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1. Introduction

Brieskorn’s paper “Die Monodromie der isolierten Singularitäten von Hyperfläschen,” pub-
lished in 1970 in Manuscripta Mathematica, gave a new insight to the theory of monodromy
and Gauß-Manin connections. The paper, written in the framework of isolated hypersurface sin-
gularities, has been generalized for isolated complete intersection singularities by G.-M. Greuel
in 1975 [10]. In the following times and also more recently, a long list of authors, among them
P. Deligne [7], W. Ebeling [8], H. Hamm [12], Lê D. T. [20], B. Malgrange [24], D.Siersma [37]
etc. provided generalizations and developments of the monodromy theory. The regularity of
the Gauß-Manin connection, proved by Brieskorn in the framework of isolated hypersurface sin-
gularities has been proved and developped in various situations by many authors, among them
G.-M. Greuel [10], C. Hertling [15], F. Pham [28], K. Saito [29], M. Saito [30], J. Scherk and
J.H.M. Steenbrink [31], M. Schulze [32], A. Varchenko [38], etc.

There are many surveys concerning the various aspects of monodromy and including de-
velopments of the theory. In particular, Ebeling’s survey [8] shows very well the importance
of Brieskorn’s article as well as developments and generalisations of the Brieskorn’s results.
Siersma’s survey [37] deals with the non-isolated case, and presents new results in this frame-
work.

The present paper, based on ideas of the second author [34, 35, 36], does not pretend any
originality. It is not devoted to specialists, but to “beginners”. The aim of the paper is to
introduce monodromy theory and provide some elementary view about the Brieskorn paper.
Our aim is not to replace the reading of this very important Brieskorn article, but hopefully to
encourage one to read it.

The authors thank the referee and Gert-Martin Greuel for valuable comments and corrections.

2. Connections and monodromy

2.1. Definitions and notations. Let f : (Cn+1, 0) → C be an analytic function defined in a
neighbourhood of the origin 0 in Cn+1 and such that f(0) = 0. We denote by (z0, . . . , zn) the
local coordinates of Cn+1 at 0. Let us assume that f admits an isolated singularity at 0, that
is the partial derivatives (∂f/∂zi)(z) have a common zero at the origin and there is no other
singularity in a neighbourhood of 0.

One denotes by O the local ring of Cn+1 at 0 and by I the ideal of O

I =

〈
∂f

∂z0
, . . . ,

∂f

∂zn

〉
.

The Milnor number of the singularity is defined by:

µ = dimCO/I,
denoted by bf,0 in Brieskorn [5].

http://dx.doi.org/10.5427/jsing.2018.18f
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Let us fix some (classical) notations. Let ε and η be such that 0 < η < ε and denote:
Bε ⊂ Cn+1 the ball defined by ‖z‖ < ε, z ∈ Cn+1,
D ⊂ C the disk defined by |t| < η, t ∈ C, and D′ = D \ {0},
X = Bε ∩ f−1(D) = {z ∈ Cn+1 ; ‖z‖ < ε and |f(z)| < η},
X ′ = X \ f−1(0) and Xt = X ∩ f−1(t) for all t ∈ D.

The following classical picture illustrates the situation.

0

X0

X

Bε

0•D

Cn+1

C

f

The fundamental theorem, due to Milnor is the following:

Theorem 2.1 (Milnor). If ε and η are small enough, then:
(i) The map f : X \ f−1(0)→ D \ {0} is a C∞ differentiable fibration, locally trivial and whose
fibres have the homotopy type of a bouquet of µ spheres with dimension n.
(ii) There exists ε1 < ε such that the intersection of Xt with the sphere Sr ⊂ Cn+1 centered at
0 and with radius r is transverse for all |t| ≤ η and ε1 ≤ r ≤ ε.

In the following, we intend to make explicit the action of the fundamental group π1(D′) on
the cohomology of the fibre Hn(Xt;C) for t ∈ D′. We will use some results on connections.

2.2. Connections. Let π : E → B a locally trivial fibre bundle, where the fibre F and basis B
are locally compact. We assume that F has the homotopy type of a finite complex. One define
a (complex) vector fibre bundle Hn(π) with basis B in the following way:

The total space is the set of pairs (t, α) where t ∈ B and α ∈ Hn(Ft;C), where Ft = π−1(t).
The projection of Hn(π) on B sends (t, α) to t. The vectorial structure of the fibres is clear.
The topology of Hn(π) is defined by the way of local charts: for every open subset U ⊂ B which
is a trivialization domain of π : E → B, one has a homeomorphism ψ|U : E|U → U × F and
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then for every t ∈ U , an identification ψt : Ft
∼−→ F . For all t ∈ B, one has an isomorphism

ψ∗t : H∗(F ;C)
∼−→ H∗(Ft;C). The local chart of Hn(π) over U is defined by the bijection

ΨU : Hn(π)|U → U ×Hn(F ;C)

such that ΨU (t, α) = (t, (ψ∗t )−1(α)). The vector bundle Hn(π) is then well defined.
The charts ΨU are given by locally constant maps: if V = U ∩U ′ is connected, the transition

map V → Aut(Hn(F )) defined by the local charts, is constant. The group Aut(Hn(F )) is a
discrete group, that allows to introduce on Hn(π) a locally flat connection ∇ (by the way of the
parallel transport, see for example [19]).

Definition 2.2. The horizontal sections of the bundle Hn(π) are sections for which the covariant
derivative for the connection ∇ vanishes, that is sections which, locally, are transformed by each
ΨU into constant sections of the trivial bundle U ×Hn(F ;C).

One notices that, if B is a complex analytic manifold, then Hn(π) is a holomorphic vector
bundle over B and ∇ is a locally flat holomorphic connection.

2.2.1. Monodromy. The parallel transport defines, for all t0 ∈ B, an action of π1(B, t0) on
Hn(π)t0 . A practical way to determine this action is the following:

Let λ : [0, 1]→ B a loop at t0 and let α ∈ Hn(Ft0 ;C). One considers a subdivision

0 = τ0 < τ1 < · · · < τq = 1

of [0, 1] sufficiently fine so that, for all i = 1, . . . , q − 1, there exists a horizontal section vi of
Hn(π) defined in an open subset of B containing λ([τi, τi+1]) and such that:

v0(λ(0)) = α vi−1(λ(τi)) = vi(λ(τi)), i = 1, . . . , q − 1.

The homotopy class of λ in π1(B, t0) acting on α ∈ Hn(Ft0 ;C) provides an element

vq−1(λ(1)) ∈ Hn(Ft0 ;C).

One has:

π1(B, t0)×Hn(Ft0 ;C) 7→ Hn(Ft0 ;C)

λ , α  vq−1(λ(1))

and the result is independent of the performed choices.
This action of the fundamental group on the cohomology of the fibre is called monodromy of

the fibre bundle π : E → B. We can also define it as the holonomy of the bundle Hn(π).

