
Journal of Singularities
Volume 17 (2018), 1-27

received: 26 September 2014
in revised form: 22 January 2018

DOI: 10.5427/jsing.2018.17a

SINGULARITIES AND STABLE HOMOTOPY GROUPS OF SPHERES. I

CSABA NAGY, ANDRÁS SZŰCS, AND TAMÁS TERPAI

Abstract. We establish an interesting connection between Morin singularities and stable
homotopy groups of spheres. We apply this connection to computations of cobordism groups

of certain singular maps. The differentials of the spectral sequence computing these cobordism

groups are given by the composition multiplication in the ring of stable homotopy groups of
spheres.

§1. Introduction

We are considering locally stable smooth maps of n-dimensional manifolds into (n + 1)-
dimensional manifolds with the simplest, corank 1 singularities (those where the rank of the
differential map is at most 1 less than the maximum possible). These singularities, called Morin
singularities, form a single infinite family, with members denoted by symbols Σ0 (nonsingular

points), Σ1,0 (fold points), Σ1,1,0 = Σ12 (cusp points), . . . , Σ
1,...
j
,1,0

= Σ1j , . . . (see [M]). A
map that only has singularities Σ1j with j ≤ r is called a Σ1r -map, and we are interested in
calculating the cobordism groups of such maps. Two Σ1r -maps with the same target manifold
P are (Σ1r -)cobordant if there exists a Σ1r -map into P × [0, 1] from a manifold with boundary
whose boundary is the disjoint union of those two maps. Unless specified otherwise maps be-
tween manifolds will be assumed to be cooriented (equipped with an orientation of the virtual
normal bundle), Morin and of codimension 1 (that is, the dimension of the target is 1 greater
than the dimension of the source).

The cobordism group of fold maps of oriented n-manifolds into Rn+1, which is denoted by
CobSOΣ1,0(n+1), was computed in [Sz5] completely, while that of cusp maps, CobSOΣ1,1,0(n+1),
only modulo 2- and 3-torsion.1 Here we compute the 3-torsion part (up to a group extension).
We shall also consider a subclass of such maps, the so-called prim (projection of immersion)
cusp maps. These are the cusp maps with trivial and trivialized kernel bundle of the differential
over the set of singular points. The cobordism group of prim fold and cusp maps of oriented
n-manifolds to Rn+1 will be denoted by PrimSOΣ1,0(n+1) and PrimSOΣ1,1,0(n+1) respectively.
We shall compute these groups up to a group extension, and in the case of cusp maps up to
2-primary torsion.

§2. Notation and formulation of the result

We shall denote by πs(n) the nth stem, that is,

πs(n) = lim
q→∞

πn+q(S
q).
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1These groups were denoted in [Sz5] by CobΣ1,0(n) and CobΣ1,1(n), respectively; note the shifted dimensions.
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Denote by G the direct sum
⊕
n
πs(n). Recall that G is a ring, with multiplication ◦ defined by

the composition (see [To]). This product is skew commutative: for homogeneous elements x and
y of G

x ◦ y = (−1)dim x·dim yy ◦ x.

Recall that πs(3) ∼= Z3 ⊕ Z8; the standard notation for the generator of the Z3 part is α1. By
a slight abuse of notation we shall also denote by α1 the group homomorphism of G defined by
left multiplication by α1, i.e. α1(g) = α1 ◦ g for any g ∈ G.

To formulate our results more compactly, we use the language of Serre classes of abelian
groups [Se]. In particular, we will denote by C2 the class of finite 2-torsion groups and C{2,3} will
denote the class of finite groups of order a product of powers of 2 and 3. Given a Serre class
C, we call a homomorphism f : A → B a C-isomorphism if both ker f ∈ C and Coker f ∈ C.
Two groups are considered to be isomorphic modulo C (denoted by ∼=

C
) if there exists a chain of

C-isomorphisms that connects them. For example, isomorphism modulo C{2,3} is isomorphism

modulo the 2-primary and 3-primary torsions. A complex . . .
dm+1→ Cm

dm→ . . . of maps is called
C-exact if both im(dm ◦ dm+1) and ker dm/(ker dm ∩ im dm+1) belong to C for all m.

Theorem 1. There is a C2-exact sequence

0→ Coker
(
α1 : πs(n−3)→ πs(n)

)
→ CobSOΣ1,1,0(n+1)→ ker

(
α1 : πs(n−4)→ πs(n−1)

)
→ 0.

Remark. Recall that in [Sz5] it was shown that

CobSOΣ1,1,0(n+ 1) ∼=
C{2,3}

πs(n)⊕ πs(n− 4)

(in particular CobSOΣ1,1,0(n + 1) is finite unless n = 0 or n = 4, when its rank is 1). Since
α1 is a homomorphism of order 3, Theorem 1 is compatible with this result and determines the
3-primary part of CobSOΣ1,1(n+ 1) up to a group extension.

Remark. Recall ([To, Chapter XIV]) the first few groups πs(n) and the standard names of the
generators of the 3-primary components (with the exception of α3, which is denoted by α′3 in
[To]):

n 0 1 2 3 4 5 6 7 8 9 10 11
πs(n) Z Z2 Z2 Z24 0 0 Z2 Z240 Z2

2 Z3
2 Z6 Z56 × Z9

(πs(n))3 Z Z3〈α1〉 Z3〈α2〉 Z3〈β1〉 Z9〈α3〉
Here and later we denote by (G)3 the 3-primary part2 of the abelian group G, omitting the

parentheses when this does not cause confusion.
For n ≤ 11 the only occasion when the homomorphism α1 is non-trivial on the 3-primary

part is the epimorphism πs(0) → πs(3) (the homomorphism πs(7) → πs(10) is trivial mod-
ulo 3 as a consequence of [To, Lemma 13.8.] and the fact that (πs(10))3

∼= Z3). Hence(
CobSOΣ1,1,0(n+ 1)

)
3

fits into the short exact sequence

0→ (πs(n))3 →
(

CobSOΣ1,1,0(n+ 1)
)

3
→ (πs(n− 4))3 → 0

for n ≤ 11, n 6= 3.

2the quotient by the subgroup of torsion elements with orders coprime to 3
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§3. Elements of stable homotopy groups of spheres arising from singularities

§3.1. Representing elements of G. The following is a well-known corollary of the combination
of the Pontryagin-Thom isomorphism and the Smale-Hirsch immersion theory:

Fact 1. The cobordism group of framed immersions of n-manifolds into Rn+k is isomorphic to
πs(n) for any k ≥ 1.

An equivalent formulation is the following:

Fact 2. The cobordism group of pairs (Mn, F ), where Mn is a stably parallelizable n-manifold
and F is a trivialization of its stable normal bundle is isomorphic to πs(n).

These Facts follow from the so-called (Multi-)Compression Theorem (Theorem 2 below).

Definition 1. Let K be a compact subcomplex of a smooth manifold M . We say that M
retracts nicely onto K if there is a homotopy ρt, t ∈ [0, 1] (that we call a nice retraction of M
onto K) such that

• ρ0 = idM ,
• ρt|K = idK for all t ∈ [0, 1],
• every ρt for t < 1 is an embedding of M into itself,
• the image of ρ1 is K.

