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THE SHEAF α•X

DANIEL BARLET

Abstract. We introduce, in a reduced complex space, a “new coherent sub-sheaf” of the

sheaf ω•X which has the “universal pull-back property” for any holomorphic map, and which
is, in general, bigger than the usual sheaf of holomorphic differential forms Ω•X/torsion. We

show that the meromorphic differential forms which are sections of this sheaf satisfy integral
dependence equations over the symmetric algebra of the sheaf Ω•X/torsion. This sheaf α•X is

closely related to the normalized Nash transform.

We also show that these q−meromorphic differential forms are locally square-integrable on
any q−dimensional cycle in X and that the corresponding functions obtained by integration

on an analytic family of q−cycles are locally bounded and continuous on the complement of

a closed analytic subset.

Introduction

In this article, we discuss the following question: given a reduced complex space X, the
normalization of X consists in building a proper modification ν : X̃ → X such that meromorphic
locally bounded functions onX becomes holomorphic after pull-back to X̃. Moreover this process
gives a desingularization process for curves, that is to say for X of pure dimension 1.

It seems then natural to define an analogous process for meromorphic locally bounded differ-
ential forms. The main trouble is to define what means “locally bounded” for a meromorphic
differential form of positive degree on a reduced complex space. To define this notion is the
purpose of this paper. Of course, this does not lead to a simple proof of a desingularization
process for a reduced complex space, but we will show that the natural process associated to
“normalization of meromorphic differential forms” is simply the classical normalized Nash
transform, and it is an old (an probably very difficult) conjecture that this process leads to a
desingularization. We hope that the introduction of this “new sheaf” α•X will be useful in that
direction.

But in fact, the main reason to introduce this sheaf is the look for the “universal pull-
back property” which means to define a coherent sheaf of meromorphic differential forms
which admits a natural pull-back for any holomorphic map between reduced complex spaces
and which is “maximal” with this property. Note that if we only consider complex manifolds
the sheaf Ω•X has this property, but we will show that this is no longer maximal when X admits
singularities.

Our main result is the theorem 4.1.1 (and its precise formulation 4.1.2) giving the “universal
pull-back property” for these sheaves. We obtain also two other results which may be useful:

• The fact that for any section α of the sheaf αqX the form α ∧ ᾱ is locally integrable on
any holomorphic cycle of dimension q and also the local boundness and the “generic”
continuity of such an integral when the q−cycle moves in an analytic family (see theorem
5.1.7);
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• The existence of a local integral dependence equation for a section of αqX over the sym-
metric algebra of the sheaf ΩqX/torsion (see proposition 5.2.1).

We conclude this article by computing some simple examples showing that the sheaf α•X may
be different from other classical sheaves of meromorphic differential forms which are used on
singular complex spaces.

We thank the referee for remarks and questions which helped to improve and correct this
article.

1. Universal pull-back for Ω•X/torsion

It is well known that the sheaves Ω•X of holomorphic differential forms on complex spaces
have a functorial pull-back. To begin we shall prove that the sheaves Ω•X/torsion still have this
“universal pull-back” property on reduced complex spaces.

Proposition 1.0.1. Let X be a reduced complex space and consider a torsion holomorphic
p−form α on X (meaning that α vanishes at smooth points in X). Let Z be an analytic subset
in X. Then the p−holomorphic form induced by α on Z is again a torsion form on Z.

Proof. Without any lost of generality we can assume that Z is irreducible. Let S be the singular
set of X. If Z is not contained in S the result is obvious. Also if the dimension of Z is less
that p the conclusion is again obvious. So let dim Z = p+ q with q ≥ 0 and let Z ′ be the dense
open set of smooth points x in Z for which the multiplicity of x in X is minimal. It is enough
to show that the restriction of α to Z ′ vanishes. As the problem is local on Z ′, we can assume
that we have an open neighbourhood X ′ of x0 in X and a local parametrisation π : X ′ → U on
a polydisc U of Cn with the following properties:

i) π(x0) = 0.
ii) U = V ×W where V and W are polydiscs with center 0 respectively in Cp+q and Cn−p−q.
iii) Z ′′ := Z ′ ∩X ′ = π−1(V × {0}) set theoretically and π : Z ′′ → V × {0} is an isomorphism.

Define the analytic family of (p + q)−cycles (Zw)w∈W in X ′ parametrized by W by letting
Zw := π∗(V × {w}), where the pull-back by π is taken in the sense of cycles1. Then, if k is the
degree of π (which is the multiplicity in X of each point in Z ′′) we have Z0 = k.Z ′′ as a cycle in
X ′. Remark that for w generic in W the intersection of the cycle Zw with the ramification set
of π has no interior point in Zw which is a reduced cycle. So the restriction of the holomorphic
form α to Zw for w generic is a torsion form.

Now choose a non-negative continuous function with compact support ρ on X ′, a holomorphic
q−form β on X ′ and define the function on W

ϕ : W → R+, w 7→ ϕ(w) :=

∫
Zw

ρ.(α ∧ β) ∧ (α ∧ β).

It is a continuous function (see [B-M 1] ch.IV) and it vanishes for w generic in W as α generically
vanishes on Zw for such a w. Then it vanishes for w = 0 and this shows that the restriction of
α to an open dense subset of Z ′ vanishes. �

Corollary 1.0.2. Consider a holomorphic map f : X → Y where X and Y are reduced complex
spaces.Then, if α is a p−holomorphic form on Y which is a torsion form, the p−holomorphic
form f∗(α) is a torsion form on X.

1This means that if f : U → Symk(X′) is the holomorphic map classifying the fibers of π, the cycle Zw is the

cycle-graph of the analytic family of k−tuples in X′ defined by the restriction of f to V ×{w}; see [B-M 1] ch.IV.
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Proof. It is enough to consider the case where X is a connected complex manifold. Let X ′ be
the open dense subset of X where f has maximal rank. On X ′ the map f is locally a submersion
on a locally closed complex sub-manifold of Y and the previous proposition applies to show that
the pull-back of α on this locally closed sub-manifold vanishes. So the holomorphic form f∗(α)
vanishes on X ′. Then it is a torsion form on X. �

Definition 1.0.3. Let f : X → Y a holomorphic map between two reduced complex spaces. We
have a natural graded pull-back OX−morphism

(*) f∗ : f∗(Ω•Y /torsion)→ Ω•X/torsion

We shall denote f∗∗(Ω•Y ) the image of this graded sheaf morphism.
We shall also denote f∗∗(G) for any sub-sheaf G of Ω•Y /torsion its image by the morphism f∗

above (or also when G is a subs-sheaf of Ω•Y ).

So, by definition, f∗∗(Ω•Y ) (and more generally f∗∗(G)) is a sub-sheaf of the sheaf Ω•X/torsion,
so it has no OX−torsion.

Lemma 1.0.4. Let f : X → Y and g : Y → Z two holomorphic maps between reduced complex
spaces. Then we have equality of the sub-sheaves f∗∗(g∗∗(H)) and (g ◦ f)∗∗(H) for any sub-sheaf
H of the sheaf Ω•Z/torsion.

Proof. The pull-back by g gives a morphism

g∗(Ω•Z/torsion)→ Ω•Y /torsion

with image g∗∗(Ω•Z/torsion) and the pull-back by f gives a morphism

f∗(g∗(Ω•Z/torsion))→ f∗(Ω•Y /torsion)

which, by right-exactness of the tensor product, is surjective on f∗(g∗∗(Ω•Z/torsion)). Then we
have the following commutative diagram

f∗(g∗(Ω•Z/torsion))
α //

'
��

f∗(g∗∗(Ω•Z/torsion)
u //

β

))

f∗(Ω•Y /torsion)

v

��
(g ◦ f)∗(Ω•/torsion)

γ // Ω•X/torsion

.

Here α is surjective and the image of β is the sub-sheaf f∗∗(g∗∗(ΩZ)) by definition. Also the
image of γ is in (g ◦ f)∗∗(Ω•Z) by definition. Now the commutativity of the diagram allows to
conclude. �

Conclusion.

• The usual pull-back for holomorphic differential forms induced a natural pull-back for
the sheaf Ω•X/torsion by any holomorphic map between reduced complex spaces. The
previous lemma shows that this pull-back is functorial.

2. Normalization of a coherent sheaf

2.1. Definition. Let F be a coherent sheaf on a reduced complex space X and let pr : F → X
be the associated linear bundle over X. Recall that, if on the open set U in X we have a
presentation

OmX
M→ OnX → F → 0

where M is a matrix with holomorphic entries, then F|U is given as the kernel

Ker[tM : U × Cn → U × Cm].
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Then a section of F over an open set U in X is a holomorphic map over U , F|U → U×C, which
is linear on the fibres of pr|U ; and conversely if f : F|U → U ×C is a holomorphic map which is
linear on the fibres of pr|U , let g : V ×W → C be a holomorphic function on a neighbourghood

of (x0, 0) ∈ U ×Cn inducing f on F ∩ (V ×W ). Write g =
∑+∞
ν=0 γν be the Taylor expansion of

g in homogeneous polynomials in the Cn−variables. Then γ1, the homogeneous part of degree
1 in the Cn−variables, induces f on X ∩ (V × Cn). And γ1 is a holomorphic function which is
linear on fibres.

For the notion of linear bundle see [F.76], [A-M.86] or [B-M 2].

The symetric algebra of a linear bundle. We define the symetric algebra

S•(F) := ⊕+∞
h=0 Sh(F),

where Sh(F) is the sheaf of holomorphic functions on F which are homogeneous of degree h
along the fibres of F . If σ1, . . . , σN is a local generator of F near a point x0 ∈ X then, for

α ∈ NN such that |α| =
∑N
j=1 αj = h, the σα := σα1

1 . . . . σαNN for all such α generate locally

Sh(F) near x0.

Note that if F is, on an open set U ⊂ X, the kernel of tM : U × Cn → U × Cm, the linear
bundle Sh(F ) associated to the coherent sheaf Sh(F) is defined as the kernel of the holomorphic
map, linear on the fibers:

Sh(tM) : U × Sh(Cn)→ U × Sh(Cm).

As the complex space F is not reduced in general, the vanishing of a holomorphic function ho-
mogeneous of degree h on the fibres of F is not given, in general, by generic vanishing on F
of such a function. But, when we assume that X is reduced and FX\S is a vector bundle, the
vanishing of a section of Sh(F) on an open set U \ S is just pointwise vanishing.

Recall that the exterior algebra of a coherent sheaf may be defined in the same way using the
kernel of the map Λq(tM) : U × Λq(Cn)→ U × Λq(Cm) on the “linear bundle side”, or directly
as a quotient of the tensor product F⊗q.

Proposition 2.1.1. Let X be a reduced complex space and let F be a coherent sheaf on X. Let
S ⊂ X be a closed analytic subset with no interior point in X such that on X \ S the sheaf F is

locally free. Then there exists a modification τ : X̃ → X with the following properties :

i) The center of τ is contained in S.

ii) The sheaf τ∗(F)
/

torsion is locally free on X̃.

iii) The reduced complex space X̃ is normal.
iv) For any holomorphic map f : Y → X from a normal complex space Y such that f−1(S) has

no interior point in Y and such that the coherent sheaf f∗(F)
/

torsion is locally free, there

exists an unique holomorphic lifting f̃ : Y → X̃ such that τ ◦ f̃ = f . And in this situation
we have

f̃∗(τ∗(F)
/

torsion) = f∗(F)
/

torsion.

Proof. Note that, without any lost of generality, we may assume that F has no torsion. Con-
sider first an open set U in X such that on U the coherent sheaf F has a presentation

OmX
M−→ OnX → F → 0.

Let n−p be the generic rank of the holomorphic matrix M . Then the linear bundle L associated
to F|U is the kernel of the holomorphic map, linear on the fibres

idX ×tM : U × Cn → U × Cm .
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Then we have a holomorphic map g : U \ S → Gr(p, n) which sends the p−dimensional vector
sub-space KertMx to the corresponding point in Gr(p, n), the grassmannian of p−vector sub-
spaces in Cn. Consider then the closed analytic subset

Z := {(x, P ) ∈ U ×Gr(p, n) / P ⊂ KertM(x)}.

Over U \S the set Z coincides with the graph of the holomorphic map g. Then define X̃U as the
normalization of the union of the irreducible components of Z which dominate an irreducible
component of U . The projection map τ : X̃U → U is clearly a (proper) modification of U with
center contained in S.

Let V → Gr(p, n) be the universal bundle of Gr(, p, n) and let U the associated coherent sheaf.

Let p2 : X̃U → Gr(p, n) the composition of the normalization with the projection on Gr(p, n).
Then let us show that there is a natural isomorphism τ∗(F)

/
torsion→ p∗2(U). For that purpose

it is equivalent to prove that there is a natural holomorphic map, linear on the fibres

p∗2(V )→ τ∗(F )

of linear bundles from the pull-back on X̃U of the tautological rank p−vector bundle V on
Gr(p, n) to the linear bundle τ∗(F ) associated to τ∗(F). But this map is obvious as the fiber of

p∗2(V ) at x̃ ∈ X̃U is, by definition, a p−vector subspace of the fibre of τ∗(F ) at x̃. Moreover, this
map is an isomorphism on U \S by construction, so it is injective. The corresponding morphism
of coherent sheaves τ∗(F) → p∗2(U) is then surjective and its kernel is supported by τ−1(S).
This implies that it induces an isomorphism τ∗(F)

/
torsion ' p∗2(U).