2.3. Application to the Brieskorn-Milnor bundle. With the notations of section 1, let us
denote π = f |X′ : X ′ → D′. Then π is the projection of a locally trivial bundle to which the
construction of section 2 applies.

One obtains a complex vector bundle Hn(π) of rank µ. That is a complex analytic bundle on
a non-compact Riemann surface, then, following Grauert [9], an analytically trivial fibre bundle.
That implies that Hn(π) admits a system of µ holomorphic sections sj over D′ = D \ {0},
linearly independent at each point. In general, they are not horizontal sections. In fact, one can
choose them horizontal when the monodromy is identity, and according to A’Campo [1], that
implies that the singularity is quadratic and n is odd.

In the case of the Milnor bundle, the connection ∇ defined on Hn(π) is called Gauß-Manin
connection. We have seen that it defines an action of π1(D′, t0) on Hn(π)t0 and that action
coincides with the action of π1(D′, t0) = Z on Hn(Xt0 ;C) = Cµ determined by the Milnor
fibration.
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In other words, the local solutions of ∇(s) = 0 give a locally constant sheaf of C-vector
spaces of dimension µ and the action of π1(D′) on a fibre of this sheaf is the monodromy of the
singularity.

In order to compute this monodromy, we need to determine the solutions of ∇(s) = 0. That
is the reason for which, in section 4.2, we will have to extend ∇ at 0. But, in a first step, we
will show that the horizontal sections of Hn(π) can be characterized as solutions of a differential
equation the monodromy of which coincide with the monodromy of the singularity.

Let U , open subset in D′, and s1, . . . , sµ a basis of holomorphic sections of Hn(π). Every
holomorphic section s of Hn(π) over U , can be written as s =

∑µ
j=1 φjsj where the functions

φj : U → C are holomorphic.
Let us still denote by ∇ the covariant derivative ∇ ∂

∂t
determined by the connection ∇, rela-

tively to the vector field ∂
∂t of D′. For every j = 1, . . . , µ, then ∇(sj) is written

∇(sj) =

µ∑
k=1

akjsk

where the akj are holomorphic functions defined in D′. Then we have

∇(s) =
∑
j

φ′jsj +
∑
j

φj
∑
k

akjsk =
∑
k

(φ′k +
∑
j

akjφj)sk.

Let us denote Φ = (φ1, . . . , φµ)t (column vector) and denote by A the matrix ((akj)). One has:

Lemma 2.3. A holomorphic section s =
∑µ
j=1 φjsj of Hn(π) over U is a horizontal section if

and only if the differential equation

(2.4) Φ′ +AΦ = 0

is satisfied.

The monodromy of the singularity can then be interpreted in the following way:
For initial values given at t0 ∈ D′, one can define locally solutions of (2.4) which generate the

µ-dimensional vector space of solutions of (2.4) over a neighbourhood of t0. In the same way as
before, for every loop λ : [0, 1]→ D′ at t0, one considers a subdivision 0 = τ0 < τ1 < · · · < τq = 1
of [0, 1] sufficiently fine so that, for all 0 ≤ i ≤ q − 1, then λ([τi, τi+1]) is contained in an open
subset of B, trivialization of Hn(π). Then, one can follow, by analytic extension, the µ solutions
of (2.4), which are given at t0, along the loop λ. One obtains in every point of λ a system of µ
linearly independent solutions of (2.4). The matrix giving the “new” sections, obtained in that
way at the point t0, in terms of the “old” ones is a monodromy matrix of the singularity.

The monodromy of the solutions of the differential equation (2.4) is then equivalent to the
monodromy of the singularity.

Computing the monodromy of the singularity is then equivalent to solving the differential
equation (2.4). In order to do that, we need to:
(i) construct a basis of holomorphic sections of Hn(π),
(ii) compute the matrix A, given the function f .

That is the aim of the following section.

3. Construction of analytic sections of Hn(π)

Let us denote by ω a differential form of degree n over X. The restriction of ω to each fibre
Xt, for t 6= 0, denoted by ω|Xt , has maximum degree and is a closed differential form. We show
now that the section sω : D′ → Hn(π) defined by

sω(t) = [ω|Xt ] ∈ Hn(Xt;C)
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is a holomorphic section of Hn(π) and we compute ∇(sω).
The main part of this section comes from [33] and [34].

3.1. Leray coboundary. Let X be a complex analytic manifold with (complex) dimension n+1
and W a complex analytic submanifold of X with (complex) codimension 1. The long exact
sequence in cohomology with compact supports and with coefficients in C is written:

· · · −→ Hp
c (X \W )

i∗−→ Hp
c (X) −→ Hp

c (W )
δ−→ Hp+1

c (X \W ) −→ · · ·

where i∗ is induced by the inclusion X \W ⊂ X and δ is the classical coboundary operator.
By Poincaré duality, applied to X \W,X and W , one obtains the exact sequence:

· · · −→ Hq+1(X \W )
i∗−→ Hq+1(X) −→ Hq−1(W )

∂−→ Hq(X \W ) −→ · · ·

with p+ q + 1 = 2n+ 2. The map ∂, dual of the coboundary δ, is called Leray boundary.
Applying the functor Hom(·;C), one deduces from the second exact sequence, the following

long exact sequence:

· · · −→ Hq(X \W )
r−→ Hq−1(W ) −→ Hq+1(X) −→ Hq+1(X \W ) −→ · · · .

where Hq+1(X) −→ Hq+1(X \W ) is induced by the inclusion of X \W into X and where the
map r, dual of ∂, is called Leray coboundary.

3.2. Residue - Leray-Norguet Theorem.

Definition 3.1. Let us consider ω a closed holomorphic form in X \W , one says that ω admits
a pole of order less or equal to 1 on W if, for all x ∈ W and for all holomorphic function g
defined in a neighbourhood Ux of x and vanishing on Ux ∩W , then g ω admits a holomorphic
extension in Ux.

If ω admits a pole of order less or equal to 1 on W and if U is the domain of a system of local
coordinates z1, . . . , zn+1 such that W ∩U is defined by the equation z1 = 0, then the coefficients
of ω in this coordinate system are holomorphic functions of z2, . . . , zn+1 and meromorphic with
a pole of order ≤ 1 in the coordinate z1.

As ω is closed, one has: d(z1ω) = dz1 ∧ ω on U \W and, as z1ω is holomorphic on U , then
dz1 ∧ ω is also holomorphic on U . That implies that ω is of the form

(3.2) ω =
dz1

z1
∧ ϕ+ η

where ϕ and η are holomorphic on U .