Before formulating the theorem, note that given natural numbers k, m and n ≥ m as well as
an immersion i : Mm # Rn×Rk of a compact m-dimensional manifold Mm with k independent
normal vector fields v1, . . . , vk, one can consider an extension of i to M ×Dk

ε for a small k-disc
Dk
ε = {(y1, . . . , yk) :

∑
y2
j < ε} for any sufficiently small positive ε:

î : M ×Dk
ε # Rn × Rk

(p, y1, . . . , yk) 7→ i(p) +

k∑
j=1

yjvj(p)

Theorem 2 ([RS]). a) Given an embedding i : Mm ↪→ Rn × Rk of a compact manifold M
(possibly with boundary) equipped with k linearly independent normal vector fields v1, . . . , vk,
such that n > m, there is an isotopy Φt, t ∈ [0,∞), of Rn × Rk and a time t∗ > 0 such that
Φ0 is the identity and dΦt(vj) is parallel to the jth coordinate vector ej of Rk for all j with
1 ≤ j ≤ k and t ≥ t∗.

The same statement remains true if n = m and each component of M is a compact manifold
with non-empty boundary.

b) If the vector fields vj, j ∈ I ⊆ {1, . . . , k} were already parallel to the corresponding vectors ej,
j ∈ I, the vector fields v̂, ̂ 6∈ I were orthogonal to all ej, j ∈ I, and either n > m or n = m
and there exists a compact (n − 1)-dimensional cell complex K ⊂ M onto which M retracts
nicely via a homotopy ρt for which the composition homotopy i ◦ ρt keeps the coordinates of
Rk that belong to I fixed, then for any ̂ 6∈ I the isotopy Φt can be chosen so that
• the coordinates of Rk that belong to I are kept fixed;

• the map (p, x, t) 7→ Φ̂t(p, x) := Φt(̂i(p, x)) with p ∈ M , x ∈ D|I|ε and t ∈ [0,∞) is an

immersion of M ×D|I|ε × [0,∞), where D
|I|
ε = {(yj)j∈I :

∑
y2
j < ε} for some sufficiently

small but positive ε;
• for some time t∗ and all t ≥ t∗ we have Φt(p) = Φt∗(p) + (t− t∗) · e̂.

c) The isotopy Φt can be chosen in such a way that for any point p ∈M and any time τ ∈ [0,∞)
the tangent vector of the curve t 7→ Φt(i(p)) at the point Φτ (i(p)) will not be tangent to
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the manifold Φτ (i(M)). That is, the map M × [0,∞) → Rn × Rk defined by the formula
(p, t) 7→ Φt(i(p)) is an immersion.

d) (relative version) Let L be a compact subset of Rn such that the vector fields v1, . . . , vk
are already parallel to e1, . . . , ek in an open neighbourhood of i−1(L×Rk); if n = m, assume
additionally that there exists a compact (n − 1)-dimensional cell complex K ⊂ M such that
i−1(L× Rk) ⊂ K and M retracts nicely onto K. Then the isotopy Φt can be chosen to keep
the vector fields v1, . . . , vk on i−1(L× Rk) parallel to e1, . . . , ek at all times.

The part c) of the theorem is not stated explicitly in [RS]. In Appendix 3 we give a proof of the
theorem with emphasis on part c) and some simplifications in the case k = 1.

We shall mostly use the following consequence of Hirsch-Smale theory:

Theorem 3. Given an immersion i : Mm # Rn×Rk of a compact manifold M with k indepen-
dent normal vector fields v1, . . . , vk for which m < n, there is a positive ε, a regular homotopy
Φt : M ×Dk

ε # Rn × Rk, t ∈ [0,∞) and a time t∗ such that

• Φ0 = î;
• dΦt|M×0(vj) is parallel to the jth coordinate vector ej of Rk for all j with 1 ≤ j ≤ k

and t ≥ t∗;
• the map (p, t) 7→ Φt(p,0) is an immersion of the cylinder M × [0,∞) into Rn × Rk.

If m = n and M has no closed components, then for any (m−1)-dimensional compact subcomplex
K ⊂ M onto which M retracts nicely there exists a positive ε and a neighbourhood U of K in
M for which there is a regular homotopy Φt : U ×Dk

ε # Rn × Rk with the same properties.

Proof. We address the case m < n first. Applying [RS, Multi-compression Theorem 4.5]3 gives

us a regular homotopy Φ̃Mt : M # Rn×Rk that comes from an isotopy of M within its induced
neighbourhood V pulled back by i from Rn × Rk; for an induced neighbourhood U ⊂ V of M

this defines a regular homotopy Φ̃t : U # Rn ×Rk whose restriction to the disc bundle spanned
by the normal vector fields vj satisfies the required properties except the last one. We may also

assume that for some time t∗ and all t > t∗ and q ∈ U we have Φ̃t(q) = Φ̃t∗(q) + (t− t∗)e1.
Let us define the map

Φ̃ : M × [0,∞)×Dk−1
δ → Rn × Rk

Φ̃(p, t1, . . . , tk) = Φ̃t1(p) + (dΦ̃t1)p(t2v2(p) + · · ·+ tkvk(p))

for a small δ > 0, and define the bundle map

D : T (M × [0,∞)×Dk−1
δ )→ T (Rn × Rk)

(w, s1, s2, . . . , sk)(p,t1,t2,...,tk) 7→ (dΦ̃t1)p(w + s1v1(p) + · · ·+ skvk(p))

taken at the basepoint Φ̃(p, t1, . . . , tk)

covering Φ̃. This map is fibrewise injective since the linear span of v1, . . . , vk is normal to TM .
In addition, we construct the immersion

α : M × [0, 2δ)×Dk−1
δ # Rn × Rk

(p, t1, . . . , tk) 7→ i(p) + t1v1(p) + · · ·+ tkvk(p)

that has the property

dα|T (M×[0,2δ)×Dk−1
δ )|M×{0}×0

= D|T (M×[0,∞)×Dk−1
δ )|M×{0}×0

3Note that although the cited theorem is about embeddings, [RS, Addendum (vi) to Multi-compression The-

orem 4.5] ensures that embeddings can be replaced by immersions.
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and note that Φ̃ is an immersion of M × [t∗,∞)×Dk−1
δ for which

dΦ̃|T (M×[0,∞)×Dk−1
δ )|M×[t∗,∞)×0

= D|T (M×[0,∞)×Dk−1
δ )|M×[t∗,∞)×0

also holds. The differentials of these immersions can therefore be blended into D by using
appropriate bump functions

λ : [0,∞)→ [0, 1], λ|[0,δ] = 1, λ|[2δ,∞) = 0

and
µ : [0,∞)→ [0, 1], µ|[0,t∗−δ) = 0, µ|[t∗,∞) = 1

as follows (we may assume that λ and µ have disjoint supports, i.e. t∗ > 3δ):

D̃|T(p,t1,x)(M×[0,∞)×Dk−1
δ ) =

λ(t1)dα(p,t1,x) + (1− λ(t1)− µ(t1))D|T(p,t1,x)(M×[0,∞)×Dk−1
δ ) + µ(t1)dΦ̃(p,t1,x).

Here we shift the tangent vector values of dα to the basepoint Φ̃(p, t1,x) of the other two sum-

mands. If δ is sufficiently small, then D̃ is fibrewise injective on M× [0,∞)×0 and consequently
also on M × [0,∞) ×Dk−1

ε as well for some ε > 0. By applying [Hi, Theorem 5.7] to the pair
of complexes M × ({0} ∪ [t∗,∞)) ×Dk−1

ε ⊂ M × [0,∞) ×Dk−1
ε we obtain an immersion Φt of

M × [0,∞) × Dk−1
ε into Rn × Rk that coincides with α on M × {0} × Dk−1

ε and with Φ̃ on

M × [t∗,∞)×Dk−1
ε . Reinterpreting Φt as a regular homotopy of Φ|M×{0}×Dk−1

ε
= î finishes the

proof when m < n.
In the case m = n the proof is similar, we use [RS, Addendum (v) to Multi-compression

Theorem 4.5] to construct the initial regular homotopy Φ̃t, restrict it to a neighbourhood U of
K in M that has compact closure and such that M retracts nicely onto U , and repeat the rest
of the proof with U substituted for M . �

§3.2. Framed immersions on the boundary of a singularity. We outline a connection
between singularities and stable homotopy groups of spheres. Namely, we define elements of G
that describe incidences of the images of singularity strata.

