
PREFACE

0.1 Preface

This textbook is intended for high school students who are preparing for the Advanced Placement Exam in
Calculus (AB or BC).

In this book, we assume you are familiar with high school algebra, analytic (Cartesian) geometry and
graphing in the xy-plane, basic properties of trigonometric (trig) functions (in degrees), and basic properties
of exponents and logarithms. We will define circular trig functions and radians in Section 2.7, define
logarithms in Section 2.5, and define inverse trig functions in Section 2.9. However, in these sections, we
will concentrate on the derivatives and graphs of the functions, not on algebraic properties.

We should remark on our approach to defining the exponential function in Section 2.4. There is always
some difficulty in defining exp(x) = ex. If you already have integration, you can define the natural logarithm
lnx via integration, and then define the exponential function as the inverse function of lnx. This approach is
elegant, but seems a bit “backwards” to most people, and would require developing integral Calculus before
defining exp. This approach also makes it difficult to obtain bounds on the value of e. Then, there is the
other calculator-based approach of “showing” that there is some number e, between 2 and 3, such that the
limit, as h approaches zero, of (eh − 1)/h is equal to 1. The lack of rigor in this approach is worrisome and,
once again, this approach makes it difficult to calculate bounds on the value of e.

We take a different approach from the two above. Our approach is via infinite series, a topic that is not
covered until much later in this book. Consequently, we do not give a rigorous proof that our approach to
defining ex “works”, until long after we have used ex in many formulas and applications. We believe that
there are several benefits to this series approach. First of all, we feel that students will have little trouble
grasping that there is a sequence of polynomial functions such that the derivative of each element in the
sequence is the previous element in the sequence (or zero), and that this sequence of functions can then be
used to define a function which is its own derivative. Not only do we think that this approach poses no
serious conceptual difficulty, but we hope that students will, in fact, find it “cool”. Another advantage of
using series to define exp(x) is that we can then show students how to calculate e, by hand, to any desired
accuracy. A final advantage to our approach to exp is that we introduce students, briefly, to sequences,
geometric series, and power series. We believe that this quick brush with sequences and series will make
students more comfortable when they look at these concepts in detail later.

Our discussion of definite integrals, and their applications, is fairly traditional. However, our approach
to infinite series is somewhat unusual. Our approach is motivated by two factors. First, we believe that the
primary use that students will have for infinite series, outside of a Calculus class, is that many important
functions have convergent power series representations, and these power series representations allow the
student to mathematically manipulate and estimate the functions involved, in ways that would be diffi-
cult/impossible without power series. Second, statistical data that we collected over several years has made
it clear that, in general, students do not grasp the basic idea that, when x is close to zero, smaller powers
of x are more significant than larger powers of x in a power series or, even, in a polynomial function.

Consequently, we place emphasis on polynomial approximations and power series representations for
functions, and, in a sense, view the classic convergence tests for sequences and series of constants as the
“technical details” required to understand power series. We still include a chapter, Chapter 8, on sequences
and series of constants, but that chapter comes after Chapter 7, which is on power series and approximating
functions with polynomials. We firmly believe that this ordering of topics is better for the student and for
applications, even though it may seem a bit awkward not to have the rigorous mathematical foundations of
sequences and series come before their use in discussing power series.
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Occasionally, when looking at approximations, we write an equals sign in quotes, as in “=”. We use this
to denote “equal as far as a calculator is concerned”, i.e., equal to the precision of many/most/all calculators.

This book is organized as follows:

Each section is accompanied by a video link. Each video contains a classroom lecture of the essential
contents of that section; if the student would prefer not to read the section, he or she can receive the
same basic content from the video. The answers to most of the odd-numbered exercises are contained in
Appendix D at the end of the book.

Important definitions are boxed in green, important theorems are boxed in blue. Remarks, especially
warnings of common misconceptions or mistakes, are shaded in red. Important conventions, that will be
used throughout the book, are boxed in black.

Occasionally, we refer to external sources for results beyond the scope of this textbook; our favorite
external technical source is the excellent textbook by William F. Trench, Introduction to Real Analysis, [3],
which is available as a free pdf.

Internal references through the text are hyperlinked; simply click on the boxed-in link to go to the
appropriate place in the textbook. If you have activated the “forward” and ”back” buttons in your pdf-
viewer software, clicking on the “back” button will return you to where you started before you clicked on
the hyperlink.

