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ON THE CHARACTERISTIC CURVES ON A SURFACE IN R4

JORGE LUIZ DEOLINDO-SILVA

Abstract. We study some robust features of characteristic curves on smooth surfaces in R4.

These curves are analogous to the asymptotic curves in the elliptic region. A P3(c)-point is an
isolated special point at which the unique characteristic (or asymptotic) direction is tangent

to the parabolic curve. At this point, by considering the cross-ratio invariant, we show that

the 2-jet of the curve formed by the inflections of the characteristic curves is projectively
invariant. In addition, we exhibit the possible configurations of the characteristic curves at a

P3(c)-point.

1. Introduction

For surfaces in R3, an asymptotic direction is a self-conjugate tangent direction, and a charac-
teristic direction is a tangent direction such that the angle it forms with its conjugate direction
is extremal. At a hyperbolic (resp. parabolic or elliptic) point there are two (resp. one or
0) asymptotic directions and at an elliptic (resp. parabolic or hyperbolic) point there are two
(resp. one or 0) characteristic directions. The asymptotic and characteristic curves are the
integral curves of asymptotic and characteristic directions, respectively. It is well known that
the characteristic curves are, in many ways, analogous to the asymptotic curves in the elliptic
region (see [4, 5, 20]) and both curves are given, in a local chart, by a binary differential equation
(BDE)

(1) A(x, y)dx2 + 2B(x, y)dxdy + C(x, y)dy2 = 0,

where the coefficients A, B, and C are smooth functions defined in an open subset U of R2. The
discriminant curve of equation (1) of the asymptotic and characteristic curves coincides with the
parabolic curve. At cusps of Gauss the unique asymptotic and characteristic direction is tangent
to the parabolic curve (see for example [1]). Although asymptotic curves can be also defined
using the contact of the surface with lines, the characteristic curves do not satisfy this property.

In [20], Oliver used Uribe-Vargas’s cr-invariant defined in [24], to show that the topological
type of the singularity of the characteristic curves at a cusp of Gauss is invariant under projective
transformations. Furthermore, the locus of inflection points of the characteristic curves (char-
acteristic inflection curve) has some geometrical meaning. In particular, he classified a cusp
of Gauss in terms of the relative position of the parabolic curve, the characteristic inflection
curve and conodal curve. In this paper, we extend the results in [20] on characteristic curves for
surfaces in R4.

The study of the differential geometry of immersed surfaces in 4-space was carried out by
several authors, for example [2, 3, 10, 11, 16, 17, 19, 21, 23]. The study of characteristic curves
did not receive the same treatment in the current literature. The definition of characteristic
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curves for surfaces in R4 is inspired from (and is analogous to) that for surfaces in R3 in the
following way: for surfaces in R3, there is a relation between the BDEs of the asymptotic curves,
of the characteristic curves and of the lines of principal curvature. By considering the BDE
(1) as a point in the projective plane, the BDEs of the asymptotic curves and of the lines of
principal curvature determine the BDE of the characteristic curves, such that the three BDEs
define (at each point on the surface) a self polar triangle in the projective plane. In fact, the
BDE of the asymptotic curves determines the other two BDEs ([4, 23]). Asymptotic directions
are also defined on surfaces in R4 and are given by a BDE (see §3). Its equation is used to define
in a unique way, two other BDEs such that the three equations form a self-polar triangle in the
projective plane. One of them is what is called the BDE of the characteristic curves (called
a characteristic BDE, for short) (see [23]). In this sense, the asymptotic and characteristic
directions on surface in R4 behave as solutions of BDEs in the same way as its analogue on
surfaces in R3.

For a surface in R4, the asymptotic directions are also captured by the contact of the surface
with lines. This contact reveals aspects of the differential geometry of the surface in the closure
of its hyperbolic region and is described by the A-singularities of the family of orthogonal projec-
tions to 3-spaces. The projection along an asymptotic directions at a point on the parabolic set
may have a P3(c)-point. Away from inflection points, the characteristic and asymptotic curves
are generically a family of cusps at ordinary parabolic points and have a folded singularity at a
P3(c)-point.