We use the notation ∂f to denote the link of a map f : Ra → Rb, that is, the restriction of f
to the preimage f−1(Sb−1) of some sufficiently small sphere Sb−1 ⊂ Rb centered at the origin.
Later, we denote the same way the restriction of a map g : (M,∂M)→ (P, ∂P ) to the boundary:
∂g = g|∂M : ∂M → ∂P . This notation is consistent with the notion of a link in the sense that
the link of f : Ra → Rb is the map ∂g, where g : Da → Db is the restriction of f to the preimage
Da of a sufficiently small ball Db in the target.

Example 1: Let us consider the Whitney umbrella map

σ1 : R2 → R3, σ1(t, x) = (t, tx, x2).

(the normal form of an isolated Σ1,0-point). The preimage of the unit 2-sphere S2 ⊂ R3 is a
closed curve σ−1

1 (S2) ⊂ R2. The restriction of σ1 to this curve – the link of the map σ1 – is an
immersion. The image σ1(σ−1

1 (S2)) is an immersed curve in S2 with a single double point. The
orientations of R2 and R3 give a coorientation on this curve. Hence this curve can be equipped
with a normal vector in S2 and with an additional normal vector to S2 in R3, resulting in an
immersed framed curve in R3; this represents an element of πs(1) that we shall denote by d1σ1.
It is easy to see that d1σ1 6= 0 (since this immersed curve in S2 has a single double point). Using
the standard notation η for the generator of πs(1) = Z2, we get that d1σ1 = η.

Example 2: Let us consider the normal form of a map with an isolated cusp-point at the
origin

σ2 : R4 → R5
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(t1, t2, t3, x) 7→ (t1, t2, t3, z1, z2)

z1 = t1x+ t2x
2

z2 = t3x+ x3

The link of this map is its restriction to σ−1
2 (S4), where S4 is the unit sphere in R5. Note that

the 3-manifold σ−1
2 (S4), which we shall denote by L3, is diffeomorphic to S3. The link map

∂σ2 = σ2|L3 : L3 → S4 is a fold map, it has only Σ1,0 singularities along a closed curve γ. The
image of this curve γ in S4 has a canonical framing. Indeed, the map σ2 can be lifted to an
embedding σ̂2 : R4 ↪→ R6, σ̂2(t1, t2, t3, x) = (σ2(t1, t2, t3, x), x) such that the composition of σ̂2

with the projection R6 → R5 is σ2. Hence the two preimages of any double point of σ2 near the
singularity curve σ2(γ) have an ordering and so one gets two of the normal framing vectors on
the singularity curve σ2(γ). In order to get the third framing vector we note that σ2(γ) is the
boundary of the surface formed by the double points of ∂σ2 in S4. The inward-pointing normal
vector along σ2(γ) of this surface will be the third framing vector. (In Appendix 2 we shall
describe the framing that arises naturally on the image of the top singularity stratum of a map
obtained as a generic projection of an immersion.) The curve σ2(γ) with this framing represents
an element in πs(1) that we denote by d1(σ2). We shall show that d1(σ2) = 0 (see Lemma 4 and
Appendix 1).

In the present situation we can construct one more element associated to σ2 in a quotient
group of G, which we shall denote by d2(σ2). We construct this element (after making some
choices) in πs(3) ∼= Z24 but it will be well-defined only in the quotient group Z24/Z2. The
definition of d2(σ2) is the following. By a result of [Sz4] (that we shall recall in §5, see also [Te])
a framed cobordism of the embedded singularity curve σ2(γ) can be extended to a cobordism
of the link map ∂σ2 : L3 → S4. In particular, since the (framed) curve σ2(γ) is (framed) null-
cobordant, the link map ∂σ2 is fold-cobordant to an (oriented) immersion. That is, there is a
compact oriented 4-manifold W 4 such that ∂W 4 = L3 t V 3 and there is a Σ1,0-map

C : (W 4, L3, V 3)→ (S4 × [0, 1], S4 × {0}, S4 × {1})

such that the restriction C|L3 : L3 → S4 × {0} is ∂σ2 and the restriction C|V 3 : V 3 → S4 × {1}
is an immersion, which we denote by ∂′σ2. It represents an element in πs(3) and its image in
πs(3)/Z2 is independent of the choice of C (as detailed in the description of d2 in subsection
§5.2). The obtained element in πs(3)/Z2 is d2(σ2).

For future reference we introduce the notation σ∗2 for the map

σ∗2 = σ2 ∪ C : D4 ∪
L3
W 4 → D5

2 = D5 ∪
S4×{0}

S4 × [0, 1].

This definition makes sense since the maps C and σ2 coincide on the common part L3 of their
source manifolds, and it is easy to see that the gluing can be performed to make σ∗2 smooth.
Note that ∂σ∗2 is the immersion V 3 # S4 × {1}.

We shall show that the stable homotopy group elements d1(σ1), d1(σ2), the coset d2(σ2) and
other analogously defined objects can be computed from a spectral sequence associated to the
classifying spaces of singularities (d1 and d2 are in fact differentials of this spectral sequence).
Next we shall describe these classifying spaces and the spectral sequence, first for the simpler
case of prim maps.

§4. Classifying spaces of cobordisms of singular maps

Definition. A smooth map f : Mn → Pn+k is called a prim map (prim stands for the abbre-
viation of projected immersion) if
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1) it is the composition of an immersion g : M # P ×R1 and the projection pP : P ×R1 → P ,
and

2) an orientation is given on the kernels of the differential of f that agrees with the orientation
pulled back from R1 via the composition pR ◦ g, where pR : P × R1 → R1 is the projection.

For maps between manifolds with boundary f : (M,∂M) → (P, ∂P ), we shall always require
that they should be regular , that is, f−1(∂P ) = ∂M and the map f in a neighbourhood of ∂M
can be identified with the direct product f |∂M × id[0,ε) for a suitable positive ε.

Remark. Note that for a Morin map the kernels of df form a line bundle ker df → Σ(f), where
Σ(f) is the set of singular points of f . The conditions 1) and 2) ensure that for a prim map
this bundle is orientable (trivial) and an orientation (trivialization) is chosen (the same map f
with a different choice of orientation on the kernels is considered to be a different prim map).
The converse also holds: if a Morin map f : Mn → Pn+k is equipped with a trivialization of its
kernel bundle, then there exists a unique (up to regular homotopy) immersion g : M # P × R1

such that f = pP ◦ g, where pP : P × R1 → P is the projection and the trivialization of the
kernel bundle is the same as the one defined by the projection to R1.

Notation. The cobordism group of all prim maps of n-dimensional oriented manifolds into
Rn+1 will be denoted by PrimSO(n+ 1). The analogous cobordism group of prim maps having
only (at most) Σ1,0-singular points (i.e. both the maps and the cobordisms between them are

prim fold maps) will be denoted by PrimSOΣ1,0(n+ 1); that of prim cusp maps will be denoted

by PrimSOΣ1,1,0(n+ 1); and that of prim Σ1i -maps will be denoted by PrimSOΣ1i(n+ 1).