To complete the proof of the assertions i) to iv), it is enough now to prove that the property

iv) holds for the modification τ : X̃U → U because this will imply the globalisation of this
construction, thanks to the patching of these local pieces via the “universal property”.

So let f : Y → U be a holomorphic map from a normal complex space Y such that f−1(S) has
no interior point in Y and such that f∗(F)

/
torsion is locally free on Y . Then by right exactness

of the tensor product we have on Y the exact sequence

OmY
f∗(M)−→ OnY → f∗(F)→ 0.

This implies that the rank p vector bundle G associated to the locally free sheaf f∗(F)
/

torsion
is a sub-vector bundle of the linear bundle f∗(F ) which is the kernel of the holomorphic map,
linear in the fibres

idY ×f∗(tM) : Y × Cn → Y × Cm .
This induces a holomorphic map g̃ : Y → Gr(p, n) which sends y ∈ Y to the fibre at y of
G ⊂ Y × Cn. As G and f∗(F ) are isomorphic over Y \ f−1(S) which is a dense open set by

assumption, this proves the uniqueness of g̃ and then of the map f̃ := (f, g̃) : Y → X̃U . �

Definition 2.1.2. In the situation of the previous proposition we shall call the modification
τ : X̃ → X the normalization of the coherent sheaf F on X.

We shall say that a holomorphic map f : Y → X is normalizing for the coherent sheaf
F on X which is locally free outside the closed analytic subset S with no interior point in X,
when it satisfies the following conditions:

i) The complex space Y is normal.
ii) The closed analytic subset f−1(S) has no interior point in Y .

iii) The sheaf f∗(F)
/

torsion is locally free on Y .

Thanks to the universal property of the normalization τ : X̃ → X of F , the holomorphic map
f is normalizing for F if and only if the map f factorizes through the modification τ .
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Remark. The normalization of a coherent sheaf F on a reduced complex space X is always a
locally projective modification, as , by construction, it is locally contained in a product of an
open set in X by a grassmannian.

Note that the proposition 2.1.1 is consequence of rather elementary results and do not use
the desingularization theorem of H. Hironaka. But thanks to Hironaka, for any X and any
coherent sheaf F on X there always exists a proper modification τ : X̂ → X which is smooth
and normalizes the sheaf F : it is enough to apply the desingularization theorem to the normal-
ization of F constructed above. Moreover, we may always assume that such a “normalizing”
desingularization is a projective modification of X. This remark will be used in the next section.

Note that, in general, a desingularization of X is not necessarily normalizing for the sheaf
Ω1
X , see for instance the case of S3 in example 6.2.

For a pure dimensional reduced complex space X the Nash transform (resp. the normalized
Nash transform) is simply the previous results applied to the coherent sheaf Ω1

X . Note that the
corresponding linear bundle on X is the Zariski tangent linear bundle on X. See section 5.

Lemma 2.1.3. In the situation of the proposition 2.1.1, consider an integer q ≥ 1 and the
coherent sheaf Λq(F) and its normalization τq : X̃q → X. Then we have a natural holomorphic
map

ϕq : X̃ → X̃q

satisfying the following properties

(1) ϕq is a modification with center contained in S and τq ◦ ϕq = τ .

(2) We have a natural isomorphism of locally free sheaves on X̃

eq : Λq(τ∗(F)
/

torsion))→ ϕ∗q(τ
∗
q (Λq(F)

/
torsion).

Proof. Note that we may assume without any lost of generality that F has no torsion. As the
sheaf τ∗(F)

/
torsion is locally free on X̃ the sheaf Λq(τ∗(F)

/
torsion) is also locally free on X̃.

The natural surjective morphism

Λq(τ∗(G))→ τ∗(Λq(G)), τ∗(g1) ∧ · · · ∧ τ∗(gq) 7→ τ∗(g1 ∧ · · · ∧ gq)

for any coherent sheaf G induces an isomorphism

(@) Λq(τ∗(F)
/

torsion)→ τ∗(Λq(F)
/

torsion)

because the kernel must be a torsion sub-sheaf of Λq(τ∗(F)
/

torsion) which is locally free. Then
the universal property of the normalization of the sheaf Λq(F) gives the holomorphic map

ϕq : X̃ → X̃q such that τq ◦ ϕq = τ , and the isomorphism (@) allows to obtain the isomor-
phism eq. �

Consequence. If the holomorphic map f : Y → X is normalizing for the coherent sheaf F it
is normalizing for the sheaf Λq(F) for any integer q ≥ 0.

This will be useful for instance for F = Ω1
X , because a normalizing map for Ω1

X is then
normalizing for each ΩqX ∀q ≥ 1.

2.2. Locally bounded sections. Let X be a reduced complex space, F a coherent sheaf on
X which is locally free outside the closed analytic subset S ⊂ X with no interior point in X.
Consider the linear bundle on X, pr : F → X, associated to F . For any open set U in X a
section σ ∈ Γ(U,F) corresponds to a holomorphic function f : FU → C which is linear on the
fibres of F .
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Definition 2.2.1. We shall say that σ ∈ Γ(U \ S,F) is a locally bounded section of F
near the point s0 ∈ U when there exist an open neighbourhood U0 of s0 in U , sections σ1, . . . , σN
sections of F on U0 and continuous bounded functions ρ1, . . . , ρN on U0\S such that the function
f on FU0\S corresponding to σ is given by

f =

N∑
j=1

ρj(x).fj(x, v) ∀(x, v) ∈ FU0\S

where, for each j ∈ [1, N ], fj : FU0
→ C is the holomorphic function linear on the fibres of F

which corresponds to σj ∈ Γ(U0,F)

Remark that, by definition of S, FU0\S is a reduced complex space: it is a holomorphic vector
bundle on a reduced complex space. So the equality above is a “pointwise equality”.

Of course, if σ is the restriction to U0 \S of a section σ ∈ Γ(U0,F), it is locally bounded near
each point in U0: take σ1 = σ and ρ1 ≡ 1 !

Note that the function f : FU0\S → C corresponding to a locally bounded section

σ ∈ Γ(U0 \ S,F)

is locally bounded near each point of FU0∩S which belongs to the irreducible components of FU0

which surject onto an irreducible component of U0. So, in general, such a f is not a locally
bounded function on FU0 but only on the closure in FU0 of FU0\S .

Lemma 2.2.2. Let S ⊂ X be a closed analytic subset with no interior point in X containing
the singular set in X and assume that the coherent sheaf F is locally free on X \ S. Let

σ ∈ Γ(U0 \ S,F)

and f : FU0\S → C the corresponding holomorphic function linear on the fibers of F .Then the

fonction f is bounded in a neighbourhood of the point {s0} × {0} in the closure of FU0\S in F 2

if and only if the section σ is locally bounded near s0 as a section of F on U0 \S in the sense of
the definition 2.2.1.

Proof. Let first consider a section σ of F which is locally bounded near s0 in the sense of the
definition 2.2.1. Then we can find holomorphic sections σ1, . . . , σN on an open neighbourhood

U0 of s0 in U and continuous bounded functions ρ1, . . . , ρN on U0\S, such that σ =
∑N
n=1 ρn.σn

on U0 \ S. Then, if f1, . . . , fN are the holomorphic functions (linear on the fibres) on F|U0
cor-

responding to σ1, . . . , σN , we have f =
∑N
j=1 ρj .fj on F|U0\S . This implies that the function

f is locally bounded near points in the intersection of pr−1(s0) with the closure of FU0\S . In
particular near {s0} × {0}.

Conversely, if f is locally bounded on the intersection with F|U0\S of a neighbourghood of
{s0}×{0} in the closure of FU0\S , remark that, as an obvious consequence of its homogeneity on

the fibres of FU0\S , it is locally bounded in a neighbourhood of each point of pr−1(s0)∩FU0\S .

Consider now a modification τ : X̃ → X with center contained in S such that X̃ is normal and
such that the strict transform τ̃ : F̃ → F of F is a holomorphic vector bundle. Then the function
f ◦ τ̃ is locally bounded near τ−1((s0)×{0}) in F̃ . As F̃ is a holomorphic vector bundle over the

normal complex space X̃, it is a normal complex space and then f ◦ τ̃ extends to F̃|τ−1(U0) to a

holomorphic function f̃ which is linear on the fibres. If σ1, . . . , σN are sections of F on an open

2Note that if G is an irreducible component of FV which is contained in pr−1(V ∩ S) then G does not meet

the open set where f is defined. So we obtain the same condition on σ if we replace F by F
/

torsion.
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neighbourhood U0 of s0 in U which generate F at each point of U0, their pull-back by τ generate
the coherent sheaf on X̃ associated to F̃ at each point of τ−1(U0). Near each such point we can

write f̃ =
∑N
j=1 cj ⊗ τ−1(σj) where c1, . . . , cN are local holomorphic functions on X̃. Using a

continuous partition of unity along the compact fibre τ−1(s0) we obtain that f can be written

as
∑N
j=1 ρj .σj on U0 \ S where ρ1, . . . , ρN are bounded continuous functions on U0 \ S. �

Corollary 2.2.3. Let X be a reduced complex space and let F be a coherent sheaf on X. Let
S ⊂ X be a closed analytic subset with no interior point in X such that F is locally free on
X \ S. Note j : X \ S → X the inclusion. Let Y be a normal complex space and consider a
(proper) modification τ : Y → X normalizing the sheaf F . Then the sheaf τ∗(τ

∗(F)
/

torsion) is
the sub-sheaf of the sheaf j∗j

∗(F) of sections which are locally bounded along S.
So this sheaf is independent of the choice of such a τ .

Proof. First consider a section of θ ∈ τ∗(τ∗(F)
/

torsion). It can be written locally on Y as a sum∑N
j=1 gj .τ

∗(σj) where σ1, . . . , σN generate locally F and where g1, . . . , gN are local holomorphic
functions on Y . Then using a continuous partition of unity along the fibres of τ we see that θ
satisfies the definition 2.2.1.

Conversely, if η is a section of the sheaf j∗j
∗(F) which is locally bounded along S, its lifting

gives a holomorphic function on τ∗(F ) on the complement of τ−1(S), which is linear on the
fibres and locally bounded near the points of τ∗(F ) which are in the closure of the restriction of
τ∗(F ) to Y \ τ−1(S). But this closure is a vector bundle, by our assumption on τ . As a vector
bundle on a normal complex space is a normal complex space, the Riemann extension theorem
holds, and this holomorphic function extends holomorphically to this vector bundle. Then it is
a section of the sheaf τ∗(τ

∗(F)
/

torsion) concluding the proof. �

Proposition 2.2.4. Let S ⊂ X be a closed analytic subset with no interior point in X containing
the singular set in X and assume that the coherent sheaf F is locally free on X \ S. Consider a
holomorphic function f on F|U\S which is linear on the fibres of F and which is locally bounded

along pr−1(S) ∩ pr−1(U \ S) corresponding to a locally bounded section σ of F on U \ S. Then
for each point s0 in S there exists an open neighbourhood U0 of s0 in X, an integer h ≥ 1 and
sections s1, . . . , sh on U0 respectively of the sheaves S1(F), . . . , Sh(F) such that the equality of
sections of Sh(F) :

σh +

h∑
a=1

sa.σ
h−a = 0

is satisfied on the open set U0 \ S.

proof. We keep the notations of the proof of the previous lemma 2.2.2. As the function f is
locally bounded on F1, the conic bundle over X which is the union of the irreducible components
of F near the point {s0}×{0} which dominate an irreducible component of X at s0, there exist
an open neighbourhood U0 of s0 in X, an integer h ≥ 1 and holomorphic functions s̃1, . . . , s̃h
on an open neighbourhood W of F1 ∩ pr−1(U0 × {0}) such that σh +

∑h
a=1 s̃a.σ

h−a = 0 on
W ∩ pr−1(U0 \ S). Taking the homogeneous degree h parts of the expansions of this equality
in the fibres of pr : F → X leads to sections s1, . . . , sh of the sheaves Sa(F), where sa is the
homogeneous degree a part of s̃a

3 concluding the proof. �

3which is in fact well-defined only modulo torsion in Sa(F)(U0), but this torsion is concentrated on S, so is

irrelevant for the desired equality on U0 \ S.
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3. Definition of the sheaf α•X

It will be convenient to use the following definition in the sequel.

Definition 3.0.1. Let X be a reduced complex space. We say that a modification τ : X̃ → X is
a special desingularization of X when the following properties are satisfied:

i) X̃ is a complex manifold.
ii) The modification τ is projective.

iii) The sheaf τ∗(Ω1
X)
/

torsion is locally free on X̃.

We have already remark that, thanks to Hironaka and to the fact that the normalization of
the sheaf Ω1

X is a projective modification of X, for any modification θ : Y → X there exists a

special desingularization τ : X̃ → X which factors through θ.

The following result is the key of the definition of the sheaf α•X on a reduced complex space
X.