Lemma 3.3 ([33]). The restriction of ϕ to U ∩W , denoted by ϕ|U∩W , depends only on ω.

Then there exists a well determined holomorphic form on W , called residue of ω and denoted
by resW (ω), characterized by the fact to be locally the restriction of a holomorphic form ϕ which
verifies equation (3.2).

Lemma 3.4 ([33]). The form resW (ω) is a closed form on W .

We can now state the Leray-Norguet Theorem:

Theorem 3.5 ([21] and [27]). Let ω be a closed holomorphic q-form on X \W with a pole of
order ≤ 1 on W , then

(3.6) r ([ω]) = 2iπ [resW (ω)] .
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Corollary 3.7. Under the same hypothesis as in theorem 3.5, one has, for all (q−1)-dimensional
cycle ξ on W :

(3.8)

∫
∂(ξ)

ω = 2iπ

∫
ξ

resW (ω).

3.3. Return to the Brieskorn bundle. Under the hypothesis of section 1, let us denote by
ω a holomorphic form of degree n on X. For all t ∈ D′, the form ω|Xt is closed. We show now
the following theorem:

Theorem 3.9 (Brieskorn). Let sω the section of Hn(π) defined by sω(t) = [ω|Xt ], one has
(i) sω is a holomorphic section of Hn(π),
(ii) if dω = df ∧ ϕ, then ∇(sω) = sϕ.

To show the theorem, one proves a preliminary result: Let us consider a holomorphic form α
of degree n+ 1 on X. For all t ∈ D′, the form α/(f − t) is a closed holomorphic form on X \Xt.

According to Lemma 3.3, the form rest

(
α

f − t

)
= resXt

(
α

f − t

)
is a closed holomorphic form

of degree n on Xt; moreover, the map

t 

[
rest

(
α

f − t

)]
∈ Hn(Xt : C)

defines a section of the bundle Hn(π).

Lemma 3.10. a) The map t 
[
rest

(
α
f−t

)]
defines a holomorphic section of Hn(π).

b) One has

∇
([

rest

(
α

f − t

)])
=

1

2iπ
rt

[
α

(f − t)2

]
where rt : Hn+1(X \Xt) −→ Hn(Xt) is the Leray coboundary.

Proof. Let t0 be a point in D′ and U a neighbourhood of t0 in D′ which is a trivialization
domain of the bundle π : X ′ → D′. For every homology class ξt0 ∈ Hn(Xt0), there exists a class
ξ ∈ Hn(π−1(U)) whose restriction to Xt0 is ξt0 . We denote by ξt ∈ Hn(Xt) the restriction of ξ
to Xt, for t ∈ U .

In order to prove a) of the Lemma, we show that the map

t 〈rest

(
α

f − t

)
, ξt〉

is holomorphic. According to (3.6), one has:〈
rest

(
α

f − t

)
, ξt

〉
=

1

2iπ

〈
rt

[
α

f − t

]
, ξt

〉
=

1

2iπ

〈
α

f − t
, ∂tξt

〉
because rt is the dual of the Leray boundary ∂t : Hn(Xt)→ Hn+1(X \Xt).

Let

jt : Hn+1(X \ π−1(U))→ Hn+1(X \Xt)

be the morphism induced by the inclusion Xt ⊂ π−1(U); there exists a class

z ∈ Hn+1(X \ π−1(U))

such that for all t, one has jt(z) = ∂t(ξt). In fact, let us assume that U is a closed disk, centered
at t0, then one has a commutative diagram.
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Hn
c (π−1(U))

δ //

it

��

P ′

∼
''

Hn+1
c (X \ π−1(U))

P
∼

//

��

Hn+1(X \ π−1(U))

jt

��

Hn(π−1(U))

��

Hn
c (Xt)

P ′t
∼

''

δt // Hn+1
c (X \Xt)

Pt
∼

// Hn+1(X \Xt)

Hn(Xt)

∂t

22

in which the vertical arrows are induced by the inclusion Xt ⊂ π−1(U) and the morphisms
P, P ′, Pt and P ′t are Poincaré duality isomorphisms. Let us denote ζt = (P ′t )

−1(ξt) ∈ Hn
c (Xt)

and ζ = (P ′)−1(ξ) ∈ Hn
c (π−1(U)), then one has it(ζ) = ζ|Xt = ζt. The class z = Pδ(ζ) satisfies,

for all t ∈ U , the equality jt(z) = ∂t(ξt). One has:

(3.11)

〈
rest

(
α

f − t

)
, ξt

〉
=

1

2iπ

∫
z

α

f − t
,

that is a holomorphic function in t. In fact, the cycle z on which we take integration is fixed (i.e.

independent of t) and situated in X \ π−1(U), out of the singularities of
α

f − t
. That proves a).

In order to show b), firstly we observe that if s denotes a holomorphic section of Hn(π), then
one has

(3.12) 〈∇(s)(t), ξt〉 =
d

dt
〈s(t), ξt〉.

In fact, in U , the section s can be written as s(t) =
∑
ϕi(t)si(t) where the sections si are

a basis of horizontal sections of Hn(π). As the classes ξt are restriction of the same class ξ in
Hn(π−1(U)), then 〈si(t), ξt〉 is constant.

That implies:

〈∇(s)(t), ξt〉 =
∑

ϕ′i(t) 〈si(t), ξt〉 =
d

dt
〈s(t), ξt〉 .

Using the computations performed in the proof of a), one obtains, for the section s of Hn(π)

defined by s(t) =
[
rest

(
α
f−t

)]
:〈

∇
[
rest

(
α

f − t

)]
, ξt

〉
=

d

dt

〈
rest

(
α

f − t

)
, ξt

〉
=

1

2iπ

d

dt

∫
z

α

f − t
=

1

2iπ

∫
z

α

(f − t)2
=

1

2iπ

〈
rt

[
α

(f − t)2

]
, ξt

〉
.

That proves b) of the Lemma. �

Proof of Theorem 3.9. Let ω be a holomorphic form of degree n on X, the lemma 3.10 can be
applied to the form α = df ∧ ω. In particular, the section

t 

[
rest

df ∧ ω
f − t

]
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of Hn(π) is holomorphic. But, by definition of the residue (formula (3.2)), one has:

(3.13)

[
rest

df ∧ ω
f − t

]
=

[
rest

d(f − t) ∧ ω
f − t

]
= [ω|Xt ] = sω(t).