One can define cobordism sets of prim Σ1,0 and Σ1,1,0 (cooriented) maps of n-manifolds in
arbitrary fixed (n + 1)-dimensional manifold Pn+1 (instead of Rn+1). The obtained sets we

denote by PrimSOΣ1,0(P ) and PrimSOΣ1,1,0(P ), respectively.4

Definition. If f0 : Mn
0 → Pn+k and f1 : Mn

1 → Pn+k are two regular prim Σ1,(1,)0-maps of
the oriented n-manifolds Mn

0 and Mn
1 to the oriented manifold Pn+k, then a cobordism between

them is a regular prim Σ1,(1,)0 map F : Wn+1 → P×[0, 1], where W is a compact oriented (n+1)-
manifold such that ∂W = M0 ∪

∂M0

F−1(∂P × [0, 1]) ∪
∂M1

(−M1), F |M0 = f0 and F |M1 = f1. Note

that both the domain W and the target P × [0, 1] of F may have “corners”: ∂M0 t ∂M1 and
∂P × {0} t ∂P × {1}, respectively. Regularity of F shall mean that near the corners ∂M0 and
∂M1 the map F has to be the direct product of the maps f0|∂M0

: ∂M0 → ∂P × {0} and
f1|∂M1

: ∂M1 → ∂P × {1} with the identity map of [0, ε)× [0, ε).

The classifying spaces. There exist (homotopically unique) spaces XΣ1,0 and XΣ1,1,0 that rep-
resent the functors

P −→ PrimSOΣ1,0(P ) and

P −→ PrimSOΣ1,1,0(P )

in the sense of Brown representability theorem5 (see [Sw]), in particular

PrimSOΣ1,0(P ) = [P,XΣ1,0] and

PrimSOΣ1,1,0(P ) = [P,XΣ1,1,0]

4These sets carry a natural abelian group structure, but we do not use this fact here. In [Sz4, Remark 8] the

analogous statement for not necessarily prim maps with k = 1 is shown and used, with the proof easily adaptable
to prim maps.

5In order to apply Brown’s theorem directly, one has to extend these functors to arbitrary simplicial complexes

(not only manifolds). This is done in [Sz4].
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for any compact manifold P (note that we have PrimSOΣ1,0(n + 1) ∼= PrimSOΣ1,0(Sn+1) and

PrimSOΣ1,1,0(n + 1) ∼= PrimSOΣ1,1,0(Sn+1)). We call the spaces XΣ1,0 and XΣ1,1,0 the clas-
sifying spaces for prim fold and prim cusp maps respectively. This type of classifying spaces in
a more general setup has been explicitly constructed and investigated earlier, see [Sz2], [Sz1],
[RSz], [Sz4], [Te].

Key fibrations. For any space Y we shall denote by ΓY the space

Ω∞S∞Y = lim
q→∞

ΩqSqY.

A crucial observation in the investigation of these classifying spaces is the existence of the so-
called key fibrations (see [Sz4]), which in the present cases states that there exist Serre fibrations

pj : XΣ1j → ΓS2j+1

of XΣ1j over ΓS2j+1 with fibre XΣ1j−1 . In particular, we have fibrations

• p1 : XΣ1,0 → ΓS3 of XΣ1,0 over ΓS3 with fibre ΓS1; and
• p2 : XΣ1,1,0 → ΓS5 of XΣ1,1,0 over ΓS5 with fibre XΣ1,0.

§5. The spectral sequences

§5.1. The first page. Let us denote by Xi for i = −1, 0, 1, 2 the following spaces:

X−1 = point; X0 = ΓS1; X1 = XΣ1,0; X2 = XΣ1,1,0.

One can define a spectral sequence with starting page

E
1

i,j = πi+j+1

(
Xi, Xi−1

)
, i = 0, 1, 2, j = 0, 1, . . .

and differentials dri,j : E
r

i,j → E
r

i−r,j+r−1 that converges to πn+1(X2) = PrimSOΣ1,1,0(n+ 1).
The existence of Serre fibrations described above implies that

E
1

i,j
∼= π S

i+j+1(ΓS2i+1) = πs(j − i).

§5.2. The geometric meaning of the groups and differentials of the spectral sequence.
Let Xi denote the classifying space of prim Σ1i-maps, so that PrimSOΣ1i(n + 1) = πn+1(Xi).
The relative versions of the analogous cobordism groups of maps into the halfspace

Rn+1
+ =

{
(x0, . . . , xn) ∈ Rn+1 : x0 ≥ 0

}
can also be introduced and they will be isomorphic to the corresponding relative homotopy
groups:

Definition. Let (Mn, ∂M) be a compact n-manifold with (possibly empty) boundary. Let
f : (M,∂M) → (Rn+1

+ ,Rn) be a prim Σ1i-map for which f |∂M : ∂M → Rn is a (necessarily
prim) Σ1j -map for some j ≤ i. Such a map will be called a prim (Σ1i ,Σ1j )-map (recall that we
always assume f to be regular in the sense of the definition in §4).

If f0 and f1 are two prim (Σ1i ,Σ1j )-maps of the oriented n-manifolds (Mn
0 , ∂M0) and (Mn

1 , ∂M1)
to (Rn+1

+ ,Rn), then a cobordism between them is a map

F : (Wn+1, ∂W )→ (Rn+1
+ × [0, 1],Rn × [0, 1])

(where W is a compact oriented (n + 1)-manifold) such that ∂W = M0 ∪
∂M0

Qn ∪
∂M1

(−M1),

F |M0
= f0 and F |M1

= f1, for which

a) Q is a cobordism between ∂M0 and −∂M1;
b) F |Q : Q → Rn × [0, 1] is a prim Σ1j -cobordism between f0|∂M0

: ∂M0 → Rn × {0} and
f1|∂M1 : ∂M1 → Rn × {1};
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c) F is a prim Σ1i-map.

Note that both the domain W and the target Rn+1
+ × [0, 1] of F have “corners”: ∂M0 t ∂M1

and Rn ×{0} tRn ×{1} respectively. Near the corners ∂M0 and ∂M1 the map F has to be the
direct product of the maps f0|∂M0

and f1|∂M1
with the identity map of [0, ε)× [0, ε).

The cobordism group of prim (Σ1i ,Σ1j )-maps of oriented n-manifolds to (Rn+1
+ ,Rn) will be

denoted by PrimSO(Σ1i ,Σ1j )(n+ 1).

Analogously to the isomorphism PrimSOΣ1i(n+ 1) ∼= πn+1(Xi) one obtains the isomorphism

(†) PrimSO(Σ1i ,Σ1j )(n+ 1) ∼= πn+1(Xi, Xj).

Remark. Note that X0 = ΓS1. Indeed, Σ10 = Σ0-maps are non-singular, i.e. immersions, and
the classifying space for codimension 1 oriented immersions is known to be ΓS1 (see Fact 1).

The fibration pi : Xi → ΓS2i+1 with fiber Xi−1 induces an isomorphism of homotopy groups
(pi)∗ : πn+1(Xi, Xi−1) → πn+1(ΓS2i+1) = πs(n − 2i). The geometric interpretation of this
isomorphism is the following: to the cobordism class of a prim (Σ1i ,Σ1i−1)-map

f : (M,∂M)→ (Rn+1
+ ,Rn)

the mapping (pi)∗ associates the cobordism class of the framed immersion f |Σ1i (f) (the framing
is described in Appendix 2). Note that in particular this description implies that whenever two
prim (Σ1i ,Σ1i−1)-maps of n-manifolds have framed cobordant images of their Σ1i-points, then

they represent the same element in PrimSO(Σ1i ,Σ1i−1)(n+ 1).
Geometric descriptions of d1. The differential

d1 : E
1

i,j
∼= πi+j+1(Xi, Xi−1)→ E

1

i−1,j
∼= πi+j(Xi−1, Xi−2)

is simply the boundary homomorphism ∂ in the homotopy exact sequence of the triple

(Xi, Xi−1, Xi−2).