Theorem 3.0.2. Let X be a reduced complex space and let S be a closed analytic subset with
no interior point in X containing the singular set of X. Let α be a section on X of the sheaf
ωpX . The following properties are equivalent for α:

• There exists locally on X a normalizing modification for the sheaf Ω1
X

4

τ : X̃ → X such that α extends to a section on X of the sub-sheaf
τ∗τ
∗∗(ΩpX) of ωpX . (A)

• There exists, locally on X, a finite collection (ρj)j∈J of continuous functions on X \S
which are bounded near S and holomorphic p−forms (ωj)j∈J in ΩpX

/
torsion such that

α =
∑
j∈J ρj .ωj as a (p, 0) currents on X. (B)

Note that under the second property stated in the theorem, the (p, 0)−current on X associated
to the form

∑
j∈J ρj .ωj on X \ S is defined by

C∞c (X)n−p,n 3 ϕ 7→
∫
X

ϕ ∧ (
∑
j∈J

ρj .ωj)

and this integral is absolutely convergent as the functions ρj are locally bounded near each point
in S. It defines a (p, 0)−current on X with order 0. The assumption that α is a section of the
sheaf ωpX implies that this current is ∂̄−closed on X.

Proof. Let us begin by the implication (A) ⇒ (B). By definition, a section α ∈ ωpX is in the

sub-sheaf τ∗τ
∗∗(Ω•X) if, locally on X̃, it can be written as a linear combination of pull-back

of holomorphic forms on X with holomorphic coefficients in OX̃ . Using the properness of the

modification τ and a C∞ partition of the unity on X̃ we obtain the first part of (B) because τ

induces an isomorphism X̃ \ τ−1(S)→ X \S by hypothesis. The last property in (B), that is to
say the fact that the current defined on X by the right hand-side coincides with α, is consequence
of the fact that both are sections of the sheaf ωpX and are equal on X \ S.

To prove the implication (B) ⇒ (A) consider the pull-back to X̃ \ τ−1(S) of the form∑
j∈J ρj .ωj . We obtain a holomorphic section on X̃ \ τ−1(S) of the locally free sheaf

τ∗(ΩpX)
/

torsion

4In fact normalizing for the sheaf Ωp
X would be enough; see lemma 2.1.3.
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which has locally bounded coefficients along τ−1(S) when we compute it in a local trivialisa-

tion near a point of τ−1(S). So, by normality of X̃, it extends to a holomorphic section α̃ of
τ∗(ΩpX)

/
torsion and then defines a section of τ∗(α̃) of the sheaf τ∗(τ

∗(ΩpX)
/

torsion). Note that

the pull-back of holomorphic forms gives an injective morphism τ∗(ΩpX)
/

torsion→ Ωp
X̃

/
torsion

with image τ∗∗(ΩpX). So τ∗(α) defines a holomorphic form on X̃ and the direct image of this
form and α coincide on X \S, and then on X as sections of the sheaf ωpX because this sheaf has
no non-zero section supported in S. �

Remarks.

(1) The condition (B) does not depend on the choice of the modification τ normalizing the
sheaf Ω1

X .
(2) Let L•X be the direct image of the sheaf Ω•Y where τ : Y → X is a desingularization of

X. Using a special desingularization of X in the proof above we obtain that the form α
is in the coherent sub-sheaf LpX ⊂ ω

p
X , so it gives the inclusion α•X ⊂ L•X .

Corollary 3.0.3. Let τ : X̃ → X be any proper modification of X which is normalizing the
sheaf Ω1

X . The graduate sub-sheaf α•X := τ∗(τ
∗∗(Ω•X)) of the sheaf L•X is independent of the

choice of the modification of X normalizing Ω1
X . �

Corollary 3.0.4. Let X be a pure dimensional reduced complex space and let

X := ∪i∈IXi

be its decomposition in irreducible components. Then the sheaf α•X has a natural injection in the
locally finite direct sum of the direct images in X of the sheaves α•Xi for i ∈ I.

Proof. This is an easy consequence of the fact that a section of the sheaf L•X is a section of
α•X if and only if it satisfies the condition (B) in the previous theorem, because we have an
isomorphism L•X ' ⊕i∈I (ji)∗(L

•
Xi

), where ji : Xi → X is the inclusion. �

Note that when X is not irreducible the injective map α•X ↪→ ⊕i∈I (ji)∗(α
•
Xi

) is not an
isomorphism, in general, because the injective map

Ω•X/torsion ↪→ ⊕i∈I (ji)∗(Ω
•
Xi/torsion)

is not an isomorphism, in general.
But, for each i ∈ I, and any point x ∈ Xi, the “restriction” map

α•X,x → α•Xi,x

is surjective because each restriction map Ω•X,x/torsion→ Ω•Xi,x/torsion is surjective.

4. Universal pull-back for α•X

4.1. Statement of the theorem. The main result of this paragraph is the following theorem.

Theorem 4.1.1. For any holomorphic map f : X → Y between reduced complex spaces, there
exists a functorial5 graduate OX−morphism

f̂∗ : f∗α•Y → α•X

which is compatible with the usual pull-back of the sheaf Ω•Y /torsion.
For any holomorphic maps f : X → Y and g : Y → Z between reduced complex spaces we have

(1) f̂∗(ĝ∗(α)) = ĝ ◦ f
∗
(α) ∀α ∈ α•Z .

5We shall make this precise in the theorem 4.1.2 below.
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Let now give a precise formulation of this result. For that purpose let C be the category of
reduced complex spaces with morphisms all holomorphic maps. We may enrich this category,
using the universal pull-back property for the graded sheaf Ω•X/torsion :

Let Cdiff be the category whose objects are pairs (X,Ω•X/torsion) where X is an object in
C and where the morphisms are given by pairs (f, f∗) where f : X → Y is a morphism in
C and f∗ : f∗(Ω•Y /torsion) → Ω•X/torsion is the graded pull-back by f of holomorphic forms
modulo torsion (see section 1). Of course the forget-full functor G0 : Cdiff → C obtained by
(X,Ω•X/torsion) 7→ X, (f, f∗) 7→ f is an equivalence of category.

Then the precise content of the theorem above is the following result.

Theorem 4.1.2. [Precise formulation] There exists a category Cb−diff whose objects are pairs
(X,α•X) where X is in C and where the graded coherent sheaf α•X has been defined in section 3

for any object X in C. The morphisms are given by pairs (f, f̂∗) for each f : X → Y a morphism

in C where f̂∗ : f∗(α•Y ) → α•X is the graded OX−linear sheaf map defined by f . Moreover, the
following properties holds:

(1) For each X ∈ C we have a graded OX−linear injection

ηX : Ω•X/torsion→ α•X .

(2) For any morphism f : X → Y in C we have a commutative diagram of graded OX−linear
maps of sheaves

(2) f∗(Ω•Y /torsion)
f∗ //

f∗(ηY )

��

Ω•X/torsion

ηX

��
f∗(α•Y )

f̂∗ // α•X

where f̂∗ is the graded OX−linear map of coherent sheaves on X associated to the holo-
morphic map f .

Of course the interest of this result comes from the fact that the sheaf α•X is, in general,
strictly bigger that the sheaf Ω•X/torsion; see section 6.

For any holomorphic map f : X → Y between reduced complex spaces a pull-back morphism
f ] : f∗(L•Y ) → L•X is defined in [K. 00]. But this pull-back is not functorial on these sheaves:

let τ : X̃ → X be a desingularization of X ∈ C and let x ∈ X be a point such that τ−1(x) has

dimension ≥ 1. Let ω be a holomorphic form near τ−1(x) in X̃ which does not induce a torsion
form on an irreducible component Γ of τ−1(x). Then, because the map τ|Γ : Γ → X factorizes
by the constant map to {x} the functoriality of the pull-back of ω on Γ would imply that the

pull-back has to be zero. But this map factorizes also by the inclusion of Γ in X̃ and τ . As the
pull-back by τ is injective (by definition of L•X), this gives a contradiction. Such an example is
given in section 6.3.

4.2. The proof.
Preliminaries. Consider the following situation: let Z be a connected complex manifold and
consider a proper holomorphic map π : Z → X which is surjective on a reduced (irreducible)
complex space X. Let q := dimZ − dimX and let k be the number of connected components of
the generic fibre of π. Assume that we have a kähler form ω on Z.
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Claim. After a suitable normalization of ω, the smooth (q, q)−form w := 1
k .ω
∧q is d−closed and

satisfies the condition π∗(w) = 1 as a d−closed (0, 0)−current on X.

Proof. Consider the Stein factorization π0 : Z → Y, θ : Y → X of π; the reduced complex space
Y is irreducible. We have a meromorphic fibre-map Y −−− > Cq(Z) for π0 (see [B-M 1] ch.IV
Th. 9.1.1) and this implies, thanks to the irreducibility of Y , that the generic fibres of π0 are in
the same connected component of the space of q−cycles in Z. So the volume computed by ω∧q

of the connected components of the generic fibres of π is constant, and we may normalized ω in
order that this volume is equal to 1. Then the d−closed (0, 0)−current π∗(w) on X is equal to
1 on a dense Zariski open set in X. This implies our claim.

Assume now that the complex manifold Z has finitely many connected components Z1, . . . , Zr
such that the restriction of π is surjective on each Zj and such that each Zj has a kähler form
ωj . We can normalize each ωj in order that the integral of the form wj := 1

kj
.ω∧qj is equal to

1/r.kj on each connected component of the generic fibres of πj := π|Zj and then the smooth

form w :=
∑r
j=1 wj satisfies again the condition π∗(w) = 1 as a (0, 0)−current on X.

In this situation we shall say that the smooth form w on Z satisfies the condition
(@).

The proof of the theorem 4.1.2 will use the following proposition.

Proposition 4.2.1. Let X = ∪i∈I Xi be the decomposition of a reduced complex space X as the
union of its irreducible components. Let Z := ∪j∈J Zj be a disjoint union of connected complex
kähler manifolds. Assume that we have a map θ : J → I which is surjective and has finite fibres.
Let π : Z → X be a proper holomorphic map normalizing the sheaf Ω1

X , such that for each j ∈ J
it induces a surjective map

πj : Zj → Xθ(j)

and let qj := dimZj−dimXθ(j). For each j ∈ J let wj be a smooth (qj , qj)−form on Zj which is
d−closed and satisfies the condition (@) relative to the restriction of π to Zj (see preliminaries
above). Let w :=

∑
j∈J wj.

Let β be a section on Z of the sheaf π∗∗(ΩpX). Then we have:

(1) The ∂̄−closed (p, 0)−current π∗(β ∧w) on X is independent of the choices of the forms
wj, assuming that they are d−closed and satisfy the condition (@).

(2) The section π∗(β ∧ w) on X of the sheaf ωpX is a section of the sub-sheaf αpX .
(3) If there exists a section α of the sheaf ΩpX/torsion such that β = π∗∗(α) on Z, then

α = π∗(β ∧ w) as a section on X of the sheaf ωpX .

Remarks.

(1) It is enough to prove assertion 1) and 3) of the proposition above for each map πj , j ∈ J
because the sheaf ωpX is a sub-sheaf of the direct sum of the sheaves ωpXi , i ∈ I and the

restriction of β to Zj is a section of the sheaf π∗∗j (ΩpXθ(j)) for each j ∈ J .

This is not the case for the assertion 2) of the proposition: the sheaf αpX is a sub-sheaf of
the direct sum of the sheaves αpXi , i ∈ I but, in general, strictly smaller than this direct

sum. Note also that the condition on β to be a section of the sheaf π∗∗(ΩpX) is stronger
than the condition on each βj := β|Zj , j ∈ J to be a section of the sheaf π∗∗j (ΩpXθ(j)).

(2) In general, a section β ∈ Γ(Z, π∗∗(ΩpX)) is not equal to some π∗∗(α) where α is in
Γ(X,ΩpX) even in the case where π : Z → X is a special desingularization of X. �
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Proof. Thanks to the previous remark, we may assume that X is irreducible to prove assertions
1) and 3) of the proposition.

In the case qj = 0 the map πj is generically finite and wj is a locally constant function on
Z with a prescribed value on each Zj . So there is no choice for wj and the first assertion of
the proposition is trivial. As the second assertion is also clear in this case (the sheaf ωpX has no
torsion on X by definition), we shall assume qj ≥ 1 in the sequel.

The fact that the current π∗(β ∧w) is ∂̄−closed on X is consequence of the fact that on each
Zj the smooth (p + qj , qj) form β ∧ wj is ∂̄−closed and of the holomorphy of π. Let w′ be a
smooth form on Z which is d−closed and satisfies the condition (@). We want to show that
π∗(β ∧ (w − w′)) vanishes as a section of the sheaf ωpX . Let X ′ be the open and dense subset
of smooth points in X for which the Stein factorization of each πj : Zj → X is a covering of
degree kj . Remember that, as we assume that X is irreducible here, the set I is reduced to one
point and so J is a finite set. On this open set X ′ it is enough to prove that for each j ∈ J the
current (πj)∗(β ∧ (wj − w′j)) vanishes. So we can fix j and replace locally X ′ by one sheet of
the corresponding finite covering and make the proof in this case. That is to say that we may
assume that Z is smooth and connected and that π : Z → X has connected fibers on X.

