′, so c1(L1) = c. Now c1(L ⊗ (L1)−1) = 0, so by the preceding
result there is a regular integrable connection on L ⊗ (L1)−1. So we get a regular integrable
connection on L = L1 ⊗ (L′ ⊗ (L1)−1), too.

Therefore if the first Chern class of L is a torsion element, the invertible sheaf L admits a
regular integrable connection.

Corollary 2.11. Let L be an invertible OX-module. Then the following conditions are equiva-
lent:

(1) L admits a regular integrable connection;
(2) L admits an integrable connection;
(3) Lan admits an analytic integrable connection;
(4) the first Chern class c1(L) of L is a torsion element.

2.4. Remark on integrability and regularity. One may define a notion of regularity for
connections which does not suppose that the connection is integrable - at least in the case of
invertible sheaves.

This may seem to be superfluous because we will see that such a connection is automatically
integrable. The situation changes, however, if we generalize the notions of regularity by asking
regularity with respect to a partial compactification only.

Definition 2.12. Let L be an invertible OX-module and ∇ a connection on L. Then ∇ is called
regular if there exists a smooth compactification X̄ of X such that D := X̄ \ X is a divisor
with normal crossings and that, for all x ∈ D there exists an affine neighbourhood V of x and
there exists s ∈ H0(V, j∗L) which does not vanish on D, such that ∇(s|V ) = (α|V ) ⊗ s|V with
α ∈ H0(V,Ω1

X̄
(log D)). Here j : X → X̄ is the inclusion.
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As in the definition of a regular integrable connection we may again replace ”there exists s...
such that...” by ”for all s... we have...”.

The independence of the compactification will follow from the next theorem.
We can define the group PiccrX of isomorphism classes of invertible OX -modules with a

regular connection in an obvious way.
In fact, such a regular connection is automatically integrable, because we have:

Theorem 2.13. If L is an invertible OX-module, every regular connection on L is integrable.

Proof: We proceed as in the proof of Theorem 1.19.
First we show that the mapping:

PiccirX → PiccrX

is surjective. In fact, we have the following Lemma:

Lemma 2.14. There is a commutative diagram with exact rows

H0(X,O∗X) → H0(X̄, cΩ1
X̄(log D)) → Piccir(X) → Pic(X) → H1(X̄, cΩ1

X̄(log D))
↓ ↓ ↓ ↓ ↓

H0(X,O∗X) → H0(X̄,Ω1
X̄

(log D)) → Piccr(X) → Pic(X) → H1(X̄,Ω1
X̄

(log D))

Proof: As in Lemma 2.8, the proof is analogous to the proof of Theorem 1.1.
The upper line is exact, as we saw in Lemma 2.8. Concerning the lower row, we define

the map PicX → H1(X̄,Ω1
X̄

(log D)) as the composition PicX → H1(X̄, cΩ1
X̄(log D)) →

H1(X̄,Ω1
X̄

(log D)).

The map H0(X̄,Ω1
X̄

(log D))→ Piccr(X) is given by:

ω 7→ (OX ,∇)

where the connection ∇ is defined by ∇(f) = df + fω. This defines a connection on OX which
is regular since ω ∈ H0(X̄,Ω1

X̄
(log D)). Therefore, the composition:

H0(X̄,Ω1
X̄(log D))→ Piccr(X)→ PicX

is zero.
Let (L,∇) be an invertible sheaf with a regular connection whose image is zero in Pic(X).

Then L is isomorphic to the trivial invertible sheaf OX and there is a connection ∇0 on OX such
that (L,∇) is isomorphic to (OX ,∇0). So ∇0 is a regular connection. On the other hand there
is a global form ω on X, such that ∇0(f) = df + fω. If ∇0 is regular, one can choose the form ω
as a global rational form on X̄ in H0(X̄,Ω1

X̄
(log D)). Then the lower row is exact at Piccr(X).

