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A QUICK TRIP THROUGH FIBRATION STRUCTURES

A. A. DO ESPIRITO SANTO, D. DREIBELBIS, M. F. RIBEIRO,
AND R. N. ARAÚJO DOS SANTOS

Abstract. In this article we review the classical results about the existence of fibered struc-
tures for real and complex singularities in the local setting, commonly known in the literature
as Milnor’s fibration structures. After reviewing the classical studies, we describe some gen-
eralizations in two main directions, namely, the existence of open book structures on semi-
algebraic manifolds, and the existence of the Milnor fibration in a stratified sense.

1. Introduction

The existence of a fibration near an isolated singularity is fundamental to the understanding
of the local structure of the pair space-function.

In the famous Princeton notes of 1968 [Mi], J. Milnor established the foundations for study-
ing fibration structures for germs of complex analytic functions f : (Cn+1, 0) → (C, 0) with
dim Sing f ≥ 0. In this setting, it was shown that given a representative f : U ⊂ Cn+1 → C
with U an open set in Cn+1, f(0) = 0, there exists a small enough real number ε0 > 0 such that
for any 0 < ε ≤ ε0,

(1) φ :=
f

‖f‖
: S2n+1

ε \Kε → S1

is a locally trivial smooth fibration, whereKε = f−1 (0)∩S2n+1
ε is called the link of the singularity

at the origin.
In chapters 5, 6 and 7 of [Mi], Milnor gave differentiable and topological descriptions of the

link and the fibers Fθ = φ−1
(
eiθ
)
, where eiθ ∈ S1, showing that independent of the dimension

of the singular locus, the fiber is a (2n)-dimensional smooth parallelizable manifold with the
homotopy type of a k-dimensional CW-complex, with k ≤ n.

In addition, whenever Sing f = {0}, Milnor associated to the singular point of f a multiplicity
denoted by µ(f), later named by several authors as the Milnor number of the singularity, given
by the topological degree of the map

ε
∇f
‖∇f‖

: S2n+1
ε → S2n+1

ε .

In this case it was also shown that the fiber Fθ has the same homotopy type of a bouquet of
n-dimensional spheres

∨µ(f)
i=1 Sni , with µ(f) spheres in the bouquet.

In 1976, Lê Dũng Tráng in his article [Le] proved the existence of a general fibration structure
on a complex analytic set, as follows.

Let X be an analytic set in an open neighborhood U of the origin 0 ∈ Cn+1. Let
f : (X, 0)→ (C, 0) be a germ of a holomorphic function.
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Theorem 1.1. [Le, Milnor-Lê Fibration] For any small enough ε > 0, there exists η, 0 < η � ε,
such that

(2) f| : B2n+2
ε ∩X ∩ f−1(Dη \ {0})→ Dη \ {0}

is a locally trivial topological fibration.

An important point to notice here is that this topological fibration structure becomes a smooth
fibration if X \ Vf is a non-singular analytic set in Cn+1 (see details in [Ham, Le]).

As a particular case of the previous theorem, one can state:

Corollary 1.2. [Le, Existence of Milnor-Lê (tube) fibration] Let f :
(
Cn+1, 0

)
→ (C, 0) be a

holomorphic function germ. Then there exists small enough ε > 0, such that for any 0 < δ � ε,
the map

f| : B
2n+2

ε ∩ f−1 (Dδ \ {0})→ Dδ \ {0}(3)

is the projection of a locally trivial smooth fibration. In addition, for any small enough ε, there
exists η, 0 < η � ε, such that

(4) f| : B2n+2
ε ∩ f−1

(
S1
η

)
→ S1

η

is the projection of a locally trivial smooth fibration. Moreover, the fibrations (1) and (4) are
equivalent1.

Milnor also explained how to extend the study to a real analytic map germ

G : (Rm, 0)→ (Rp, 0), m > p ≥ 2,

with isolated singular point at the origin, i.e., SingG = {0} as a germ of a set. In this case he
observed that, for any small enough ε > 0, there exists a projection map

Sn−1
ε \Kε → Sp−1

1

that is a smooth locally trivial fibration, induced by G, but which in general fails to be the
canonical map G/‖G‖ like (1) (see section 2.2). However, one gets that G always induces a
trivial fibration structure over a neighborhood of the link Kε, and consequently an open book
structure (or NS−pair) on Sn−1

ε for some extension of the projection G/‖G‖ (see Section 3).
More recently in [ACT1, AT1, AT2], the authors have defined and proved the existence of

singular higher open book structures on spheres of small enough radius, which extends the real
and complex fibrations results previously proved by Milnor.

In another direction, the authors in [DACA] have shown how it is possible to extend these
results to the class of semi-algebraic maps, in such a way that it is possible to derive, as
a particular case, the existence of fibration structures mentioned above. More precisely, let
G : Rm → Rp, m > p ≥ 2, be a C2 semi-algebraic map and W ↪→ RN an embedded com-
pact and connected semi-algebraic manifold. The authors adapted some conditions used in
[ACT1, ACT2, AT1, AT2, Ma] to ensure that the restriction map

G =
G

‖G‖
: W \ VG → Sp−1

with VG := G−1(0), gives a higher open book structure on W and consequently a locally trivial
smooth fibration. In this case, the link of the structure is VW (G) = W ∩ VG.

1Two locally trivial smooth fibrations p : E → B and p′ : E′ → B are said to be equivalent if there is a smooth
diffeomorphism h : E → E′ such that p′ ◦ h = p.
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In the past few years the study of the existence of fibration structures in the real setting has
concentrated on real maps with isolated singularities and on classes of singular maps with the
property SingG ⊂ VG, which in this work will be denoted by DiscG = {0} (cf [ACT1, AT1,
AT2, C, CSS3, DA, Ma, Mi, PT, RSV]).

The complementary case, when DiscG is larger than {0}, has been studied, for instance, by
Hamm in [Ham]. Hamm studied the case where the germs of holomorphic maps

G : (Cn+p, 0)→ (Cp, 0)

are also an ICIS - Isolated Complete Intersection Singularity 2. This means the map defines a
local complete intersection germ VG such that VG has an isolated singularity at the origin, i.e.,
the ICIS condition amounts to the condition SingG ∩ VG = {0}. Hamm proved the following
result.

Theorem 1.3. Let G := (G1, . . . , Gp) : (Cn+p, 0)→ (Cp, 0), p ≥ 1, be an ICIS at 0. Then,

(5) G| : B2(n+p)
ε ∩G−1(B2p

η \DiscG)→ B2p
η \DiscG

is a locally trivial smooth fibration.

This fibration was also called the Milnor fibration and it generalizes the previous isolated
singular case for holomorphic functions. The discriminant set DiscG is a complex hypersurface
of Cp. Hence, it does not disconnect the complement B2p

η \ DiscG and the topological type
of the fibers of (5) does not change. Moreover, the fiber F is a real 2n-dimensional smooth
manifold with the homotopy type of a bouquet of n-dimensional spheres

∨µ
i=1 S

n
i , where now

µ := rankHn(F,Z), the rank of the homology in the middle dimension of the fiber with integer
coefficients.

For a real analytic map germ G : (Rm, 0)→ (Rp, 0) with positive dimensional discriminant set,
i.e. dimDiscG > 0, the existence of fibration structures was pointed out theoretically in [ACT1,
Theorem 1.3] and [MS], but no concrete families of examples have been studied. In [CGS], the
authors presented a Milnor-Lê type result over the complement of the image G(SingG), under
assumptions of Thom regularity.

In [ART1] the authors have considered this general situation and have introduced two local
fibrations structures. The first one was over the complement of the discriminant, which was
called a Milnor-Hamm tube fibration. The second was a general notion of stratified tube fibration
by considering in addition all singular fibers over the stratified discriminant. In the latter case,
the tube fibration, which was called a singular Milnor tube fibration, is actually a collection of
finitely many fibrations over path-connected subanalytic sets.

