SINGULARITIES AND POLYHEDRA ${ }^{1}$

EGBERT BRIESKORN

I reported about work of my students Thomas Fischer, Alexandra Kaess, Ute Neuschäfer, Frank Rothenhäusler and Stefan Scheidt. This work describes the neighbourhood boundaries of quasi-homogeneous surface singularities in a new way. It is known that these neighbourhood boundaries are quotients G / Γ of a 3 -dimensional Lie group G and a discrete subgroup Γ. For example, for the quotient singularities \mathbf{C}^{2} / Γ the group G is $\operatorname{Spin}(3)=S^{3}$, the group of unit quaternions, and Γ could for example be one of the three binary polyhedral groups (binary tetrahedral \mathbb{T}, binary octahedral \mathbb{O}, binary icosahedral \mathbb{I}). This gives the three singularities E_{6}, E_{7}, E_{8}. For the next set of examples, the simply-elliptic singularities $\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$, the group G is the Heisenberg group, and Γ is a congruence subgroup of the lattice of its integral matrices. In most cases however, G is $\mathrm{SU}(1,1)$ or some covering of it, and Γ comes from a Fuchsian group $\bar{\Gamma} \subset \operatorname{PSU}(1,1)$ acting on the hyperbolic plane $\mathbb{H}=\{x \in \mathbb{C}| | z \mid<1\}$. All of this is well known.

Now I describe a very original construction discovered by Thomas Fischer in his 1992 PhDthesis:

Let $\bar{\Gamma} \subset \operatorname{PSU}(1,1)$ be discrete with compact quotient $\mathbb{H} / \bar{\Gamma}$. Assume that $\bar{\Gamma}$ has at least one point in \mathbb{H} with nontrivial isotropy subgroup. Choose such a point $o \in \mathbb{H}$. Let p be the order of its isotropy group $\{\bar{\gamma} \in \bar{\Gamma} \mid \bar{\gamma}(o)=o\}$. Let $\Gamma \subset \operatorname{SU}(1,1)$ be the inverse image of $\bar{\Gamma}$. For many singularities, the neighbourhood boundary is of the form $\operatorname{SU}(1,1) / \Gamma$ with a suitable $\bar{\Gamma}$. For example, for the 14 quasihomogeneous exceptional 1 -modular singularities $E_{12}, E_{13}, E_{14}, Z_{11}, Z_{12}, Z_{13}, Q_{10}, Q_{11}, Q_{12}, W_{12}, W_{13}, S_{11}, U_{12}$ the group Γ is the group of orientation-preserving automorphisms of \mathbb{H} in the group $\sum(p, q, r)$ generated by the reflections in the sides of a hyperbolic triangle with angles $\pi / p, \pi / q, \pi / r$. In this case, the choice of $o \in \mathbb{H}$ amounts to choosing one of the integers in the so-called Dolgachev triple (p, q, r). We shall indicate this by underlining this number, e.g. $(2,3,7)$. Fischer's construction:

$$
\mathrm{SU}(1,1)=\left\{\left.\left(\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right) \right\rvert\, a \bar{a}-b \bar{b}=1\right\}=\left\{x \in \mathbb{R}^{4} \mid x_{0}^{2}+x_{1}^{2}-x_{3}^{2}-x_{4}^{2}=1\right\}=: \mathbb{S}
$$

is a 3-dimensional pseudosphere with Minkowski-metric with signature $(+,-,-)$. Up to a factor $-1 / 8$, this agrees with the Killing metric. The construction will be done in \mathbb{R}^{4} with $\langle x, x\rangle=x_{0}^{2}+x_{1}^{2}-x_{3}^{2}-x_{4}^{2}$. Let C^{+}be the positive cone $C^{+}=\left\{x \in \mathbb{R}^{4} \mid\langle x, x\rangle>0\right\}$ and $\pi: C^{+} \rightarrow \mathbb{S}$ be the retraction by central projection $\pi(x):=x / \sqrt{\langle x, x\rangle}$. For any $g \in \mathbb{S}$, let H_{g} be the halfspace $H_{g}:=\left\{x \in \mathbb{R}^{4} \mid\langle x, g\rangle \leq 1\right\}$. Its boundary ∂H_{g} is the affine tangent space $\partial H_{g}=T_{g}(\mathbb{S})$. For any $z \in \bar{\Gamma}(o)$ in the chosen special orbit $\bar{\Gamma}(o) \subset \mathbb{H}$, let L_{z} be the coset $L_{z}=\{\gamma \in \Gamma \mid \gamma(o)=z\}$. It has the cardinality $2 p$. Let $Q_{z} \in \mathbb{R}^{4}$ be defined by

$$
Q_{z}:=\bigcap_{g \in L_{z}} H_{g}
$$

[^0]Q_{z} is a 4-dimensional prism, the product of \mathbb{R}^{2} with a plane $2 p$-gon. Consider
$$
P:=\bigcup_{z \in \bar{\Gamma}(o)} Q_{z}
$$
and $\partial_{+} P:=\partial P \cap C^{+}$.
$\partial_{+} P$ is the support of a 3 -dimensional polyhedral complex and $\pi: \partial_{+} P \rightarrow \mathbb{S}$ is a homeomorphism, which transfers the polyhedral structure to \mathbb{S}. The following definition and theorem of Fischer analyzes this structure:

