
0.1. PREFACE

0.1 Preface

Welcome to the Worldwide Differential Calculus textbook; the first textbook from the Worldwide

Center of Mathematics.

Our goal with this textbook is, of course, to help you learn Differential Calculus– the Calculus

of derivatives. But why publish a new textbook for this purpose when so many already exist?

There are several reasons why we believe that our textbook is a vast improvement over those

already in existence.

• Even if this textbook is used as a classic printed text, we believe that the exposition, expla-

nations, examples, and layout are superior to every other Calculus textbook. We have tried to

write the text as we would speak the material in class; though, of course, the book contains far

more details than we would normally present in class. In the book, we emphasize intuitive ideas

in conjunction with rigorous statements of theorems, and provide a large number of illustrative

examples. Where we think it will be helpful to you, we include proofs, or sketches of proofs, but

the more technical proofs are contained in the appendices (the “Technical Matters” sections) to

chapters. This greatly improves the overall readability of our textbook, while still allowing us

to give mathematically precise definitions, theorems, and proofs.

• Our textbook consists of Adobe pdf files, with linked/embedded/accompanying video content,

annotations, and hyperlinks. With the videos contained in the supplementary files, you effec-

tively possess not only a textbook, but also an online/electronic version of a course in Differential

Calculus. Depending on the version of the files that you are using, clicking on the video frame

to the right of each section title will either open an online, or an embedded, or a locally installed

video lecture on that section. The annotations replace classic footnotes, without affecting the

readability or formatting of the other text. The hyperlinks enable you to quickly jump to a

reference elsewhere in the text, and then jump back to where you were.

• The pdf format of our textbook makes it incredibly portable. You can carry it on a laptop

computer, on many handheld devices, e.g., an iPad, or can print any desired pages.

• Rather than force you to buy new editions of textbooks to obtain corrections and minor

revisions, updates of this textbook are distributed free of cost.

• Because we have no print or dvd costs for the electronic version of this book or videos, we can

make them available for download at an extremely low price. In addition, the printed, bound

copies of this text and disks with the electronic files are priced as low as possible, to help reduce

the burden of excessive textbook prices.



The word "calculus" simply means a method of calculating. When capitalized, "Calculus" refers to the calculus of Sir Isaac Newton (1643-1727) and Gottfried Wilhelm Leibniz (1646-1716), i.e., Differential and Integral Calculus. Newton and Leibniz developed Calculus independently and essentially concurrently. Though this is not completely clear; historically, there has been great debate as to whether or not Newton's initial work on "fluxions" predates Leibniz's work, and whether Leibniz merely developed ideas that he got from Newton's work. In any case, Leibniz's notation (which we shall discuss later) was vastly superior to Newton's and, consequently, Leibniz's version of Calculus was more useful and spread more quickly.

http://www.youtube.com/watch?v=uPQsrF6J8bM
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In this book, we assume you are familiar with high school algebra, analytic (Cartesian)

geometry and graphing in the xy-plane, basic properties of trigonometric (trig) functions (in

degrees), and basic properties of exponents and logarithms. We will define circular trig functions

and radians in Section 2.7, define logarithms in Section 2.5, and define inverse trig functions in

Section 2.9. However, in these sections, we will concentrate on the derivatives and graphs of the

functions, not on algebraic properties.

We should remark on our approach to defining the exponential function in Section 2.4. There

is always some difficulty in defining exp(x) = ex. If you already have integration, you can define

the natural logarithm lnx via integration, and then define the exponential function as the inverse

function of lnx. This approach is elegant, but seems a bit “backwards” to most people, and

would require developing integral Calculus before defining exp. This approach also makes it

difficult to obtain bounds on the value of e. Then, there is the other calculator-based approach

of “showing” that there is some number e, between 2 and 3, such that the limit, as h approaches

zero, of (eh−1)/h is equal to 1. The lack of rigor in this approach is worrisome and, once again,

this approach makes it difficult to calculate bounds on the value of e.