In [ART2], the authors considered again the setting dimDiscG > 0 and introduced the
Milnor-Hamm sphere fibration. They gave natural sufficient conditions for which this fibration
exists, and they presented several classes of maps which satisfies these conditions. Moreover,
they have shown that the Milnor-Hamm tube and Milnor-Hamm sphere fibrations are extensions
of the previous ones treated in [ACT1, AT1, AT2, CGS, CSS2, Ma, Mi].

In this work we present a brief survey about the results described above, as well as some
comparisons between the main results found in the literature. This paper complements the nice
survey paper [S2], recently published.

2One of the richest sources of information on ICIS is Looijenga’s classical book [Lo2]. See also the reedited
version [Lo3].
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2. 0-dimensional discriminant set

In this section we consider the fibration on the so-called Milnor’s tube, and the fibration on a
sphere of radius small enough for the case where the classical discriminant set is 0-dimensional.
Classically, this case was studied in two approaches: isolated critical point and isolated critical
value.

2.1. Isolated critical point: tube fibration. Given a representative of G : (Rm, 0)→ (Rp, 0),
m > p ≥ 2, in the first part of the proof of [Mi, Theorem 11.2], Milnor proved that if G has
an isolated critical point at the origin 0 ∈ Rm, then for any small enough ε > 0, there exists η,
0 < η � ε, such that the restriction map

(6) G| : B
m

ε ∩G−1(Sp−1
η )→ Sp−1

η

is the projection of a locally trivial smooth fibration. More precisely, Milnor proved the following
result:

Theorem 2.1. [Mi] Let G : (Rm, 0)→ (Rp, 0) be a real analytic map germ such that SingG = {0}
as a germ of an analytic set at the origin. Then there exists ε0 > 0 such that, for each ε,
0 < ε ≤ ε0, there exists η, 0 < η � ε, such that (6) is a smooth fiber bundle.

Geometrically, a standard picture for the total space B
m

ε ∩ G−1(Sp−1
η ) is as in the Figure 1

below3. The boundary manifold B
m

ε ∩ G−1(Sp−1
η ) looks like a “tube” surrounding the special

fiber VG. For this reason several authors called this space “the Milnor tube”.

Figure 1. G(x, y, z) = (x, y(x2 + y2 + z2)) Milnor tube and Milnor sphere fibrations.

Remark 2.2. It is not hard to see that the structure of the fibration (6) does not change up to
isotopy for any ε > 0 and η > 0 small enough. Consequently, we will denote the Milnor tube as
MG.

2.2. Sphere fibration: Milnor’s example. Concerning the sphere fibration in this real set-
ting, Milnor guaranteed the existence of a diffeomorphism between the Milnor tube MG and
the complement Sm−1

ε \ int(T ) of an open tubular neighborhood int(T ) of the link Kε in Sm−1
ε ,

where T :=
{
x ∈ Sm−1

ε | ‖G(x)‖ ≤ η
}
. This diffeomorphism is the identity on the boundary of

3In the case the link Kε = VG ∩ Sm−1
ε is not empty for any small enough ε.
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the tube, which allows one to extend it to an open book structure (see Section 3). This dif-
feomorphism and the locally trivial smooth fibration (6) guaranteed by Theorem 2.1, can be
composed to get a map

ζ : Sm−1
ε \ int(T )→ Sp−1

η

which is a fibration, as stated in the following result:

Theorem 2.3. [Mi, Theorem 11.2, p. 97] Let G : (Rm, 0) → (Rp, 0), m ≥ p ≥ 2, be a real
analytic map germ such that SingG = {0} as a germ of an analytic set at the origin. Then there
exists ε0 > 0 such that, for each ε, 0 < ε ≤ ε0, there exists η, 0 < η � ε, such that

(7) ζ : Sm−1
ε \ int(T )→ Sp−1

η

is a smooth fiber bundle.

Moreover, Milnor showed that each fiber Fζ of the fibration ζ is a smooth compact (m− p)-
dimensional manifold bounded by a copy of Kε. If the link Kε is not empty for any small
enough ε > 0, it is a (m − p − 1)-dimensional closed smooth submanifold of the sphere and
the fiber is (p − 2)-connected. On the other hand, if the link Kε is empty, then the manifold
B
m

ε ∩G−1(Sp−1
η ) is diffeomorphic to the sphere Sm−1

ε . Moreover, when m > p the fibration (7)
given in Theorem 2.3 becomes a Hopf fibration4 G| : S2t−1 → St, with t = 2, 4, 8.

Next, Milnor presented the following remark without a proof [Mi, remark on p.99]:

“with a little more effort one can prove that the entire complement Sm−1
ε \Kε also fibers on

Sp−1
η ”.

In order to make this more precise, in [AT1, AT2] and [ACT1], the authors gave a complete
proof for this remark.

Milnor also noted that in general the map projection of the fibration (7) fails to be the
canonical map G/‖G‖, like it is for the above cited case of holomorphic function germs. In
particular, in [Mi, p. 99], Milnor considered the mapping G := (G1, G2) : (R2, 0) → (R2, 0)
given by G(x, y) = (x, x2 + y(x2 + y2)) which satisfies SingG = VG = {0} and consequently has
an isolated singular point at the origin. Theorem 2.3 gives the existence of the fibration in the
sphere. However, the map G/‖G‖ cannot be the projection of a locally trivial smooth fibration
on S1

ε , because it is not a submersion for ε small enough.
In fact, considering v := (x, y) and the matrix

A(v) =

(
G1(v)∇G2(v)−G2(v)∇G1(v)

v

)
one can see that there exists a curve C (see Figure 2) of tangency points between the fibers of
the map

G/‖G‖ : B2
ε \ VG → S1

and the small spheres 5. The curve C contains the origin in its closure, hence the intersection
C ∩ S1

ε provides the critical locus of the map G/‖G‖ : S1
ε → S1 for any small enough ε > 0.

As we will see in more details in the next section, the curve C represents the set of ρ-nonregular
points of G/‖G‖ (see Lemma 2.10 and Remark 2.11). Consequently (c.f. Definition 2.9), the
map G/‖G‖ is not ρ-regular and this is precisely the reason why the map G/‖G‖ fails to be the
projection of a locally trivial smooth fibration.

4It is well known that this case is only possible for the pairs of dimensions (m, p) ∈ {(4, 3), (8, 5), (16, 9)},
according to [CL, Lemma 1, p. 151], and G : A × A → A × R is given by G(x, y) = (2xȳ, |y|2 − |x|2), where A
denotes the complex numbers, the quaternions, or the Cayley numbers.

5It is also known as the polar curve.
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Figure 2. Curve of tangencies between the fibers of G/‖G‖ and spheres cen-
tered at the origin, for G(x, y) = (x, x2 + y(x2 + y2))

Remark 2.4. The phenomenon described above in the Milnor example can be reproduced in
higher dimensions using the isolated singularity map G : (Rm+2, 0)→ (R2, 0) given by

G(x, y, z1, . . . , zm) = (x, x2 + y(x2 + y2 + z2
1 + · · ·+ z2

m)).

2.3. Non-isolated singular case: tube fibration. Both fibrations, the Milnor tube fibration
and the sphere fibration, in the real case were extended later for non-isolated singular map germs
under the assumption that the discriminant set is 0-dimensional . In order to state properly these
results we need to provide new definitions and notations.

Let us consider U ⊂ Rm an open subset such that 0 ∈ U and let ρ : U → R≥0 be a non-negative
proper function which defines the origin.

Definition 2.5. Let G : (Rm, 0)→ (Rp, 0) be an analytic map germ. We denote by

Mρ(G) := {x ∈ U | ρ 6tx G}

the set of ρ-nonregular points of G, sometimes also called the Milnor set of G.