Now, let us check the exactness at Pic(X). Let Ū = Ūi be an affine covering of X̄ as in the
proof of Lemma 2.8, such that (Ui) is a covering of X and (L|Ui,∇|Ui = ∇i) is isomorphic to

(OX |Ui, ∇̃i), where:

∇̃i(f) = df + fωi

with a rational differential form ωi defined on Ūi with poles contained in D. On this covering
(Ui) of X, the invertible sheaf L defines the cocycle (gij) and its image in H1(X̄,Ω1

X̄
(log D)) is

the cocycle
dĝij
ĝij

defined by the rational functions on the covering (Ūi) which extend (gij) and,

again:
dĝij
ĝij

= ωj − ωi.
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If the image of the class of L in H1(X̄,Ω1
X̄

(log D)) is trivial, we have:

dĝij
ĝij

= ωj − ωi.

where ĝij is a rational function which extends gij to X̄ and ωi is a logarithmic differential form
along D on Ūi. The invertible sheaf L is endowed with a regular connection ∇ locally defined
on Ui by:

∇̃i(f) = df + fωi.

This ends the proof of Lemma 2.14.

Then, we have:

Lemma 2.15. H0(X̄, cΩ1
X̄(log D)) = H0(X̄,Ω1

X̄
(log D))

Proof. We know that the spectral sequence Epq
1 = Hq(X̄,Ωp

X̄
(log D))→ Hp+q(Xan;C) degen-

erates at E1 (see [6] Corollaire 3.2.13 page 38), so the mapping:

H0(X̄,Ω1
X̄(log D))

d→ H0(X̄,Ω2
X̄(log D))

is the zero map which precisely means that the forms in H0(X̄,Ω1
X̄

(log D)) are closed as stated
in the lemma.

This proves the Lemma.

Proof of Theorem 2.13:
The two preceding lemmas show that Piccir(X)→ Piccr(X) is surjective.
Now let ∇ be a regular connection on L. Because of the surjectivity just mentioned there is

a line bundle L′ on X and an integrable regular connection ∇′ on L′ such that L′ ' L; we may
assume moreover that L′ = L. Then ∇(s) = ∇′(s)+ω⊗s with ω ∈ H0(X̄,Ω1

X̄
(log D)). Because

of the last lemma: dω = 0, hence ∇ is integrable, too.

Remark: Since PiccirX = PiccrX we have PiccirX ' H1(X, T̃ ·), where T̃ · is the complex
j∗O∗X → Ω1

X
(log D)→ 0→ . . ..

So it may seem that discussing regular connections without the hypothesis of integrability was
useless.

What is useful, however, is the lower exact sequence of Lemma 2.14.
Furthermore let us look at the following situation: X ⊂ X̄, X̄ being a smooth complex

algebraic variety which is not assumed to be complete, D := X̄ \X divisor with normal crossings.
Let ∇ be connection on an invertible sheaf on X. Then we may define when ∇ is regular resp.
regular integrable with respect to D in an obvious way. In the case X̄ = X this means that no
regularity condition is imposed at all, so we can no longer expect coincidence of the two notions.

3. Some examples

In the following examples we only consider complex algebraic varieties.

3.1. For the complex projective line, the invertible sheaf O(k) has no connection whenever k 6=
0. Consider X = P1. One knows that Pic(X) = Z. We shall see that Picci(X) ' Picc(X) = {0}.

In fact, as we have proved in the section 2, for any compact connected complex Kähler
manifold X (in particular any complex projective variety without singularities) we have:

Picanci (X) ' Picanc (X) ' H1(X,C∗).
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For the complex line P1 the cohomology H1(Xan,C∗) = 0. By GAGA (see [22], [20]) we have
Picci(X) ' Picanci (Xan) and Picc(X) ' Picanc (Xan) which yields our result.

3.2. We give an example of an invertible OX -module which has a connection but no integrable
connection.

Let X̄ := {z0z1 − z2z3 = 0} ⊂ P3. Notice that X̄ is a complex surface isomorphic to P1 × P1.
Let D := X̄ ∩ {z0 + z1 + z2 − z3 = 0}. Let X := X̄ \D.
One verifies that D is a smooth hypersurface of X̄. Using the Lefschetz Theorem on hyper-

plane sections, one shows that D is connected. In fact, D is a non-singular projective plane
curve of degree 2. So D ' P1. Then H1(Dan;Z) = 0.