In this case the generic fibres of π are irreducible and of dimension q. For any x ∈ X ′ there
exists an open neighbourhood V (x) of π−1(x) which is a deformation retract of π−1(x). Then
we have an isomorphism H2q(V (x),C) → C which is given by integration on π−1(x). But w
and w′ have the same integral on π−1(x) by the property (@). So there exists a (2q− 1) smooth
form θ on V (x) such that dθ = w − w′ by de Rham’s theorem.

Consider now a small open neighbourhood U of x in X ′ such that π−1(U) ⊂ V (x). Let
x1, . . . , xn be a local coordinate system on U . Then the sheaf π∗(ΩpX) is a free sheaf of
OZ−modules on π−1(U) with basis π∗(dxL) where L runs in all ordered sub-sets of cardinal
p in [1, n]. If we write β =

∑
|L|=p gL.π

∗(dxL) on U the holomorphic functions gL on π−1(U)

are constant along the fibres of π and so there exists holomorphic functions fL, |L| = p, with
gL = π∗(fL) (recall that U is a smooth open set in X). This means that there exists a holomor-
phic p−form α on U such that β = π∗(α) on π−1(U).
Let ψ ∈ C∞c (U)(n−p,n). By definition of the direct image we have

〈π∗(β ∧ dθ), ψ〉 =

∫
π−1(U)

β ∧ dθ ∧ π∗(ψ).

But it follows from the equality β = π∗(α) on π−1(U) that the form

β ∧ π∗(ψ) = π∗(α ∧ ψ)

is d−closed as α ∧ ψ is d−closed on U (its degree is 2n). So by Stokes formula the integral∫
π−1(U)

β ∧ dθ ∧ π∗(ψ) = ±
∫
π−1(U)

d
(
β ∧ θ ∧ π∗(ψ)

)
vanishes. This implies that the section π∗(β ∧ (w − w′)) of the sheaf ωpX vanishes on the open
dense subset X ′, so everywhere on X as the sheaf ωpX has no torsion.

Assertion 3) of the proposition is clear, because the equality is obvious at the generic points
in X.

Let us prove assertion 2). We no longer assume that I has a unique point.

Let τ : X̃ → X be a special desingularization of X, so X̃ is the disjoint union of special
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desingularizations τi : X̃i → Xi for each i ∈ I, and consider the commutative diagram

X̃ ×X,str Z

π̃
��

τ̃ // Z

π

��
X̃

τ // X

where X̃ ×X,str Z is the strict transform, so the union of irreducible components of X̃ ×X Z

which dominate some X̃i.
Note that the map τ ◦ π̃ is normalizing for the sheaf Ω1

X because it is the case for τ (and
also for π). Then the p−form τ̃∗∗(β) gives, for each such component, a section of the sheaf
(π ◦ τ̃)∗∗(ΩpX) and as the d−closed form τ̃∗(w) satisfies the condition (@) for the map π̃, the

∂̄−closed current π̃∗(τ̃
∗∗(β)∧ τ̃∗(w)) is in fact a p−holomorphic form on X̃ thanks to Dolbeault-

Grothendieck’s lemma. This already proved that α := π∗(β ∧ w) is a section of the sheaf LpX ,

because τ∗∗(π∗(β ∧ w)) = π̃∗(τ̃
∗∗(β) ∧ τ̃∗(w))) at the generic points of X̃, so everywhere on X̃.

Now the map η : Ωp
X̃
→ Ωp

X̃
given by γ 7→ π̃∗(π̃

∗∗(γ) ∧ τ̃∗(w)) is the identity map, thanks to

the assertion 3). So, if π̃∗∗(γ) gives a section of the image of the sub-sheaf π̃∗∗
(
τ∗∗(ΩpX)) of the

sheaf Ωp
X̃×X,strZ

/
torsion, γ will be a section of the image of the sub-sheaf τ∗∗(ΩpX) because the

map π̃∗ : π̃∗(Ωp
X̃

)→ Ωp
(X̃×X,strZ)

is injective.

Apply this to γ := τ∗∗(α) = π̃∗
(
τ̃∗∗(β)∧ τ̃∗(w)

)
which is a section of Ωp

X̃
as we already proved

that α is a section in LpX ; we obtain that τ∗∗(α) is a section of the sheaf τ∗∗(ΩpX) because, as
the diagram above commutes, τ̃∗∗(β) is a section of the sheaf τ̃∗∗

(
π∗∗(ΩpX)

)
= π̃∗∗

(
τ∗∗(ΩpX)

)
thanks to the lemma 1.0.4. �

Remark. If Z is not assumed to be smooth in the previous proposition, replacing Z by a
projective desingularization σ : Z̃ → Z (as before, this means that Z̃ is the disjoint union of

projective desingularizations σj : Z̃j → Zj for j ∈ J), the proposition applies to the proper map

π ◦ σ and to β̃ := σ∗(β) which is a section of the sheaf (π ◦ σ)∗∗(ΩpX). Then the result is still
true. �

Proof of theorem 4.1.1. The first step in proving the theorem will be the construction of

f̂∗(α) ∈ α•X when α is a section of the sheaf α•Y . So let α be a section on Y of the sheaf αpY . Let

τ : Ỹ → Y be a special desingularization of Y . Consider the following commutative diagram

Z
θ //

π1   

X̃

π

��

f̃ // Ỹ

τ

��
X

f // Y

where X̃ ⊂ X×Y Ỹ is the strict transform of X, that is to say the union of irreducible components
of X ×Y Ỹ which dominate an irreducible component of X, and where π and f̃ are induced by
the natural projections of X ×Y Ỹ . Then let Z be a special desingularization of X such that π1

factorizes by π (see the remark following the definition 3.0.1).

Now the problem is local on X and Y and we may assume that X, X̃, Y, Ỹ and Z are kähler.
So we may assume that we have on Z a smooth d−closed form w which satisfies the condition
(@) for the proper map π1 (we use a special desingularization to reach the precise situation of
the proposition 4.2.1; see the remark above and the remark following the definition 2.1.2).
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Let β be the section of τ∗∗(ΩpY ) defined by α; then the form (f̃ ◦θ)∗∗(β) is a section of π∗∗1 (ΩpX)

because if we write locally on Ỹ

β :=
∑
l

gl.τ
∗∗(ωl)

where ωl are local sections of ΩpY and gl are holomorphic functions on Ỹ , we obtain

(f̃ ◦ θ)∗∗(β) =
∑
l

(f̃ ◦ θ)∗(gl).(f̃ ◦ θ)∗∗(τ∗∗(ωl))

and the equality (f̃ ◦ θ)∗∗(τ∗∗(ωl)) = π∗∗1 (f∗∗(ωl)) due to the commutativity of the diagram and

the lemma 1.0.4 shows that (f̃ ◦ θ)∗∗(β) is a section of the sheaf π∗∗1 (ΩpX). So we can apply the

proposition 4.2.1 and obtain that (π1)∗((f̃ ◦ θ)∗∗(β) ∧ w) is a section of the sheaf αpX . This will

give the definition of f̂∗(α) when we shall have proved that it is independent of the choice of the

special desingularization τ : Ỹ → Y .
Note that the proposition 4.2.1 already gives the independence of the choice of w (assumed

d−closed and satisfying (@)) in this construction.

The proposition 4.2.1 gives also that for α a section of ΩpY /torsion f̂∗(α) is a section of
ΩpX/torsion and coincides with the usual pull-back f∗(α) (see section 1).

Remark now that, as the sheaf αpX has no torsion on X, to prove the independence of f̂∗(α)
on the choice of the special desingularization τ , it is enough to prove it at the generic points of
X. Moreover, this problem is local on X and so we may assume that X is smooth and connected.

In our construction, we sum the various direct images (πj)∗(f̃
∗(β) ∧ wj) when j describes

the various connected components of the desingularization of X̃. Each such component is sent
by f̃ in a connected component of Ỹ and then it is enough to show the invariance of the
current (πj)∗(f̃

∗(β) ∧ wj) if we change only one connected component of Ỹ in the given special
desingularization, and also if we consider only the corresponding connected components of the
special desingularization of X̃. So, in fact, it is enough to prove the following special case of our
problem:

Assume that X is smooth and connected and that Y is irreducible. Let τ : Ỹ → Y be a

special desingularization of Y and let θ : ˜̃Y → Ỹ be a proper smooth modification of Ỹ . So our

new special desingularization of Y will be τ ◦ θ : ˜̃Y → Y .
Now we shall consider the following diagram, where X̃ is a special desingularization of an

irreducible component of the strict transform X ×Y Ỹ and ˜̃X is a special desingularization of

the strict transform of X̃ ×Ỹ
˜̃Y :

˜̃X

θ̃
��

˜̃
f // ˜̃Y

θ
��

X̃

τ̃

��

f̃ // Ỹ

τ

��
X

f // Y

Let q the dimension of the generic fibres of τ̃ and k the number of connected components
of its generic fibres. Let ω be a kähler form of Ỹ normalized in order that the form f̃∗(ω∧q)

satisfies the condition (@) for the map τ̃ . Let q̃ be the dimension of the generic fibre of θ̃ and

let ω̃ a kähler form on ˜̃Y normalized in order that the form
˜̃
f∗(ω̃∧q̃) satisfies the condition (@)
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for the map θ̃. Now consider the (q+ q̃, q+ q̃)−smooth form w :=
˜̃
f∗(θ∗(ω∧q)∧ ω̃q̃) on ˜̃X which

is d−closed. It satisfies the condition (@) for the map τ̃ ◦ θ̃.
So the definition of f̂∗(α) using the special desingularization τ ◦ θ is given by

(τ̃ ◦ θ̃)∗
(
(θ ◦ ˜̃

f)∗(β) ∧ w
)
,

But, as f̃∗∗(β) is a section of the sheaf Ωp
X̃
/torsion, we have the equality

θ̃∗(θ̃
∗∗(f̃∗∗(β)) ∧ ˜̃

f∗(ω̃q̃)) = f̃∗∗(β)

and the conclusion follows from the fact that

(τ̃ ◦ θ̃)∗
(
(θ ◦ ˜̃

f)∗∗(β) ∧ w
)

= τ̃∗[θ̃∗
(
θ̃∗∗(f̃∗∗(β)) ∧ ˜̃

f∗(ω̃q̃)
)
∧ f̃∗(ωq))].

The compatibility of this construction with the pull-back of holomorphic forms modulo torsion
which is given by the last assertion of the proposition 4.2.1 obviously gives that the injective
OX−linear morphism

ηX : Ω•X/torsion→ α•X

for each X ∈ C gives the commutative diagram (2) of the precise formulation 4.1.2 of the theorem
for each morphism f : X → Y in C.

Now we have to prove the functoriality of f̂∗. Then consider a holomorphic maps f : X → Y
and g : Y → Z. We want to prove the formula (1) of the theorem.
Consider the commutative diagram

˜̃X
˜̃
f //

θ̃
��

˜̃Y

θ
��

X̃
f̃ //

τ2

��

Ỹ
g̃ //

τ1

��

Z̃

τ

��
X

f // Y
g // Z

where τ : Z̃ → Z is a special desingularization, where g̃ : Ỹ → Z̃ is the strict transform of g by
τ , where f̃ : X̃ → Ỹ is the strict transform of f by τ1, where
˜̃
f : ˜̃X → ˜̃Y is the strict transform of f̃ by θ : ˜̃Y → Ỹ which is a special desingularization of Ỹ .
Let α be a section of αpZ , note β := τ∗∗(α) ∈ τ∗∗(ΩpZ)6 and let w1 and w2 be smooth d−closed

forms satisfying the condition (@) of the proposition 4.2.1 for the maps τ1 and θ̃ respectively.
We have

ĝ∗(α) = (τ1)∗(g̃
∗∗(β) ∧ w1)

but we have also, because g̃∗∗(β) is a section of τ∗∗1 (ΩpY )

ĝ∗(α) = (τ1 ◦ θ)∗(θ∗∗(g̃∗∗(β) ∧ θ∗(w1))).

Then we obtain

f̂∗(ĝ∗(α)) = (τ2 ◦ θ̃)∗
( ˜̃
f∗∗(θ∗∗(g̃∗∗(β))) ∧ ˜̃

f∗(w1) ∧ w2

)
.

6See the simple lemma 4.2.3 below.
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As the square

X̃
g̃◦f̃ //

τ2

��

Z̃

τ

��
X

g◦f // Z

is also the strict transform of g ◦ f by τ we have

ĝ ◦ f
∗
(α) = (τ2)∗

(
(g̃ ◦ f̃)∗∗(β) ∧ f̃∗(w1)

)
.

Then the conclusion follows from the equality

θ̃∗
( ˜̃
f∗∗(θ∗∗(g̃∗∗(β))) ∧ ˜̃

f∗∗(θ∗(w1)) ∧ w2

)
= f̃∗∗(g̃∗∗(β)) ∧ f̃∗(w1)

obtained by the comparaison of both hand-sides at the generic points of X̃. �

Our next result shows that the sheaf α•X is “maximal” in order to construct the pull-back via
the method of the proposition 4.2.1.