The transversality of the fibers of a map G to the levels of ρ is called ρ-regularity and we will
see below that it is a condition for the existence of a locally trivial smooth fibration. It was used
in the local (stratified) setting by Thom, Milnor, Mather, Looijenga, Bekka, e.g. [Be, Lo1, Mi,
Th1, Th2] and more recently in [ACT1, AT1, AT2], and [CSS1, CSS3] under a different name
d-regularity, as well as at infinity in the references [ACT2, DRT, NZ, Ti1, Ti2].

It follows from Definition 2.5 that the Milnor set Mρ(G) is the set of points x ∈ U such
that the vectors {∇ρ(x),∇G1(x), . . . ,∇Gp(x)} are linearly dependent over R, i.e., Mρ(G) is the
singular locus Sing (G, ρ) of the pair of map (G, ρ) : U → Rp×R. Hence, the singular set SingG
is included in Mρ (G).

For the sake of simplicity, in what follows ρ is the square of the Euclidean distance function
ρ(x) = ‖x‖2, and we write M(G) := Mρ(G) for short. However, all results carry out easily over
any other function ρ as considered above.

Consider the following condition:

(8) M(G) \ VG ∩ VG ⊆ {0}

where the closure of the set M(G) \ VG is thought as a germ of a set at the origin. See Figure 3
for an example.

Condition (8) was used in [ACT1, AT1, AT2], where it was shown that it insures the existence
of the Milnor tube fibration. More recently, this condition was adapted by the authors in [ART1]
and used in a stratified sense to ensure the existence of a singular Milnor tube fibration (see
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Figure 3. From Example 2.8, M(G) is the cone and the plane, while VG is the
plane and the line. Hence G satisfies Condition (8).

Section 5.1 below). Note that this condition is equivalent to saying that for all small enough
ε > 0 and 0 < η � ε, the map:

G| : Sm−1
ε ∩G−1(B

p

η \ {0})→ B
p

η \ {0}

is a locally trivial smooth fibration.
In [Ma] D. Massey considered Condition (8) but with different notation and called it the

Milnor condition (b). Massey used the condition to prove the existence of the Milnor tube
fibration in the local setting, as in Theorem 2.6 below. Here we shall use the same notation of
[ACT1] and [ART1].

Theorem 2.6. [Ma, Existence of the (full) Milnor’s tube fibration] Let G : U → Rp be as above
and assume that it has isolated critical value at origin, i.e. DiscG = {0}, and satisfies Condition
(8). Then there exists ε0 > 0 such that, for each ε, 0 < ε ≤ ε0, there exists η, 0 < η � ε, such
that

(9) G| : B
m

ε ∩G−1(B
p

η \ {0})→ B
p

η \ {0}

is the projection of a locally trivial smooth fibration.

Corollary 2.7. [Ma, Existence of the tube fibration] Given G with the conditions of Theorem 2.6,
for any small enough ε > 0, there exists η, 0 < η � ε, such that

G| : B
m

ε ∩G−1(Sp−1
η )→ Sp−1

η

is the projection of a locally trivial smooth fibration.

In this case we also denote MG = B
m

ε ∩G−1(Sp−1
η ) and also call it the Milnor tube.

Example 2.8. Let G : (R3, 0) → (R2, 0) given by G(x, y, z) = (xy, xz). Consider v := (x, y, z).
One has that

JG(v) =

[
y x 0
z 0 x

]
and

JG(v)[JG(v)]t =

[
x2 + y2 yz
yz x2 + z2

]
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where JG(v) and [JG(v)]t denote the Jacobian matrix of G in v and its transpose, respectively.
We know that SingG = {det (JG(v)[JG(v)]t) = 0} thus SingG = {x = 0}. Since

VG = {x = 0} ∪ {y = z = 0}

one gets that DiscG = {0}. Now to compute the Milnor set M(G) let us consider the matrix

B(v) :=

 y x 0
z 0 x
x y z

 .
The Milnor set M(G) = {v ∈ R3 | det (B(v)) = 0}. Consequently,

M(G) = {x = 0} ∪ {x2 − y2 − z2 = 0},

and G satisfies Condition (8). Therefore, by Theorem 2.6, G has a Milnor tube fibration.
In Figure 4 below one can see that the Milnor tubeMG consists of two connected components.

Compare with Figure 1.

Figure 4. Milnor tube and Milnor sphere fibrations for G(x, y, z) = (xy, xz).

2.4. Existence of the Sphere fibration. Several authors have worked on the problem of fi-
bration over spheres in the real setting, for isolated and non-isolated singularities, e.g. [A1,
ACT1, AT1, CSS1, CSS3, RA, RSV]. In [ACT1, AT1, AT2] the authors generalized all pre-
vious results as we describe below. In order to explain their main results, define the map
Ψ : Rm \ VG → Sp−1 through the diagram:

Rm \ VG
G //

Ψ &&

Rp \ {0}

π1

��
Sp−1

where π1 is radial projection: π1(x) = x/‖x‖. Given a neighborhood U ∈ Rm of 0, define the
set of ρ-nonregular points of Ψ as the set

M(Ψ) = {x ∈ U \ VG | ρ 6tx Ψ} .

Definition 2.9. The map germ Ψ is ρ-regular when M(Ψ) = ∅, as a germ of a set at the origin.

The set M(Ψ) was characterized as follows.
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Lemma 2.10. [AT1, AT2, ACT1, S] Let G := (G1, . . . , Gp) : (Rm, 0) → (Rp, 0) be an analytic
map germ. Then on the open set {G1(x) 6= 0}6 one has that

M(Ψ) =

x ∈ U \ VG | rank


Ω2(x)
...

Ωp(x)
∇ρ(x)

 < p

 ,

where Ωk = G1∇Gk −Gk∇G1, for k = 2, . . . , p.

Remark 2.11. We notice that for any x /∈ VG, if ρ tx G then ρ tx Ψ. Hence,
M(Ψ) ⊂M(G) \ VG.

Since the ρ−regularity is a measurement of transversality between the normal spaces of the
fibers of ρ and Ψ, the set M(Ψ) does not depend on the particular choice of the open set
{G1(x) 6= 0}. In general, for Gi(x) 6= 0, 1 ≤ i ≤ p, one can find appropriate generators for
the normal space of the fibers Xy = Ψ−1(y), y = Ψ(x), considering the collection of vectors
Ωi,k(x) = Gi∇Gk(x) − Gk∇Gi(x), k = 1, 2, 3, . . . , î, . . . , p, where î means that the index i is
omitted. See [DACA, Lemma 3.3 and Remark 3.4] for more details.

It also follows from [AT1] that the condition M(Ψ) = ∅ is equivalent to saying that for small
enough ε > 0, the projection Ψ : Sm−1

ε \Kε → Sp−1 is a smooth submersion. However, since
the map is not proper (unless the link is empty), it might not be a fibration.

In [ACT1] the authors used Condition (8) to ensure that the map Ψ is a projection of a locally
trivial smooth fibration. In this setting where DiscG = {0} their result can be read as:

Theorem 2.12. [ACT1, Theorem 1.3] Let G : U → Rp, m > p ≥ 2 be an analytic map germ
such that codimVG = p. Suppose G satisfies Condition (8), i.e.,

M (G) \ VG ∩ VG ⊆ {0} .
If Ψ is ρ-regular, then for any ε, 0 < ε ≤ ε0, the map projection

(10) Ψ : Sm−1
ε \Kε → Sp−1

is a locally trivial smooth fibration, independent (up to isotopies) of small enough ε > 0 .

Example 2.13 ([Han], p. 35). Let G : (R3, 0)→ (R2, 0), G(x, y, z) = (x2 + y2, (x2 + y2)z). By
hand calculations, one can see that SingG = VG = {x = y = 0}, hence DiscG = {0}. Moreover,
by Lemma 2.10, M(Ψ) = ∅ and therefore Ψ is ρ-regular. Also, M(G) = R3,

M (G) \ VG ∩ VG = VG 6= {0}
and Condition (8) fails. Therefore we cannot prove that Ψ is a locally trivial fibration. Indeed, the
topological type of the fibers of Ψ changes along S1; sometimes the fiber is a circle, sometimes the
fiber is empty (see Figure 5). This shows that the hypothesis in Theorem 2.12 (or, Theorem 1.3
of [ACT1]) can not be weakened and therefore it is sharp!