That proves (i) of the theorem.
According to (3.13) and (b) of lemma 3.10, one has:

∇(sω)(t) =
1

2iπ
rt

[
df ∧ ω

(f − t)2

]
=

1

2iπ
rt

[
dω

f − t
− d

(
ω

f − t

)]
and, as the class of d

(
ω

f − t

)
is zero, one has:

∇(sω)(t) =
1

2iπ
rt

[
dω

f − t)

]
=

1

2iπ
rt

[
df ∧ ϕ
f − t

]
= [ϕ|Xt ] = sϕ(t),

that is (ii) of the theorem. �

4. Brieskorn’s results and the Gauß-Manin connection

In this section, one constructs a complex of sheaves, whose cohomology sheaf, restricted to
D′, is isomorphic to the sheaf of germs of holomorphic sections of Hn(π). That allows us to
extend the connection ∇ into a differential operator which is singular at the origin.

4.1. Relative de Rham complex. Given a manifold Y , we denote by Ω∗Y the complex of
sheaves of germs of holomorphic forms on Y . We know that, if Y is a Stein manifold, then
H∗(Y ;C) is the cohomology of Ω∗Y . That applies in particular for all points t in D to the fibre
Xt = f−1(t) ∩Bε of f |X : X → D.

To study the monodromy, that is the action of the parallel transport along a loop in D′ on a
fibre, we construct a complex of differential forms which, when restricted to a fibre Xt, is Ω∗Xt .
That will be the relative de Rham complex of f |X : X → D, denoted by Ω∗X/D and defined by:

ΩpX/D = ΩpX/(df ∧ Ωp−1
X ).

We verify that Ω∗X/D is a complex, because one has:

d(df ∧ ω) = −df ∧ dω ∈ df ∧ Ω∗X .

We want to study the germs, in D, of differential forms defined along the fibres of the function
f |X : X → D. In other words, we want to consider, for every open subset U in D, the sections
of the sheaf ΩpX/D over f−1(U). They are, by definition, the sections of the sheaf f∗Ω

p
X/D over

U .
Now, it is natural to define the relative de Rham cohomology sheaves of f |X : X → D by:

Hp(X/D) = Hp(f∗Ω
∗
X/D).

Theorem 4.1. [Brieskorn [5, Satz 1.5]] The sheaf Hn(X/D) is an analytic coherent sheaf on D.

We denote by Hn the sheaf of germs of holomorphic sections of Hn(π) and by OD′ the
structural sheaf of D′, i.e. the sheaf of germs of holomorphic sections on D′. Brieskorn shows
the following result:

Theorem 4.2. [Brieskorn [5]] The correspondence ω  sω induces an isomorphism of OD′ -
modules:

(4.3) Ψ : Hn(X/D)|D′ → Hn.
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Here, we will verify only that Ψ is well defined. In fact, an element ω of Hn(X/D)|D′ can be
represented by a section of f∗(Ω

n
X/D) on an open subset U in D′, or, that is equivalent to say, a

section of ΩnX/D on f−1(U).

For every disk U in D′, the inverse image f−1(U) is a Stein manifold. As the sheaves ΩnX and
ΩnX/D are coherent (see [5]), the obtained section can be lifted into a section of ΩnX on f−1(U),

that is a holomorphic differential form of degree n on f−1(U). We still denote it by ω.
By theorem 3.9, one obtains a holomorphic section sω of Hn(π) whose germ at the point t is

sω(t). That defines Ψ.

4.2. Gauß-Manin connection. The previous construction provides an extension of the sheaf
Hn into a sheaf Hn(X/D) which is defined over all of D. The isomorphism of theorem 4.2
allows us to identify the homomorphism ∇ : Hn → Hn, defined at section 2, with a C-linear
homomorphism:

∇ : Hn(X/D)|D′ → Hn(X/D)|D′ .
According to section 3, the local solutions of ∇(s) = 0 give a locally constant sheaf of C-

vector spaces of dimension µ and the action of π1(D′, t0) on the fibre at t0 of this sheaf is the
monodromy of the singularity.

To compute the monodromy, we will extend ∇ into a singular differential operator ∇f defined
on Hn(X/D)0 and will prove that its monodromy is equivalent to the one of the singularity.

We will admit the following theorem which provides an interpretation of Hn(X/D)0:

Theorem 4.4 (Brieskorn [5]). Let Ω∗X/D,0 considered as a complex of OD,0-modules. One has

a canonical isomorphism:

(4.5) Hn(X/D)0 → Hn(Ω∗X/D,0)

induced by the restriction Ω∗X/D → Ω∗X/D,0.

More precisely, let U be a neighbourhood of 0 in D and ω be a holomorphic form of degree n
on f−1(U). That one represents a cycle of Γ(f−1(U),ΩnX/D) that gives a section of Hn(X/D)

over U . The isomorphism of the theorem sends the value of this section at 0 to the class, in
Hn(Ω∗X/D,0), of the cycle represented by ω.

The differential operator ∇f will be defined on

(4.6) E = Hn(Ω∗X/D,0) =
{ω ∈ ΩnX,0 : ∃η ∈ ΩnX,0, dω = df ∧ η}

df ∧ Ωn−1
X,0 + dΩn−1

X,0

.

As ∇f is a singular operator, it will take values, not in E, but in a OD,0-module F containing
E as sub-OD,0-module. That will be

(4.7) F = ΩnX/D,0/dΩn−1
X/D,0 = ΩnX,0/df ∧ Ωn−1

X,0 + dΩn−1
X,0 .

We can now define ∇f :
An element ω in E is represented by a holomorphic form ω of degree n defined in a neigh-

bourhood of 0 in X and such that dω = df ∧ϕ where ϕ is holomorphic in a neighbourhood of 0.
We define ∇f : E → F by:

(4.8) ∇f (ω) = ϕ

where ϕ is the class of ϕ in F .
One verifies easily that ∇f is a differential operator with polar singularity in the following

sense:
i) ∇f is C-linear,
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ii) ∇f (g(t)ω) = g′(t) ω + g(t) ∇f (ω),
iii) there exists a positive integer k such that tk ∇f (E) ⊂ E.

In order to verify (iii), let us recall that, for k large enough, fk belongs to the ideal generated

by ( ∂f∂z0 , . . . ,
∂f
∂zn

) in the local ring of Cn+1 at origin. Then for every (n + 1)-holomorphic form

α, there is η such that fkα = df ∧ η. For all elements ϕ in F , represented by a holomorphic
n-form ϕ, one has:

d(fkϕ) = fkdϕ+ kfk−1df ∧ ϕ
= df ∧ η′

that shows that tk ϕ ∈ E, then (iii).
We observe that this shows more, namely:

Lemma 4.9. F/E is torsion.

The result of Sebastiani [36] is the following:

Theorem 4.10. Hn(X/D)0 is a free OD,0-module.

We know (theorem 4.1) that Hn(X/D) is coherent, that implies that Hn(X/D) is locally free
of rank µ at the point 0. Then we can show that the monodromy of ∇f is equivalent to the
monodromy of the singularity of f at the origin. More precisely:

Theorem 4.11. Let ω an element in E represented by a holomorphic form ω of degree n on
X and such that ∇f (ω) = ϕ, where ϕ is the class in F of a holomorphic form ϕ on X, then
∇(sω) = sϕ.