Definition: $F_{g}=C^{+} \cap \partial H_{g} \cap\left(Q_{g(o)} \backslash \underset{\substack{z \in \Gamma(o) \\ z \neq g(o)}}{\bigcup} Q_{z}\right)$.

Theorem:

(1) F_{g} is a compact polyhedron in the Minkowski-3-space ∂H_{g}
(2) $\left\{F_{g}\right\}_{g \in \Gamma}$ is the set of 3-dimensional faces of a 3-dimensional polyhedral complex with support $\partial_{+} P$.
(3) Γ operates simply transitively on $\left\{F_{g} \mid g \in \Gamma\right\}$.
(4) $\left\{\pi\left(F_{g}\right)\right\}$ is a tesselation of \mathbb{S} by totally geodesic polyhedra in this Minkowskipseudosphere. Γ acts simply transitively on the set of these $\pi\left(F_{g}\right)$, so each of them can serve as a fundamental domain.
(5) Hence \mathbb{S} / Γ is obtained from F_{G} by pairing faces and identifying them in a specified way given by Γ and the construction.
Fischer calculated the examples $(2,3, \underline{7}),(2,3, \underline{8}),(2,3, \underline{9})$. These fit in very well with the classical cases $E_{6}=(2,3, \underline{3}), E_{7}=(2,3, \underline{4})$ and $E_{8}=(2,3, \underline{5})$. I myself added an analysis of the cases $\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$. The following pictures show the resulting 9 fundamental domains:

The other four students worked out all 14 exceptional $(p, q,, \underline{r})$ with the exception of $r=2$. As a result, a pattern seems to emerge. The following shows a sample of their pictures:

I presented some conjectures on the series-patterns. Work in progress by Ludwig Balke may lead to a new and original way of looking at symmetry-breaking.

The following pages show the handwritten notes of Brieskorn from the "Vortragsbuch" of the singularities workshop 1996 in Oberwolfach.

286

Singularities and Polyhedra

Eghot Bniskorn, Bonn

1 reported about work of my students Thomas Fischer. Alexandra.
Kaess, Un Nenschaffr, Frank Rothenhäusher and Stefoon Scheidt.
This work describes the weigh bowhood boundanis of quasihomogeneous swface singularities in a new way. It is known that these neighbourhood boundaris are quotients GIT of a 3-dimensional Liegroup and a discrete subgroup Γ. For example, for the quotient singularities \mathbb{C}^{2} / Γ the group G is $\operatorname{Spin}(3)=S^{3}$,
the group of unit quaternions, and Γ could for example
be one of the three binary polyhedral groups (kiniany tetrahedral π,
binary octahedral D, binary icosahedral I. An Miso gives
the thee singularities E_{6}, E_{7}, E_{8}. For the next set of examples,
the simply-elliptic singularities $\tilde{E}_{61} \widetilde{E}_{7}, \widetilde{E}_{8}$ the group G
is the Heisenberg group, and Γ is a congmence subgroup of
the lattice of ib inteypol matrices. In must cases however,
G is $S U(1,1)$ or some covering of it, and Γ comes from
a Fudesian Group FCPSU $(1,1)$ acting on the hyperbolic
plane $H=\{z \in \mathbb{C}| | z \mid<1\}$. All this is well known.
Now I describe a very original construction discovered by Thomas Fischer in his 1992 Ph.D. Thesis.
Let FCPSU $(1,1)$ be discrete with compact quotritet H / F.
Assume, that \bar{F} has at least one point in H with nontrivial
isotropy subgroup. Choose such a point $0 \in H$,
Let p be the order of it isotropy group $\{\bar{\gamma} \in \Gamma \mid \bar{\gamma}(p)=0\}$.
Let $\Gamma \operatorname{CSU}(1,1)$ be the inverse image of \bar{F}.
For many singularities, the meighbowhoodbounday
is of the form $S U(1,1) / \Gamma$ with a suitable F.
For example, for the 14 quasihonogeneons exceptional
1-modular singnlaritis $E_{12}, E_{13}, E_{14}, Z_{11,}, Z_{12}, Z_{131} Q_{10}, Q_{11}, Q_{12}$,
$W_{12}, W_{13}, S_{11}, S_{12}, U_{12}$ the group Γ is the group of orientation preserving automorphism ms of H in the Group $\Sigma(p, q, r)$ generated by the reflections in the sides of a hyprebolic mangle with At angles $\pi / p, \pi / 2, \pi / r$. In this case, the choice of $o \in \mathbb{H}$ amours to choosing one of the integer in the so called Dolyaceo triple (p, g, r) Were shall indicate this by underlining this number, e.g. $(2,3, z)$.