Composing ∂ with the isomorphism (pi−1)∗ one can see that if f : (Mn, ∂M)→ (Rn+1
+ ,Rn) is a

prim (Σ1i ,Σ1i−1)-map that represents the cobordism class

[f ] = u ∈ πn+1(Xi, Xi−1) = E
1

i,n−i
∼= πs(n− 2i),

then d1(u) ∈ πs((n − 1) − 2(i − 1)) = πs(n − 2i + 1) is represented by the framed immersion
f |Σ1i−1 (f |∂M ) in Rn.

There is an alternative description of d1 that we shall use later as well. Let u ∈ πn+1(Xi, Xi−1)

and f be a representative of u as above, and let T and T̃ be the (immersed) tubular neighbour-
hoods of the top singularity strata Σ1i(f) and f

(
Σ1i(f)

)
in M and Rn+1

+ , respectively, with the

property that f |T maps (T, ∂T ) to (T̃ , ∂T̃ ). Now f |Σ1i−1 (f |∂T ) : Σ1i−1(f |∂T ) → ∂T̃ is a framed

immersion into ∂T̃ . Note that the normal framing of f
(
Σ1i−1(f |∂T )

)
inside ∂T̃ defines a fram-

ing of the stable normal bundle of f
(
Σ1i−1(f |∂T )

)
because adding the unique outward-pointing

normal vector of ∂T̃ in Rn+1
+ one obtains a normal framing in Rn+1

+ . Hence f
(
Σ1i−1(f |∂T )

)
with

the given framing represents an element of πs(n − 2i + 1); this element is d1(u). The fact that
these two descriptions of d1(u) yield the same element in πs(n − 2i + 1) follows from the fact

that f
(

Σ1i−1

(
f |M\T̊

))
is a framed immersed cobordism between the two representatives (here

we use Theorem 3).
This alternative description of d1 actually generalizes to the higher differentials as well (even

though here we only consider d1 and d2; in [ST] we utilize this fact for dr with greater r as well).
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Geometric description of d2. Turning to the differential d2, we first give a homotopic description

(an expansion of the definition, in fact). Let u ∈ πs(n − 4) ∼= πn+1(X2, X1) = E
1

2,n−2 be

an element such that d1(u) = 0. Then u represents an element of the page E
2

as well (no

differential is going into the groups E
1

2,∗). The class d2(u) ∈ E
2

0,n−1 is defined utilizing the

boundary homomorphism ∂ : πn+1(X2, X1)→ πn(X1) as follows: since d1(u) = 0, the class
∂u ∈ πn(X1) vanishes when considered in πn(X1, X0). Hence there is a class y in πn(X0) whose
image in πn(X1) is ∂u. The class y is not unique, but the coset

[y] ∈ πn(X0)/ im
(
∂′ : πn+1(X1, X0)→ πn(X0)

)
= E

2

0,n−1

is unique. By definition d2(u) = [y].
Geometrically, if f : (M,∂M) → (Rn+1

+ ,Rn) represents the class u ∈ πn+1(X2, X1), then
d1(u) = 0 means that f |Σ1,0(∂f) : Σ1,0(∂f) → Rn is a null-cobordant framed immersion (recall
that here ∂f is the restriction f |∂M and is a prim fold map). This means that the classifying map
Sn → X1 of ∂f becomes null-homotopic after being composed with p1, hence the classifying map
itself can be deformed into the fiber X0. Since homotopy classes of maps into X0 correspond
to cobordism classes of immersions, this deformation gives a (prim Σ1,0-)cobordism between the
prim Σ1,0-map ∂f : ∂M → Rn and an immersion that we will denote by g. The immersion g is
not unique, not even its framed cobordism class [g] ∈ πs(n−1) is, but its coset in πs(n−1)/ im d1

is well-defined. This coset is d2(u).

Claim 1. For any u ∈ πs(n)

a) d1
2,n+2(u) = d1

2,2(σ2) ◦ u and d1
1,n+1(u) = d1

1,1(σ1) ◦ u
b) d2

2,n+2(u) is represented by d2
2,2(σ2) ◦ u whenever u ∈ ker d1

2,n+2.

Note that in order for statement b) to make sense, we need to show that:

• the ambiguity of d2
2,2(σ2) ◦ u, which is

(
im d1

1,3

)
◦ πs(n), is contained in the ambiguity of

d2
2,n+2(u), which is im d1

1,n+3. This holds by the second part of statement a): we have

im d1
1,3 = im d1

1,1 ◦ πs(2)

and

im d1
1,3 ◦ πs(n) = im d1

1,1 ◦ πs(2) ◦ πs(n) ⊂ im d1
1,1 ◦ πs(n+ 2) = im d1

1,n+3.

• d2
2,2(σ2) is meaningful, that is, d1

2,2(σ2) = 0. This is shown later in Lemma 4.

Proof. First we need a description of the composition product in the language of Pontryagin’s
framed embedded manifolds.

Given α ∈ πs(m), β ∈ πs(n) let (Mm, Up) and (Nn, V m+p) be representatives of α and β,
where M,N are manifolds of dimensions m and n immersed to Rm+p and Rn+m+p, respectively,
Up and V m+p are their framings: Up = (u1, . . . , up); V

m+p = (v1, . . . , vm+p), where ui, vj are
linearly independent normal vector fields to M and N . These framings identify open tubular
neighbourhoods of M and N with M × Rp and N × Rm+p.

Put the framed immersed submanifold (M,U) of Rm+p into each fiber of the tubular neigh-
bourhood N × Rm+p. We obtain N ×M as a framed immersed manifold in Rn+m+p. This is
the representative of α ◦ β.

Now we come to the proof of the first part of Claim 1a); the proof of the second part is
completely analogous. Let u be an element in πs(n) = πn+5

(
X2, X1

)
and let

f : (Mn+4, ∂M)→ (Rn+5
+ ,Rn+4)



SINGULARITIES AND STABLE HOMOTOPY GROUPS OF SPHERES. I 11

be a prim (Σ12 ,Σ11)-map that represents a cobordism class corresponding to u. The boundary
of f is the prim fold map ∂f = f

∣∣
∂M

: ∂M → Rn+4. Let Σ1,0(∂f) be the manifold of fold points

of ∂f , and ∂f
(
Σ1,0(∂f)

)
be its image. Each normal fiber of Σ1,0(∂f) in ∂M is R2, and it is

mapped by ∂f to the corresponding normal fiber R3 of ∂f
(
Σ1,0(∂f)

)
in Rn+4 by the Whitney

umbrella map σ1, hence ∂f
(
Σ1,0(∂f)

)
has a natural framing (see Appendix 2). Then d1(u) is

represented by this framed manifold ∂f
(
Σ1,0(∂f)

)
.

Next we construct another representative of d1(u) using the alternative description of d1.

Choose small tubular neighbourhoods T and T̃ of Σ1,1,0(f) in M and of f
(
Σ1,1,0(f)

)
in Rn+5

+ ,

respectively. T̃ is immersed into Rn+5
+ , it is a D5-bundle over Σ1,1,0(f). Recall that f restricted

to Σ1,1,0(f) is an immersion. For simplicity of the description we suppose that it is an embedding.