This point has similar behavior to the cusps of Gauss on surfaces in R3 (see [3, 10, 19, 24]). In
[9, 10], we defined the cr-invariant at P3(c)-points and showed that the S2-curve, flecnodal curve
and multi-local singularities curves are robust features of the surface in 4-space (Euclidean, affine
or projective). Although the characteristic curves are not projective invariant of the surface, our
goal is to produce results on the characteristic curves at P3(c)-points similar to those results of
Oliver [20]. At a P3(c)-point, we show that the 2-jet of the curve formed by the inflection points of
the characteristic curves (characteristic inflection curve) and the topological type of singularity
of the characteristic curves in the elliptic domain are invariants under projective transformations.
In addition, we list the possible configurations of the parabolic, S2 and characteristic inflection
curves using the cross-ratio invariant of this set of curves.

2. Binary differential equation

To study the configurations of characteristic curves, we need some results on BDEs which are
studied extensively (see for example [22] for a survey article). We recall some results concerning
the configurations of the solution curves of a BDE. A BDE defines two directions in the region
where δ = B2 −AC > 0, a double (repeated) direction on the set ∆ = {δ = 0} and no direction
where δ < 0. The set ∆ is the discriminant of the BDE. For generic BDEs and at generic points
on ∆, the integral curves of (1) is a family of cusps, and the discriminant curve is a smooth
curve traced by these cusps, except at isolated points called folded singularity (see below).

Consider the manifold of contact elements to the plane, that is, PT ∗R2 = R2 × RP 1, and
take the affine chart q = dx/dy, then PT ∗R2 is endowed with the canonical contact struc-
ture determined by the 1-form dx − qdy. The projection associated to the contact structure is
π : PT ∗R2 → R2 and given by π(x, y, q) = (x, y). When the coefficients of a BDE do not vanish
simultaneously, we may assume that A 6= 0 and take

(2) Ω(x, y, q) = A(x, y)q2 + 2B(x, y)q + C(x, y).
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The set Ω = 0 is a surface M. The directions defined by (1) lift to a single valued field

(3) ξ = Ωq∂y + qΩq∂x− (Ωy + qΩx)∂q

on M obtained by intersecting the contact planes with the tangent planes to M. (See, for
example, [8] for a suitable lifted field). The regions where δ > 0, the image of π|M is a two-fold
covering. The critical set of π|M given by Ω = Ωq = 0 is called the criminant (its projection is
the discriminant curve).

Stable topological models of (1) arise when the discriminant is a regular curve (or is empty).
At almost all points of the discriminant, the field ξ is regular i.e., the unique direction at a point
of the discriminant is transverse to it, then the BDE is smoothly equivalent to dx2+ydy2 = 0 ([6],
[7]). When ξ has an elementary singularity, the unique direction is tangent to the discriminant
at that point, then equation (1) is smoothly equivalent to dx2+(−x+λy2)dy2 = 0 with λ 6= 0, 1

16
([8]); the corresponding point in the plane is called a folded singularity of the BDE. There are
three topological models: a folded saddle if λ < 0, a folded node if 0 < λ < 1

16 and a folded

focus if 1
16 < λ. These occur when the lifted field ξ has a saddle, node or focus, respectively (see

Figure 1 and [8]).
A solution curve of (1) has an inflection point at the projection of a point on M where

(4) Ω = Ωy + qΩx = 0.

There is a smooth curve of such points which is tangent to the discriminant curve at folded
singularities of equation (1) ([5]).

Figure 1. A folded saddle (left), node (center) and focus (right).

3. Characteristic curves on surfaces in R4

Let M be a regular surface in R4. For a given point p ∈ M , consider the unit circle in TpM
parametrized by θ ∈ [0, 2π]. The curvature vectors η(θ) of the normal sections of M by the
hyperplane 〈θ〉⊕NpM form an ellipse in the normal plane NpM called the curvature ellipse and
is the image this unit circle by a pair of quadratic forms

(Q1, Q2) = (ax2 + 2bxy + cy2, lx2 + 2mxy + ny2),

where a, b, c, l,m, n are the coefficients of the second fundamental form of M at p ([16]). Points
on the surface are classified according to the position of the point p with respect to the ellipse
(NpM is viewed as an affine plane through p). The point p is called elliptic/parabolic/hyperbolic
if it is inside/on/outside the ellipse at p, respectively.