We take a different approach from the two above. Our approach is via infinite series, a topic

that is not covered in detail in this book. Consequently, we do not give a rigorous proof that

our approach “works”, but at least we can say that such a rigorous proof exists. We believe that

there are several benefits to this series approach. First of all, we feel that students will have

little trouble grasping that there is a sequence of polynomial functions such that the derivative

of each element in the sequence is the previous element in the sequence (or zero), and that this

sequence of functions can then be used to define a function which is its own derivative. Not only

do we think that this approach poses no serious conceptual difficulty, but we hope that students

will, in fact, find it “cool”. Another advantage of using series to define exp(x) is that we can then

show students how to calculate e, by hand, to any desired accuracy. A final advantage to our

approach to exp is that we introduce students, briefly, to sequences, geometric series, and power

series; we return to power series at the end of the section on sine and cosine, Section 2.7. We

believe that these quick brushes with sequences and series will make students more comfortable

when they look at these concepts in detail later.

We also wish to comment on our decision to include a chapter which contains a discussion

of basic differential equations, Chapter 4. In any Calculus course which is preparing students

for integration, the topic of anti-differentiation must be covered, and problems involving anti-

differentiation frequently are phrased in terms of solving differential equations. However, once a

student can anti-differentiate, he or she is fully prepared to solve separable differential equations.

Therefore, it seemed reasonable to include both anti-differentiation and separable differential

equations. We then decided there was a need for an introductory section, and for a section of
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applications of differential equations. We realize that many Calculus syllabi will include the anti-

differentiation section, and omit the other sections on differential equations, but we nonetheless

feel that the topics in the other sections of this chapter are natural to include.

The topics of definite integration and infinite series are not covered in this book, but will

be covered in our second volume: Worldwide Integral Calculus, with infinite series. However,

even this current volume contains some “warm-up” material on those topics. When discussing

polynomial functions, in Section 2.1, we introduce the sigma notation for summations. Our

approach to the exponential function in Section 2.4 requires us to briefly discuss sequences of

numbers and functions, geometric series, and power series. In addition, while we use a traditional

approach to defining, and working with, sine and cosine, we discuss their power series at the

end of Section 2.7. It is our hope that these introductions to summations, sequences, and series

will make those topics more comprehensible when they are dealt with in depth in Worldwide

Integral Calculus, with Infinite Series.

This book is organized as follows:

Other than the Technical Matters sections, each section is accompanied by a video file, which

is either a separate file, or an embedded video. Each video contains a classroom lecture of the

essential contents of that section; if the student would prefer not to read the section, he or

she can receive the same basic content from the video. Each non-technical section ends with

exercises. The answers to all of the odd-numbered exercises are contained in Appendix C at the

end of the book.

Important definitions are boxed in green, important theorems are boxed in blue. Remarks,

especially warnings of common misconceptions or mistakes, are shaded in red. Important con-

ventions, that will be used throughout the book, are boxed in black.

Very technical definitions and proofs from each section are contained in the Technical Matters

at the end of the chapter containing the given section. This removal of the technicalities from the

general exposition should make the presentation more clear, and more closely match what you

normally experience in a classroom environment. Occasionally, we refer to external sources for

results beyond the scope of this textbook; our favorite external technical source is the excellent

textbook by William F. Trench, Introduction to Real Analysis, [3], which is available as a free

pdf.

Internal references through the text are hyperlinked; simply click on the boxed-in link to

go to the appropriate place in the textbook. If you have activated the “forward” and ”back”

buttons in your pdf-viewer software, clicking on the “back” button will return you to where you

started before you clicked on the hyperlink.

http://www.centerofmath.com/trench.pdf
http://www.centerofmath.com/trench.pdf
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Some terms or names are annotated; these are clearly marked in the margins by little blue

“balloons”. Comments will pop up when you click on such annotated items.

We sincerely hope that you find using our modern, multimedia textbook to be as enjoyable

as using a mathematics textbook can be.

David B. Massey

February 2009



Chapter 1

Rates of Change and the
Derivative

In this chapter, we discuss what the rate of change of one quantity, with respect to another,

means. We use the intuitive notion of an average rate of change to lead us to a definition of the

instantaneous rate of change: the derivative. The transition from the average rate of change to

the instantaneous rate of change requires us to develop the idea of the limit of a function.

We also show that our mathematical definition of the instantaneous rate of change has many,

or all, of the properties that you intuitively expect.