Example 2.14 (Revising the sphere fibration for holomorphic functions). Let

f :
(
Cn+1, 0

)
→ (C, 0)

be a germ of a holomorphic function. We see that the hypothesis of Theorem 2.12 are naturally
satisfied if we consider f as a real map germ from R2n+2 to R2. Indeed, it is well known that
any holomorphic function satisfies the Łojasiewicz inequality

‖f(z)‖θ ≤ c‖∇f(z)‖,

6Here, this set means {x ∈ U \ VG |G1(x) 6= 0}.
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Ψ−→

Figure 5. Ψ for G(x, y, z) = ((x2 +y2), (x2 +y2)z). Colored points on S1 have
circles for fibers, while gray points have empty fibers.

where 0 < θ < 1, c > 0, and for any z in a small open neighborhood of the origin. So the isolated
critical value condition is already satisfied. Moreover, Hamm and Lê in [HL, Theorem 1.2.1 p.
322] have proved that the Łojasiewicz inequality implies that f is Thom regular at Vf and hence
f satisfies Condition (8). Finally, by [Mi, Lemma 4.3], one gets that for all ε > 0 small enough,
M(f/‖f‖) = ∅, as a germ of a set. Therefore, from Theorem 2.12 the Milnor fibration on the
sphere follows.

Let us point out some important facts.

In the paper [S1] published in 1997, the author used the method known as Pencil to construct
examples of real analytic map germs with isolated singular point at the origin, which induces the
so-called “Open book decomposition on the sphere” (see Definition 3.3), and hence the Milnor
fibration on the sphere. Such construction was also used by the authors in [RSV]. In the paper
[RA] published in 2005, the authors used this technique and tools from Stratification theory
to ensure the existence of the Milnor fibration for real map germs G : (Rm, 0) → (R2, 0) with
m > 2. Inspired by [RA], in the paper [AT1] on arXiv (2008) and in the paper [AT2] published
in 2010, the authors used the technique of blow-up to provide a generalization of the method for
map germs G : (Rm, 0) → (Rp, 0) with m > p ≥ 2, and with that, they were able to prove two
results which were generalized later in [ACT1].

In order to produce a new class of purely real examples, the authors in [ACT1] used the
theory of mixed functions (see [Oka1, Oka2, Oka3] and Chapter 3 of [Ri] for definitions and
properties), and proved Theorem 2.16 below. Before stating the theorem, let us consider the
following definition.

Definition 2.15. [CT, CT1, CSS3, Oka2, Oka3, PT] A mixed polynomial function f : Cn → C
is called polar weighted-homogeneous if there are non-zero integers p1, ..., pn and d, such that
gcd(p1, ..., pn) = 1 and

n∑
j=1

pj (νj − µj) = d

for any monomial of the expansion f (z, z̄) =
∑
ν,µ cν,µz

ν z̄µ. We call (p1, ..., pn) the polar weight
of f and d the polar degree of f . More precisely, f is polar weighted homogeneous of type
(p1, ..., pn; d) if and only if it satisfies the following equation for all λ ∈ S1:

f(λ · (z, z̄)) = λdf(z, z̄),
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where the corresponding S1-action on Cn is:

λ · (z, z̄) =
(
λp1z1, ..., λ

pnzn, λ
−p1 z̄1, ..., λ

−pn z̄n
)
, λ ∈ S1.

Theorem 2.16. [ACT1, Theorem 1.4] Let f : Cn → C be a non-constant mixed polynomial
which is polar weighted-homogeneous, n ≥ 2, such that codimRVf = 2. Then for any ε > 0 small
enough, the projection

f/‖f‖ : S2n−1
ε \Kε → S1

is a locally trivial smooth fibration, independent (up to isotopies) of small enough ε > 0.

Moreover, they proved the result below where now no control on the projection of the fibration
is required outside a neighborhood of the link in the sphere.

Theorem 2.17. [ACT1, Theorem 2.1] Let G : U → Rp, m > p ≥ 2 be an analytic map such
that codimVG = p and DiscG = {0} which satisfies Condition (8). Then there exists a locally
trivial smooth fibration

Sm−1
ε \Kε → Sp−1

which is independent of small enough ε > 0, up to isotopies.

The control of the projection of the fibration is directly related to the ρ-regularity of the
map Ψ, as has been seen in Theorem 2.12 and in the discussion that precedes it. This point
is the main difference between Theorem 2.12 and Theorem 2.17 (for further details see [ACT1,
Section 2]).

2.5. Fibration on sphere under Thom regularity condition. In the sequence of papers
[CSS1, CSS3], the authors considered maps germs G : (Rm, 0) → (Rp, 0), m > p ≥ 2, with iso-
lated critical value and satisfying a condition called d-regularity which, together with the Thom
regularity, ensured the existence of the sphere fibrations. To do that, the authors associated to
G a pencil, as we explain below. We follow the notations and the construction as described in
the paper [CSS1], published in 2010.

For each l ∈ RPp−1 consider the line Ll ⊂ Rp through the origin and set

Xl = {x ∈ U |G(x) ∈ Ll} .
In particular, if we consider the commutative diagram

Rm \ VG
G //

Ψ

&&

Ψ∗

��

Rp \ {0}

π1

��
Sp−1

π

��
RPp−1

where π1 is radial projection and π is the canonical double covering, then Xl = (Ψ∗)−1(l) ∪ VG.
Each Xl is a real analytic variety that contains VG, and since G has an isolated critical value,

then each Xl \ VG is either empty or it is an (m− p+ 1)-dimensional smooth submanifold of U .
The family

{
Xl : l ∈ RPp−1

}
is called the canonical pencil of G.

Definition 2.18. [CSS1, Definition of d-regularity] The map G is said to be d-regular at 0 if
there exist a metric d induced by some positive-definite quadratic form and an ε > 0 such that
every sphere (for the metric d) of radius ≤ ε centered at 0 meets each Xl \ VG transversely,
whenever the intersection is not empty. We shall also say that G is d-regular with respect to the
metric d.
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In order to study the existence of Milnor fibrations associated to a map G, the authors
introduced an auxiliary function G : Bmε \ VG → Bpε called the Spherification map of G. This
function was defined by

G(x) = ‖x‖ G(x)

‖G(x)‖

and it was used to characterize the d-regularity as follows.

Proposition 2.19. [CSS1, Proposition 3.2] Let G : (Rm, 0)→ (Rp, 0) be an analytic map germ
with an isolated critical value at the origin. The following statements are equivalent:

(i) The map G is d-regular at 0.
(ii) For each sphere Sm−1

ε of small enough radius ε > 0, the restriction map

G : Sm−1
ε \ VG → Sp−1

ε

is a submersion.
(iii) The spherification map G is a submersion at each x ∈ Bmε \ VG.
(iv) The map Ψ| : Sm−1

ε \Kε → Sp−1 is a submersion for any small enough sphere Sm−1
ε .

This proposition shows that when d is the square of the Euclidean metric, then d-regularity
of G is equivalent to ρ-regularity of Ψ. The main result of [CSS1] is the following.

Theorem 2.20. [CSS1, Theorem 5.3] Assume either VG is a point or dimVG > 0 and G has
the Thom regularity. The following statements are equivalent:

(i) The map G is d-regular at 0.
(ii) One has a commutative diagram of smooth fiber bundles on Sm−1

ε \ Kε for any small
enough sphere Sm−1

ε :

Sm−1
ε \Kε

φ //

ψ ��
RPp−1

Sp−1

π��

where ψ := (G1(x) : · · · : Gp(x)) and φ := G/‖G‖ : Sm−1
ε \ Kε → Sp−1 is the Milnor

fibration on G.
(iii) For any small enough sphere Sm−1

ε , the restriction G : Sm−1
ε \ VG → Sp−1

ε is a smooth
fiber bundle and this is the Milnor fibration φ up to multiplication by a constant.