Following the approach in [2], a binary form Ax2+2Bxy+Cy2 is represented by its coefficients
(A,B,C) ∈ R3, there is a cone Γ given by B2 −AC = 0 representing the perfect squares. If the
forms Q1 and Q2 are independent, they determine a line in the projective plane RP 2 and the
cone a conic that we still denoted by Γ. This line meets the conic in 0/1/2 points according as
δ(p) < 0/ = 0/ > 0, where

δ(p) = (an− cl)2 − 4(am− bl)(bn− cm).
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A point p is elliptic/parabolic/hyperbolic if δ < 0/ = 0/ > 0. The parabolic set is denoted by

∆-set. If Q1 and Q2 are dependent, the rank of the matrix

(
a b c
l m n

)
is 1 (provided either

of the forms is non-zero); the corresponding points on the surface are referred to as inflection
points. There is an action of GL(2,R)×GL(2,R) on pairs of binary forms. The orbits of this
action are as follows (see for example [13]):

(x2, y2) hyperbolic point
(xy, x2 − y2) elliptic point
(x2, xy) parabolic point
(x2 ± y2, 0) inflection point
(x2, 0) degenerate inflection point
(0, 0) degenerate inflection point.

The asymptotic directions (labelled by conjugate directions in [16]) are defined as the direc-
tions along θ such that the curvature vector η(θ) is tangent to the curvature ellipse (see also
[17]). A curve on M whose tangent direction at each point is an asymptotic direction is called
an asymptotic curve. The asymptotic curves of M are solution curves of the BDE

(5) Ψ(x, y, q) = (am− bl)q2 + (an− cl)q + (bn− cm) = 0,

([17, 16]). We call this equation the asymptotic BDE. The discriminant of the BDE (5) is the
∆-set and is a generic smooth curve on surface. Away from inflection points, at a hyperbolic
(resp. parabolic or elliptic) point there are 2 (resp. 1 or 0) asymptotic directions at that point.

Since we do not distinguish between a BDE and its non-zero multiples, at each point (x, y),
we can view a BDE (1) as a quadratic form in dx, dy and represent it by the point (A : 2B : C)
in RP 2. To a point (A : 2B : C) is associated a polar line with respect to the conic Γ. Three
points in RP 2 form a self-polar triangle if the polar of any of the three points is the line through
the remaining two points. In our case the point (A : 2B : C) is parametrized by (x, y) ∈ U (for
more details, see [15] chapter 7). The metric on M is given by ds2 = X1dx

2 + 2X2dxdy+X3dy
2

and determines a point (X1 : 2X2 : X3) in the projective plane. It turns out that the polar
line of (X1 : 2X2 : X3) consists of BDEs whose solutions are orthogonal curves on M ([4, 23]).
This polar line intersects the polar line of the asymptotic BDE (5) at a unique point (P) which
represent a BDE, called the BDE of the lines of principal curvature ([23]). The BDEs (A) of the
asymptotic curves and the BDE (P) determine a unique BDE (C), the characteristic BDE, such
the three of them form a self-polar triangle in the projective plane. In fact, (C) is the Jacobian
of (A) and (P) ([23]), and if the surface M is parametrized by φ(x, y), the characteristic BDE is
given by

Φ(x, y, q) =(L(GL− EN)− 2M(FL− EM))q2 + 2((M(EN +GL)− 2LNF ))q

+ 2M(GM − FN)−N(GL− EN) = 0,
(6)

where E = 〈φx, φx〉, F = 〈φx, φy〉, G = 〈φy, φy〉, L = (am − bl), 2M = (an − cl) and
N = (bn−cm). A characteristic curve is the a curve on M whose tangent direction at each point
is a characteristic direction. The discriminant curve of the BDE (6) coincides with the parabolic
set. At elliptic point there are two characteristic directions and at each parabolic point there is
one.

The asymptotic directions can be described via the singularities of the projections of M to
3-spaces (see [2]). Consider the family of orthogonal projections given by

P : M × S3 → TS3

(p,u) 7→ (u, p− 〈p,u〉u).
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For u fixed, the projection can be viewed, locally at a point p, as a map germ

Pu : (R2
, 0)→ (R3, 0).

(Two germs f and g are said to be A-equivalent and write f ∼A g, if g = k ◦ f ◦ h−1 for
some germs of diffeomorphisms h and k of, respectively, the source and target.) The generic
A-singularities of Pu are those that have Ae-codimension ≤ 3 (which is the dimension of S3),
see Table 1 and Table 2.

Table 1. The generic local singularities of orthogonal projections of M to 3-
spaces ([18]).