We choose these tubular neighbourhoods T and T̃ so that f maps T to T̃ and ∂T to ∂T̃ . Now

the map f
∣∣
∂T

: ∂T → ∂T̃ is a fold map. Its singularity is a framed manifold clearly representing

d1(σ2) ◦ u. By the two alternative descriptions of d1 the framed manifold ∂f(Σ1,0(∂f)) (a
representative of d1(u)) represents the same framed cobordism class as the singularity of the

fold map f |∂T : ∂T → ∂T̃ . Hence d1(u) = d1(σ2) ◦ u.
The proof of b) is very similar. As before, for simplicity of the description of d2 we suppose

that f |Σ1,1,0(f) is an embedding rather than an immersion. Let T and T̃ as above be the tubular

neighbourhoods of Σ1,1,0(f) and f
(
Σ1,1,0(f)

)
respectively. Note that (as shown in Appendix 2)

T = Σ1,1,0(f)×D4, T̃ = f
(
Σ1,1,0(f)

)
×D5 and the map f |T : (T, ∂T )→ (T̃ , ∂T̃ ) is the product

map
(
f |Σ1,1,0(f)

)
× σ2.

Recall that in §3.2 we defined a map σ∗2 : D4 ∪
L
W 4 → D5

2 such that ∂σ∗2 is an immersion

V 3 → S4 = ∂D5
2 that represents d2(σ2). Now we define a map

f∗ = f |Σ1,1,0(f) × σ∗2 : Σ1,1,0(f)×
(
D4 ∪

L
W 4
)
→ f

(
Σ1,1,0(f)

)
×D5

2.

We will denote by T2 the source manifold of f∗ and by T̃2 the target manifold, which is an
enlarged tubular neighbourhood of f

(
Σ1,1,0(f)

)
in Rn+5

+ . Then

∂f∗ : ∂T2 = Σ1,1,0(f)× V 3 → ∂T̃2 = f
(
Σ1,1,0(f)

)
× S4 × {1}

is an immersion that represents d2(σ2) ◦ u.

We claim that this immersion can be extended to a proper, regular cusp map f̂∗ (of some
compact (n + 4)-manifold with boundary) into the entire Rn+5

+ without changing the singular
set. Indeed, the source manifold of ∂f∗ has dimension n+3, hence the image of ∂f∗ is an (n+3)-
dimensional compact complex (denote it by K), and it can be covered by a small neighbourhood

U in ∂T̃2 of K whose closure U is a compact manifold with non-empty boundary. By Theorem 2,
there exists a deformation of U (equipped with the outward-pointing normal vector field) within
Rn+5

+ with time derivative nowhere tangent to the image of U that takes U into Rn+4 = ∂Rn+5
+

(and the normal vector field into the outward-pointing vector field of Rn+4). The trace of this

deformation glued along ∂f∗ to f∗ gives an extension f̂∗ whose set of cusp points is the same
as that of f∗ and in particular represents u in G.

This construction combined with Theorem 3 shows that ∂f∗ and ∂f̂∗ are cobordant as framed
immersions and therefore represent the same element in G; the statement b) follows since ∂f∗

represents d2(σ2) ◦ u and ∂f̂∗ represents d2(u). �
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§5.3. Calculation of the first page of the spectral sequence for prim maps. Recall that

E
1

i,j = πi+j+1(Xi, Xi−1)

= πi+j+1(ΓS2i+1) = πs(j − i).

Hence on the diagonal j = i we have πs(0) = Z with generator ιi in E
1

i,i represented by the map

σi : (D2i, S2i−1) → (D2i+1, S2i) that has an isolated Σ1i singularity at the origin. On the line
j = i+ t we have πs(t).

3 Z24

d1
1,3←− Z2 Z2

2 Z2

d1
1,2←−∼= Z2

d1
2,2←−
0

Z

1 Z2

d1
1,1←− Z

j = 0 Z
i = 0 1 2

The value of d1
1,1(ι1) is nothing else but [∂σ1] = η ∈ πs(1) = Z2.

By Claim 1 we have d1
1,2(η) = d1

1,1(ι1) ◦ η = η ◦ η 6= 0 in πs(2) (here and later we refer the
reader to [To, Chapter XIV] for the information that we need about the composition product).
Hence d1

1,2 is an isomorphism and it follows that d1
2,2 is zero (since d1

1,2 ◦d1
2,2 = 0). In particular,

we have obtained the following lemma:

Lemma 4. The class d1(ι2), represented by the image σ2(γ) of the fold singularity curve on the
boundary of the isolated cusp σ2 : R4 → R5, vanishes.

In Appendix 1 we give an independent, elementary proof for this statement.

§5.4. The second page (E
2

i,j , d
2

i,j) for prim maps. The differential d1
1,3 : Z2 → Z24 maps the

generator η ◦ η of πs(2) to d1
1,1(ι1) ◦ η ◦ η = η ◦ η ◦ η and that is not zero ([To, Theorem 14.1]).

Hence the group E
2

0,3 is Z24/Z2 = Z12.

3 Z12 0 ?

2 0 0 Z

d22,2

hh

1 0 Z

j = 0 Z

i = 0 1 2
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Now we compute the differential d2
2,2 : Z→ Z12. Note that this is precisely the computation

of the cobordism class of the framed immersion ∂′σ2 of the 3-manifold V 3 considered in Example
2 in §3.2.

Lemma 5. d2
2,2 : Z→ Z12 maps the generator ι2 of E

2

2,2
∼= Z into an element of order 6.

Proof. E
1

2,2
∼= π5(X2, X1) = π5(ΓS5) = πs5(S5) = Z. Since d1

2,2 : E1
2.2 → E1

1,2 is identically zero,

E
2

2,2 = E
1

2,2.
Consider the following commutative diagram with exact row and column:

π4(X0)/ im
(
π5(X1, X0)

∂→ π4(X0)
)

��

��
π5(X2)

ϕ // π5(X2, X1) ∼= Z

d1 **

//

d2
44

π4(X1)

��
π4(X1, X0)

The generator ι2 of π5(X2, X1) ∼= Z is represented by the cusp map σ2 : (D4, L3) → (D5, S4)
(using the notation of Example 2). Simple diagram chasing shows that the order of d2(ι2) is
equal to the order of Cokerϕ. The latter is the minimal positive algebraic number of cusp points
of prim cusp maps of oriented closed 4-manifolds into R5. Indeed, ϕ assigns to the class of a
map f : M4 → R5 the algebraic number of its cusp points. This minimal number of cusps is
known to be 6, see [Sz3, Theorem 4].

�

Applying Claim 1 b) we immediately get:

Corollary. On the 3-torsion part, the differential d2
2,n+2 acts as the homomorphism α1 (as

defined in §2) up to sign.

§5.5. Computation of the cobordism group of prim fold maps of oriented n-manifolds
to Rn+1.

Theorem 6. a) PrimSOΣ1,0(n+ 1) ∼=
C2
πs(n)⊕ πs(n− 2).

b) PrimSOΣ1,1,0(n+ 1) ∼=
C{2,3}

πs(n)⊕ πs(n− 2)⊕ πs(n− 4).

Proof. We have seen that the spectral sequences computing

PrimSOΣ1,0(n+ 1) and PrimSOΣ1,1,0(n+ 1)

degenerate modulo C2 and modulo C{2,3} respectively, because d1
1,n+1 is multiplication by the

order 2 element η and d2
2,n+2 is multiplication by an element of order 6.