Proposition 4.2.2. Let π : Z → X be a proper surjective holomorphic map between irreducible
complex spaces. Put q := dimZ − dimX. Let β ∈ αpZ be equal to π̂∗(α) for a section α of the
sheaf αpX . Let also w be a smooth (q, q)−form on Z which is d−closed and satisfies the condition
(@) of the proposition 4.2.1 for the map π. Then the (p, 0)−current π∗(β ∧ w) on X (which is
∂̄−closed and independent of the choice of w satisfying dw = 0 and (@); see proposition 4.2.1)
is equal to the image in ωpX of the section α of the sheaf αpX .

Using the “pull-back” theorem 4.1.1 the proof of the result above will follow from this simple
lemma.

Lemma 4.2.3. Let X be a reduced complex space and τ : X̃ → X a desingularization of X.
Then the image of the pull-back τ̂∗ : τ∗(α•X)→ α•

X̃
= Ω•

X̃
is the subsheaf τ∗∗(Ω•X) of Ω•

X̃
.

Proof. By definition, a section of this image is locally on X̃ a OX̃−linear combination of holo-

morphic forms on X̃ which are locally OX̃−linear combinations of pull-back by τ of holomorphic
forms on X. So the conclusion is clear. �

Remark. As a consequence of the previous lemma, if τ is a special desingularization of X we
have τ∗τ̂

∗ is the identity on the sheaf α•X .

Proof of the proposition 4.2.2. Let π̃ : Z̃ → X̃ be the strict transform of π by τ , and
denote by τ̃ : Z̃ → Z the corresponding projection on Z which is a modification. So we have the
following commutative diagram

Z̃
π̃ //

τ̃

��

X̃

τ

��
Z

π // X

The (q, q)−form τ̃∗(w) is smooth and d−closed in Z̃ and satisfies the condition (@) of the
proposition 4.2.1 for the proper surjective holomorphic map τ ◦ π̃. As we can write β = π̂∗(α)
where α is a section of αpX , we have, by functoriality of the pull-back for the sheaf α•Y and the
equality τ ◦ π̃ = π ◦ τ̃

ˆ̃τ∗(β) = ̂̃π∗(τ̂∗(α)).
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But, thanks to the previous lemma, we have τ̂∗(α) which is a section of τ∗∗(ΩpX) and using

the smoothness of X̃ we have ̂̃π∗ = π̃∗∗. Then we obtain, using the lemma 1.0.4, the fact that
ˆ̃τ∗(β) is a section of the sheaf (τ ◦ π̃)∗∗(ΩpX). Then the proposition 4.2.1 applies to the map

τ ◦ π̃ : Z̃ → X with the form τ̃∗(w) and the section ˆ̃τ∗(β) of the sheaf (τ ◦ π̃)∗∗(ΩpX) and gives

that the (p, 0)−current on X given by σ := (τ ◦ π̃)∗(ˆ̃τ∗(β) ∧ τ̃∗(w)) is ∂̄−closed on X and is a
section of the sheaf αpX .

But the (p+ q, q)−current τ̃∗(ˆ̃τ∗(β)∧ τ̃∗(w)) is equal to β ∧w at least over the generic points
in X, the (p, 0)−current π∗(β ∧w) is ∂̄−closed in X and generically equal to σ and α. So α and
σ are equal as sections of the sheaf αpX . �

5. Integration on cycles

5.1. Integrals.
Notations. Let V be a complex manifold and h be a continuous hermitian form on V . So h is a
real continuous positive definite (1, 1)− differential form on V . If ω is a continuous (p, p)−form
on V , we shall consider ω as a continuous sesqui-linear form on Λp(TV ) and we shall write

‖ω‖K ≤ C.h∧p

where K is a subset in V and C > 0 a constant, if for any point x ∈ K and any v1, . . . , vp ∈ TV,x
the inequality

|ω(x)[v1 ∧ · · · ∧ vp]| ≤ C.h∧p(x)[v1 ∧ · · · ∧ vp]
holds. For instance, if α, β ∈ ΩpV we shall write ‖α ∧ β̄‖K ≤ CK .h

∧p when for any x ∈ K and
any v1, . . . , vp ∈ TV,x we have

(1) |α(x)[v1 ∧ · · · ∧ vp]|.|β(x)[v1 ∧ · · · ∧ vp]| ≤ CK .h∧p(x)[v1 ∧ · · · ∧ vp].

Remark. If f : W → V is a holomorphic map and if (1) holds then we shall have

(2) ‖f∗(α) ∧ f∗(β)‖f−1(K) ≤ CK .f∗(h)∧p

but, in general, f∗(h) is still positive but no longer definite on W .
Conversely if (2) holds on a set L in W then (1) is satisfied on f(L).

Proposition 5.1.1. Let X be a reduced complex space, let S be the singular set in X and let h
be a continuous hermitian metric on X. Let U be a relatively compact open set in X. For all
α, β ∈ αpX there exists a constant CU > 0 such that the following inequality holds at each point
in Ū \ S

‖α ∧ β̄‖Ū\S ≤ CU .h
∧p
Ū\S .

Proof. Remark that the problem is local on the compact set Ū ∩S because near smooth points
in X the assertion obviously holds. Let τ : X̃ → X be a special desingularization of X. Then
we shall show that for each point y ∈ τ−1(Ū ∩ S) there exists an open neighbourghood W of y

in X̃ and a positive constant CW such that the inequality

‖τ∗∗(α) ∧ τ∗∗(β)‖W ≤ CW .τ∗∗(h)∧p

holds: if y is a point in X̃ we can write in an open neighbourghood W of y

α =
∑
|I|=p

gI .τ
∗∗(dxI) and β =

∑
|I|=p

hI .τ
∗∗(dxI)
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where x1, . . . , xN are local coordinates in a closed embedding of an open set U ⊂⊂ X in CN
near τ(y). Our estimates is consequence of the facts that the holomorphic functions gI and hI
are locally bounded and that for any (I, J) there is a constant cI,JU > 0 with

‖dxI ∧ dxJ)‖U ≤ cI,JU .h∧p

because we can assume that h is induced by a continuous hermitain form on CN .
Now the properness of τ allows to find a a constant CU such that the inequality

‖τ∗∗(α) ∧ τ∗∗(β)‖K ≤ CU .τ∗∗(h)∧p

holds on the compact set K := τ−1(Ū). This allows to conclude thanks to the remark above. �

Corollary 5.1.2. Let X be a complex space of pure dimension n, and let α, β be sections on X
of the sheaf LnX . Then, if ρ is a continuous compactly supported function on X the integral∫

X\S
ρ.α ∧ β̄

is absolutely convergent for any closed analytic subset S containing the singular set in X and its
value does not depends on the choice of S.
Now fix a continuous hermitian metric h on X and a compact set K in X. If α and β are
sections of the sheaf αnX , there is constant C > 0 depending on α, β, h and K such that for any
ρ ∈ C 0

K(X) we have

(3)
∣∣∣ ∫
X\S

ρ.α ∧ β̄
∣∣∣ ≤ C.

∫
X

|ρ|.h∧n ≤ C.||ρ||.
∫

Supp ρ

h∧n.

Proof. The first part is consequence of the fact that τ∗∗(α) and τ∗∗(β) are holomorphic n−forms

on X̃. The estimates when α, β are sections of αnX is a direct consequence of the previous
proposition. �

Remarks.

(1) Of course, in the second part of the corollary we may replace ρ by the characteristic func-
tion of an open subset V ⊂ K in order to obtain, with the same constant C independent
on the choice of V , the estimate

(3 bis) |
∫
V \S

α ∧ β̄| ≤ C.

∫
V

h∧n.

(2) Note that the estimations (3) or (3bis) do not hold in general when α and β are sections
in the sheaf LnX . For instance let

X := {(x, y, z) ∈ C3 / x.y = z2} and α = β =
dx ∧ dy

z
.

They are sections of the sheaf L2
X but not sections of the sheaf α2

X (see the example
with k = 2 in the paragraph 6.2); let K := {|x| ≤ 1} ∩ {|y| ≤ 1} in X and let h be the
metric induced on X by the standard kähler form on C3. Then we have∫

V (r)

α ∧ ᾱ = γ.r2

where V (r) := {|x| ≤ r} ∩ {|y| ≤ r} ∩X and
∫
V (r)

h∧2 = δ.r4 for any r ∈]0, 1[, showing

that the estimate (3bis) cannot hold.
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Definition 5.1.3. For α, β sections of the sheaf LnX the common values of the absolutely con-
vergent integrals

∫
X\S ρ.α ∧ β̄ will be denoted simply by

∫
X
ρ.α ∧ β̄.

Lemma 5.1.4. Let f : Y → X a proper generically finite and surjective holomorphic map
between two complex spaces of pure dimension n; let k be the generic degree of π. Let α, β be
sections on X of the sheaf LnX and ρ ∈ C 0

c (X). Then the holomorphic n−forms f∗∗(α) and
f∗∗(β) are well defined on a dense Zariski open set in Y and extend as sections on Y of the
sheaf LnY . We have the equality∫

X

ρ.α ∧ β̄ = k.

∫
Y

f∗(ρ).f∗∗(α) ∧ f∗∗(β).

Proof. Remark that it is enough to prove the lemma for α = β. Let τ : X̃ → X be a
desingularization of X. As τ∗∗(α) is an holomorphic n−form on X̃ the form α is locally L2 on
X. Let Hε be an open ε−neighbourhood of H a closed analytic subset in X such that the map
f : Y \ f−1(H) → X \ H is a finite covering between two complex manifolds. Then the usual
change of variable gives, if ρ is in C 0

c (X)∫
X\Hε

ρ.α ∧ α = k.

∫
Y \f−1(Hε)

f∗(ρ).f∗∗(α) ∧ f∗∗(α).

Letting ε goes to 0 shows that f∗∗(α) is locally L2 on any desingularization of Y and so f∗∗(α)
is a section of the sheaf LnY . The conclusion follows easily. �

Definition 5.1.5. Let X be a complex space and let Y ⊂ X be an irreducible p−dimensional
analytic subset in X. We shall denote j : Y → X the the inclusion. Let α, β be sections of
the sheaf αpX on X and ρ be a continuous function with compact support in X. We define the

number
∫
Y
ρ.α ∧ β as the integral ∫

Y

j∗(ρ).ĵ∗(α) ∧ ĵ∗(β).

Note that this definition makes sense because the pull-back ĵ∗ : j∗(αpX)→ αpY is well defined
and because the inclusion αpY ⊂ L

p
Y allows to use the definition 5.1.3. Remark that this definition

only depends on the irreducible analytic subset Y of X. So we may extend by additivity the
definition of the integral ∫

Y

ρ.α ∧ β

to any p−dimensional cycle Y in X.

The next lemma shows that the change of variable holds for such a integral.

Lemma 5.1.6. Let f : X → Y be a holomorphic map and let α, β be sections on Y of the
sheaf αpY . Let ρ be a continuous compactly supported function on Y . Let Z be a p−cycle in X
and assume that the cycle f∗(Z) is defined in Y 7. Then the restriction to |Z| of the continuous

function f∗(ρ) has compact support and the integral
∫
Z
f∗(ρ).f̂∗(α) ∧ f̂∗(β) is well defined and

we have ∫
Z

f∗(ρ).f̂∗(α) ∧ f̂∗(β) =

∫
f∗(Z)

ρ.α ∧ β̄.

7This means that the restriction of f to |Z| is proper; see [B-M 1] chapter IV.
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proof. First remark that any irreducible component Γ of Z which has an image of dimension
at most equal to p− 1 does not contribute to the right hand-side and also to the left hand-side

because the forms f̂∗(α) and f̂∗(β) vanish on such a irreducible component:
Let g : Γ → f(Γ) be the map induced by f ; by functoriality of the pull-back ĝ∗ factorizes

through αpf(Γ) which is zero.

Then the result is in fact a local statement near each point of the support of the cycle f∗(Z).
And because of our previous remark and the fact that closed analytic subsets with no interior
point can be neglected in the integrals, it is enough to prove the result when Z is smooth and
when f induces an isomorphism of Z on f(Z). In this case, which is not trivial because Z and
f(Z) can be contained in the singular sets of X and Y , the functorial property of the pull-back
and the fact that for a complex manifold V we have αpV = ΩpV allow to conclude. �

Theorem 5.1.7. Let X be a reduced complex space and let (Yt)t∈T be an analytic family of
p−cycles in X parametrized by a reduced complex space T . Fix a compact set K in X and let
α, β be sections of the sheaf αpX on X. Let ρ be a continuous function with a compact support
in K and define the function ϕ : T → C by

ϕ(t) :=

∫
Yt

ρ.α ∧ β.

Then ϕ is locally bounded and for any given hermitian metric h on X and any compact set L
in T there exists a constant C depending only on K,α, β, h and L (but not on the choice of ρ)
such that the following estimate holds for each t ∈ L:

(E) |ϕ(t)| ≤ C.

∫
Yt

|ρ|.h∧p ≤ C.||ρ||.
∫
Yt∩Supp ρ

h∧p.

Moreover for each point t0 ∈ T there exists an open neighbourhood T0 of t0 in T and a closed
analytic subset Θ0 ⊂ T0 with no interior point in T0 such that ϕ is continuous on T0 \Θ0.