Some terms or names are annotated; these are clearly marked in the margins by little blue “balloons”.
Comments will pop up when you click on such annotated items.

We sincerely hope that you find using our modern, multimedia textbook to be as enjoyable as using a
mathematics textbook can be.

David B. Massey
June 2011

http://www.centerofmath.com/trench.pdf


Chapter 1

Rates of Change and the
Derivative

In this chapter, we discuss what the rate of change of one quantity with respect to another means. We
use the intuitive notion of an average rate of change to lead us to a definition of the instantaneous rate of
change: the derivative. The transition from the average rate of change to the instantaneous rate of change
requires us to develop the idea of the limit of a function.

We also show that our mathematical definition of the instantaneous rate of change has many, or all, of
the properties that you intuitively expect.

1.1 Average Rates of Change

The world around us is in a continual state of change. Positions of people or objects change with respect
to time; this rate of change is called velocity. Velocities change with time; this rate of change is called
acceleration. The radius of a balloon increases with respect to the volume of air blown into the balloon. Like
many rates of change, this latter one has no name, and so we simply have to use the entire phrase “the rate
of change of the radius of the balloon, with respect to volume”. The price of a lobster changes, with respect
to the weight of the lobster (usually with jumps at certain weights). The area of a flat television screen,
either in “full-screen” 4:3 format or in “wide-screen” 16:9 format, changes, with respect to the diagonal
length. The y-coordinate of the graph of a function y = f(x) changes, with respect to the x-coordinate.

In this section, we will begin our mathematical discussion of how you calculate average rates of change
(AROC’s) when one quantity, such as position, velocity, radius, price, area, or the y-coordinate, depends on
(i.e., is a function of) another quantity, such as time, volume, weight, length, or the x-coordinate. Our goal
in the next section will be to use the notion of an AROC, developed in this section, to arrive at a reasonable
definition of an instantaneous rate of change (IROC). The study of instantaneous rates of change is what
Differential Calculus is all about.

Let’s look at a quick, but fundamental example of the type of question that we want to address.
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http://www.youtube.com/watch?v=E-y7Vj4sSwM
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Example 1.1.1.

Suppose that a car is traveling down a straight road. At exactly noon, the driver notices that she passes
a mile marker, mile marker 37 (measured from some important point 37 miles back). At exactly 12:02 pm,
the driver notices that she passes mile marker 38. What was the velocity of the car during the two minutes
from noon until 12:02 pm?

You should be asking “What do you mean by ‘the velocity of the car’? Do you mean what would someone
inside the car have seen on the speedometer at each moment during the two minutes, or do you simply mean
that the car went exactly one mile in 1/30th of an hour, so that its velocity was

1 mile

1/30 hour
= 30 miles/hour ?”

The above example is intended to illuminate the difference between the instantaneous rate of change,
the IROC, and the average rate of change, the AROC.

The velocity that you read on the speedometer is the IROC of the position, with respect to time; we
shall discuss this concept in detail in Section 1.2, Section 1.4, and throughout much of the remainder of this
book.This velocity is itself a function of time; at each time between t = 0 and t = 1/30, you can read the
instantaneous velocity on the car’s speedometer.

Suppose that we let p(t) be the position of the car, measured in miles, as determined by the mile markers,
at time t hours past noon. The 30 miles/hour that we calculated above is the AROC of the position, with
respect to time, between times t = 0 and t = 1/30 hours. This is the average velocity of the car between
times t = 0 and t = 1/30 hours. In terms of the position function, p(t), the average velocity of the car
between times t = 0 and t = 1/30 hours is

change in p(t)

change in t
=

p(1/30)− p(0)

1/30− 0
=

38− 37 miles

1/30 hours
= 30 miles per hour.

Note that knowing this average velocity does not, in any way, tell us what the speedometer of the car
was reading at any time.

Remark 1.1.2. The average velocity of the car between two given times is the AROC of the
position with respect to time. It is NOT the average of the velocities at the two given times, that
is, you do not add the velocities at the two different times and divide by 2. This fairly subtle
difference in language leads to a huge difference in what you are calculating.

The phrase “the change in” that occurs when discussing various quantities in Calculus comes up so often
that it is convenient to use one symbol to denote it. As is common, we shall use the Greek letter ∆ for
“the change in”, so that the change in the position of the car in Example 1.1.1 would be denoted by ∆p
or ∆p(t). Of course, you cannot calculate ∆p without being told the starting time and ending time, and
without knowing the positions of the car at those times.