By [14] (p. 75) we have a commutative diagram whose lines are exact:

Z → Pic X̄ → PicX → 0
↓' ↓ ↓

H2(X̄an, Xan;Z) → H2(X̄an;Z) → Imφ → 0

where φ : H2(X̄an;Z)→ H2(Xan;Z).
We have (see [16] Chap. III Exercise 12.6, p. 292):

Pic X̄ ' PicP1 × PicP1 ' Z× Z.

According to Künneth formula, we have:

H2(X̄an;Z) ' Z⊕ Z.

One verifies that the middle vertical arrow in the diagram above given by the first Chern class is
an isomorphism: one has to compute c1(p∗i (OP1(n)), i = 1, 2, where p1 and p2 are the projections
of X̄ onto P1.

By the Five Lemma, the last vertical arrow is an isomorphism.
Moreover the lower line of the diagram gives an exact sequence:

Z→ Z⊕ Z→ Imφ

because H2(X̄an, Xan;Z) ' H2(Dan;Z) by Lefschetz duality and:

H2(Dan;Z) ' Z

because D ' P1.
Therefore, there is an element c ∈ Imφ which is not a torsion element.
The surjectivity of the third vertical arrow gives that there is an invertible sheaf L on X such

that c1(L) = c.
Since X is affine, we have:

H1(X,Ω1
X) = 0.

According to Lemma 2.6 there is a connection on the sheaf L. But according to Lemma 1.16,
there is no integrable connection on L.

3.3. Notice that it is easier to find an example where there are connections which are not
integrable or regular. One may consider X = C2. In this case both Pican(Xan) and Pic(X) are
trivial.

A connection on OX (resp. OXan) is given by a global algebraic (resp. analytic) differential
form ω:

∇(f) = df + fω.

If one considers ω = dz1, the corresponding connection is integrable but not regular.
If ω = z1dz2, the corresponding connection is not integrable because the form is not closed.
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We can compute Picc(X) and Picci(X) by using the diagram of Theorem 2.1. Then:

Picc(X) ' H0(X,Ω1
X)

because for X = C2, the map H0(X,C∗X)→ H0(X,O∗X) is an isomorphism.
Similarly, we have:

Picci(X) ' H0(X, cΩ1
X).

In the analytic case, we know that:

Picanci (Xan) ' H1(Xan,C∗),

so it is trivial.
For Picanc (Xan) the exact sequence of 1.14 gives that Picanc (Xan) is isomorphic to the

group H0(Xan, dΩ1
Xan). The elements of Picanc (Xan) are given by their curvature. Note that

H2(Xan;C∗) = 0.

3.4. Let X be a non-singular algebraic variety. It may happen that all invertible sheaves on
X admit an integrable connection whereas this is not true for Xan, as shown by the following
example:

Consider the algebraic variety X = C∗ × C∗.

Notice that for this variety Pic(X) = 0, because X = C2 \ Z where Z is the closed algebraic
subspace given by the union of the lines C× {0} and {0} ×C, then using the Proposition 6.5 in
Chapter II of [16] p. 133, we have a surjection:

Pic(C2)→ Pic(X).

Then, Pic(X) = 0.
On the other hand Pican(Xan) ' H2(Xan;Z) = Z because Xan is a Stein space; use the

exact exponential sequence.
Therefore, there are invertible OXan -modules for which the complex first Chern class is 6=

0. According to Lemma 1.16 these sheaves do not have integrable connections. However, by
Theorem 1.1 they have a connection because H1(Xan,Ω1

Xan) = 0. But these do not come from
an algebraic invertible sheaf, because the latter ones are trivial.