Name Normal form Ae-codimension

Immersion (x, y, 0) 0
Cross-cap (x, y2, xy) 0

B±k (x, y2, x2y ± y2k+1), k = 2, 3 k
S±k (x, y2, y3 ± xk+1y), k = 1, 2, 3 k
C±k (x, y2, xy3 ± xky), k = 3 k
Hk (x, xy + y2k+2, y3), k = 2, 3 k
P3(c) (x, xy + y3, xy2 + cy4), c 6= 0, 12 , 1,

3
2 3∗

∗ The codimension of P3(c) is that of its stratum.

Table 2. Bi-germs of Ae-codimension 2 of orthogonal projections of M to 3-
spaces ([14]).

Name Normal Form Ae-codimension

[A2] (x, y, 0;X,Y,X2 + Y 3) 2
(A0S0)2 (x, y, 0;Y 2, XY + Y 5, X) 2
A0S

±
1 (x, y, 0;Y 3 ±X2Y, Y 2, X) 2

A0S0|A±1 (x, y, 0, X,XY, Y 2 ±X2) 2

For a complete table see [14].

The projection Pu is singular at p if and only if u ∈ TpM . The singularity is a cross-cap
unless u is an asymptotic direction at p. The Ae-codimension 2 singularities occur on curves on
a generic surface and the Ae-codimension 3 ones occur at special points on these curves. When
projecting the surface along an asymptotic direction at a parabolic point, the projection may
have a P3(c)-singularity ([3, 10]). If we call S2-curve (resp. B2, (A0S0)2, A0S

±
1 , A0S0|A±1 -curve)

the closure of the set of points p on M for which there exists a projection Pu having an S2

(resp. B2, (A0S0)2, A0S
±
1 , A0S0|A±1 )-singularity at p, then these curves meet the parabolic set

tangentially at a P3(c)-singularity (see Proposition 3.1 and for a complete proof [9, 10]). At a
P3(c)-singularity the unique asymptotic (or characteristic) direction is tangent to the parabolic
set. This point is called a P3(c)-point and is also a point where the asymptotic (or characteristic)
curves have a folded singularity (see §2).

Throughout this paper, we consider the family of orthogonal projections P where the map
Pu has P3(c)-point. We can take u = (0, 1, 0, 0) as an asymptotic direction. We choose local
coordinates at p such that the surface is given in Monge form

φ(x, y) = (x, y, f1(x, y), f2(x, y))
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where (j1f1(0, 0), j1f2(0, 0)) = (0, 0) and with 2-jet of (f1, f2) = (Q1, Q2). We denote by
(X,Y, Z,W ) the coordinates in R4 and we parametrize the directions near u by (u, 1, v, w).
Instead of the orthogonal projection to the plane (u, 1, v, w)⊥, we project to the fixed plane
(X,Z,W ). The modified family of projections is given by

P : (R2 × R3, 0) → (R3, 0)
((x, y), (u, v, w)) 7→ Pu = (x− uy, f1(x, y)− vy, f2(x, y)− wy),

with P0(x, y) = (x, f1(x, y), f2(x, y)). As the P3(c)-point belongs to ∆-set and if we denote by
o(k) the terms of order greater than k in x1, . . . , xr, then we can take (Q1, Q2) = (x2, xy) and
write

(7)
f1(x, y) = x2 +

∑3
i=0 a3ix

3−iyi +
∑4
i=0 a4ix

4−iyi +
∑5
i=0 a5ix

5−iyi + o(5),

f2(x, y) = xy +
∑3
i=0 b3ix

3−iyi +
∑4
i=0 b4ix

4−iyi +
∑5
i=0 b5ix

5−iyi + o(5).

The 2-jet of the coefficients of a, b, c, l,m, and n of (Q1, Q2) are given as follows

a = 1
2f

1
xx = 1 + 3a30x+ a31y + 6a40x

2 + 3a41xy + a42y
2,

b = 1
2f

1
xy = a31x+ a32y + 3

2a41x
2 + 2a42xy + 3

2a43y
2,

c = 1
2f

1
yy = a32x+ 3a33y + a42x

2 + 3a43xy + 6a44y
2,

l = 1
2f

2
xx = 3b30x+ b31y + 6b40x

2 + 3b41xy + b42y
2,

m = 1
2f

2
xy = 1

2 + b31x+ b32y + 3
2b41x

2 + 2b42xy + 3
2b43y

2,
n = 1

2f
2
yy = b32x+ 3b33y + b42x

2 + 3b43xy + 6b44y
2.