According to the previous observation, if U denotes an open disk centered at 0, one can find
holomorphic forms ω1, . . . , ωµ defined on f−1(U), such that dωj = df ∧ ϕj with ϕj holomorphic
in f−1(U) and such that the sections ω̃1, . . . , ω̃µ of Hn(X/D)|U , induced by ω1, . . . , ωµ generate
the sheaf.

Each ωj represents an element ωj in E and one has:

(4.12) ∇f (ωj) = ϕj .

As F/E is torsion, ϕj can be written:

(4.13) ϕj =

µ∑
k=1

akj ωk

where the akj are germs of meromorphic functions at the origin in D. If U is small enough, one
can assume that the akj are holomorphic in D′. In the same way as above, let us denote by A
the matrix of akj . The system of differential equations associated to ∇f in the basis ω1, . . . , ωµ
of E and determined by (4.12) is written:

(4.14) Φ′ +AΦ = 0.

Let V be an open subset in D′ contained in U . The system (4.14) is the same as the one
associated to ∇ in the basis sω1

, . . . , sωµ of Hn|V . In fact, according to theorem 3.9, one has:

(4.15) ∇(sωj ) = sϕj

and, according to (4.13):

(4.16) sϕj =

µ∑
k=1

akj sωk
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If Φ = (g1, . . . , gµ) is a solution of (4.14) on V , let us denote s =
∑µ
j=1 gj sωj ; then one has

∇(s) = 0 and s is a horizontal section of Hn(π) over V (see lemma 2.3).
One deduces that the monodromy of ∇f is the same as the one of ∇ and, according to what

we have seen above, the monodromy of solutions of (4.14) coincides with the monodromy of the
singularity.

Let us denote by K the field of fractions of OD,0, i.e. the field of germs of meromorphic
functions on D at 0. As F/E is torsion, then ∇f can be extended into a connection, still
denoted by ∇, on the K-vector space:

E = E ⊗O K = F ⊗O K.

In the following section, we show that the connection ∇ is regular.

5. Regularity of the Gauß-Manin connection

5.1. Recall of the theory of differential equations. Let us denote, as before, K the field of
germs of meromorphic functions on D and ∇ a connection on a K-vector space E . Let us denote
by (e1, . . . , eµ) a basis for E , one defines the akj ∈ K by

∇(ej) =

µ∑
k=1

akj ek.

A computation (already made, see lemma 2.3), shows that the horizontal sections for the con-
nection ∇ are characterized by a differential system. More precisely, if Φ = (g1, . . . , gµ)t are the
components of s ∈ E in the basis (e1, . . . , eµ) and if A = ((akj)) is the matrix of the akj , one
obtains the differential system:

(5.1) Φ′ +AΦ = 0

whose solutions are the horizontal sections of ∇.

Definition 5.2. One calls fundamental matrix Y (t) of (5.1), every matrix µ×µ whose columns
are solutions of (5.1) and such that detY (t) 6= 0.

One knows, by the general theory ([6, p.111], [13, p.70]), that every linear system of differential
equations of the type Φ′+A(t)Φ = 0 where A(t) is a matrix of analytic functions over 0 < |t| < a,
admits fundamental matrices of the form

(5.3) Y (t) = Z(t)tR

where Z(t) is a matrix of analytic functions for 0 < |t| < a and R a constant matrix.
Then, one can provide the theorem of the classical theory:

Theorem 5.4. The following conditions are equivalent:
(a) By a change of variables of the type Y = MZ, where M is an invertible matrix with
meromorphic coefficients, equation (5.1) can be transformed into an equation in which the matrix
A admits at most a simple pole at the origin.
(b) There exists a fundamental matrix of (5.1) in which Z(t) admits at most a pole at the origin.
(c) In every angular sector 0 ≤ arg t ≤ β of the universal covering of D′, the horizontal sections
of ∇ have low growing, that means that in one (or all) basis of E , the components gj verify an
estimation of the type |gj(t)| ≤ Cα,β t−N .

Definition 5.5. One says that the connection ∇ is regular (or with regular singular points) if
one of the previous conditions is satisfied.
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5.2. Regularity of the Gauß-Manin connection. Brieskorn proved in [5] the regularity of
the Gauß-Manin connection of an isolated hypersurface singularity, using results of Griffiths.
The general theorem can be proved by analytic methods (Nilsson [26], Griffiths [11], Malgrange
[24]), or arithmetic ones (Katz [17]), or algebraic ones (Deligne [7]). We will adopt the proof by
Malgrange [24].

Theorem 5.6. The Gauß-Manin connection is regular.

Let p : S → D′ the universal covering of D′. Let us consider a family of cycles

γ(u) ∈ Hn(Xp(u);C)

depending continuously on u ∈ S, i.e. if u′ is near u, then γ(u′) is image of γ(u) by the canonical
isomorphism:

Hn(Xp(u′);C) ' Hn(Xp(u);C).

By abuse of notation, we will denote γ(t) instead of γ(u), when p(u) = t, providing if necessary
the argument of t.

Considering, for ω ∈ Γ(X; ΩnX), the function on S (multiform function on D′) defined by
I(t) =

∫
γ(t)

ω. In a first step, we show that the integrals I(t) verify a regular differential system

if and only if (5.1) is regular, then we will show that these integrals verify (c) of the Theorem
5.4.

It results from Theorem 3.9 and from (3.12) that I is holomorphic and one has:

d

dt

∫
γ(t)

ω =

∫
γ(t)

∇(ω).

Taking D smaller if necessary, one can find ω1, . . . , ωµ in Γ(X; ΩnX) such that ω1, . . . , ωµ is a
basis of E = F ⊗O K. In this basis, the matrix of the connection is the matrix A = ((akj)) such
that:

∇(ωj) =

µ∑
k=1

akjωk

(see 4.12 and 4.13). The equation associated to the Gauß-Manin connection is the equation
(4.14): Φ′ +AΦ = 0.

Let us denote

(5.7) Ij(t) =

∫
γ(t)

ωj ,

one has:

dIj
dt

=

∫
γ(t)

∇(ωj) =

µ∑
k=1

akj

∫
γ(t)

ωk =

µ∑
k=1

akjIk.

In another words, I = I1, . . . , Iµ is solution of the system

(5.8) I ′ −AtI = 0

dual of (5.1).

Lemma 5.9. The system (5.1) is regular if and only if (5.8) is regular.