Proof. We shall cut this proof in several steps.

Step 1. Let ν : T̃ → T the normalization of T . The family (Yν(t̃))t̃∈T̃ is an analytic family of

p−cycles in X parametrized by T̃ , and if the theorem is proved for this family it implies the
result for the initial family, because the function is constant on the fibres of the normalization
map.

So we shall assume that T is normal in the sequel.

Step 2. If the generic cycle Yt is not reduced and irreducible, the normality of T allows to write
the family (Yt)t∈T as a finite sum of analytic families of p−cycles in X parametrized by T such
that the sum of these families is our initial family and such that the generic cycle in each family
is reduced and irreducible (see ch. IV theorem 3.4.1 of [B-M 1]). So it is enough to prove the
theorem for such a family.

So we shall assume that for t generic in T the cycle Yt is reduced and irreducible.

Step 3. Let G ⊂ T ×X the cycle-graph of our analytic family. It is a reduced and irreducible
cycle and the projection π : G → T is (by definition) a geometrically flat map, that is to say
that there exists an analytic family of cycles (Zt)t∈T in G such that for each t ∈ T we have
|Zt| = π−1(t) and such that the generic cycle Zt is reduced and irreducible. Of course, here we
have Zt := {t} × Yt for each t ∈ T .

Note pr : G → X the projection and define on G the sections of the sheaf αpG by letting
α1 := p̂r∗(α) and β1 := p̂r∗(β). Then, it is enough to prove the theorem for the function
t 7→

∫
Zt

ρ̃.α1 ∧ β̄1 where ρ̃ := pr∗(ρ) thanks to the change variable theorem proved in lemma
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5.1.6. Remark that pr induces an isomorphism of |Zt| onto |Yt| for each t ∈ T and also that the
continuous function ρ̃ on G has a π−proper support.

Step 4. Let τ : G̃→ G be a special desingularization of G. Define the subset

Θ := {t ∈ T / ∃y ∈ K dimy (pr ◦ τ)−1(t) ≥ p+ 1}.

This is a locally closed analytic subset8 in T with no interior point. For a given t0 ∈ T , fix
an open neighbourhood T0 of t0, small enough in order that Θ0 := Θ ∩ T0 is a closed analytic
subset. The map

q : G̃ ∩ (pr ◦ τ)−1(T0) \ (pr ◦ τ)−1(Θ)→ T0 \Θ0

is p−equidimensional on a normal basis, so it is geometrically flat and we have an analytic family
(Z̃t)t∈T0\Θ0

of fibres of q which are p−cycles in G̃, and for t generic in T0 \ Θ0 the cycle Z̃t is
irreducible.

Note that the pull-back of α1 and β1 on G̃∩ (pr ◦ τ)−1(T0) are holomorphic p−forms. So, by
the usual result of the continuity of integration of a continuous form on a continuous family of
cycles (see [B-M 1] ch. IV prop. 2.3.1), we conclude using the lemma 5.1.6 that the function ϕ
is continuous on T0 \Θ0.

Step 5. The local boundness on T of the function ϕ is given by the corollary 5.1.2 which gives
the estimate (E) by integration. �

Remarks.

(1) In the case of a proper family of compact cycles in X, it is easy, using results of [B-M 1]
chapter IV, to prove that the function ϕ becomes continuous after a suitable modification
of the complex space T .

(2) Already in the case of the normalization map, if α is a locally bounded meromorphic
function on X, the function x 7→ |α(x)|2 is not continuous on X in general.

5.2. Normalized Nash transform. Let us begin by two examples.
Two examples.

(1) We shall show in section 6.2 that for k ≥ 2 and k − 1 ≥ q ≥ k/2 the form

ωq := zq.(dx/x− dy/y)

is a section of the sheaf α1
Sk

where

Sk := {(x, y, z) ∈ C3 / x.y = zk}

which are not sections of the sheaf Ω1
Sk
/torsion.

But as we have dx/x+ dy/y = k.dz/z on Sk we obtain the equality

ω2
q = k2.z2q−2.(dz)2 − 4z2q−k.dx.dy;

so ω2
q is equal, for q ≥ k/2, modulo torsion to a section of S2(Ω1

Sk
), the piece of degree

2 in the symmetric algebra of the sheaf Ω1
Sk

.

(2) We shall show in section 6.4 that on X := {(x, y, u, v) ∈ C4 / x.y = u.v} the form
a := u.dv ∧ dx/x is a section of the sheaf α2

X which is not in Ω2
X/torsion. But using the

following identities on X:

u.dv ∧ dx/x+ u.dv ∧ dy/y = dv ∧ du
u.dv ∧ dy/y + v.du ∧ dy/y = dx ∧ dy

8See, for instance, the lemma 2.1.8 in [B.15].
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we obtain that

a2 + a.(du ∧ dv + dx ∧ dy)− (dv ∧ dx).(du ∧ dy) = 0

which is a homogeneous integral dependence equation for a on the symmetric algebra of
the sheaf Ω2

X/torsion.

The next proposition will show that these examples are special cases of a general phenomenon.

Proposition 5.2.1. Let X be a normal complex space. Then for each integer q the sheaf αqX is
the sub-sheaf of meromorphic sections of the sheaf ΩqX/torsion which satisfy a homogeneous inte-
gral dependence equation over the sheaf S•(ΩqX), the symmetric algebra of the sheaf ΩqX/torsion.

Proof. This is a special case of the proposition 2.2.4. �

Notation. For integers n < N we shall denote Gr(n,N) the grassmannian manifold of sub-

vector spaces in CN of dimension n.

Let X be a reduced complex space pure of dimension n and let S its singular locus. Assuming
that X is embedded in an open set U in CN we have a holomorphic map

θ : X \ S → Gr(n,N)

sending each point x ∈ X \ S to the n−dimensional vector sub-space of CN which directs
the tangent space at x to X. This map is holomorphic on X \ S and meromorphic along

S: assuming that X is locally defined by {f = 0} in an open set in CN the analytic subset

G ⊂ G̃ := {(x, P ) ∈ X × Gr(n,N) / P ⊂ Ker[dfx]}, which is the union of the irreducible

components of G̃ which contain an irreducible component of the graph of the map θ, is a proper
modification of X which is the closure of the graph of the map θ.

We shall note N : X̂ → X the projection on X of the normalization of G. We shall call the
(local) normalized Nash transform of X this modification.

Let π : U → Gr(n,N) the universal n−vector bundle of Gr(n,N) and let Lq be the sheaf of

section of the dual vector bundle to Λq(U). Let pr : X̂ → Gr(n,N) be the projection.

Proposition 5.2.2. For each integer q there is a canonical isomorphism

cq : N ∗(αqX)/torsion→ pr∗(Lq).

Proof. This proposition is an easy consequence of Corollary 2.2.3 and Lemma 2.1.3. �

As a consequence of this proposition we obtain that for a normal complex space we have
αqX ' N∗(Lq) for any integer q ≥ 0.

Lemma 5.2.3. Let X be a reduced complex space and let τ : X̃ → X be any (proper) modifica-
tion. Then we have a natural inclusion α•X ↪→ τ∗(α

•
X̃

).

Proof. Consider a special desingularization θ : ˜̃X → X̃ and remark that π := τ ◦ θ is a
desingularization of X. Then we have

α•X = π∗(π
∗∗(Ω•X) = τ∗(θ∗

(
θ∗∗(τ∗∗(Ω•X))

)
.

Now the equality α•
X̃

= θ∗(θ
∗∗(Ω•

X̃
)) and the inclusion τ∗∗(Ω•X) ⊂ Ω•

X̃
/torsion give

θ∗∗(τ∗∗(Ω•X) ⊂ θ∗∗(Ω•
X̃

)

θ∗
(
θ∗∗(τ∗∗(Ω•X)

)
⊂ α•

X̃
and then

α•X ⊂ τ∗(α•X̃)
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concluding the proof. �

Remark. This shows that when we consider a sequence of successive modifications over a re-
duced complex space X, the sequence of coherent sub-sheaves (τν)∗(α

•
Xν

) is locally stationary
on X. For instance, this is the case for iterated normalized Nash transforms over a given X.

6. Some examples

6.1. Computation of ω•X for hypersurfaces. We shall need the following elementary lemma.

Lemma 6.1.1. Let U be an open polydisc in Cn and D an open disc in C. Let X ⊂ U ×D be
a reduced multiform graph of degree k in U ×D with canonical equation P ∈ O(U)[z], which is
a monic degree k polynomial in z. Then we have the inclusion

Γ(X,ωqX) ⊂
k−1∑
j=0

zj

P ′(z)
.Γ(U,ΩqU )

with equality for q = n.

Proof. First will shall prove the following formula, where (j, h) ∈ [0, k − 1]2:

detj,h
[
TraceX/U (

zj+h

P ′(z)
)
]

= (−1)k.(k−1)/2.

Assume, without loss of generality, that D is centered at the origin with radius R. Then for
r > R we have, thanks to Cauchy’s formula

TraceX/U (
zm

P ′(z)
) =

1

2iπ
.

∫
|z|=r

zm.dz

P (z)
.

Then for m ≤ k − 2 put z = r.ei.θ we obtain

TraceX/U (
zm

P ′(z)
) =

1

2π
.

∫ 2π

0

rm+1−k.ei.(m+1−k).dθ

1 +O(1/r)

and letting r → +∞ gives 0. For m = k − 1 the same computation gives

TraceX/U (
zk−1

P ′(z)
) =

1

2π
.

∫ 2π

0

dθ

1 +Q((1/r).e−i.θ)

Where Q is a polynomial without constant term.

So we obtain that TraceX/U ( z
k−1

P ′(z) ) = 1. This is enough to get the formula above.

To prove the inclusion

Γ(X,ωqX) ⊂
k−1∑
j=0

zj

P ′(z)
.Γ(U,ΩqU ),

take α ∈ ωqX and write

α =
∑
|H|=q

gH .dt
H

where gH are degree ≤ k− 1 polynomials in z with meromorphic functions on U as coefficients.
As we have P ′(z).dz = −

∑n
h=1

∂P
∂th

.dth on X, this is possible. Now for any f ∈ O(X) we have
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TraceX/U [f.α] ∈ Ωq(U) and this implies that for any H ⊂ [1, n],TraceX/U [f.gH ] is in O(U). Let
g be a meromorphic function on X and assume that we write

g =

k−1∑
j=0

aj .
zj

P ′(z)

where aj , j ∈ [0, k − 1] is a meromorphic function on U . This is always possible for the gH as
we can see in what follows. Let mp := TraceX/U [zp.g] for p ∈ [0, k− 1]. Then we have the linear
system in the (aj), j ∈ [0, k − 1]:

k−1∑
j=0

aj .TraceX/U [
zp+j

P ′(z)
] = mp ∀p ∈ [0, k − 1].

But the determinant of this linear system is (−1)k.(k−1)/2, so this implies, if we assume that the
functions mp are holomorphic on U , that the functions aj for j ∈ [0, k − 1], are holomorphic in

U and so that g is in 1
P ′(z) .O(X). Then our inclusion is proved, as O(X) =

∑k−1
j=0 O(U).zj .

Note that in the situation above, the condition in order that α =
∑k−1
j=0

zj

P ′(z) .Ω
q(U) will be in

ωq(X) is that for any j ∈ [0, k − 1] the (q + 1)−forms

TraceX/U [zj .dz ∧ α]

are holomorphic in U for all j ∈ [0, k−1]. This is consequence of the fact that for any β ∈ Ωp(X)
the (p+ q)−form TraceX/U [α ∧ β] must be holomorphic (see [B. 78] for this characterization of
the sheaf ω•X). For q = n this extra condition is empty, so the equality occurs. �

Remark. For a general reduced multiform graph X ⊂ U ×B where B is now a polydisc in Cp,
for any linear form l in Cp which separates generically the fibres of the projection π : X → U ,
the map idU × l : U × B → U × C is proper and generically injective on X. If we define
Yl := (idU × l)(X), we are in the situation of the lemma above, and, as the direct image by π
induces an injective sheaf map π∗ : ω•X → π∗(ω•Yl), we obtain the inclusion

π∗ω
•
X ⊂

k−1∑
j=0

l(x)j

P ′l
.Ω•U

for any such l, where Pl is the canonical equation for Yl (see [B-M 1] chapter II). Note that the
canonical equation Pl is obtained from the canonical equation of the reduced multiform graph
X by the evaluation at l (with z = l(x)); see loc. cit. �

Note that, if X is a reduced complex space of pure dimension n, a section α ∈ ωnX is in LnX
iff α ∧ ᾱ is locally integrable on X. The analogous characterization, for p < n, involves local
integrability of α ∧ ᾱ on all p−dimensional irreducible analytic subset Y ⊂ X not contained in
the singular set of X; so it may be useful as a necessary condition but very difficult to check as
a sufficient condition.

Preliminary remark. Let τ : X̃ → X be a desingularization of a reduced complex space X.
Note S the singular set in X and assume that the center of τ is contained in S.

• Let α ∈ ωpX . To check if α is in LpX is equivalent to check if τ∗(α), as a section of Ωp
X̃

on τ−1(X \ S), extends to a section of Ωp
X̃

on X̃.

