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0.1 Preface

This textbook is designed for a one-semester undergraduate course in ordinary differen-
tial equations and linear algebra. We have had such a course at Northeastern University
since our conversion from the quarter to semester system required us to offer one course
instead of two. Many other institutions have a similarly combined course, perhaps for a
similar reason; consequently, there are many other textbooks available that cover both
differential equations and linear algebra. Let me describe some of the features of my
book and draw some contrasts with the other texts on this subject.

Because many students taking the course at Northeastern are electrical engineering
majors who concurrently take a course in circuits, we always include the Laplace trans-
form in the first half of the course. For this reason, in my textbook I cover first and
second-order differential equations as well as the Laplace transform in the first three
chapters, then I turn to linear algebra in Chapters 4-6, and finally draw on both in the
analysis of systems of differential equations in Chapter 7. This ordering of material is
unusual (perhaps unique) amongst other textbooks for this course, which generally alter-
nate more between differential equations and linear algebra, and put Laplace transform
near the end of the book.

Another feature of my textbook is a fairly concise writing style and selection of
topics. I find that many textbooks on this subject are excessively long: they use a
verbose writing style, include too many sections, and many of the sections contain too
much material. As an instructor using such a book for a one-semester course, I am
constantly deciding what to not cover: not only what sections to skip, but what topics
in each section to leave out. I think that students using such a textbook also find it
difficult to know what has been covered and what has not. On the other hand, I think it
is good to have some additional or optional material, to provide some flexibility for the
instructor, and to make the book more appropriate for advanced or honors students.
Consequently, in my book I have tried to make judicious choices about what material to
include, and to arrange it in such a way as to conveniently allow the instructor to omit
certain topics. For example, an instructor can cover separable first-order differential
equations with applications to unlimited population growth and Newton’s law of cooling,
and then decide whether or not to include the subsections on resistive force models and
on the logistic model for population growth.

The careful selection and arrangement of material is also reflected in the exercises
for the student. At the end of each section I have provided exercises that are designed
to develop fairly basic skills, and I grouped problems together according to the skill
that they are intended to develop. For example, Exercise #1 may address a certain
skill, and there are six specific problems (a-f) to do this. Moreover, the answers to all
of these exercises (not just the odd-numbered ones) are provided in the Appendix. In
fact, some exercises have solution videos on YouTube, which is indicated by Solution ;
a full list of the solution videos can be found at

http://www.centerofmath.org/textbooks/diff eq/supplements.html

In addition to the exercises at the end of each section, I have provided at the end of
each chapter a list of Additional Exercises. These include exercises involving additional

http://youtu.be/R6fNx7EkOp4
http://www.centerofmath.org/textbooks/diff_eq/supplements.html
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applications and some more challenging problems. Only the odd-numbered problems
from the Additional Exercises sections are given answers in the Appendix.

Let me add that, in order to keep this book at a length that is convenient for a single
semester course, I have had to leave out some important topics. For example, I have not
tried to cover numerical methods in this book. While I believe that numerical methods
(including the use of computational software) should be taught along with theoretical
techniques, there are so many of the latter in a course that covers both differential
equations and linear algebra, that it seemed inadvisable to try to also include numerical
methods. Consequently, I made the difficult decision to leave numerical methods out of
this textbook.

On the other hand, I have taken some advantage of the fact that this book is being
primarily distributed in electronic form to expand the coverage. For example, I have
included links to online resources (especially Wikipedia articles) that provide more in-
formation about topics that are only briefly mentioned in this book. Again, I have tried
to make judicious choices about this: if a Wikipedia article on a certain topic exists but
does not provide significantly more information than is given in the text, then I chose
not to include it.

I hope that the choices that I have made in writing this book make it a valuable
learning tool for the students and instructors alike.

Robert McOwen
June 2012



Chapter 1

First-Order Differential
Equations

1.1 Differential Equations and Mathematical Models

A differential equation is an equation that involves an unknown function and its
derivatives. These arise naturally in the physical sciences. For example, Newton’s
second law of motion F = ma concerns the acceleration a of an object of mass m under
a force F . But if we denote the object’s velocity by v and assume that F could depend
on both v and t, then this can be written as a first-order differential equation for v

m
dv

dt
= F (t, v). (1.1)

The simplest example of (1.1) is when F is a constant, such as the gravitational force Fg
near the surface of the earth. In this case, Fg = mg where g is the constant acceleration
due to gravity, which is given approximately by g ≈ 9.8 m/sec2 ≈ 32 ft/sec2. If we use
this in (1.1), we can easily integrate to find v(t):

m
dv

dt
= mg ⇒ dv

dt
= g ⇒ v(t)− v0 =

∫ t

0

g dt ⇒ v(t) = gt+ v0,

where v0 is the initial velocity. Notice that we need to know the initial velocity in order
to determine the velocity at time t.