Using Example 1.1.1 as a guide, we would like to give the definition of the average rate of change for an
“arbitrary” function. Of course, we want to use functions that you put real numbers into and from which
you get real numbers back, that is, we want to use functions of the following type:



Actually, what you read on the speedometer is the instantaneous speed, not instantaneous velocity. We shall discuss this distinction in depth later. Velocity includes not just the speed, but also the direction. In this example, in which the motion is in a straight line, and the object is moving in the positive direction, the speed and the velocity are the same.

http://www.centerofmath.org/video/diff_calc_examples/ex%201.1.1.mov
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Definition 1.1.3. A real function f is a function whose domain and codomain are subsets of the
set R of real numbers.

(The term codomain may be unfamiliar to you. There is little harm done if you replace every occurrence
of the word “codomain” with “range”, which should be a familiar term. The range is the set consisting
precisely of those values which are attained by the function; the codomain is allowed to contain “extra”,
unattained values.)

All functions used throughout this book, for which the domain and codomain are not explicitly
given, are assumed to be real functions.

In light of Example 1.1.1, we make the following definition for any (real) function y = f(x). We use
y = f(x), since x, y, and f seem to be the favorite, generic variable and function names. You could just as
easily use z = p(t) , and make the corresponding changes below.

Definition 1.1.4. Suppose that a and b are in the domain of f , and a < b. Then, the average
rate of change (the AROC) of f , with respect to x, between x = a and x = b, or on the
interval [a, b], is

∆y

∆x
=

∆f

∆x
=

f(b)− f(a)

b− a
=

f(a)− f(b)

a− b
.

Remark 1.1.5. It is important to note that the units of the average rate of change of f , with
respect to x, are the units of f divided by the units of x.

Example 1.1.6.

Suppose that a car is moving (in a direction designated as positive) along a straight road, and that, at
times t = 0, 1, and 5 hours (measured from some initial starting time), the car is moving at 30, 60, and 40
miles per hour, respectively. What are the average accelerations of the car on the intervals [0, 1], [0, 5], and
[1, 5]?

Acceleration means the rate of change of the velocity, with respect to time. So, the average acceleration
is the AROC of the velocity, with respect to time. If we let v(t) denote the velocity of the car, in mph, at
time t hours, then the average acceleration is ∆v/∆t.

Hence, on the interval [0, 1], the average acceleration is

v(1)− v(0)

1− 0
=

60− 30

1− 0
= 30 mph/hr (or mi/hr2).

On the interval [0, 5], the average acceleration is

v(5)− v(0)

5− 0
=

40− 30

5− 0
= 2 mph/hr,

http://www.centerofmath.org/video/diff_calc_examples/ex%201.1.6.mov
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and, on the interval [1, 5], the average acceleration is

v(5)− v(1)

5− 1
=

40− 60

5− 1
= −5 mph/hr.

This negative average acceleration is an indication that the car decelerated.

Example 1.1.7.

What is the average rate of change of the area A, in square inches, of a widescreen 16:9 television screen,
with respect to the diagonal length d, between d = 32 inches and d = 40 inches? Between d = 40 inches and
d = 52 inches?

! !"#

$%#

&

Figure 1.1: A widescreen 16:9 television.

The 16:9 ratio means that the width is 16/9 times the height. Suppose the height is 9x. Then, the
width is 16x. The height, width, and diagonal measurements are related by the Pythagorean Theorem, so
we have

(9x)2 + (16x)2 = d2.

Also, we know that the area A = (9x)(16x). It follows that A = A(d) = 144d2/337 in2.

The AROC of the area, with respect to the diagonal length, on the interval [32, 40], is

A(40)−A(32)

40− 32
=

144

337
· 40

2 − 322

8
≈ 30.7656 in2/in.

The AROC of the area, with respect to the diagonal length, on the interval [40, 52], is

A(52)−A(40)

52− 40
=

144

337
· 52

2 − 402

12
≈ 39.3116 in2/in.



While you can do algebra with units, such as multiplying and dividing, frequently the resulting "reduced" units disguise the actual physical meaning. When calculating the rate of change of y with respect to x, we tend to leave the units in our answers in the "raw" form of the units of y divided by the units of x.

http://www.centerofmath.org/video/diff_calc_examples/ex%201.1.7.mov


1.1. AVERAGE RATES OF CHANGE 5

Example 1.1.8. Consider the function y = f(x) = 4− x2. What is the AROC of y, with respect to x, on
the intervals [1, 2] and [1, 1.5]?