2.6. Comparing the fibration structure on spheres under Thom regularity at VG and
Condition (8). One can show that if a map germ G is Thom regular at VG then G satisfies
Condition (8). Example 2.21 below shows that the converse in not true in general. Therefore,
Theorem 2.12 is more general than Theorem 2.20.

Example 2.21. [Han, Example 1.4.9] Consider G(x, y, z) = (x, y(x2 + y2) + xz2) in three real
variables. One has that SingG = VG = {x = y = 0} and M(G) = {x = y = 0} ∪ {z = 0}.
Hence, M(G) \ VG ∩ VG = {0} and Condition (8) holds. We claim that M(Ψ) = ∅. Indeed, let
v = (x, y, z) ∈ R3 and consider the matrix

B(v) :=

[
Ω2(v)
v

]
,



146 DO ESPIRITO SANTO, DREIBELBIS, RIBEIRO, AND ARAÚJO DOS SANTOS

where
Ω2(v) = (x(2xy + z2)− y(x2 + y2)− xz2, x(x2 + 3y2), 2x2z).

By Lemma 2.10,
M(Ψ) = {v ∈ B3

ε \ VG | det
(
B(v)[B(v)]t

)
= 0}.

Since

det
(
B(v)[B(v)]t

)
= (x2 + y2)(x6 + 3x4y2 + 5x4z2 − 8x3yz2 + 3x2y4 + 6x2y2z2 + y6 + y4z2)

and M(Ψ) ⊂ M(G) \ VG, then M(Ψ) = ∅. By Theorem 2.12, we get the sphere fibration
Ψ : Sm−1

ε \Kε → Sp−1.
On the other hand, for any value z 6= 0, consider the point p = (0, 0, z), TpVG = span {(0, 0, 1)} ,

and the sequence pn = ( 1
n , 0, z) which converges to p. One has that TpnG−1(G(pn)) = span {vn},

where

vn =

0,
−2z√

4z2 + 1
n2

,
1√

4z2n2 + 1

 ;

hence vn → (0,±1, 0), where plus and minus depends on the sign of z. Therefore,

lim
n

(TpnG
−1(G(pn))) = span {(0, 1, 0)}

and G is not Thom regular at VG.

Remark 2.22. Another source of examples of maps with Milnor tube and sphere fibration
without the Thom regularity can be found in the recent paper [Ri2].

3. Open Book Structures on semialgebraic sets

The classical open book structures with smooth binding appear in the literature relative to
3-manifolds and in different branches of mathematics under many names like Lefschetz pen-
cils (Algebraic and Symplectic Geometry), fibered links, Neuwirth-Stallings pairs, or spinnable
structures (Topology).

As explained by the authors in [AT1], this consists of a pair (K, θ) where K ⊂ M is a 2-
codimensional submanifold of a real manifold M and θ : M \ K → S1 with S1 := ∂B2, is a
locally trivial smooth fibration such that K admits a neighborhood N diffeomorphic to B2 ×K
for which K is identified with {0} × K and the restriction θ|N\K is the following composition
with the natural projections:

N \K diffeo' (B2 \ {0})×K proj→ B2 \ {0} s/‖s‖→ S1.(11)

In that case, K is the binding and the closure of the fibers of θ are the pages of the open book.
As described in the introduction, an important example of classical open book structure

on a small sphere S2n−1
ε can be obtained if we consider a germ of a holomorphic function

f : (Cn, 0)→ (C, 0), under the condition that Sing f = {0}.
Milnor noted that if G : (Rm, 0) → (Rp, 0), m ≥ p ≥ 2, has an isolated critical point at

0 ∈ Rm, then for any small enough ε > 0, the complement Sm−1
ε \Kε of the link Kε is the total

space of a smooth fiber bundle over the unit sphere Sp−1. In such a case, one can conclude from
Milnor’s comment that the sphere Sm−1

ε is endowed with an open book structure with binding
Kε, where now the binding is of higher codimension p ≥ 2 instead of 2.

These structures were extended later, as follows:
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Definition 3.1. [AT2, Definition 2.1] A higher open book structure of a real manifoldM is a pair
(K, θ), where K is a p-codimensional non-empty submanifold of M and θ : M \K → Sp−1 is a
locally trivial smooth fibration over the sphere Sp−1 = ∂Bp, such that K admits a neighborhood
N diffeomorphic to Bp×K for which K is identified to {0}×K and the restriction θ|N\K is the
composition

N \K diffeo' (Bp \ {0})×K proj→ Bp \ {0} s/‖s‖→ Sp−1.

Figure 6. Left: an example of N and K from Definition 3.1. Right: a cross
section of the corresponding open book structure.

Remark 3.2. In this case E. Looijenga in [Lo1] called this structure a Neuwirth-Stallings pair,
or NS-pair, and denoted them by (Sm−1

ε ,Kε).

In [AT1], the authors presented a general criterion for the existence of these structures associ-
ated to a real map germ G with isolated critical point at 0 ∈ Rm and with θ = G/‖G‖ (see [AT1,
Theorem 1.1]). In [AT2], they focused on the existence of higher open book structures defined
by map germs which satisfies the condition SingG ∩ VG ⊂ {0}, which is the most general one
under which open book structures with non-singular binding K may exist. Finally, in [ACT1],
the authors introduced the notion of singular open book structure as follows.

Definition 3.3. [ACT1, Definition 1.1]. The pair (K, θ) is a higher open book structure with
singular binding on an analytic manifold M of dimension m − 1 ≥ p ≥ 2, if K ⊂ M is a
singular real subvariety of codimension p and θ : M \ K → Sp−1 is a locally trivial smooth
fibration such thatK admits a neighborhoodN for which the restriction θ|N\K is the composition

N \K h→ Bp \ {0} s/‖s‖→ Sp−1, where h is a locally trivial fibration.

They investigated the case when VG contains non-isolated singularities and thus the link Kε

is not a manifold. Under the hypothesis of Theorem 2.12, they ensured the pair (Kε,Ψ) is an
open book structure with singular binding on Sm−1

ε having extended all previous results related
to the existence of open book structures of [AT1] and [AT2]. In addition, they found important
classes of genuine real analytic mappings which yield such structures (see for instance Theorem
2.16).

Remark 3.4. Based on the results obtained in [ACT1], the authors in [ACT2] considered poly-
nomial maps G : Rm → Rp, m ≥ p ≥ 1. Under certain adapted conditions defined in terms of
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the Milnor sets M(G) and M(Ψ), they ensured the existence of an open book decomposition at
infinity with singular binding (i.e., on spheres of large enough radius R).

Motivated by recent techniques developed in [ACT1, AT1, AT2] and [ACT2], the authors
in [DACA] guaranteed the existence of a fibration structure associated to a more general class
of maps and sets. Actually, they have considered C2-semi-algebraic maps G : Rm → Rp and
embedded compact semi-algebraic manifolds without boundaryW ⊂ Rm of dimension n−1 ≥ p.
In this new setting, they introduced sufficient conditions in order to ensure the existence of an
open book structure on W and, as a consequence, extended both previous open book structures
on local and global cases. For that, the first step was to consider an appropriate extension of
the Milnor set as below.

Definition 3.5. [DACA]
Let G : Rm → Rp be a C2-semi-algebraic map, W ⊂ Rm a compact semi-algebraic (n − 1)-

dimensional submanifold embedded in Rm and

Ḡ :=
G

‖G‖
: Rm \ VG → Sp−1.