The curve formed by the locus of geodesic inflection points of the characteristic (resp. as-
ymptotic) curves we call characteristic inflection curve (resp. flecnodal curve (see [9, 10])) and
denoted by Ch-curve (resp. Fl-curve). We have the following result.

Proposition 3.1. Let M be a surface in R4 given in Monge form as in (7), and suppose that
the origin is a P3(c)-point. Then we have the following initial terms of the following curves:

a) the parabolic curve (∆-curve):

x =
6a32b33 − 9b233 − 6a44

a32
y2 + o(2).

b) the B2-curve:

x =
2(3a332b33 − 4a232b

2
33 − 3a44a

2
32 − 8a44a32b33 + 12a44b

2
33 + 8a244)

a32(a32 − 2b33)2
y2 + o(2).

c) the S2-curve:

x =
6(a332b33 + 48a232b

2
33 − 72a32b

3
33 − a44a232 − 72a44a32b33 + 36a44b

2
33 + 24a244)

a32(a32 + 6b33)2
y2 + o(2).

d) the A0S
±
1 -curve:

x =
3a232b

2
33 − 4a32a44b33 + 3a44b

2
33 + 2a244

a32(4a32b33 − 4b233 − 3a44)
y2 + o(2).

e) the (A0S0)2-curve:

x =
12a32b33 − 9b233 − 6a44

a32
y2 + o(2).

f) the A0S0|A±1 -curve:

x =
3a232b

2
33 − 16a32a44b33 + 12a44b

2
33 + 8a244

4(a32b33 − b233 − a44)a32
y2 + o(2).
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g) the Fl-curve:

x =
6(a32b33 − a44)(24a32b33 − 36b233 + a232 − 24a44)

a32(6b33 − a32)2
y2 + o(2).

h) the Ch-curve:

x =
6(a32b33 − a44 − 3b233)(36b233 − 24a32b33 + a232 + 24a44)

a32(a32 + 6b33)2
y2 + o(2).

All the above curves are tangent to the parabolic curve at the P3(c)-point and any two have
contact of order 2 at the origin.

Proof. The singularity of the projection P0 is A-equivalent to a P3(c)-singularity when a33 = 0,
a32, a44, b33 6= 0, a44/(a32b33) 6= 0, 1/2, 1, 3/2, and 5a32b33 − 6b233 − 4a44 6= 0 ([9, 21]). All the
curves ∆, B2, S2, A0S

±
1 , (A0S0)2, A0S0|A±1 are determined in [9, 10] using adjacencies of the

P3(c)-singularity.
The curves in g) and h) are obtained using the asymptotic and characteristic BDEs. In fact,

the 2-jet of the characteristic BDE (6) is written as

j2Φ =q2 + (2b32x+ 6b33y)q + (2a32b32 − 6a31b33 + a31a32 + 12b32b33 + 3a43)xy + a32x

(a42 + a232 + 2b232 − 2a31b32 + 3a30a32 + 4b31a32)x2 + (18b233 − 6a32b33 + 6a44)y2.
(8)

Thus, we can write by the implicit function theorem

x =
6(−a44 + a32b33 − 3b233)

a32
y2 − (6b33a32)yq − 1

a32
q2 + o(2).

Substituting the expression of x into Φy + qΦx = 0 we obtain(
18b233 − 6a44 + 6a32b33

)
y +

(
3b33 +

1

2
a32

)
q + o(1) = 0.

Again, solving implicitly the last equality, we get

q =
12(a32b33 − a44 − 3b233)

(6b33 + a32)
y + o(1).

Substituting q in the expression of x gives the 2-jet of the characteristic inflection curve. The
2-jet of the flecnodal curve is also determined in [9, 10] using the same approach above for the
asymptotic BDE. �

We denote the tangent lines to the Legendrian lifts of the parabolic, B2, S2, flecnodal,
characteristic inflection, (A0S0)2, A0S1, and A0S0|A±1 curves in PT ∗M at a P3(c)-point by
lP , lB , lS , lF , lC , ls02 , ls1 , and ls01 , respectively. We denote by lg the contact element at the
P3(c)-point (i.e., the vertical line in the contact plane at that point).

Remark 3.1. By Proposition 3.1, lP , lS , lB , lF , and lC are distinct unless

(5a32b33 − 6b233 − 4a44) = 0.