Fig.1. Gravitational forceWhile equations in which time is the independent variable occur frequently in ap-
plications, it is often more convenient to consider x as the independent variable. Let us
use this notation and consider a first-order differential equation in which we can
solve for dy/dx in terms of x and y:

dy

dx
= f(x, y). (1.2)

We are frequently interested in finding a solution of (1.2) that also satisfies an initial
condition:

y(x0) = y0. (1.3)

7
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The combination of (1.2) and (1.3) is called an initial-value problem. The class
of all solutions of (1.2) is called the general solution and it usually depends upon a
constant that can be evaluated to find the particular solution satisfying a given initial
condition. Most of this chapter is devoted to finding general solutions for (1.2), as well
as particular solutions of initial-value problems, when f(x, y) takes various forms.

A very easy case of (1.2) occurs when f is independent of y, i.e.

dy

dx
= f(x),

since we can simply integrate to obtain the general solution as

y(x) =

∫
f(x) dx+ C, where C is an arbitrary constant.

On the other hand, if we also require y to satisfy the initial condition (1.3), then we
can evaluate C to find the particular solution. This technique was used to solve the
gravitational force problem in the first paragraph and should be familiar from calculus,
but further examples are given in the Exercises.

In (1.1), if we replace v by dx/dt where x denotes the position of the object and we
assume that F could also depend on x, then we obtain an example of a second-order
differential equation for x:

m
d2x

dt2
= F

(
t, x,

dx

dt

)
. (1.4)

An instance of (1.4) is the damped, forced spring-mass system considered in Chapter 2:

m
d2x

dt2
+ c

dx

dt
+ kx = F (t). (1.5)

But now initial conditions at t0 must specify the values of both x and dx/dt:

Fig.2. Spring-mass system

x(t0) = x0,
dx

dt
(t0) = v0. (1.6)

In general, the order of the differential equation is determined by the highest-order
derivative of the unknown function appearing in the equation. Moreover, an initial-value
problem for an n-th-order differential equation should specify the first n− 1 derivatives
of the unknown function at some initial point.

An important concept for differential equations is linearity: a differential equation
is linear if the unknown function and all of its derivatives occur linearly. For example,
(1.1) is linear if F (t, v) = f(t) + g(t)v, but not if F (t, v) = v2. Similarly, (1.4) is linear
if F (t, x, v) = f(t) + g(t)x + h(t)v, but not if F (t, x, v) = sinx or F (t, x, v) = ev. For
example, (1.5) is linear. (Note that the coefficient functions f(t), etc do not have to be
linear in t.)

In the above examples, the independent variable is sometimes x and sometimes t.
However, when it is clear what is the independent variable, we may use ′ to denote
derivatives; for example, we can write (1.5) as

mx′′ + c x′ + k x = F (t).
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Notation: for simplicity, we generally do not show the dependence of the unknown
function on the independent variable, so we will not write mx′′(t)+cx′(t)+kx(t) = F (t).

Mathematical Models

Before we begin the analysis of differential equations, let us consider a little more care-
fully how they arise in mathematical models. Mathematical models are used to reach
conclusions and make predictions about the physical world. Suppose there is a partic-
ular physical system that we want to study. Let us describe the modeling process for
the system in several steps:

1. Abstraction: Describe the physical system using mathematical terms and rela-
tionships; this provides the model itself.

2. Analysis: Apply mathematical analysis of the model to obtain mathematical
conclusions.

3. Interpretation: Use the mathematical conclusions to obtain conclusions about
the physical system.

4. Refinement (if necessary): If the conclusions of the model do not agree with
experiments, it may be necessary to replace or at least refine the model to make
it more accurate.

In this textbook, of course, we consider models involving differential equations. Per-
haps the simplest case is population growth. It is based upon the observation that
populations of all kinds grow (or shrink) at a rate proportional to the size of the pop-
ulation. If we let P (t) denote the size of the population at time t, then this translates
to the mathematical statement dP/dt = kP, where k is the proportionality constant: if
k > 0 then the population is growing, and if k < 0 then it is shrinking. If we know the
population is P0 at time t = 0, then we have an initial-value problem for a first-order
linear differential equation:

dP

dt
= kP, P (0) = P0. (1.7)

This is our mathematical model for population growth. It can easily be analyzed by
t

P

t

P(t)

Po-

Fig.3. Population growthseparation of variables (see Section 1.3), and the solution is found to be P (t) = P0 e
kt.

When k > 0, the interpretation of this analysis is that the population grows exponen-
tially, and without any upper bound. While this may be true for a while, growing
populations eventually begin to slow down due to additional factors like overcrowding
or limited food supply. This means that the model must be refined to account for these
additional factors; we will discuss one such refinement of (1.7) in Section 1.3. We should
also mention that the case k < 0 in (1.7) provides a model for radioactive decay.