Consider Ḡ|W : W \ VW (G)→ Sp−1 where VW (G) = VG ∩W , and
(i) ΣG the set of critical points of G;
(ii) ΣḠ the set of critical points of Ḡ;
(iii) ΣWG the set of critical points of G|W ;

(iv) ΣW
Ḡ

the set of critical points of Ḡ|W .

The map G satisfies the generalized Milnor condition (b) whenever ΣWG \ VW (G) ∩ VW (G) = ∅.
Moreover, G satisfies the generalized Milnor condition (a) when ΣW

Ḡ
= ∅.

With the notations above, the authors in [DACA] stated and proved the following result.

Theorem 3.6 (Structural Theorem). Let G : Rm → Rp be a C2-semi-algebraic map such
that G satisfies the generalized Milnor condition (a). Then the following statements are equiva-
lent:

(i) Ḡ|W is a locally trivial smooth fibration induced by G on W ;
(ii) The map G satisfies the generalized Milnor condition (b).

Let us point out that the proof of Theorem 3.6 follows similar arguments used in [ACT1,
ACT2, AT2], and consequently also guarantee the existence of an open book structure on W .
The Structural Theorem generalizes the analogues for local and global cases.

In addition, considering the canonical projection πj : Rp → Rp−1 for p ≥ 2, and

πj(x1, . . . , xp) = (x1, . . . , xj−1, xj+1, . . . , xp),

where j = 1, . . . , p, the authors also have shown that the composition Ĝj := πj ◦G : Rm → Rp−1

provides a new open book structures for W , (see [DACA, Lemma 3.5]). Moreover, the fibers of
new and old structure are related as follows: if FG and FĜj are the fibers of locally trivial smooth
fibrations induced by G and Ĝj on W , respectively, then FĜj is homotopically equivalent to the
product FG × [0, 1]. This ensures that one can, without loss of generality, reduce the study of
the topology of the fibers of a C2-semi-algebraic map G = (G1, . . . , Gp) : Rm → Rp satisfying
generalized Milnor conditions to the study of the singularity type of Gi, i = 1, . . . , p, i.e., any
coordinate function.
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4. Positive dimensional discriminant set

Let
G : U ⊂ Rm → Rp, m > p ≥ 2,

be a representative of a map germ G : (Rm, 0)→ (Rp, 0) with positive dimensional discriminant
set DiscG. Consider a Whitney stratification W = {Cj}rj=1 of DiscG with the origin a single
stratum. Let us assume that the complement Rp \ DiscG is equal to union ∪ki=1Di, where on
each connected component Di the topology of the fibers of G does not change.

Let us consider the following situation: for i 6= j such that Ck ⊂ Di∩Dj \{0}, let pi ∈ Di and
pj ∈ Dj and let li,j be a path connecting them, with li,j intersecting Ck once and is in general
position7 (see Figure 7).

The problem is: How do we describe the topological changes of the topology of the fibers over
pi and over pj as we travel along li,j?

Figure 7. Positive dimensional discriminant set and the complementary set
Rp \DiscG.

Maybe this problem is too hard to approach as it is stated. However, it motivates one to
think of a natural way to extend the Milnor fibrations for map germs with positive dimensional
discriminant sets as done by H. Hamm in [Ham] (see Theorem 1.3).

As explained in detail in [ART1] and [ART2], in this new setting the following problems have
to be taken into account so that the fibration problem can be well posed:

a) The local fibration must be independent of the small enough neighborhood data, like in
Equations (1) and (5). This does not come automatically for map germs with positive
dimensional discriminant set outside the ICIS case (see Examples 4.2 and 2.13).

b) The image of the map germ G may not be a neighborhood of {0} in Rp (see Example
5.9). Moreover, it may not be independent of the radius ε of the ball Bmε ⊂ Rm, and
thus the image of G may not be well defined as a set germ in (Rp, 0) (see Examples 4.2
and 2.13).

c) The set G(SingG) may not be well defined as a set germ. In case the image G(SingG)
of the singular locus is a set germ, and when the image ImG is a set germ too and has a

7It means that the tangent vector of li,j at the point of intersection is not contained in the tangent space of
the stratum Ck



150 DO ESPIRITO SANTO, DREIBELBIS, RIBEIRO, AND ARAÚJO DOS SANTOS

boundary8 which contains the origin {0}, then in this new setting it seems appropriate
that the “discriminant set” DiscG should contain this boundary (see Definition 4.7).

Recall that, given subsets V,W ⊂ Rp containing the origin and denoting (V, 0) and (W, 0)
their respective germs at {0}, then one has (V, 0) = (W, 0) as a germ of a set if and only if there
exists some open ball Bε ⊂ Rp centered at 0 and of radius ε > 0 such that V ∩Bε = W ∩Bε.

Definition 4.1. [ART1] Let G : (Rm, 0) → (Rp, 0), m ≥ p > 0, be a continuous map germ.
We say that the image G(K) of a set K ⊂ Rm containing 0 is a well-defined set germ at
0 ∈ Rp if, for any open balls Bε, Bε′ centered at 0, with ε, ε′ > 0, we have the equality of germs
[G(Bε ∩K)]0 = [G(Bε′ ∩K)]0.

Whenever the images ImG and G(SingG) are well-defined as germs, we say that G is a nice
map germ.

Example 4.2. [ART1, Example 2.1] Let G : (R2, 0)→ (R2, 0), G(x, z) = (x, xz). For the 2-disks

Dt := {|x| < t, |z| < t}
as a basis of open neighborhoods of 0 for t > 0, we get that the image At := G(Dt) is the
full angle with vertex at 0, having the horizontal axis as bisector, and of slope < t. Since the
relations defining At depend of t, it means that the image of G is not well-defined as a germ (see
Figure 8). A similar behavior happens over C instead of R.

Figure 8. Images At1 and At2 with t1 6= t2 in the yellow and blue color, respectively.

Remark 4.3. The authors in [ART1] point out that even if the image ImG of a map G is well-
defined as a germ, the restriction of G to some subset might not be (see [ART1, Remark 2.3]).
Therefore, in the definition of a nice map germ, it is necessary to ask that the set G(SingG) is
well-defined as a germ as well.

Example 4.4. Given G : (Rm, 0) → (Rp, 0), m ≥ p ≥ 2 with DiscG = {0}. If Condition (8)
holds true, then G is a nice map germ (see [Ma, Corollary 4.7]). In particular, any non-constant
germ of a holomorphic function is nice.

Remark 4.5. One can do similar calculations as in Example 4.2 on the map germ

G : (R3, 0)→ (R2, 0), G(x, y, z) = (x2 + y2, (x2 + y2)z)

8[ART1]: Whenever Im G is well-defined as a set germ, its boundary ∂Im G := Im G \ int(Im G) is a closed
subanalytic proper subset of Rp, where intA := Å denotes the p-dimensional interior of a subanalytic set A ⊂ Rp

(hence it is empty whenever dimA < p), and A denotes the closure of it. One considers here ∂Im G as a set germ
at 0 ∈ Rp; this is of course empty if (and only if) the equality (Im G, 0) = (Rp, 0) holds.
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(Example 2.13), and find that ImG is not well-defined as a set germ, and thus G is not nice.
Note that while DiscG = {0}, Condition (8) is not satisfied, so we cannot conclude that G is
nice (like we could in Example 4.4).

Example 4.6. In [ART1] the authors found sufficient conditions for an analytic map germ with
positive dimensional discriminant set to be a nice germ and have introduced a good class of
maps with this property, namely the map germs of type

fḡ : (Cn, 0)→ (C, 0),

where f, g : (Cn, 0)→ (C, 0) are holomorphic germs such that the meromorphic function f/g is
irreducible.

The authors in [ART1] gave an appropriate definition of the discriminant set as the locus
where the topology of the fibers may change.

Definition 4.7. For a nice map germ G, the discriminant is the following set

(12) Disc∗ G := G(SingG) ∪ ∂ImG

which is a closed subanalytic set of dimension strictly less than p, well-defined as a germ since
G is nice.