This condition is precisely that for the family of the orthogonal projections P to fail to be a
versal unfolding of a P3(c)-singularity ([10]). In a generic one-parameter family of surfaces case
(see [3, Proposition 4.3]) there are double P3(c)-points.

Theorem 1. At a generic P3(c)-point, the 2-jet of the Ch-curve is projectively invariant.
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Proof. The cross-ratio of lines lP , lg, lS , lC is given by

(lP , lg : lS , lC) =
cS − cP
cC − cP

=

9(5a32b33−6b233−4a44)
2

a32(a32+6b33)2

− 9(5a32b33−6b233−4a44)2
a32(a32+6b33)2

= −1,

where cP , cS , and cC are the coefficients of order 2 of the parabolic curve, S2-curve and Ch-
curve, respectively. The result follows from the fact that the 2-jet of the Ch-curve depends on
the S2-curve and parabolic curve which are projective invariants ([9, 10]). �

Proposition 3.2. The topological type of the singularity of the characteristic BDE at a P3(c)-
point is invariant under projective transformations.

Proof. The singularity type is determined by equation (8). It is given by the type of the singu-
larity of the lifted field ξ: a saddle, node or focus. Since a P3(c)-point is a folded singularity, the
characteristic BDE is locally smoothy equivalent to dx2 + (−x+ λy2)dy2 = 0, where

λ = −3

2

(5a32b33 − 6b233 − 4a44)

a232

determines the topological type of singularity if and only if λ 6= 0, 1
16 (see [5]). Observe that the

coefficients a44 and b33 of λ depend on a combination of the cross-ratios ρ1 = (lP , lB : lS , lF ),
ρ2 = (lP , lg : ls01 , ls02), ρ3 = (lP , lg : ls1 , ls02), and a32. In fact,

ρ1 =
a32 − 3b33
a32 − 6b33

,

ρ2 = −21a232b
2
33 − 60a32b

3
33 + 36b433 − 32a32a44b33 + 48a44b

2
33 + 16a244

24a32(a32b33 − b233 − a44)b33
,

ρ3 = −21a232b
2
33 − 60a32b

3
33 + 36b433 − 32a32a44b33 + 48a44b

2
33 + 16a244

6(4a32b33 − 4b233 − 3a44)a32b33
.

Using ρ1 we get b33 =
1

3

(ρ1 − 1)a32
2ρ1 − 1

. From ρ2 and ρ3 it follows that

6a32b33((3ρ3 − 4ρ2 + 1)a44 + 4b33(6ρ2 − ρ3)(a32 − b33)) = 0.

Replacing b33 in the above equation, we obtain

a44 =
4

9

a232(ρ1 − 1)(ρ2 − ρ3)(5ρ1 − 2)

(2ρ1 − 1)2(4ρ2 − 3ρ3 − 1)
.

Since a32 6= 0, substituting b33 and a44 into λ, shows that the type of singularity of the char-
acteristic BDE depends only on the values of the cross-ratios ρ1, ρ2 and ρ3, all of which are
projective invariants. �

At a P3(c)-point, the 4-jet of the parametrization φ(x, y) = (x, y, f1(x, y), f2(x, y)) of the
surface M is equivalent, by projective transformations, to the normal form

(9) (x, y, x2 + xy2 + αy4, xy + βy3 + ψ),

where 6β2 + 4α− 15β + 5 6= 0, α 6= 0, 1/2, 1, 3/2, and ψ is a polynomial of degree 4 (see [11]).
According to Proposition 3.2, we can use the normal form (9) to present the topological type

of the singularity of the characteristic BDE at a P3(c)-point. In [9, 10] we showed that α and
β in (9) are also projective invariants described as functions of ρ1, ρ2 and ρ3. This allows us to
recalculate the expressions of the curves in Proposition 3.1 in terms of α and β. In fact, consider
representing M locally as a surface M̄ in P4, given in the affine chart {[x : y : z : w : 1]} in
Monge form [x : y : f1(x, y) : f2(x, y) : 1]. We can take (f1, f2) with 4-jet as in (9) and use the
equations of the curves in Proposition 3.1 with a32 = 1, a44 = α, and b33 = β.
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Theorem 2. At a P3(c)-point, the characteristic BDE has a folded singularity if and only if
γ = −(5β − 6β2 − 4α) 6= 0, 1

24 . The singularity is a folded saddle if γ < 0, a folded node if

0 < γ < 1
24 , and folded focus if γ > 1

24 .