• For α ∈ LpX to check if α is a section of αpX is equivalent to check if τ∗∗(α) extends to a
section of τ∗∗(ΩpX) when τ is a special desingularization of X. But this not true,
in general, for an arbitrary desingularization of τ .
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• But for any desingularization, it is a necessary condition in order that α ∈ LpX belongs

to αpX that τ∗∗(α) is a section of τ∗∗(ΩpX) on X̃.

So, in order to have a complete description of the sheaf α•X , we shall use a special desingu-
larization of X.

6.2. The case X := {(x, y, z) ∈ C3 / x.y = zk}, k ≥ 2.
Notation. After blow-up (x, y, z) in C3 the homogeneous coordinates in P2 will be (α, β, γ).
The symetry between x and y allows to consider only the chart {α 6= 0} on which we put
b := β/α, c := γ/α and the chart {γ 6= 0} on which we put a := α/γ, b := β/γ.

Our first example will be the normal complex spaces, where k ∈ N, k ≥ 2

X := Sk := {(x, y, z) ∈ C3 / x.y = zk}.
Note that S0 and S1 are smooth complex surfaces.

Lemma 6.2.1. For any k ≥ 2 the normal complex space Sk is nearly smooth9. So we have
L•Sk = ω•Sk for any k.

Proof. Let ζ be a k−th primitive root of 1. Then Sk is isomorphic to the quotient of C2

by the action of the automorphism θ(u, v) = (ζ.u, ζ−1.v). The quotient map is given by
q(u, v) = (uk, vk, u.v) ∈ C3. �

Now compute the sheaf ωhX for h ∈ [0, 2]. We have ω0
X = OX as X is normal, and

ω2
X = OX .dx∧dyzk−1 . A rather easy computation shows that the quotient ω1

X

/
Ω1
X is generated

on OX by the image of x.dy
/
zk−1 = −y.dx/zk−1 + k.dz which is annihilated in this quotient by

x, y and zk−1.

Lemma 6.2.2. For any k ≥ 2, the sheaf α2
Sk

coincides with Ω2
Sk

/
torsion.

Proof. Remark that for k = 0, 1 the lemma is obvious as Sk is smooth. We shall prove the
lemma by induction on k ≥ 2.
We have to consider the case k = 2 first because it appears that the computation is special in
this case (see the denominator k − 2 in the computation for k ≥ 3).

For k = 2 after blowing-up the origin we have a smooth manifold:

Claim. This a special desingularization of S2.

Proof. In the chart {α 6= 0} we have y = x.b, z = x.c, b = c2 so (x, c) is a coordinate
system in this chart and the sheaf τ∗(Ω1

S2
)
/

torsion is generated by dx and x.dc, so it is free.
In the chart {γ 6= 0} we have x = z.a, y = z.b, a.b = 1 and so (z, a) is a coordinate system
with a 6= 0. Then the sheaf τ∗(Ω1

S2
)
/

torsion is generated by dz and z.da which is also free. By
symetry in x and y, the proof of the claim is complete.

Let us come back to the computation of α2
S2

.

In the chart {α 6= 0}, we have
dx ∧ dy

z
= 2.dx ∧ dc

9See [B-M. 17]
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which is holomorphic but not in τ∗(Ω2
S2

) ' OX̃ .x.dx ∧ dc.
In the chart {γ 6= 0}, we have x = z.a, y = z.b, a.b = 1 and

dx ∧ dy
z

= −2dz ∧ da/a

which is holomorphic but not in τ∗∗(Ω2
S2

) ' OX̃ .z.dz ∧ da.

The assertion is proved for k = 2.

Consider now the case k = 3. Then the blowing-up the origin gives a smooth manifold:

Claim. This desingularization of S3 is not special.

Proof. In the chart {α 6= 0} we have y = x.b, z = x.c, b = x.c3 so (x, c) is a coordinate
system in this chart and the sheaf τ∗(Ω1

S3
)
/

torsion is generated by dx and x.dc so it is free.
But in the chart In the chart {γ 6= 0} we have x = z.a, y = z.b and a.b = z and (a, b) is
a coordinate system. As x = a2.b and y = a.b2, the sheaf τ∗(Ω1

S2
)
/

torsion is generated by

d(a2.b), d(a.b2), d(a.b) and it is not locally free near the point a = b = 0.

But blowing-up the point a = b = 0 in the second chart make the pull-back of the sheaf
τ̃∗(Ω1

S3
)
/

torsion locally free, where τ̃ is the composition of τ and the blow-up of the point
a = b = 0 in the second chart:

In the chart a = θ.b of this second blow-up the coordinate system is given by (b, θ) so
x = θ2.b3, y = θ.b3, z = θ.b2. Then the sheaf τ̃∗(Ω1

S3
)
/

torsion is generated by dx, dy, dz. An easy

computation shows that dx = −θ.dy+ 3θ.b.dz so sheaf τ̃∗(Ω1
S3

)
/

torsion is free in this chart. The
other chart is obtained by exchanging a and b.

Consider now the section dx∧dy
z of ω3

S3
. Its pull-back by τ̃ is given by

d(θ2.b3) ∧ d(θ.b3)

θ.b2
= −3θ.b3.db ∧ dθ

and the generator of the sheaf τ̃∗(Ω2
S3

)
/

torsion is given by

τ̃∗(dy ∧ dz) = θ.b4.db ∧ dθ.

So we conclude that neither dx∧dy
z nor dx∧dy

z2 are in α2
S3

.

As the assertion is proved for k = 2, 3 we may assume that, for k ≥ 4 the equality is proved
for Sk−2. Then let X̃ → X := Sk be the blow-up of Sk at the singular point x = y = z = 0. In

the chart {γ 6= 0} of X̃ we have the relations

x = a.z, y = b.z a.b = zk−2

and we find a copy of Sk−2. For k ≥ 4 we have

dx ∧ dy =
k

k − 2
.z2.da ∧ db = k.

a.b

k − 2
.
da ∧ db
zk−4

,

dx ∧ dz =
a

k − 2
.
da ∧ db
zk−4

, dy ∧ dz =
b

k − 2
.
da ∧ db
zk−4

.

So in this chart

τ∗∗(Ω2
Sk

/
torsion) = OSk−2

.
(
a, b
)
.
da ∧ db
zk−4

and, as a consequence of the fact that zk−q−2 is not in the ideal
(
a, b
)
.OSk−2

for q ≥ 1, for

each q ≥ 1 the 2−form dx∧ dy
/
zq is not a section of the sheaf τ∗∗(Ω2

Sk

/
torsion) near the origin
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a = b = z = 0 in this chart. So the sheaf α2
Sk

is equal to Ω2
Sk

/
torsion. �

Lemma 6.2.3. For all k ≥ 0 the vector space L1
Sk

/
α1
Sk

has dimension p = [(k − 1)/2] the
integral part of (k− 1)/2. A basis is given by the 1−forms x.dy/zq for q in [[k/2] + 1, k− 1], for
k ≥ 2.

Proof. We shall begin by a simple remark.
Assume that k ≥ 2 and let p := [(k − 1)/2]. Then for any q ∈ [1, p] the form x.dy/zq satisfies

an integral dependence equation on Ω1
Sk

. We have

x.dy/zq + y.dx/zq = d(zk)/zq = k.zk−q−1.dz

and also

(x.dy/zq).(y.dx/zq) = zk−2q.(dx).(dy).

This implies that x.dy/zq is solution of the integral dependence equation

X2 − (k.zk−q−1.dz).X + zk−2q.(dx).(dy) = 0

in S2(Ω1
Sk

)
/

torsion. So these sections of the sheaf ω1
X are in fact sections of the sheaf α1

X .

Now remark also that with the weights x → k, y → k, z → 2 the form x.dy/zq has weight
2(k− q). Then they have different quasi-homogeneities, so they are linearly independent over C.
Let now prove that for k − 1 > q > p the form x.dy/zq is not in α1

Sk
by induction on k ≥ 0. As

the assertion is empty for k = 0, 1 assume k ≥ 2 and the assertion proved for k − 2.
We have seen that after blowing-up the singular point in Sk for any k ≥ 2 we find only one

singular point of the type Sk−2 in the chart {γ 6= 0} and that the form x.dy/zq is given by the
following computation in this chart {γ 6= 0} :

x = z.a, y = z.b, a.b = zk−2 x.dy/zq = a.db/zq−2 + zk−q−1.dz.

But on Sk−2 we know, by the induction hypothesis, that the form a.db/zq−2 is not a section of
α1
Sk−2

for q − 2 > [k−3
2 ] = p− 1. So only the case q = p+ 1 is left.

Assume first that k = 2p + 1. In the last chart {γ 6= 0} in the desingularization process of
S2p+1 by blowing up the unique singular point at each step, we reach the following relations:

x = up.vp+1, y = up+1.vp, z = u.v x.dy
/
zp+1 = (p+ 1).up−1.vp.du+ p.up.vp−1.dv

where (u, v) ∈ C2 is a local coordinate system.
But, as we have seen for k = 3 this desingularization is not special. So we have to blow up

the origin one more time and chek that we obtain now a special desingularization of S2k+1. In
the chart u = θ.v we obtain x = θp.v2p+1, y = θp+1.v2p+1, z = θ.v2 which gives

dx = θp−1.v2p.(p.v.dθ + (2p+ 1).θ.dv) := θp−1.v2p.A

dy = θp.v2p.((p+ 1).v.dθ + (2p+ 1).θ.dv) := θp.v2p.B

dz = v.(v.dθ + 2θ.dv) := v.C

Now remark that B = −A+ (2p+ 1).C which implies that

dy = −θ.dx+ (2p+ 1).θp.v2p−1.dz

and so the pull-back of Ω1
S2p+1

is locally free after this last blow-up.

Now the pull-back of the form x.dy/zp+1 is given by

θp−1.v2p−1.B = θp−1.v2p−1.(−A+ (2p+ 1).C)
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and it is now easy to see that this does not belong to the sub-sheaf generated by dx and dz.
Now assume that k = 2p with p ≥ 2 then in the last chart {γ 6= 0} we shall have, with

coordinates (z, u) with u 6= 0

x = zp.u, y = zp/u.

We again have to check that this is a special desingularization of S2p. But as u 6= 0 in this chart,
(dx, dz) generate the pull-back of Ω1

S2p
.

Now, as x.dy/zp+1 = u.dy/z to see if this form belongs to sub-sheaf generated by (dx, dz)
is equivalent to see if zp−1.du is a section of this sub-sheaf. This is clearly not the case as
zp−1.du = dx/z − p.zp−2.u.dz. �

6.3. The case X := {(x, y, z) ∈ C3 / x3 + y3 + z3 = 0}. Now consider

X := {(x, y, z) ∈ C3 / x3 + y3 + z3 = 0}.
The lemma 6.1.1 gives the inclusion

ω1
X ⊂

1

z2
.Ω1

C2 +
1

z
.Ω1

C2 + Ω1
C2

where x, y are the coordinates on C2. An easy computation shows that the forms

α := (x.dy − y.dx)/z2

and z.α generate ω1
X

/
Ω1
X .

Let τ : X̃ → X the blowing-up at the origin of X.

Claim. This is a special desingularization:
In the chart {α 6= 0} we have

y = u.x, z = v.x, u3 + v3 + 1 = 0.

Then we can choose (x, u) or (x, v) as local coordinates when v 6= 0 or u 6= 0. The sheaf
τ∗(Ω1

X) is generated by dx and x.du when v 6= 0 and so is free on this open set. So the sheaf
τ∗(Ω1

X)
/

torsion is locally free on this blow-up, proving the claim.
In the chart {γ 6= 0} let a := α/γ and b := β/γ; then we have the relations

x = z.a, y = z.b, a3 + b3 + 1 = 0

and then we can choose (z, a) or (z, b) as local coordinates. Then we have

α = a.db− b.da = db/a2 = −da/b2.
In the chart {α 6= 0} we have

y = u.x, z = v.x, u3 + v3 + 1 = 0.

Then we can choose (x, u) or (x, v) as local coordinates and α = du/v2 = −dv/u2. This shows
that ω1

X = L1
X . But α does not vanish on the exceptional divisor, so α is not a section of α1

X .
But, in the first chart,

z.α = z.a.db− z.b.da = a.dy − a.b.dz − b.dx+ a.b.dz = a.dy − b.dx ∈ τ∗∗(Ω1
X)

and in the second chart

x.α = x.du/v2 = dy/v2 − u.dx/v2 = −dz/u2 + v.dx/u2

also belong to τ∗∗(Ω1
X).

Then x.α, y.α and z.α are sections of α1
X and the quotient L1

X

/
α1
X is a vector space of

dimension 1 with basis α. �
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Note that x.y.z.α is not a section of Ω1
X/torsion because if we assume that x.y.z.α is a section

of Ω1
X/torsion, we can write

x.y.(x.dy − y.dx) = z.
[
λ.dx+ µ.dy + ν.dz + ρ.df + σ.f

]
in C3, where λ, µ, ν where homogeneous of degree 2, ρ is a complex number and where

σ := u.dx+ v.dy + w.dz

with u, v, w complex numbers. This gives, for instance −x.y2 = z.λ + 3z.ρ.x2 + u.f which is
impossible.