1.1 Average Rates of Change

The world around us is in a continual state of change. Positions of people or objects change with

respect to time; this rate of change is called velocity. Velocities change with time; this rate of

change is called acceleration. The radius of a balloon increases with respect to the volume of air

blown into the balloon. Like many rates of change, this latter one has no name, and so we simply

have to use the entire phrase “the rate of change of the radius of the balloon, with respect to

volume”. The price of a lobster changes, with respect to the weight of the lobster (usually with

jumps at certain weights). The area of a flat television screen, either in “full-screen” 4:3 format

or in “wide-screen” 16:9 format, changes, with respect to the diagonal length. The y-coordinate

of the graph of a function y = f(x) changes, with respect to the x-coordinate.

In this section, we will begin our mathematical discussion of how you calculate average rates

of change (AROC’s) when one quantity, such as position, velocity, radius, price, area, or the

y-coordinate, depends on (i.e., is a function of) another quantity, such as time, volume, weight,

1

http://www.youtube.com/watch?v=E-y7Vj4sSwM
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length, or the x-coordinate. Our goal in the next section will be to use the notion of an AROC,

developed in this section, to arrive at a reasonable definition of an instantaneous rate of change

(IROC). The study of instantaneous rates of change is what Differential Calculus is all about.

Example 1.1.1. Suppose that a car is traveling down a straight road. At exactly noon, the

driver notices that she passes a mile marker, mile marker 37 (measured from some important

point 37 miles back). At exactly 12:02 pm, the driver notices that she passes mile marker 38.

What was the velocity of the car during the two minutes from noon until 12:02 pm?

You should be asking “What do you mean by ‘the velocity of the car’? Do you mean what

would someone inside the car have seen on the speedometer at each moment during the two

minutes, or do you simply mean that the car went exactly one mile in 1/30th of an hour, so

that its velocity was

1 mile

1/30 hour
= 30 miles/hour ?”

The above example is intended to illuminate the difference between the instantaneous rate

of change, the IROC, and the average rate of change, the AROC.

The velocity that you read on the speedometer is the IROC of the position, with respect to

time; we shall discuss this concept in detail in Section 1.2, Section 1.4, and throughout much of

the remainder of this book.This velocity is itself a function of time; at each time between t = 0

and t = 1/30, you can read the instantaneous velocity on the car’s speedometer.

Suppose that we let p(t) be the position of the car, measured in miles, as determined by the

mile markers, at time t hours past noon. The 30 miles/hour that we calculated above is the

AROC of the position, with respect to time, between times t = 0 and t = 1/30 hours. This is

the average velocity of the car between times t = 0 and t = 1/30 hours. In terms of the position

function, p(t), the average velocity of the car between times t = 0 and t = 1/30 hours is

change in p(t)

change in t
=
p(1/30)− p(0)

1/30− 0
=

38− 37 miles

1/30 hours
= 30 miles per hour.

Note that knowing this average velocity does not, in any way, tell us what the speedometer

of the car was reading at any time.



Actually, what you read on the speedometer is the instantaneous speed, not instantaneous velocity. We shall discuss this distinction in depth later. Velocity includes not just the speed, but also the direction. In this example, in which the motion is in a straight line, and the object is moving in the positive direction, the speed and the velocity are the same.
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Remark 1.1.2. The average velocity of the car between two given times is the AROC of
the position with respect to time. It is NOT the average of the velocities at the two given
times, that is, you do not add the velocities at the two different times and divide by 2. This
fairly subtle difference in language leads to a huge difference in what you are calculating.

The phrase “the change in” that occurs when discussing various quantities in Calculus comes

up so often that it is convenient to use one symbol to denote it. As is common, we shall use the

Greek letter ∆ for “the change in”, so that the change in the position of the car in Example 1.1.1

would be denoted by ∆p or ∆p(t). Of course, you cannot calculate ∆p without being told the

starting time and ending time, and without knowing the positions of the car at those times.

Using Example 1.1.1 as a guide, we would like to give the definition of the average rate

of change for an “arbitrary” function. Of course, we want to use functions that you put real

numbers into and from which you get real numbers back, that is, we want to use functions of

the following type:

Definition 1.1.3. A real function f is a function whose domain and codomain are subsets
of the set R of real numbers.