3.5. Let X be a non-singular complex algebraic variety and L an invertible sheaf on X. By
Corollary 2.11, there is a connection on L (and even an integrable one) as soon as c1C(L) = 0.
This is no longer true if we pass to the analytic situation as shown by the following example:

Put X := C2 \ {0}. Note that Xan is simply connected.
On the other hand, H1(Xan,OXan) 6= 0: Let U be the open Stein covering by U1 = C × C∗,
U2 = C∗ × C. Then H1(Xan,OXan) is the cokernel of :

H0(U1,OU1
)⊕H0(U2,OU1

)→ H0(U1 ∩ U2,OU1∩U2
)

(a, b) 7→ r1(a)− r2(b)

where r1, r2 are restrictions, so

H1(Xan,OXan) ' V
where V is the vector space of all globally convergent Laurent series in two variables with negative
exponents, so V 6= 0.

As usual, let Pic0(Xan) be the group of isomorphism of line bundles on Xan with trivial first
Chern class. The exact sequence:

0 = H1(X;Z)→ H1(Xan,OXan)→ Pic0(Xan)→ 0
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shows that Pic0(Xan) 6= 0. On the other hand, Pic(X) = Pic(C2) = 0. So there are invert-
ible OXan -modules with first Chern class 0 which are not algebraizable. These cannot admit

a connection: The composition H1(Xan,OXan)
'→ Pic(Xan) → H1(Xan,Ω1

Xan) is given by
(fij) 7→ (2πidfij), so b(L) 6= 0 if (fij) does not represent the trivial element: note that the map-

ping H1(Xan,OXan) → H1(Xan,Ω1
Xan) corresponds to the mapping V → V 2: h 7→ ( ∂h

∂z1
, ∂h
∂z2

)
which is injective.

This shows that there are invertible sheaves on Xan whose first Chern class vanishes and
which do not admit a holomorphic connection. In particular, we cannot improve Lemma 1.16 in
general. On the other hand, cf. Lemma 1.18.

3.6. Let X be a non-singular complex algebraic variety, L an invertible OX -module, ∇ a con-
nection on L.

Then we have:
∇ regular integrable ⇒ ∇ integrable

This implication is not invertible, as shown by the example X = C2,L = OX (see above 3.3).
Note that ∇ is integrable if and only if ∇an is integrable.
In fact, we can consider the existence of connections on L (resp. Lan):

∃∇ regular integrable ⇔ ∃∇ integrable ⇒ ∃∇
m ⇓

∃∇ analytic integrable ⇒ ∃∇ analytic

For the left upper and the middle vertical equivalence see Corollary 2.11.
Note that there may be no connection at all on L or Lan, as shown by the example X =

P1,L = O(k), k 6= 0.
The right horizontal arrows are not invertible, as shown by the complicated example 3.2.
The right vertical arrow is not invertible if the answer to the following question is positive:
Let X be the Serre example of a non-singular algebraic surface which is not affine but the

corresponding complex analytic manifold is Stein (see [15] p. 232 Example 3.2). Is there an
invertible OX -module L on X such that its image in H1(X,Ω1

X) does not vanish? (Note that
X is not affine, so it is possible that H1(X,Ω1

X) 6= 0). Then, L does not admit a connection.
On the other hand, Xan is Stein, so H1(Xan,Ω1

Xan) = 0, which implies that there is a
connection on Lan.
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Lê Dũng Tráng, Université d’Aix-Marseille, LATP, UMR-CNRS 7353, 39 rue Joliot-Curie, F-13453

Marseille Cedex 13, France
Email address: ledt@ictp.it

https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1515/9783110838350
https://doi.org/10.5802/aif.59
https://doi.org/10.1515/9781400883875

	1. Analytic Comparisons
	1.1. 
	1.2. 
	1.3. 
	1.4. Relation to Deligne cohomology
	1.5. 
	1.6. Compact Kähler manifolds

	2. Algebraic case
	2.1. 
	2.2. Use of Cech hypercohomology
	2.3. Regularity
	2.4. Remark on integrability and regularity.

	3. Some examples
	3.1. 
	3.2. 
	3.3. 
	3.4. 
	3.5. 
	3.6. 

	References