So the vector space α1
X/Ω

1
X has dimension at least 2. The complete determination of the

quotient α1
X/Ω

1
X is a non-trivial exercise left to the reader.

Lemma 6.3.1. For X := {(x, y, z) ∈ C3 / x3 + y3 + z3 = 0} we have

dimC α2
X

/
Ω2
X = 2, dimC L2

X

/
α2
X = 3 dimC ω2

X

/
L2
X = 1.

Proof. After blowing-up (x, y, z) in C3 we consider the chart {γ 6= 0} as above. We have

ω :=
dx ∧ dy
z2

= −dz
z
∧ db
a2

=
dz

z
∧ da
b2
.

Then x.ω, y.ω, zω are holomorphic in this chart, as we have x = z.a and y = z.b and this chart
is enough as dx ∧ dy/z2 = dy ∧ dz

/
x2 = dz ∧ dx

/
y2 so x.ω, y.ω, z.ω belongs to L2

X .

But this is not the case for ω. So dimω2/L2
X = 1.

The sheaf τ∗∗(Ω2
X

/
torsion) in this chart is generated by

z.(da/a2) ∧ dz = −z.(db/b2) ∧ dz.
Then it is equal to z.Ω2

X̃
in this chart. So a section in L2

X is in α2
X if and only if it belongs to

(x.L2
X)∩(y.L2

X)∩(z.L2
X). This intersection is generated by x.y.ω, y.z.ω, z.x.ω as a OX−module.

The vector space L2
X/α

2
X is generated by x.ω, y.ω, z.ω because x2.ω, y2.ω, z2.ω are in Ω2

X ⊂ α2
X .

We let to the reader the proof that they give a basis of L2
X/α

2
X .

Let us prove that x.y.z.ω is not in Ω2
X/torsion.

Assume that x.y.z.ω ∈ Ω2
X/torsion. Then we can write on C3:

x.y.dx ∧ dy − z
[
λ.dx ∧ dy + µ.dy ∧ dz + ν.dz ∧ dx+ (a.dx+ b.dy + c.dz) ∧ df

]
= 0

where we can assume that λ, µ, ν are linear forms on C3 and a, b, c are complex number, using
the homogeneity of the situation. The coefficient of dx ∧ dy in this identity is equal to

x.y − z.λ− a.y2 + b.x2,

which cannot be identically zero. Contradiction.
As it is easy to see that x.y.ω = y.z.ω = z.x.ω and x.y.z.ω are linearly independent over C

(different homogeneities) we conclude that dimα2
X/Ω

2
X = 2. �

Remark. We have on X

ω :=
dx ∧ dy
z2

=
dy ∧ dz
x2

=
dz ∧ dx
y2

so

(x.y.ω)2 =
x2.y2.(dx ∧ dy)2

z4
=
x2.dx ∧ dy

z2
.
y2.(dx ∧ dy)

z2
= (dz ∧ dy).(dx ∧ dz),

because on X we have x2.dx ∧ dy = −z2.dz ∧ dy and y2.dx ∧ dy = −z2.dx ∧ dz. This gives an
integral dependence relation for x.y.ω in the symetric algebra of Ω2

X/torsion.
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6.4. The case X := {(x, y, u, v) ∈ C4 / x.y = u.v}. Let us begin by the verification that
blowing-up the origin gives a special desingularization for X.

Write X as {(x1, x2, x3, x4) ∈ C4 / x2
1 + x2

2 + x2
3 + x2

4 = 0} and look at the chart α 6= 0. So
we have x2 = b.x1, x3 = c.x1, x4 = e.x1 with the relation 1 + b2 + c2 + e2 = 0 and coordinates
(x1, b, c) on the subset e 6= 0. The the sheaf τ∗(Ω1

X) is generated by dx1, x1.db, x1.dc because
for e 6= 0 we have x1.de = −e−1[c.x1.dc + b.x1.db]. So modulo its torsion, the sheaf τ∗(Ω1

X) is
locally free.

Lemma 6.4.1. The sheaf L3
X is equal to ω3

X and is given by OX .ω where we define

ω :=
dy ∧ du ∧ dv

y
.

Moreover, ω does not belong to α3
X .

proof. On X we have x.dy + y.dx = u.dv + v.du

ω = −dx ∧ du ∧ dv
x

=
du ∧ dx ∧ dy

u
=
dv ∧ dx ∧ dy

v
.

To see that ω3
X = OX .ω it is enough (X is a hypersurface !) to see that

ω ∧ df/f = dx ∧ dy ∧ du ∧ dv/f

where f := x.y − u.v. This is clear.
Using the symetries between the coordinates, it is enough to see that τ∗(ω) is holomorphic in

the first chart of the strict transform X̃ of X by the blow-up at the origin in C4 to show that ω
is a section of L3

X . Let y = λ.x, u = µ.x, v = ν.x. Then

τ∗(ω) = −dx
x
∧ x.dµ ∧ x.dν = −x.dx ∧ dµ ∧ dν

where x, µ, ν are the coordinates for X̃ in this chart (and λ = µ.ν). So ω ∈ L3
X .

To see that ω is not in α3
X it is enough to see that ω does not belongs to τ∗∗(Ω3

X) in the first
chart above. An easy computation show that τ∗∗(Ω3

X) is generated by

π∗∗(dx ∧ du ∧ dv) = x2.dx ∧ dµ ∧ dν

and so ω = −x.dx ∧ dµ ∧ dν does not belong to τ∗∗(Ω3
X). �

Lemma 6.4.2. The meromorphic form w := u.dv ∧ dx/x is a section of α2
X but it is not a

section of Ω2
X/torsion and its differential is not a section of α3

X .

proof. As

u.dv ∧ dx/x+ v.du ∧ dx/x = −dx ∧ dy
is holomorphic on X, u and v play the same role for this form modulo holomorphic forms. Also
u.dv∧ (dx/x+dy/y) = dv∧du so x and y play also the same role modulo holomorphic forms on

X. So it is enough to see that in the first chart of the strict transform X̃ of X by the blow-up
at the origin in C4 the form τ∗∗(w) is a section of τ∗∗(Ω2

X) to prove that w is a section of α2
X .

Using the same coordinates as above we obtain

τ∗∗(w) = µ.x.d(ν.x) ∧ dx/x = µ.x.dν ∧ dx = µ.dv ∧ dx

which is a section of τ∗∗(Ω2
X).
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To see that w is not a section of Ω2
X/torsion assume the contrary. Then, by symmetry10

w′ := v.du ∧ dx/x is also a section of Ω2
X/torsion and the differential of w − w′ must be a

section of Ω3
X/torsion. But we have already seen that 2.ω = −d(w −w′) is not a section of α3

X .
Contradiction. �

Note that an integral dependence relation on the symmetric algebra of the sheaf Ω2
X/torsion

for w is given in the second example of the begining of the section 5.1.

Lemma 6.4.3. We have Ω1
X/torsion = α1

X = L1
X = ω1

X .

Proof. Write X := {x2
1 + x2

2 + x2
3 + x2

4 = 0} ⊂ C4. Then thanks to the lemma 6.1.1 we have:

ω1
X ⊂ Ω1

C3 +
1

x4
.Ω1

C3 .

To prove that Ω1
X/torsion = ω1

X it is enough to consider a section in ω1
X , let

w := (a.dx1 + b.dx2 + c.dx3)

and put v := w/x4 and to show that v is a section of Ω1
X/torsion. But then

Traceπ(v ∧ dx4) = w ∧ Traceπ(dx4/x4)

must be a holomorphic form on C3, where π : X → C3 is the projection which makes X a
branched covering of degree 2. This condition implies df ∧w is in f.Ω2

C3 where f := x2
1 +x2

2 +x2
3.

As the sheaf Ω1
S2

has no torsion11, this implies that w = u.df + f.ξ where u ∈ OC3 and ξ ∈ Ω1
C3 .

But f = −x4 on X, so this gives v = −ξ − u.dx4 on X and v is in Ω1
X . �

Lemma 6.4.4. We have ω2
X = Ω2

X/torsion⊕ C .η where

η :=
x1.dx2 ∧ dx3 + x2.dx3 ∧ dx1 + x3.dx1 ∧ dx2

x4
.

Proof. Write ω := (a.dx1 ∧ dx2 + b.dx2 ∧ dx3 + c.dx3 ∧ dx1)/x4 where a, b, c are holomorphic
on C3. Then ω is in ω2

X if and only if Traceπ(dx4 ∧ ω) is a section of Ω3
C3 . This is satisfyed if

and only if a.x3 + b.x1 + c.x2 is a multiple of ξ := x2
1 + x2

2 + x2
3 in OC3 . This gives the relation

(a − g.x3).x3 + (b − g.x1).x1 + (c − g.x2).x2 = 0. And, as x1, x2, x3 is a regular sequence, this
implies

a = g.x3 + λ.x1 + µ.x2, b = g.x1 + λ′.x2 − λ.x3, c = g.x2 − λ′.x1 − µ.x3

where λ, λ′, µ are in OC3 . This shows that ω2
X is generated as a OX−module by Ω2

X and η. Note
that we already know that η is not a section of Ω2

X/torsion as we have shown that ω2
X is not

equal to Ω2
X/torsion

Claim. For i = 1, 2, 3, 4 xi.η is in Ω2
X/torsion:

for instance:
x1.η

x4
=
x1

x4
.(x1.dx2 ∧ dx3 + x2.dx3 ∧ dx1 + x3.dx1 ∧ dx2)

=
1

x4
.(−(x2

2 + x2
3 + x2

4).dx2 ∧ dx3 + (x2.dx3 − x3.dx2) ∧ x1.dx1)

=
1

x4
.(−(x2

2 + x2
3 + x2

4).dx2 ∧ dx3 + (x2.dx3 − x3.dx2) ∧ (−x2.dx2 − x3.dx3 − x4.dx4))

= −x4.dx2 ∧ dx3 − x2.dx3 ∧ dx4 + x3.dx2 ∧ dx4 ∈ Ω2
X

10or using (u.dv + v.du) ∧ dx/x = dy ∧ dx.
11This is easy to see using the fact that S2 = {f = 0} is the quotient of C2 by ±1.
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proving our claim. �

6.5. The case X := {(x, y, z, t) ∈ C4 / x.y.z = t3}. Remark first that the form ω1 := y.z.dx/t2

is in ω1
X because we have, with the notation f := x.y.z − t3:

ω1 ∧ df =
z.t3.dx ∧ dy + y.t3.dx ∧ dz + 3t2.y.z.dx ∧ dt

t2
∈ Ω2

C4 modulo(f/t2).Ω2
C4

which allows to conclude as t is not a zero divisor in X (see [B.78]).
Consider now the following sections of ω1

X :

u := t.ω1 v := t.ω2 w := t.ω3

where ω2 and ω3 are deduced from ω1 respectively by

x→ y, y → z, z → x and x→ z, y → x, z → y.

Then we have in the symmetric algebra of Ω1
X :

u+ v + w = 3t.dt u.v + v.w + w.u = t.(z.dx.dy + x.dy.dz + z.dx.dy) u.v.w = t3.dx.dy.dz.

This shows that u, v, w satisfy the following integral dependence relation over the symmetric
algebra of Ω1

X :

Θ3 − 3t.dt.Θ2 + t.(z.dx.dy + x.dy.dz + z.dx.dy).Θ− t3.dx.dy.dz = 0.

Note that, because the coefficient of Θ does not belong to (t2), we do not obtain an integral
dependence relation over the symmetric algebra of Ω1

X for Θ/t so for the forms ωi, i = 1, 2, 3!
In fact they are not sections of the sheaf α1

X (for instance the restriction of ω1 to the surface
S3 ' {z = 1} ∩X is not in α1

S3
(see sub-section 6.2).

Let us now verify that t.u is not a section of Ω1
X/torsion. Assume that we can write

y.z.dx = t.
(
λ.dx+ µ.dy + ν.dz + θ.dt) modulo f.Ω1

X +OX .df

then, by homogeneity, we may assume that λ, µ, ν are homogeneous of degree 2 and

y.z.dx = t.
(
λ.dx+ µ.dy + ν.dz + θ.dt) + σ.df

where σ is a constant. This implies

y.z.(1− σ)− t.λ = 0, t.µ+ σ.x.z = 0

which is already enough to obtain a contradiction, as these equations imply σ = 1 and σ = 0
respectively. �

Remark. Using the map ((x, y, z) 7→ (x + y, x + j.y, x + j2.y,−z) which sends the previous
Y := {x3 + y3 + z3 = 0} to X = {x.y.z = t3} allows to find an integral equation over the
symmetric algebra of Ω1

Y of the section

(x2 + y2 − x.y).d(x+ y)

z

of α1
Y .
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[A-M.86] Axelsson, R. et Magnússon, J. Complex analytic cones, Math. Ann. 273 n04
(1986), pp. 601-627. DOI: 10.1007/BF01472133

[B.78] Barlet, D. Le faisceau ω•X on a reduced complex space, in Séminaire F. Norguet
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complexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), n02, pp.421-455.
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