(The term codomain may be unfamiliar to you. There is little harm done if you replace every

occurrence of the word “codomain” with “range”, which should be a familiar term. The range is

the set consisting precisely of those values which are attained by the function. Technically, the

codomain is merely some specified set in which we are told that the function takes its values; the

codomain is allowed to contain extra elements that are not in the range. For instance, we may

specify the function, whose domain and codomain are both the entire set of real numbers, given

by f(x) = 3x6 − 4x3 + 7x + 5. It is difficult to determine the range of this f , but a codomain

is easier to specify; as we wrote, the codomain is the set of all real numbers. Unlike the range,

the codomain is merely required to be “big enough” to contain all of the possible values of f .

For a technical discussion of functions, see Subsection 1.A.2.)

All functions used throughout this book, for which the domain and codomain are not ex-
plicitly given, are assumed to be real functions.

In light of Example 1.1.1, we make the following definition for any (real) function y = f(x).

We use y = f(x), since x, y, and f seem to be the favorite, generic variable and function names.

You could just as easily use z = p(t) , and make the corresponding changes below.
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Definition 1.1.4. Suppose that a and b are in the domain of f , and a < b. Then, the
average rate of change (the AROC) of f , with respect to x, between x = a and
x = b, or on the interval [a, b], is

∆y

∆x
=

∆f

∆x
=
f(b)− f(a)

b− a
=
f(a)− f(b)

a− b
.

Note that the last equality above means that it doesn’t really matter which is bigger, a or b,

as far as calculating the AROC is concerned; we required a < b simply so that the interval [a, b]

made sense, and to have that a 6= b, so that we did not divide by zero. What is important in

calculating the AROC is to use the same order in the numerator as you use in the denominator

in the quotient of differences (the difference quotient).

We should also remark that our definition of the AROC of f on [a, b] requires that only a and

b must be in the domain of f , and not that the entire interval [a, b] has to be in the domain of

f . However, we shall normally use the terminology “average rate of change” on intervals which

are entirely contained in the domain of the function in question.

Remark 1.1.5. It is important to note that the units of the average rate of change of f ,
with respect to x, are the units of f divided by the units of x.

Example 1.1.6. Suppose that a car is moving (in a direction designated as positive) along a

straight road, and that, at times t = 0, 1, and 5 hours (measured from some initial starting

time), the car is moving at 30, 60, and 40 miles per hour, respectively. What are the average

accelerations of the car on the intervals [0, 1], [0, 5], and [1, 5]?

Acceleration means the rate of change of the velocity, with respect to time. So, the average

acceleration is the AROC of the velocity, with respect to time. If we let v(t) denote the velocity

of the car, in mph, at time t hours, then the average acceleration is ∆v/∆t.

Hence, on the interval [0, 1], the average acceleration is

v(1)− v(0)

1− 0
=

60− 30

1− 0
= 30 mph/hr (or mi/hr2).
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On the interval [0, 5], the average acceleration is

v(5)− v(0)

5− 0
=

40− 30

5− 0
= 2 mph/hr,

and, on the interval [1, 5], the average acceleration is

v(5)− v(1)

5− 1
=

40− 60

5− 1
= −5 mph/hr.

This negative average acceleration is an indication that the car decelerated.

Example 1.1.7. What is the average rate of change of the area A, in square inches, of a

widescreen 16:9 television screen, with respect to the diagonal length d, between d = 32 inches

and d = 40 inches? Between d = 40 inches and d = 52 inches?

! !"#

$%#

&

Figure 1.1: A widescreen 16:9 television.

The 16: 9 ratio means that the width is 16/9 times the height. Suppose the height is 9x.

Then, the width is 16x. The height, width, and diagonal measurements are related by the

Pythagorean Theorem, so we have

(9x)2 + (16x)2 = d2, and so 337x2 = d2.

Also, we know that the area A = (9x)(16x) = 144x2. It follows that the area, as a function of

d, is given by

A = A(d) = 144d2/337 in2.



While you can do algebra with units, such as multiplying and dividing, frequently the resulting "reduced" units disguise the actual physical meaning. When calculating the rate of change of y with respect to x, we tend to leave the units in our answers in the "raw" form of the units of y divided by the units of x.
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The AROC of the area, with respect to the diagonal length, on the interval [32, 40], is

A(40)−A(32)

40− 32
=

144

337
· 402 − 322

8
≈ 30.7656 in2/in.