We need to calculate ∆y/∆x. On the interval [1, 2], we find

∆y

∆x
=
f(2)− f(1)

2− 1
=

0− 3

1
= −3.

On the interval [1, 1.5], we find

∆y

∆x
=
f(1.5)− f(1)

1.5− 1
=

1.75− 3

0.5
= −2.5.

The ∆y/∆x in Example 1.1.8 and in Definition 1.1.4 should remind you of the slope of a line, the rise
over the run. Can we, in fact, picture the AROC of an arbitrary (real) function in terms of the slope of
some line? Certainly. The AROC will be the slope of the line defined by:

Definition 1.1.9. Given a function y = f(x), and two x values a and b in the domain of f , with
a 6= b, the secant line of f for x = a and x = b is the line through the two points (a, f(a)) and
(b, f(b)).

Clearly, we have

Proposition 1.1.10. Given a function y = f(x), and a < b, where a and b are in the domain of
f , the AROC of f on [a, b] is equal to the slope of the secant line of f for x = a and x = b.

Example 1.1.11. Consider the function y = f(x) = 4 − x2 from Example 1.1.8. The two AROC’s on
the intervals [1, 2] and [1, 1.5], calculated in Example 1.1.8, are the slopes of the two secant lines shown in
Figure 1.2, on top of the graph of y = 4− x2.

The green line has slope equal to the AROC of f on the interval [1, 2], which we already found to be −3.
Using the point-slope form, an equation for this secant line is y − 3 = −3(x − 1). The blue line has slope
equal to the AROC of f on the interval [1, 1.5], which we already found to be −2.5. An equation for this
secant line is y − 3 = −2.5(x− 1).

Example 1.1.12. Assume that we have an ideal balloon, which stays perfectly spherical as it inflates. What
is the AROC of the radius of the balloon, with respect to the volume of air inside the balloon, as the volume
changes from 20 in3 to 30 in3?



The longer phrasing of "the secant line to the graph of f, between the points (a, f(a)) and (b, f(b))" contains a good deal of superfluous data, and is too cumbersome to use.
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(1.5, 1.75)

(2, 0)

(1, 3)

Figure 1.2: The graph of y = 4− x2 and two secant lines.

The volume of the balloon V , in in3, is related to the radius R, measured in inches, by V = (4/3)πR3.
Thus, the radius of the balloon can be considered as a function of the volume of air in the balloon:

R = R(V ) =

(
3V

4π

)1/3

=

(
3

4π

)1/3

V 1/3.

The AROC of the radius with respect to volume on the interval [20, 30] is

∆R

∆V
=

R(30)−R(20)

30− 20
=

(
3

4π

)1/3
(30)1/3 − (20)1/3

30− 20
≈ 0.0243683 in/in3.

Example 1.1.13.

The price of lobsters per pound typically “jumps” at certain weights, to take into account the fact that
a larger lobster has a smaller percentage of its weight contained in the shell. In addition, lobsters which
weigh less than one pound are not sold.

Suppose that the price, in dollars per pound, for a lobster is given by p = p(w), where w is the weight of
the lobster in pounds, and w ≥ 1. Let’s assume that p(w) is $6/lb for 1 ≤ w ≤ 1.5, $7/lb for 1.5 < w ≤ 2,
$8/lb for 2 < w ≤ 3, and $9/lb for w > 3. The total cost C(w), in dollars, of a lobster is then equal to the
number of pounds that the lobster weighs times the price per pound, i.e., C(w) = w · p(w). The graph of
C(w) versus w is given in Figure 1.3.

If we take the secant line between two points that lie on the same line segment in the graph, then the
secant line will simply be the line containing the given line segment, and so the average rate of change of C,
with respect to w, on the interval determined by the w values will simply be the slope of the corresponding
line segment. For instance, if 2 < a < b ≤ 3, then the AROC of C, with respect to w, on the interval [a, b] is

∆C

∆w
=

C(b)− C(a)

b− a
=

8b− 8a

b− a
= $8/lb.

Let’s look at the AROC of C, with respect to w, between w = 2 and w = 2.1. We find



Note that the different scales on the axes make the slope of the corresponding line segment look much smaller than 8.

http://www.centerofmath.org/video/diff_calc_examples/ex%201.1.14.mov
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