Proof. Let Y a fundamental matrix for (5.1); derivating the equality Y ·Y −1 = id and replacing
Y ′(t) by −A(t)Y (t), we show that (Y −1)t is a fundamental matrix for (5.8), in other words one
has ((Y −1)t)′ −At(Y −1)t = 0. That proves the lemma. �
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Now to prove regularity of the Gauß-Manin connection, it suffices to prove the following result:
“When t→ 0, with α ≤ argt ≤ β, the Ij(t) have slow growing.”

In fact, Malgrange proves a more precise result based on the following Lemma:

Lemma 5.10. Let ω ∈ Γ(X; ΩnX), one has:

lim
t→0, argt=0

∫
γ(t)

ω = 0.

Proof. Let us choose a strictly positive real number t0 and denote T = f−1([0, t0])∩X. Then T
is a semi-analytic set and is contractible (because T can be contracted in a neighbourhood of X0

and X0 is contractible). Following  Lojaciewicz [22], one can find a semi-analytic triangulation
K of T such that X0 and Xt0 are sub-complexes and such that 0 is a vertex.

Let Γ a cycle in Xt0 representing γ(t0); as T is contractible, there is a chain ∆ in K such that
∂∆ = Γ.

Let us recall the result by Herrera [14]: for every chain with integer coefficients Λ =
∑
ajσj

where the σj are oriented simplices in K, we define:

(5.11)

∫
Λ

ω =
∑

aj

∫
σj

ω

where
∫
σj
ω = 0 if degω 6= dimσj and, if degω = dimσj , then

∫
σj
ω =

∫
σ̊j
ω = limC

∫
C
ω, where

C describes the family of compact subsets situated in the interior σ̊j of σj . Following Herrera
[14], the integral (5.11) converges and one has∫

∂Λ

ω =

∫
Λ

dω.

Then, the integral I(t0) is written:

I(t0) =

∫
Γ

ω =

∫
∆

dω.

Let us fix t ∈]0, t0] and consider a subdivision K̃ of K such that Xt and f−1(]0, t]) are sub-

complexes of K̃. Denoting by τj the oriented simplices of K̃, one can consider ∆ as a chain

∆̃ =
∑
njτj in K̃. One can write:

∆̃ = ∆′t + ∆′′t

where ∆′t =
∑
mjτj with mj = nj if τj ⊂ f−1([0, t]) and mj = 0 otherwise, and where ∆′′t is a

chain in K̃ whose support is contained in f−1([t, t0]). Moreover, one has:

∂∆′′t = ∂∆̃− ∂∆′t.

On the one hand, the cycle ∂∆̃ represents γ(t0) in Xt0 (in fact we have ∂̃∆ = ∂∆̃). On the
other hand the support of ∂∆′t is a cycle of Xt homologous, in f−1([t, t0]), to γ(t0). Then ∂∆′t
represents γ(t) in Xt. One has:

I(t) =

∫
∂∆′t

ω =

∫
∆′t

dω.

The chain ∆ is written ∆ =
∑
ajσj in the triangulation K. We show now the formula:

(5.12)

∫
∆′t

dω =
∑

aj

∫
σj∩f−1([0,t])

dω
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which makes sense, according to Herrera [14], because σj ∩ f−1([0, t]) is a semi-analytic set. To
prove the lemma, it suffices to show that

(5.13) lim
t→0

∫
σj∩f−1([0,t])

dω = 0.

If σj is in X0, that is trivial. In fact, as 0 is a vertex in K, then σ̊j ⊂ X0 \ {0} and dω|̊σj = 0.
If σj is not in X0, then σ̊j ∩X0 is the empty set. For every compact subset C in σ̊j , one can

find a sufficiently small t so that σ̊j ∩ f−1([0, t]) ⊂ σ̊j \ C. One has:∫
σj

dω =

∫
σ̊j

dω =

∫
σ̊j∩f−1([0,t])

dω +

∫
σ̊j\f−1([0,t])

dω

where the second member of the sum tends to
∫
σ̊j
dω when t tends to 0. That shows (5.13).

Let us prove (5.12). We write all simplices σj in K as a sum
∑
τjk of simplices in K̃. More

precisely, σj can be written as

σ̃j =
∑
k∈I

τjk +
∑
k∈J

τjk

where, for k ∈ I, one has τjk ⊂ σj ∩ f−1([0, t]) and, for k ∈ J , then τjk is not contained in

σj ∩ f−1([0, t]). With the previous notations, ∆̃ can be written as:

∆̃ = ∆′t + ∆′′t

where ∆′t =
∑
j aj

∑
k∈I τjk. One has:∫

∆′t

dω =
∑
j

aj
∑
k∈I

∫
τjk

dω =
∑
j

aj

∫
σj∩f−1([0,t])

dω.

That ends the proof of the lemma. �

Proof of Theorem 5.6. In order to prove the theorem 5.6, it suffices now to prove the following:
“With the hypothesis of Lemma 5.10, for α ≤ arg t ≤ β, then I(t) remains bounded when t
tends to 0.”

It is sufficient to prove the result for the integrals of type Ij(t) because I(t) is linear combi-
nation of Ij(t) with coefficients in OD,0.

From the equation
dIj
dt =

∑
k akjIk, one deduces that there exists a constant C and an integer

k > 0 such that: ∣∣∣∣dIjdt
∣∣∣∣ ≤ C

k + 1

1

|t|k+1
sup(|I1|, . . . , |Iµ|).

Passing to polar coordinates (in (r, θ)) and integrating in r, one deduces that, when arg t is
bounded one has:

|Ij(t)| ≤ C ′ eC|t|
−k
.

From Lemma 5.10 and from the Phragmen-Lindelöf Theorem [6, p. 162] one obtains the result
for |β − α| < π

k . The general case α and β can be deduced immediately. �

5.3. Development of the integral I(t). Firstly let us recall the classical results of monodromy
theory [18].

Let t0 ∈ D′, with, for instance arg t0 = 0. Let us denote by h the endomorphism of Hn(Xt0 ;C)
induced by action of the generator of π1(D′, t0) represented by the loop λ  e2iπλt0 with
λ ∈ [0, 1].

Theorem 5.14. (a) The eigenvalues of h are roots of unity.
(b) If h = S ·U with S semi-simple and U unipotent, and [S,U ] = 0, then one has (U−I)n+1 = 0.
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That implies that, in the Jordan decomposition of the matrix of h, the submatrices corre-
sponding to the eigenvalues of h have at most rank n+ 1.

Let us choose γ1, . . . , γµ such that the set γ1(t0), . . . , γµ(t0) is a basis for Hn(Xt0 ;C) and such
that

∫
γk(t0)

ωj = δjk . Let us denote

Ijk(t) =

∫
γk(t)

ωj .

The set I1k, . . . Iµk is a basis of solutions of the equation

dIj
dt

=
∑

akjIk.