The AROC of the area, with respect to the diagonal length, on the interval [40, 52], is

A(52)−A(40)

52− 40
=

144

337
· 522 − 402

12
≈ 39.3116 in2/in.

While it should not be totally surprising that the area increases more quickly per diagonal

inch for a bigger television, you may still feel like saying “Wait a minute...doesn’t adding a few

diagonal inches to a television make a much bigger difference for smaller televisions?” This is

true, except that we need to replace “bigger difference” with “bigger ratio” (something that is

rarely, if ever, said). That is, if you start with two diagonal lengths d1 < d2 and add the same

number of inches h > 0 to each one, then the ratios of the change in area over the original area

satisfy the “reverse” inequality:

A(d1 + h)−A(d1)

A(d1)
>
A(d2 + h)−A(d2)

A(d2)
,

or, equivalently, dividing both sides by h (which is positive),

A(d1 + h)−A(d1)

hA(d1)
>
A(d2 + h)−A(d2)

hA(d2)
. (1.1)

To see this, we use that A(d) = cd2, where c is a constant (namely, 144/337). Thus, we find

A(d+ h)−A(d)

hA(d)
=
c(d+ h)2 − cd2

hcd2
=

(d+ h)2 − d2

hd2
=

d2 + 2dh+ h2 − d2

hd2
=

2d+ h

d2
=

2

d
+

h

d2
.

Since d1, d2, and h are positive, and d1 < d2, it follows that 2/d1 > 2/d2 and h/d2
1 > h/d2

2.

Thus, we obtain Formula 1.1.

Note that Formula 1.1 tells us that the AROC of A on the interval [d1, d1 + h], divided by

A(d1), is greater than the AROC of A on the interval [d2, d2 + h], divided by A(d2). Note also
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that the constant c = 144/337 cancelled out in the calculation, and so we would obtain the

same result for a fullscreen 4:3 television. We shall revisit this example in Example 3.4.12 in

Section 3.4.

Example 1.1.8. Consider the function y = f(x) = 4 − x2. What is the AROC of y, with

respect to x, on the intervals [1, 2] and [1, 1.5]?

We need to calculate ∆y/∆x. On the interval [1, 2], we find

∆y

∆x
=
f(2)− f(1)

2− 1
=

0− 3

1
= −3.

On the interval [1, 1.5], we find

∆y

∆x
=
f(1.5)− f(1)

1.5− 1
=

1.75− 3

0.5
= −2.5.

The ∆y/∆x in Example 1.1.8 and in Definition 1.1.4 should remind you of the slope of a

line, the rise over the run. Can we, in fact, picture the AROC of an arbitrary (real) function in

terms of the slope of some line? Certainly. The AROC will be the slope of the line defined by:

Definition 1.1.9. Given a function y = f(x), and two x values a and b in the domain of
f , with a 6= b, the secant line of f for x = a and x = b is the line through the two points
(a, f(a)) and (b, f(b)).

Clearly, we have

Proposition 1.1.10. Given a function y = f(x), and a < b, where a and b are in the
domain of f , the AROC of f on [a, b] is equal to the slope of the secant line of f for x = a
and x = b.



The longer phrasing of "the secant line to the graph of f, between the points (a, f(a)) and (b, f(b))" contains a good deal of superfluous data, and is too cumbersome to use.



8 CHAPTER 1. RATES OF CHANGE AND THE DERIVATIVE

Example 1.1.11. Consider the function y = f(x) = 4 − x2 from Example 1.1.8. The two

AROC’s on the intervals [1, 2] and [1, 1.5], calculated in Example 1.1.8, are the slopes of the two

secant lines shown in Figure 1.2, on top of the graph of y = 4− x2.

(1.5, 1.75)

(2, 0)

(1, 3)

Figure 1.2: The graph of y = 4− x2 and two secant lines.

The green line has slope equal to the AROC of f on the interval [1, 2], which we already

found to be −3. Using the point-slope form, an equation for this secant line is y−3 = −3(x−1).

The blue line has slope equal to the AROC of f on the interval [1, 1.5], which we already found

to be −2.5. An equation for this secant line is y − 3 = −2.5(x− 1).

Example 1.1.12. Assume that we have an ideal balloon, which stays perfectly spherical as it

inflates. What is the AROC of the radius of the balloon, with respect to the volume of air inside

the balloon, as the volume changes from 20 in3 to 30 in3?