Usually the discriminant set DiscG is just G(SingG). However, in this new setting where
dim DiscG > 0, the complement of the discriminant set may consist of several connected com-
ponents through the origin (see Figure 7), and hence the base space of the fibration may not be
a connected space and the topological type of the fibers may not be unique. Consequently, the
classical definition of discriminant is not sufficient to detect the change of the topological type
of the fibers. We also note that when DiscG = {0} (like in the previous sections) and G satisfies
Condition (8), then Disc∗ G = DiscG.

5. Singular Milnor tube fibration

Definition 5.1. Let G : (Rm, 0) → (Rp, 0), m ≥ p > 0, be a non-constant analytic nice map
germ. We say that G has a Milnor-Hamm (tube) fibration if, for any ε > 0 small enough, there
exists 0 < η � ε such that the restriction:

(13) G| : Bmε ∩G−1(Bpη \Disc∗ G)→ Bpη \Disc∗ G

is a locally trivial fibration over each connected component Ci included in Bpη \ Disc∗ G, such
that it is independent of the choices of ε and η up to diffeomorphisms.

In order to guarantee the existence of fibration (13), the authors in [ART1] considered the
following condition

(14) M(G) \G−1(Disc∗ G) ∩ VG ⊆ {0}

where the closure of the analytic set M(G) \ G−1(Disc∗ G) is considered as a set germ at the
origin. Condition (14) is a direct extension of Condition (8). Therefore, the next result is a
natural extension of Theorem 2.6 for the case where dimDisc∗ G > 0.

Theorem 5.2. [ART1, Lemma 3.3] Let G : (Rm, 0) → (Rp, 0) be a non-constant nice analytic
map germ, m ≥ p > 0. If G satisfies Condition (14), then G has a Milnor-Hamm (tube) fibration
(13).
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A similar type of fibration but with the stronger assumptions of Thom regularity have been
studied in [CGS]. In the article, the authors considered a real analytic map germ
G : (U, 0) → (Rp, 0), where U ⊂ Rm is an open set, m > p ≥ 2, G has a critical point at
0, and VG has dimension ≥ 2. They considered a fixed closed ball B̄mε as a stratified set with
strata the interior Bmε and the boundary Sm−1

ε = ∂B̄mε , the restriction map G| : B̄mε → Rp and
its discriminant set as ∆ε

G := G(C(Bmε ) ∪ C(Sm−1
ε )), where C(Bmε ) and C(Sm−1

ε ) stand for the
set of critical points of G on the open ball and on the sphere, respectively. With these notations,
they used the Thom Isotopy Theorem to get that the map

G| : B̄mε ∩G−1(Rp \∆ε
G)→ Rp \∆ε

G

is a locally trivial fibration (see [CGS, Proposition 2.1]). As a consequence for each fixed ε > 0
and η > 0 they obtained the following locally trivial fibration [CGS, Corollary 2.2]:

(15) G| : B̄mε ∩G−1(Bpη \∆ε
G)→ Bpη \∆ε

G.

In order to ensure that the fibration (15) does not depend on ε > 0, they considered Whitney
stratifications W and S of U and G(U), respectively, such that VG is a union of strata and
both stratifications give the stratification of G. They further assume that G satisfies the Thom
af -property with respect to such stratification of G i.e., (W,S, G) is a Thom stratified mapping
(see [CGS, Proposition 2.4 ]).

Since the Thom af -property implies Condition (14), the examples below show that [CGS,
Proposition 2.4] under the nice condition is a particular case of Theorem 5.2.

Example 5.3. [ART1, Example 5.3] Let F be one of the mixed functions:
1) F1(x, y) = xyx̄ from [ACT1],
2) F2(x, y, z) = (x+ zk)x̄y for a fixed k ≥ 2 from [PT],

3) F3(w1, . . . , wn) = w1

(∑k
j=1 |wj |2aj −

∑n
t=k+1 |wt|2at

)
from [Oka4].

They are all polar weighted-homogeneous and thus, by [ACT1, Theorem 1.4], one obtains that
Disc∗ Fj = {0} and that Fj is nice and has Milnor tube fibration. It was also proved in the
respective papers that Fj is not Thom regular.

Let Gj := (Fj , g), where g(v) = v and note that Disc∗ Gj = {0}×C. By [ART1, Lemma 5.1]
the map Gj satisfies Condition (14) and therefore, by Theorem 5.2, Gj has a Milnor-Hamm
(tube) fibration. However, again by [ART1, Lemma 5.1] Gj is not a Thom stratified mapping.

Summing up, the authors in [ART1] have shown that the Thom regularity of the map G may
fail whereas the Milnor-Hamm (tube) fibration still exists. Moreover, they present several classes
of map germs with Milnor-Hamm fibration by introducing a weaker type of Thom regularity
condition called ∂-Thom regularity condition.

Remark 5.4. In article [MS], the authors defined a type of tube fibration in a more general
setting and presented a necessary and sufficient condition on the fibers of coordinate functions
to ensure its existence [MS, Proposition 2.5]. However, since their main objective was to study
the topology of real analytic map germs with isolated critical value, i.e., DiscG = {0}, they did
not present examples in the more general case.

5.1. Singular Milnor tube fibration. In [ART1] the authors have defined a general notion of
stratified tube fibration by considering all singular fibers over the stratified discriminant, and they
have shown that such structure is a natural generalization of Milnor-Hamm fibration. In that
case, the tube fibration is actually a collection of finitely many fibrations over path-connected
subanalytic sets. In order to make this notion more precise, they made use of the classical
stratification theory (see e.g. [GLPW]), and they considered the following definitions.
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Definition 5.5. [ART1] Let G : (Rm, 0) → (Rp, 0) be a non-constant analytic map germ,
m ≥ p > 1. Let Gε : Bmε → ImGε denote the restriction of G to a small ball. Consider a
locally finite subanalytic Whitney stratifications (W,S) of the source of Gε and of its target,
respectively, such that ImGε is a union of strata, that Disc∗ Gε is a union of strata, and that
Gε is a stratified submersion. In particular every stratum is a non-singular, open and connected
subanalytic set at the respective origin, and moreover:

(i) The image by Gε of a stratum of W is a single stratum of S,
(ii) The restriction G| : Wα → Sβ is a submersion, where Wα ∈W, and Sβ ∈ S.

One calls (W,S) a regular stratification of the map germ G.
We say that G is S-nice whenever all the above subsets of the target are well-defined as

subanalytic germs, independent of the radius ε.

Definition 5.6. [ART1] Let G : (Rm, 0)→ (Rp, 0) be a non-constant S-nice analytic map germ.
We say that G has a singular Milnor tube fibration relative to some regular stratification (W,S),
which is well-defined as a germ at the origin by our assumption, if for any small enough ε > 0
there exists 0 < η � ε such that the restriction:

(16) G| : Bmε ∩G−1(Bpη \ {0})→ Bpη \ {0}
is a stratified locally trivial fibration which is independent, up to stratified homeomorphisms, of
the choices of ε and η.

The authors clarified the notion of stratified fibration by saying that stratified locally trivial
fibration meant that for any stratum Sβ , the restriction G|G−1(Sβ) is a locally trivial fibration.

In order to ensure the existence of stratified fibration (16), they defined the stratwise Milnor
set M(G) with respect to the stratifications W and S, as the union of the Milnor sets of the
restrictions of G to each stratum. Namely, M(G) := tαM(G|Wα

), where

M(G|Wα
) :=

{
x ∈Wα | ρ|Wα

6tx G|Wα

}
,

with Wα ∈ W the germ at the origin of some stratum, and ρ|Wα
the restriction of the distance

function ρ to the subset Wα (see [ART1, Definition 6.4]). They then considered the following
condition:

(17) M(G) \ VG ∩ VG ⊂ {0}.
which restricted to M(G) \G−1(Disc∗ G) is just Condition (14). Finally, with the notations and
definitions above, the main result in this new setting is the following:

Theorem 5.7. [ART1] Let G : (Rm, 0)→ (Rp, 0) be a non-constant S-nice analytic map germ.
If G satisfies Condition (17), then G has a singular Milnor tube fibration (16).