Fischer construction:
$\operatorname{Su}(1,1)=\left\{\left(\frac{a}{b}, \frac{b}{a}\right) a \bar{a}-b \bar{b}\right\}=\left\{x \in \mathbb{R}^{4} \mid x_{0}^{2}+x_{1}^{2}-x_{3}^{2}-x_{4}^{2}=1\right\}=: \mathbb{D}$ is a 3-dimensional plendospher with Minkroski - metric $\nless 1 \rightarrow$ with signature ($(,-,-)$) Up to a factor $-\frac{1}{8}$, then agrees with the Killnig metric. The construction will be done in \mathbb{R}^{4} with $\left\langle x_{1} x\right\rangle=x_{0}^{2}+x_{1}^{2}-x_{3}^{2}-x_{4}^{2}$. Let C^{+}be the positive cone $C^{+}=\left\{x \in \mathbb{R}^{4} \mid\langle x, x\rangle>0\right.$ and $\pi: C^{+} \rightarrow \$$ be the retraction by central projection $\pi(x)=x / \sqrt{\langle x,\rangle}$. Fr. any $g \in \mathbb{S}$, let H_{g} be the half space $H_{g}=\left\{x \in \mathbb{R}^{4} \mid\langle x, g\rangle \leq 1\right\}$. It boundary ∂H_{g} is the affine tangentrpace $\partial H_{g}=T_{g}(\$)$.
For any $F \in \$$, let $z \in F(0)$ in the chosen special orbit $F(0) \subset H$, let L_{z} be the coset $L_{z}=\{\gamma \in \Gamma \mid \gamma(0)=z\}$. U has cardinality $2 p$. Let $Q_{z} \subset \mathbb{R}^{4}$ be defined by

$$
Q_{z}=\bigcap_{g \in L_{z}} H_{g}
$$

Q2 is a 4-dineusional prom, the product of \mathbb{R}^{2} with a plane $2 p$-goo. Conside

$$
P=\underset{Z \in F(0)}{\bigcup}
$$

and $\partial_{+} P=\partial P \cap E^{+}$.
$\partial_{+} P$ is the support of a 3-dinensianal polyhedral complex and $\pi: \partial_{+} P \rightarrow \$$ is a homeomorphism, which transfers the polyhedral structur to \$. The following Definition and Theorem of Fischer anally res this structure.

Definition: $F_{g}=C^{+} \cap \partial H_{g} \cap\left(Q_{g(0)} \backslash \underset{z \in \Gamma(0)}{\bigcup} \dot{Q}_{z}\right)$
$z \neq g(0)$

Theorem:

(i) F_{g} is a compact polyhedron in Minkoroki-3-space $2 \mathrm{Hg}_{g}$
(ii) $\left\{F_{g}\right\}_{g \in T}$ is the set of 3 -dim. faces of a 3 -dim
polynichal complex with support $\partial_{+} P$.
(iii) Γ operates simply transitively on $\left\{F_{g} \mid g \in \Gamma\right\}$
(iv) $\left\{\pi\left(F_{g}\right)\right\}$ is a tesselation of $\$$ by totally geodisic polyhedra in this Minkernoki- psendospher. Fact simply transitively on the set of these $\pi\left(F_{g}\right)$, so each of them can sere as a fundamental domain.
(v) Hence $\$ / \Gamma$ is obtained from F_{g} by paining faces and identififyig the in a specified way given by Γ and the consinction.

Fischer calculated the examples $(2,3, z),(2,3,8),(2,3,9)$ These fit in very well with the dassical cases $E_{6}=(2,3,3)$, $E_{7}=(2,3,4)$ and $E_{8}=(2,3,5)$. I myself added an analysis of the cases $\tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$. The next page shows the resulting 9 fundamental domains. The other fou student worked out all 14 exceptional ($p, 9, r$) with the exception of $r=2$. Ap a result, a patten seems to emerge. The second following page shows a sample of their pictwes. I presented some conjectures on the series - pallows. Work in progress by Ludwig Bahlke may lead to a new and original way of looking at Squat Bminkan

[^0]: ${ }^{1}$ Tagungsbericht 27/1996, Singularitäten 14.07.-20.07.1996, Mathematisches Forschungsinstitut Oberwolfach (MFO)..