The volume of the balloon V , in cubic inches, is related to the radius R, measured in inches,

by V = (4/3)πR3. Thus, the radius of the balloon can be considered as a function of the volume

of air in the balloon:

R = R(V ) =

(
3V

4π

)1/3

=

(
3

4π

)1/3

V 1/3.

The AROC of the radius with respect to volume on the interval [20, 30] is

∆R

∆V
=
R(30)−R(20)

30− 20
=

(
3

4π

)1/3
(30)1/3 − (20)1/3

30− 20
≈ 0.0243683 in/in3.
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Remark 1.1.13. In the next example, we will encounter a “problem” that will crop up from

time to time: either the domain or codomain of the function being considered has units that do

not naturally allow for arbitrarily small subdivisions.

For instance, the example below deals with the price, in dollars, of lobsters, as a function

of the weight, in pounds, of the lobster. While you are probably comfortable assuming that

the weight of a lobster could be any real number between some lower bound (1, in the example

below) and some upper bound, you may question whether the price, in dollars, can be allowed

to be a number that would use fractions of a dollar smaller than 0.01 (1 cent) or, worse, be an

irrational number of dollars.

In another example, we may wish to look at a function which yields the number of people

who would buy a certain product given the price, in dollars, of the product. Here, the smallest

possible change in the price would be 0.01 dollars, while the smallest possible change in the

number of people buying the product would be 1.

In such problems, we will usually ignore the fractional-units restrictions that would be placed

on our mathematical functions, and assume that rounding up or down would yield a reasonable

approximation, e.g., if our function tells us that the price of lobster “should” be 4π dollars, this

is fine, and we assume that the cashier will ask for $12.56 or $12.57.

We could even take the philosophical position that our functions give the “right” answers,

and it’s not our fault that 4π dollars and 7.38 people don’t exist in the physical world. There is

also the physics question of whether any physical quantity can really vary by arbitrarily small

amounts. We shall leave such discussions and debates for other books and other writers.

Example 1.1.14. The price of lobsters per pound typically “jumps” at certain weights, to take

into account the fact that a larger lobster has a smaller percentage of its weight contained in

the shell. In addition, lobsters which weigh less than one pound are not sold.

Suppose that the price, in dollars per pound, for a lobster is given by p = p(w), where w is

the weight of the lobster in pounds, and w ≥ 1. Let’s assume that p(w) is $6/lb for 1 ≤ w ≤ 1.5,

$7/lb for 1.5 < w ≤ 2, $8/lb for 2 < w ≤ 3, and $9/lb for w > 3. The total cost C(w), in

dollars, of a lobster is then equal to the number of pounds that the lobster weighs times the

price per pound, i.e., C(w) = w · p(w). The graph of C(w) versus w is given in Figure 1.3.

If we take the secant line between two points that lie on the same line segment in the graph,

then the secant line will simply be the line containing the given line segment, and so the average
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Figure 1.3: The cost C, in dollars, of a lobster of weight w, in pounds.

rate of change of C, with respect to w, on the interval determined by the w values will simply

be the slope of the corresponding line segment. For instance, if 2 < a < b ≤ 3, then the AROC

of C, with respect to w, on the interval [a, b] is

∆C

∆w
=
C(b)− C(a)

b− a
=

8b− 8a

b− a
= $8/lb.

Let’s look at the AROC of C, with respect to w, between w = 2 and w = 2.1. We find

∆C

∆w
=
C(2.1)− C(2)

2.1− 2
=

(2.1)(8)− (2)(7)

2.1− 2
= $28/lb.

This large AROC is caused by the “gap”, the discontinuity, in the graph where w = 2, and it

implies what many people know intuitively: it is not a good deal to buy a lobster that is just

slightly bigger than one of the weights where the price per pound jumps.

In our final examples of this section, we wish to return to average velocity. We have already

discussed velocity and acceleration in familiar contexts, where we did not believe confusion could

arise. However, as we will use motion in a straight line in numerous examples throughout this

book, we wish to clarify the standard set-up for such an example, and give precise definitions for

terms that are frequently used interchangeably in everyday speech: “change in position” versus

“distance traveled”, and “velocity” versus “speed”.



Note that the different scales on the axes make the slope of the corresponding line segment look much smaller than 8.
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