From theorem 5.6 and from the classical theory of systems of differential equations with regular
singular points [13, p. 73], one obtains that the matrix I = (Ijk) is of the type:

I(t) = J(t)tC = J(t) · eC log(t)

where J ∈ GL(µ,K) and C ∈ End(Cµ).
The action of h on I is translated by the substitution log t  log t + 2iπ; then, in the basis

γj(t0), h is expressed by the multiplication by exp(2iπC). Writing C in Jordan form, we obtain
the following result:

Proposition 5.15. Let ω ∈ Γ(X; ΩnX), and let γ defined as above, one has a converging devel-
opment in D′:

(5.16)

∫
γ(t)

ω =
∑
α,q

Cα,q(ω) tα (log t)q

where exp(2iπα) belongs to the set of eigenvalues of h (so that α ∈ Q) and

α > 0 and 0 ≤ q ≤ n+ 1.

Moreover, as J is meromorphic, then the set of α has lower bound [13]. One deduces from
the lemma 5.10 that one has:

Cα,q(ω) 6= 0 implies α > 0.

On the other hand, let λ be an eigenvalue for h, then, for a certain p ≥ 1 and for a suitable
choice of γ(t0), one has (h− λ)pγ(t0) = 0 and (h− λ)p−1γ(t0) 6= 0.

Lemma 5.17. There are η ∈ ΩnX and α > 0 such that exp 2iπα = λ and Cα,p−1(η) = 0.

Proof. If that would not be the case , writing γ̃(t0) = (h−λ)p−1γ(t0), one would have
∫
γ̃(t0)

η = 0,

for all η ∈ ΩnX . But, as Xt0 and X are Stein manifolds, the differential forms η|Xt0 generate

Hn(Xt0 ;C). That would imply γ̃(t0) = 0, that is contradictory with hypothesis. �

6. Relation between monodromy and Bernstein polynomials

6.1. Bernstein polynomials. Let s be an indeterminate and consider the set of finite summa-
tions ∑

k,`

ak,`(x) sk (f(x))s−k

where ak,` are germs of analytic functions at the origin in Cn+1. With obvious relations
f(x)f(x)s−k−1 = f(x)s−k and also obvious composition laws, that is a OX,0-algebra.

Let us now consider the differential operators P (x, s, ∂∂x ) with analytic coefficients in x and
polynomials in s:

P (x, s,
∂

∂x
) =

∑
bkα(x) sk

(
∂

∂x

)α
.
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These operators act on the previous ring, writing

∂

∂xi
fs−k = (s− k)

∂f

∂xi
fs−k−1.

Giving to s integer values, the previous operations are compatible with the classical operations
on meromorphic functions. We can now provide the theorem proved by I.N. Bernstein [2] when
f is a polynomial and extended by J.E. Björk [3] when f is a germ of an analytic function with
any singularity at the origin:

Theorem 6.1. There exists a polynomial B(s) 6= 0 and a differential operator P (x, s, ∂∂x ) such
that:

(6.2) P

(
x, s,

∂

∂x

)
fs = B(s)fs−1.

It is clear that the set of polynomials B(s) such that one has a relation of type (6.2) is an
ideal. We will denote by b(s) and will call Bernstein polynomial of f the generator of this ideal
whose highest degree term is equal to 1.

One has P (x, 0, ∂∂x ) = b(0)f−1, that implies b(0) = 0. We will denote

b(s) = sb̃(s).

The Malgrange’s result is the following:

Theorem 6.3 (Malgrange [23]). Let λ be an eigenvalue of h whose multiplicity in the minimal
polynomial of h equals p, then there are rational numbers ν1, . . . , νp ∈ Q with the following
properties:
(a) exp(2iπνj) = λ for j = 1, . . . , p,

(b) the polynomial (s+ ν1) · · · (s+ νp) divides b̃.

We will restrict ourselves to prove the theorem in the case λ 6= 1. In fact, Malgrange shows
that all roots of the Bernstein polynomial can be obtained in the previous way, thus they are
rational numbers. In a more precise way, let Φ′ + AΦ the equivalent form of (5.1) for which

tA is holomorphic at 0; then b(s) = sb̃(s) where b̃(s) is the minimal polynomial of (tA)(0).
Many authors extended and generalized these results, let us quote the work of Kashiwara [16]
in relation with D-modules.

Example 6.4. Let us consider the polynomial f = z2
1 + · · · z2

n+1; choosing P =
∑

∂2

∂z2
i
, one finds

b̃(s) = s+ n−1
2 . But Hn(X1;C) has dimension 1 on C and we have h = (−1)n−1.

6.2. Periods of integrals. Let α be an (n+ 1)-holomorphic form on X, there is ω ∈ ΩnX such

that dω = α. The differential form
α

f − t
is closed and holomorphic in X −Xt and it admits a

pole with order 1 along Xt. We denote

α

df
(t) = rest

(
α

f − t

)
and ∫

γ(t)

α

df
=

∫
γ(t)

α

df
(t).

This integral does not depend on the homology class of γ(t) in Hn(Xt;C), moreover one has:

Lemma 6.5.

(6.6)

∫
γ(t)

α

df
=

d

dt

∫
γ(t)

ω.
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Proof. According to Theorem 3.5, one has:∫
γ(t)

α

df
=

1

2iπ

∫
δγ(t)

α

f − t

where δ is the Leray boundary. We have:∫
γ(t)

α

df
=

1

2iπ

∫
δγ(t)

dω

f − t
=

1

2iπ

∫
ζ

dω

f − t

where, for t in a small enough open subset U , ζ is a fixed cycle in Hn+1(X \ π−1(U)) (see the
comments after (3.11)).

From the relation
df ∧ ω

(f − t)2
= −d

(
ω

f − t

)
+

dω

f − t
,

one obtains ∫
ζ

dω

f − t
=

∫
ζ

df ∧ ω
(f − t)2

=
d

dt

∫
ζ

df ∧ ω
f − t

.

Using again results of section 3.3, one can write:

1

2iπ

∫
ζ

df ∧ ω
f − t

=
1

2iπ

∫
δγ(t)

df ∧ ω
f − t

=

∫
γ(t)

rest

(
df ∧ ω
f − t

)
=

∫
γ(t)

ω|Xt =

∫
γ(t)

ω.

That proves the Lemma. �

Given the converging development of
∫
γ(t)

ω (see (5.16)), the integral admits a converging

development

(6.7)

∫
γ(t)

α

df
=
∑
β,q

dβ,q(α) tβ (log t)q

where β ∈ Q>−1, and exp(2iπ(β+1)) = λ is an eigenvalue of h whose multiplicity in the minimal
polynomial is p, and p− 1 ≥ q ≥ 0. Moreover, there exists an (n + 1)-holomorphic form α and
a rational number β with dβ,q(α) 6= 0. In fact, according to Lemma 5.17, if η ∈ ΩnX and if
α = df ∧ η, one has:

(6.8)

∫
γ(t)

η =

∫
γ(t)

α

df

which is not zero.