The corollary below says that the singular Milnor tube fibration (16) generalizes the previous
Milnor-Hamm fibration.

Corollary 5.8. [ART1] Under the hypotheses of Theorem 5.7, the map G has a Milnor-Hamm
fibration over Bpη \Disc∗ G, with nonsingular Milnor fiber over each connected component.

Example 5.9. [ART1] Let G : (R3, 0)→ (R2, 0), G(x, y, z) = (xy, z2). One has:

VG = {x = z = 0} ∪ {y = z = 0} ImG = R× R≥0 ( R2

SingG = {x = y = 0} ∪ {z = 0} G(SingG) = {0} × R≥0 ∪ R× {0}
Disc∗ G = {(0, β) |β ≥ 0} ∪ {(λ, 0) |λ ∈ R} G−1(Disc∗ G) = {x = 0} ∪ {y = 0} ∪ {z = 0}

M(G) = {x = ±y} ∪ {z = 0} M(G) \G−1(Disc∗ G) = {x = ±y}.
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It follows that G is nice and satisfies Condition (14). Indeed to check this, consider

p0 = (x0, y0, z0) ∈M(G) \G−1(Disc∗ G) ∩ VG.

Hence, there exists a sequence pn := (xn, yn, zn) ∈ M(G) \ G−1(Disc∗ G) such that pn → p0

with p0 ∈ VG. Consequently, z0 = 0 and xn = ±yn 6= 0 because pn 6∈ G−1(Disc∗ G). Since
x0 = limxn = ± lim yn = y0 = 0, one concludes that p0 = (0, 0, 0). Thus G has a Milnor-Hamm
fibration by Theorem 5.2. In particular, each fiber consists of four open segments, consisting of
hyperbolas sitting in two planes parallel and equal distance to the xy-plane, (see Figure 9).

The complement R2 \ Disc∗ G consists of 3 connected components. We have: the fiber over
R×R<0 is empty; the fiber over R>0×R>0 and the fiber over R<0×R>0 are two non-intersecting
hyperbolas, with 4 connected components.

Moreover, it follows that G is S-nice and satisfies Condition (17), thus it has a singular tube
fibration by Theorem 5.7. The singular tube fibration fibers over three of the strata of the dis-
criminant as follows: over the positive vertical axis, the fibers are two disconnected components
each of which being two intersecting lines; over the positive and the negative horizontal axis, the
fibers are both hyperbolas with two components (see Figure 9).

Figure 9. The Milnor-Hamm tube fibration (left) and the singular Milnor tube
fibration over Disc∗ G (right) for G(x, y, z) = (xy, z2). Each color scheme is a
fibration over a connected component of the codomain.

In order to find good class singularities with the singular Milnor tube fibrations, the authors
considered the following condition of regularity which does not require W to be a Thom regular
stratification.

Definition 5.10. [ART1] Let G : (Rm, 0)→ (Rp, 0) be a non-constant analytic map germ. We
say that G is Thom regular at VG if there exists a Whitney stratification (W,S) like in Definition
5.5 such that 0 is a point stratum in S, that VG is a union of strata of W, and that the Thom
ag-regularity condition is satisfied at any stratum of VG.

Then they proved the following result

Theorem 5.11. [ART1] Let G : (Rm, 0)→ (Rp, 0) be a non-constant S-nice analytic map germ.
If G is Thom regular at VG, dimVG > 0, then G has a singular Milnor tube fibration (16). In
particular, if VG ∩ SingG = {0} and dimVG > 0, then G has a Milnor-Hamm fibration (13). �
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Example 5.12. Let f, g : C2 → C given by

f(x, y) = x2 + y2 and g(x, y) = x2 − y2.

One has V(f,g) = {(0, 0)} and

Sing (f, g) = {x = 0} ∪ {y = 0};

hence (f, g) is obviously Thom regular at V(f,g). It then follows from [ART1, Theorem 4.3] that
fḡ is Thom regular at Vfḡ hence, by Theorem 5.11, it has a Milnor-Hamm fibration, and also a
singular Milnor tube fibration.

6. Milnor-Hamm sphere fibration

Inspired by the techniques developed by Milnor [Mi] and detailed in [AT2], the authors in
[ART2] considered the problem of existence of a fibration structure over small spheres under a
general situation when the discriminant Disc∗ G has positive dimension. They introduced the
Milnor-Hamm sphere fibration, gave natural sufficient conditions of singular maps that shows
the fibration exists, and exhibited several such classes of singular maps. They then stated the
problem of equivalence with the corresponding tube fibration and they showed how to solve it
for some class of maps in the general setting under natural supplementary conditions.

First, the authors introduced a natural condition for a nice map germ G under which it was
possible to define the sphere fibrations whenever Disc∗ G is positive dimensional.

Definition 6.1. [ART2] Let G : (Rm, 0) → (Rp, 0) be a real analytic map germ. We say that
its discriminant Disc∗ G is radial if, as a set germ at the origin, it is a union of real half-lines or
the origin only.

The next example is a natural way of building map germs with radial discriminants.

Example 6.2. [ART2] Let f : (Rm, 0) → (Rp, 0) be a real analytic map germ and let
g : (R, 0) → (R, 0) be a germ of a diffeomorphism, such that f and g are in separable vari-
ables, and consider the pair of map germs

G := (f, g) : (Rm × R, 0)→ (Rp × R, 0).

Since SingG = Sing f × R, one has that if Disc∗ f is radial, then Disc∗ G is radial.

Let G : U → Rp be a representative of the map germ G for some open set U 3 0 and recall
the definition of Ψ:

(18) Ψ :=
G

‖G‖
: U \ VG → Sp−1.

In order to define a new fibration structure associated to the nice map germ G under assump-
tion of radial discriminant, the authors have shown [ART2] that the restriction

(19) Ψ| : Sm−1
ε \G−1(Disc∗ G)→ Sp−1 \Disc∗ G

is well defined for ε > 0 small enough.

Definition 6.3. [ART2] We say that the map germ G : (Rm, 0)→ (Rp, 0) with radial discrimi-
nant has a Milnor-Hamm sphere fibration whenever the restriction (19) is a locally trivial smooth
fibration which is independent, up to diffeomorphisms, of the choice of ε provided it is small
enough.
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In this more general setting, in [ART2] the authors defined ρ-regularity of Ψ whenever the
following inclusion of germs is satisfied: M(Ψ) ⊂ G−1(Disc∗ G).

Finally with the notations and definitions above, the most general result regarding the exis-
tence of fibration structures on a sphere associated to non-constant nice map germs has been
enunciated and demonstrated in [ART2]. It is the direct extension of [ACT1, Theorem 1.3] and
its proof follows from the case Disc∗ G = {0}.

Theorem 6.4. Let G : (Rm, 0)→ (Rp, 0), m > p ≥ 2, be a non-constant nice analytic map germ
with radial discriminant, satisfying Condition (14). If Ψ is ρ-regular then G has a Milnor-Hamm
sphere fibration.

Example 6.5. [ART1, ART2] Let G : (R3, 0)→ (R2, 0) given by G(x, y, z) = (xy, z2). It follows
from Example 5.9 that G−1(Disc∗ G) is the union of the coordinates planes in R3, hence it
intersects the sphere S2

ε on three great circles. Since M(ΨG) = SingG, it follows that Ψ is
ρ-regular. Therefore, by Theorem 6.4 G has a Milnor-Hamm sphere fibration (see Figure 10).

Ψ|−→

Figure 10. Milnor-Hamm sphere fibration for G. Each color scheme is a fibra-
tion over a connected component of the S1 \Disc∗ G.
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