Similar reasoning lies behind Newton’s law of cooling in heat transfer: it is
observed that a body with temperature T that is higher than the ambient temperature
A will cool at a rate proportional to the temperature differential T −A. Consequently,
if the initial temperature T0 is greater than A, then the body will cool: rapidly at first,

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Population_growth
http://en.wikipedia.org/wiki/Radioactive_decay
http://en.wikipedia.org/wiki/Heat_transfer
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but then gradually as it decreases to A. Our mathematical model for cooling is the
initial-value problem for a first-order linear differential equation:

dT

dt
= −k(T −A), T (0) = T0, (1.8)

0

T(t)

T0-

A-

Fig.4. Newton’s law of

cooling

where k > 0. In fact, if T0 is less than A, then (1.8) also governs the warming of
the body; cf. Example 4 in Section 1.3 where we shall solve (1.8) by separation of
variables. But for now, observe that (1.8) implies that T = A is an equilibrium, i.e.
dT/dt = 0 and the object remains at the ambient temperature. We shall have more
to say about equilibria in the next section. Also, note that we have assumed that the
proportionality constant k is independent of T ; of course, this may not be strictly true
for some materials, which means that a refinement of the model may be necessary.

We can also use mathematical models to study resistive forces that depend on the
velocity of a moving body; these are of the form (1.1) and will be discussed in Sec-
tion 1.3. Other mathematical models discussed in this textbook include the damped,
forced spring-mass system (1.5) and other mechanical vibrations, electrical circuits, and
mixture problems.

Remark. Differential equations involving unknown functions of a single variable, e.g.
x(t) or y(x), are often called ordinary differential equations. On the other hand,
differential equations involving unknown functions of several variables, such as u(x, y),
are called partial differential equations since the derivatives are partial derivatives,
ux and uy. We shall not consider partial differential equations in this textbook.

Exercises

1. For each differential equation, determine (i) the order, and (ii) whether it is linear:

(a) y′ + xy2 = cosx

(b) x′′ + 2x′ + x = sin t

(c) y′′′ + y = x2

(d) x′′′ + t x = x2

2. For the given differential equation, use integration to (i) find the general solution,
and (ii) find the particular solution satisfying the initial condition y(0) = 1.

(a) dy
dt = sin t

(b) dy
dx = xex

2

(c) dy
dx = x cosx

(d) dy
dx = 1√

1−x

3. A rock is hurled into the air with an initial velocity of 64 ft/sec. Assuming only
gravitational force with g = 32 ft/sec2 applies, when does the rock reach its
maximum height? What is the maximum height that the rock achieves?

4. A ball is dropped from a tower that is 100 m tall. Assuming only gravitational
force g = 9.8 m/sec2, how long does it take to reach the ground? What is the
speed upon impact?

http://en.wikipedia.org/wiki/Partial_differential_equations

	Preface
	First-Order Differential Equations
	Differential Equations and Mathematical Models
	Geometric Analysis and Existence/Uniqueness
	Separable Equations & Applications
	Linear Equations & Applications
	Other Methods
	Additional Exercises

	Second-Order Differential Equations
	Introduction to Higher-Order Equations
	General Solutions for Second-Order Equations
	Homogeneous Equations with Constant Coefficients
	Free Mechanical Vibrations
	Nonhomogeneous Equations with Constant Coefficients
	Forced Mechanical Vibrations
	Electrical Circuits
	Additional Exercises

	Laplace Transform
	Laplace Transform and Its Inverse
	Transforms of Derivatives, Initial-Value Problems
	Shifting Theorems
	Discontinuous Inputs
	Convolutions
	Additional Exercises

	Systems of Linear Equations and Matrices
	Introduction to Systems and Matrices
	Gaussian Elimination
	Reduced Row-Echelon Form and Rank
	Inverse of a Square Matrix
	The Determinant of a Square Matrix
	Cofactor Expansions
	Additional Exercises

	Vector Spaces
	Vectors in Rn
	General Vector Spaces
	Subspaces and Spanning Sets
	Linear Independence
	Bases and Dimension
	Row and Column Spaces
	Inner Products and Orthogonality
	Additional Exercises

	Linear Transformations and Eigenvalues
	Introduction to Transformations and Eigenvalues
	Diagonalization and Similarity
	Symmetric and Orthogonal Matrices
	Additional Exercises

	Systems of First-Order Equations
	Introduction to First-Order Systems
	Theory of First-Order Linear Systems
	Eigenvalue Method for Homogeneous Systems
	Applications to Multiple Tank Mixing
	Applications to Mechanical Vibrations
	Additional Exercises

	Appendix Complex Numbers
	Appendix Review of Partial Fractions
	Appendix Table of Integrals
	Appendix Table of Laplace Transforms
	Appendix Answers to Some Exercises
	Index