The fact that the cobordism groups PrimSOΣ1,0(n + 1) and PrimSOΣ1,1,0(n + 1) are direct
sums (modulo 2- and 3-primary torsion parts) can be shown in the same way as in [Sz5, Theorem
B]. Namely, the homotopy exact sequence of the fibration p1 : (X1, X0)→ ΓS3

πn+1(X0)→ πn+1(X1)
(p1)∗→ πn+1(ΓS3)

has a 2-splitting s, that is, there is a homomorphism s : πn+1(ΓS3) → πn+1(X1) such that
(p1)∗ ◦ s is the multiplication by 2.
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The construction of s goes as follows: choose an immersion S2 # R4 with normal Euler
number 2. Then its generic projection to R3 will be a map ψ : S2 → R3 with finitely many
Whitney umbrella points that inherit a sign from the orientation of the kernel bundle, and the
algebraic number of these points will be 2 (see [SS, Proposition 2.5.]). Now choosing any framed
immersion q : Qn−2 # Rn+1 that represents an element [q] in πn+1(ΓS3) ∼= πs(n − 2), the

framing of Q defines a prim fold map Q× S2 id×ψ→ Q×R3 # Rn+1. Its class will be s([q]). The
existence of the 2-splitting map s implies part a).

The existence of an analogous 6-splitting of the homotopy exact sequence of the fibration
p2 : (X2, X1)→ ΓS5 is shown in [Sz5, Lemma 4]. It shows that

PrimSOΣ1,1,0(n+ 1) ∼=
C{2,3}

PrimSOΣ1,0(n+ 1)⊕ πs(n− 4)

and together with part a) proves part b). �

Theorem 7. Let ηn : πs(n) → πs(n + 1) be the homomorphism x 7→ η ◦ x. Then the following
sequence is exact:

0→ Coker ηn−1 → PrimSOΣ1,0(n+ 1)→ ker ηn−2 → 0

Proof. In the homotopy exact sequence of the pair (X1, X0) the boundary homomorphism is
the differential d1

1,n+1, which by Claim 1 a) is just the corresponding homomorphism ηn. The
statement follows immediately. �

Recall that for any abelian group G, we denote by (G)3 its 3-primary part. While

PrimSOΣ1,1,0(n+ 1)

is computed by Theorem 6 modulo its 2- and 3-primary parts, we can also compute the 3-primary
part (up to a group extension).

Theorem 8. The 3-primary part of PrimSOΣ1,1,0(n+ 1) fits into the short exact sequence

0→ (Coker (α1 : πs(n− 3)→ πs(n)))3 ⊕ (πs(n− 2))3 →

→
(
PrimSOΣ1,1,0(n+ 1)

)
3
→ (ker(α1 : πs(n− 4)→ πs(n− 1)))3 → 0

Proof. The spectral sequence E
r

i,j converges to PrimSOΣ1,1,0(n + 1) and stabilizes at page 3.

Recall that on the 3-primary part d2 can be identified up to sign with the homomorphism α1

(Corollary of Lemma 5). Hence the 3-primary parts
(
E

3

i,j

)
3

of the groups E
3

i,j
∼= E

∞
i,j are the

following:

(*)

(
E

3

0,j

)
3

= (Coker (α1 : πs(j − 3)→ πs(j)))3(
E

3

1,j

)
3

= (πs(j − 1))3(
E

3

2,j

)
3

= (ker(α1 : πs(j − 2)→ πs(j + 1)))3

By general properties of spectral sequences it holds that if we define the groups

F2,n = PrimSOΣ1,1,0(n+ 1) = πn+1(X2)

F1,n = im
(
PrimSOΣ1,0(n+ 1)→ PrimSOΣ1,1,0(n+ 1)

)
= im

(
πn+1(X1)→ πn+1(X2)

)
F0,n = im

(
πs(n)→ PrimSOΣ1,1,0(n+ 1)

)
= im

(
πn+1(X0)→ πn+1(X2)

)
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then

F2,n/F1,n = E
∞
2,n−2

F1,n/F0,n = E
∞
1,n−1

F0,n = E
∞
0,n

We will show that the exact sequence

(‡) 0→ (F0,n)3 → (F1,n)3 → (F1,n/F0,n)3 → 0

splits and hence (F1,n)3
∼= (F0,n)3 ⊕ (F1,n/F0,n)3. Then the exact sequence

0→ (F1,n)3 → (F2,n)3 → (F2,n/F1,n)3 → 0

can be written as

0→ (F0,n)3 ⊕ (F1,n/F0,n)3 → (F2,n)3 → (F2,n/F1,n)3 → 0,

and substituting (*) gives us the statement of Theorem 8.
It remains to show that (‡) splits. Consider the following commutative diagram:

πn+2(X2, X1)

∂=d12,n−1

��
πn+1(X0) //

����

πn+1(X1) //

pr

����

πn+1(X1, X0)

i

��

s
rr

F0,n

��

��

// F1,n

��

��

// F1,n/F0,n

ŝ

ee

j

&&

ĵ

88

πn+1(X2) πn+1(X2)
r // πn+1(X2, X0)

Consider the composition map F1,n� πn+1(X2)
r→ πn+1(X2, X0). Its kernel is the intersection

ker r∩F1,n; but ker r is the image of πn+1(X0), which is F0,n. Hence the map r defines uniquely

a map j : F1,n/F0,n → πn+1(X2, X0). Its image im j is a subset of im i due to the commutativity
of the right-hand square.

By Claim 1, in the (exact) rightmost column the map ∂ (which can be identified with
d1

2,n−1) acts on πn+2(X2, X1) ∼= πn+2(ΓS5) by composition from the left by ∂[σ2], which
is zero. Hence the map i is injective. Consequently, the map j can be lifted to a map
ĵ : F1,n/F0,n → πn+1(X1, X0) and composing it with the 2-splitting s gives us a map

ŝ = s ◦ ĵ : F1,n/F0,n → πn+1(X1)

such that pr ◦ ŝ is a 2-splitting of the short exact sequence 0 → F0,n → F1,n → F1,n/F0,n → 0.
This proves that on the level of 3-primary parts this extension is trivial, as claimed.

�

§5.6. The spectral sequence for arbitrary (not necessarily prim) cusp maps. There
are classifying spaces for the cobordisms of codimension 1 cooriented arbitrary (not necessarily
prim) Σ1i-maps as well. We denote by Xi = XΣ1i the classifying space of such Σ1i-maps with
the convention that X−1 = ∗. Here we will mostly be interested in X0, X1 and X2. The
filtration X−1 ⊂ X0 ⊂ X1 ⊂ X2 gives again a spectral sequence with E1

i,j = πi+j+1(Xi, Xi−1)
for i = 0, 1, 2, j = 0, 1, . . . . Analogously to the fibrations pi we have fibrations
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• p1 : X1 → ΓT (2ε1 ⊕ γ1) = ΓS2RP∞ with fibre X0

• p2 : X2 → ΓT (3ε1 ⊕ 2γ1) = ΓS3(RP∞/RP 1) with fibre X1 (for the identification of
T (2γ1) and RP∞/RP 1 see e.g. [Hu, Example 1.7, ch. 15]).

Here γ1 and ε1 are the canonical and the trivial line bundles over RP∞, respectively, and T
stands for Thom space (recall that Γ = Ω∞S∞). Note that X0 = X0 = ΓS1.

Observe that the base spaces of pi are different from those of pi. This change is due to the
fact that while the normal bundles of the singularity strata for a prim map are trivial and even
canonically trivialized (see Appendix 2), for arbitrary cooriented codimension 1 Morin maps they
are direct sums of not necessarily trivial line bundles (see [RSz, Theorem 6] and the definition
of GSO that precedes it). The bundles 2ε1 ⊕ γ1 and 3ε1 ⊕ 2γ1 are the universal normal bundles
in the target of the fold and cusp strata respectively.

Proposition 9. a) E1
1,j ∈ C2.

b) E1
i,j
∼= E

1

i,j modulo C2 for i = 0, 2.