6.3. Proof of Theorem 6.3.

A) Proof in the case λ 6= 1. Let λ be an eigenvalue for h, with multiplicity p in the minimal
polynomial of h. For 1 ≤ k ≤ p, one defines νk as the infimum of β such that there exists
q ≤ k − 1 and α ∈ Ωn+1

X such that dβ,q(α) 6= 0 and exp(2iπ(β + 1)) = λ.
In order to show (b) of Theorem 6.3, in the case λ 6= 1, it is sufficient to show that the

polynomial (s+ ν1) · · · (s+ νp) divides b(s). We will proceed in three steps:
1) Let us consider a fixed point τ ∈ [0, 1] such that τ < η. We consider a C∞ singular

cycle in Xτ which represents γ(τ), in other words, γ(τ) =
∑
nisi where the si are applications

si : ∆n → Xτ , with ∆n standard simplex in Rn+1.
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Considering a trivialization of the bundle π : X ′ → D′, restricted to ]0, τ ], one defines appli-
cations s̃i such that the following diagram commutes:

∆n×]0, τ ]
s̃i //

p2 %%

X

π

��
]0, τ ]

and such that s̃i|{1} = si. Here, p2 is obviously the second projection.
Let us denote

Γ(t, τ) =
∑

nis̃i|∆n×]0,τ ] f
s−1 α.

For every s ∈ C, one has (choosing t0 such that arg t0 = 0):∫
Γ(t0,τ)

fs−1 α =
∑

ni

∫
s̃i|∆n×]0,τ]

fs−1 α

We can assume that each s̃i|∆n×]0,τ ] is contained in an open subset Ui in which α|Ui = df ∧ ηi.
In that case, ∫

s̃i|∆n×]0,τ]

fs−1 α =

∫ τ

t0

ts−1dt

∫
s̃i|∆n×{t}

ηi.

In fact, one knows that there exists ω ∈ ΩnX such that dω = α. Then∫
s̃i|∆n×]0,τ]

fs−1 α =

∫ τ

t0

ts−1(dω)].

where (dω)] is the result of integration of dω along the fibres of p2.
By Stokes, one obtains (for 0 < t ≤ t0):∫ t0

t

(dω)] =

∫
s̃i|∆n×[t,t0]

dω =

∫
s̃i|∆n×{t0}

ω −
∫
s̃i|∆n×{t}

ω.

Then, by derivation and using (6.6) and (6.8), one has:

(dω)] =
d

dt

∫
s̃i|∆n×{t}

ω =

∫
s̃i|∆n×{t}

α

df
=

∫
si|∆n×{t}

ηi.

On the one hand, by construction of the s̃i, the cycle γ(t) is homologous to
∑
nis̃i|∆n×{t}. On

the other hand, s̃i|∆n×{t} is contained in an open subset Vi (contained in Ui) and such that:

ηi|Vi∩Xt = rest

(
α

f − t

) ∣∣∣
Vi

because , in Vi, one has
α

f − t
=

df

f − t
∧ ηi.

One obtains that
∑

ni

∫
si|∆n×{t}

=

∫
γ(t)

α

df
and:∫

Γ(t0,τ)

fs−1 α =

∫ τ

t0

ts−1dt

∫
γ(t)

α

df
.

2) The previous computation allows us to write:

b(s)

∫ τ

t0

ts−1dt

∫
γ(t)

α

df
= b(s)

∫
Γ(t0,τ)

fs−1 α =

∫
Γ(t0,τ)

[P (x, s,
∂

∂x
)fs]α.
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Let us denote by P ∗ the adjoint operator of P , acting on Ωn+1
X . It is defined, in local coordinates

in the following way:

If P =
∑
aν(s, x)Dν with Dν =

(
∂
∂z1

)ν1

· · ·
(

∂
∂zn+1

)νn+1

and if α = gdz1 ∧ · · · ∧ dzn+1, then

P ∗α =
(∑

(−1)|ν|Dν(aνg)
)
dz1 ∧ · · · ∧ dzn+1. The operator P ∗ satisfies:

[P (x, s,
∂

∂x
)fs]α = fs(P ∗α) + d(fsαp)

with P ∗α ∈ Ωn+1
X [s] and αp ∈ ΩnX [s].

By Stokes and by construction of the s̃i (see above) one obtains∫
Γ(t0,τ)

[P (x, s,
∂

∂x
)fs]α =

∫
Γ(t0,τ)

fs(P ∗α) +

∫
γ(τ)−γ(t0)

fsαp.

The same argument as in the first step of the proof shows that∫
Γ(t0,τ)

fs(P ∗α) =

∫ τ

t0

tsdt

∫
γ(t)

P ∗α

df
,

and then

b(s)

∫ τ

t0

ts−1dt

∫
γ(t)

α

df
=

∫ τ

t0

tsdt

∫
γ(t)

P ∗α

df
+

∫
γ(1)

αp − ts0
∫
γ(t0)

αp.

According to Lemma 5.10, for sufficiently large Re(s), one can consider the limit for t0 tending
to 0 in the previous equality. One obtains:

(6.9) b(s)

∫ τ

0

ts−1dt

∫
γ(t)

α

df
=

∫ τ

0

tsdt

∫
γ(t)

P ∗α

df
+

∫
γ(1)

αp.

3) Let us assume that ν1 = ν2 = . . . = νk < νk+1, and let us choose α ∈ Ωn+1
X such that

dν1,k−1(α) 6= 0 (in (6.7)).

Using the development (6.7)) of
∫
γ(t)

α
df and the formula

∫ 1

0
tν+s−1(log t)kdt = dk

dsk

(
1
s+ν

)
, the

integral
∫ τ

0
ts−1dt

∫
γ(t)

α
df can be extended, for Re(s) > 1, into a meromorphic function of s ∈ C,

with a pole of order k at −ν1.
In the same way,

∫ τ
0
tsdt

∫
γ(t)

P∗α
df admits a development of type (6.7) and can be extended

into a meromorphic function of s ∈ C, without pole at −ν1.
Finally

∫
γ(τ)

αp is a polynomial in s.

Equality (6.9) implies that (−ν1) is a root of order k of b(s). One works in the same way for
νk+1, . . . , νp, that implies the result. �

B) The case λ = 1. In the case λ = 1, the proof is similar but requires more carefulness. The

previous method proves only that (s+ ν1) · · · (s+ νp) divides b = sb̃ and there is a risk to “lose”

some root of b̃ (see [23]). �
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[27] F. Norguet Sur la théorie des résidus, C.R. Acad. Sci. Paris 248 (1959) 2057–2060.
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