Proof. The proof follows from Proposition 3.2. Note that λ = − 3
2 (5β− 6β2− 4α) 6= 0, 1

16 . Thus
the singularity of the characteristic BDE is determined by values of γ. �

Asymptotic
Curves

Parabolic
Curve

Characteristic
Curves

Figure 2. The asymptotic and characteristic curves at a P3(c)-point. γ <
−1/24 (first); −1/24 < γ < 0 (second); 0 < γ < 1/24 (third) and γ > 1/24
(fourth).

Remark 3.2. The types of the singularities of the asymptotic and characteristic BDE are not
related ([23]). However, for surfaces in R4, thanks to Theorem 2, the types of these singularities
have opposite indices at a P3(c)-point, that is, on one side of the parabolic curve we have a folded
saddle and on the other a folded node or focus or vice-versa. This also happens for surfaces in R3

at cusps of Gauss [4]. Figure 2 shows the generic configurations of asymptotic and characteristic
curves at a folded singularity.

Following the approach in [20], we denoted by ρc the cross-ratio (lP , lg : lC , lB) and call it
the characteristic cross-ratio. It can be written in terms of the coefficients of normal form (9)
as follows

ρc = −9(2β − 1)2

(1 + 6β)2
.

As the generic relative positions of the relevant curves at a P3(c)-point are determined by their
2-jets, we can give the their relative positions in terms of the values of ρc. In what follows, we
present the relative positions of the curves ∆, B2, S2, Fl, and Ch.

Theorem 3. Let cP , cB, cS, cF , and cC be the coefficients of order 2 associated to curves ∆,
B2, S2, Fl, and Ch, respectively, at a P3(c)-point of a smooth surface in R4. Then there are 4
possible relative positions of these curves depending on the values of ρc:

(i) If ρc < −9, then cC < cP < cB < cF < cS
(ii) If −9 < ρc < −1, then cC < cP < cB < cS < cF
(iii) If −1 < ρc < −1/9, then cC < cP < cS < cB < cF
(iv) If −1/9 < ρc < 0, then cC < cP < cS < cF < cB .

Proof. The proof follows from Proposition 3.1 with a32 = 1, a44 = α and b33 = β. It is easy to
check that the coefficients cP , cB , cS , cF , and cC satisfy cC < cP < cB , cS , cF for all value of
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α, β. Furthermore,

cB − cS =
8(6β − 1)(4α+ 6β2 − 5β)2

(2β − 1)2(1 + 6β)2
,

cB − cF =
8(3β − 1)(4α+ 6β2 − 5β)2

(2β − 1)2(1 + 6β)2
,

cS − cF = −216β(4α+ 6β2 − 5β)2

(6β − 1)2(1 + 6β)2
.

Since 4α + 6β2 − 5β 6= 0 (see Remark 3.1), we have cB > cS if and only if β > 1/6; cB > cF if

and only if β > 1/3; and cS > cF if and only if β < 0. This and the fact that ρc = − 9(2β−1)2
(1+6β)2 ,

for each value of β we obtain the desired result. �

Theorem 4. With notation in Theorem 3, consider the 2-jets of curves ∆, S2, and Ch rep-
resented by the parabolas x = cP · y2, x = cS · y2, and x = cC · y2, respectively. There are
four possible configurations for ∆, S2, and Ch and these are determined by α and β. They are
described by Figure 3.

3

a

bcP = 0

cS = 0

8

7

6
5

4
2

1

10

9

11

cC= 0

1 - 3 2 - 4 - 10 5 - 7 - 9 6 - 8 - 11

H

EP

H

H HP

P

P

E E E

Figure 3. Partition of (α, β)-plane. The bottom pictures are the configurations
of ∆-curve (black), S2-curve (green), and Ch-curve (blue) at a P3(c)-point. H,
P, and E mean hyperbolic, parabolic, and elliptic region, respectively.
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Proof. Consider the 2-jets of the parametrisation of the ∆-curve, S2-curve, Ch-curve with the
second order coefficients given by

cP = 3(2β − 3β2 − 2α),

cS =
6(36αβ2 − 72β3 + 24α2 − 72αβ + 48β2 − α+ β)

(1 + 6β)2
,

cC =
6(−3β2 − α+ β)(36β2 + 24α− 24β + 1)

(1 + 6β)2
.

The generic configurations of these curves occur when α and β avoid the set

{cP = 0} ∪ {cS = 0} ∪ {cC = 0}.
The conditions cP = 0, cS = 0, and cC = 0 determine curves in (α, β)-plane represented by
dashed curve, dot-dashed curve, and doted curve in Figure 3, respectively. Then the (α, β)-
plane is partitioned into 11 open regions. There are four different configurations of the ∆-curve,
S2-curve, and Ch-curve that are given at the bottom of Figure 3. For instance, in regions 1
and 3, the configurations of the ∆-curve, S2-curve, Ch-curve are described in the first bottom
picture; in regions 2, 4 and 10, the configurations are described in the second bottom picture
and so on. �
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Matemáticas e de Computação, University of São Paulo, São Carlos, 2016.

DOI: 10.11606/T.55.2016.tde-03102016-104837
[10] J. L. Deolindo-Silva, Cross-ratio invariants for surfaces in 4-space (2018). arχiv: 1807.11133
[11] J. L. Deolindo-Silva and Y. Kabata, Projective classification of jets of surfaces in 4-space. Hiroshima Math-

ematical Journal, 49 (2019) 35–46. DOI: 10.32917/hmj/1554516037

[12] R. A. Garcia and J. Sotomayor, Harmonic mean curvature lines on surfaces immersed in R3. Bull. Braz.
Math. Soc., 34 (2) (2003), 303–331.

[13] C. G. Gibson, Singular points of smooth mappings. Pitman Research Notes in Mathematics, vol. 25 (1979).

[14] C. A. Hobbs and N. P. Kirk, On the classification and bifurcation of multi-germs of maps from surfaces to
3-space, Math. Scand. 89 (2001), 57–96

https://doi.org/10.1090/s0002-9947-04-03497-x
https://doi.org/10.1088/0951-7715/13/3/315
https://doi.org/10.1007/bf03017728
https://doi.org/10.1007/bf02584779
https://doi.org/10.11606/T.55.2016.tde-03102016-104837
http://arxiv.org/abs/1807.11133
https://doi.org/10.32917/hmj/1554516037


ON THE CHARACTERISTIC CURVES ON A SURFACE IN R4 39

[15] S. Izumyia, M. C. Romero-Fuster, M. A. S. Ruas and F. Tari, Differential geometry from a singularity theory
viewpoint. World Scientific, 2016. DOI: 10.1142/9108

[16] J. A. Little, On the singularities of submanifolds of heigher dimensional Euclidean space. Annli Mat. Pura

et Appl. (4A) 83 (1969), 261–336.
[17] D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, The geometry of surfaces in 4-space from a

contact viewpoint. Geometriae Dedicata 54 (1995), 323–332. DOI: 10.1007/bf01265348
[18] D. M. Q. Mond, On the classification of germs of maps from R2 to R3. Proc. London Math. Soc. 50 (1985),

333–369.

[19] J. J. Nuño-Ballesteros and F. Tari, Surfaces in R4 and their projections to 3-spaces. Roy. Proc. Edinburgh
Math. Soc. 137A (2007), 1313–1328.

[20] J. Oliver, On the characteristic curves on a smooth surface. J. London Math. Soc. (2) 83 (2011), 755–767.

[21] R. Oset-Sinha and F. Tari, Projections of surfaces in R4 to R3 and the geometry of their singular images.
Rev. Mat. Iberoam. 31, 1 (2015), 33–50. DOI: 10.4171/rmi/825

[22] F. Tari, Pairs of foliations on surfaces. Real and Complex Singularities, Edited by M. Manoel, M. C.

Romero Fuster, C. T. C. Wall. London Mathematical Society Lecture Notes Series 380 (2010), 305–337.
DOI: 10.1017/cbo9780511731983.023

[23] F. Tari, Self-adjoint operators on surfaces in Rn. Differential Geom. Appl. 27 (2009), 296–306.

[24] R. Uribe-Vargas, A projective invariant for swallowtails and godrons, and global theorems on the flecnodal
curve. Mosc. Math. J. 6 (2006), 731–768. DOI: 10.17323/1609-4514-2006-6-4-731-768

Jorge Luiz Deolindo-Silva, Departamento de Matemática, Universidade Federal de Santa Catarina,
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