Proof. a) Since H∗(RP∞;Zp) = 0 for p odd, the Serre-Hurewicz theorem implies that
πs∗(RP∞) ∈ C2 and therefore

E1
1,j
∼= πj+2(ΓS2RP∞) = πsj (RP∞) ∈ C2.

b) Since the inclusion S2 = RP 2/RP 1 ↪→ RP∞/RP 1 induces isomorphism of Zp-homologies
(the groups H∗(RP∞/RP 2;Zp) all vanish) for p odd, we have

E1
2,j
∼= πj+3(ΓS3(RP∞/RP 1)) ∼=

C2
πj+3(ΓS5) ∼= E

1

2,j .

We also have X0 = X0 and consequently

E1
0,j
∼= E

1

0,j .

�

§5.7. Computation of the cobordism group of (arbitrary) cusp maps.

Proof of Theorem 1. The natural forgetting map E
1

i,j → E1
i,j induces a C2-isomorphism for

i = 0, 2, and E1
1,j ∈ C2. Since the d1 differential is trivial modulo C2 for both spectral sequences,

the map E
2

i,j → E2
i,j is a C2-isomorphism for i = 0, 2.

Hence the differential d2 restricted to the 3-primary part can be identified in the two spectral

sequences, and we obtain that
(
E∞i,j

)
3

=
(
E3
i,j

)
3
∼=
(
E

3

i,j

)
3

for i = 0, 2 (but not for i = 1). The

statement of the theorem follows analogously to Theorem 8. �

Appendix 1: an elementary proof of Lemma 4

In this Appendix we give an elementary and independent proof of the fact that the curve of
folds on the boundary sphere of an isolated cusp map σ2 : R4 → R5 with the natural framing
represents the trivial element in πs(1) = Z2.
σ2 : R4 → R5, σ2(t1, t2, t3, x) = (t1, t2, t3, t1x+ t2x

2, t3x+ x3)

dσ2 =


1 0 0 0
0 1 0 0
0 0 1 0
x x2 0 t1 + 2xt2
0 0 x t3 + 3x2


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The set of singular points of σ2 is Σ = {(−2xt2, t2,−3x2, x) | t2, x ∈ R}, its image is

Σ̃ = σ2(Σ) = {(−2xt2, t2,−3x2,−t2x2,−2x3) | t2, x ∈ R}.

For a point p ∈ R4 \ Σ the vector

n(p) = (−x(t3 + 3x2),−x2(t3 + 3x2), x(t1 + 2xt2), t3 + 3x2,−(t1 + 2xt2))

is non-zero and orthogonal to the columns of dσ2, so it is a normal vector of the immersed
hypersurface σ2(R4 \ Σ) ⊂ R5 at σ2(p).

Σ̃ \ {0} is an embedded surface in R5, and it has a canonical framing:
Through each point p = (−2xt2, t2,−3x2, x) ∈ Σ \ {0} we can define a curve

pε = (−2xt2, t2,−3x2 − ε2, x+ ε)

such that p0 = p, ∂pε
∂ε (0) = (0, 0, 0, 1) ∈ ker dσ2, and σ2(pε) = σ2(p−ε) = qε2 , where

qδ = (−2xt2, t2,−3x2 − δ,−t2(x2 − δ),−2x3 + 2δx).

(Note that by taking this curve for each p we have defined an orientation of the kernel line bundle
of dσ2.)

The first vector of the framing is the tangent vector of the image curve qδ:

v1 =
∂qδ
∂δ

(0) = (0, 0,−1, t2, 2x).

Since σ2(pε) = σ2(p−ε) = qε2 , in this point we have defined two normal vectors of σ2(R4 \Σ),
namely

n(p±ε) = ±ε(−6x2 − 2ε2,−6x3 − 10xε2, 2xt2, 6x,−2t2) + ε2(−8x,−14x2 − 2ε2, 2t2, 2, 0).

The sum and the difference of these vectors are

n(pε) + n(p−ε) = 2ε2(−8x,−14x2 − 2ε2, 2t2, 2, 0) and

n(pε)− n(p−ε) = 2ε(−6x2 − 2ε2,−6x3 − 10xε2, 2xt2, 6x,−2t2).

The last two vectors of the framing are the limits of (the directions of) these vectors:

v2 = (−3x2,−3x3, xt2, 3x,−t2)

v3 = (−4x,−7x2, t2, 1, 0)

The following Claim implies that the framed curve σ2(γ) is null-cobordant (recall that
γ = σ−1

2 (S4) ∩ Σ).

Claim 2. There is a smooth embedding F : D2 =
{

(t2, x) | t22 + x2 ≤ 1
}
→ R5 and a framing

of F (D2) that extends σ2 ◦ i and the canonical framing of Σ̃ \ {0} restricted to σ2 ◦ i(S1), where
i : S1 =

{
(t2, x) | t22 + x2 = 1

}
→ Σ, i(t2, x) = (−2xt2, t2,−3x2, x).

Proof. We define such an F and a framing:

F (t2, x) = (−2xt2, t2,−3x2,−t2x2, 2x(t22 − 1))

v1 = (0, 0,−1, t2, 2x)

v2 = (3− 3t22 − 6x2,−3x3, xt2, 3x,−t2)

v3 = (−4x,−7x2, t2, 1, 0)

These are smooth, and in the case t22 + x2 = 1 they coincide with the previously defined map
and framing. It is easy to check that F is injective. We need to prove that the differential of
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F is injective, and the vectors really form a framing, i.e. that the partial derivatives of F and
v1, v2, v3 are linearly independent. Equivalently, the following matrix should be non-singular:

M =


−2x 1 0 −x2 4xt2
t2 0 3x xt2 1− t22
0 0 −1 t2 2x

3− 3t22 − 6x2 −3x3 xt2 3x −t2
−4x −7x2 t2 1 0


detM = 180x8 + 568x6t22 + 323x4t42 + 120x6 − 197x4t22 + 8x2t42 + 3t62+

51x4 − 12x2t22 − 2t42 + 24x2 − 2t22 + 3

= 50(2x2t22 − x2)2 + 6(xt22 − x)2 + 2(t32 − t2)2 + 2(t22 − 1)2+

180x8 + 568x6t22 + 123x4t42 + 120x6 + 3x4t22 + 2x2t42+

t62 + x4 + 18x2 + 1

> 0.

Therefore M is always non-singular, and the proof is complete. �

Appendix 2: the natural framing on the image of the manifold formed by the
Σ1r -points of a cooriented prim map

Let us consider the map

σr : (R2r, 0)→ (R2r+1, 0),

(t1, . . . , t2r−1, x) 7→ (t1, . . . , t2r−1, z1, z2)

z1 = t1x+ · · ·+ trx
r

z2 = tr+1x+ · · ·+ t2r−1x
r−1 + xr+1

the Morin normal form of a map with an isolated Σ1r -point at 0. Denote by ∆r+1 the set of
(r + 1)-tuple points, i.e. the points {q ∈ R2r+1 : σ−1

r (q) consists of r + 1 different points}, and
let ∆ be the closure of ∆r+1.

Lemma 10. a) The set ∆ is contained in the linear subspace P of R2r+1 of dimension r defined
by the equations z1 = t1 = · · · = tr = 0.

b) Identifying the r-tuple (tr+1, . . . , t2r−1, z2) with the polynomial

−z2 + tr+1x+ · · ·+ t2r−1x
r−1 + xr+1,

the points of ∆ correspond precisely to the polynomials whose roots are all real.

Proof. a) Assume that σr maps the r + 1 different points

pj = (t
(j)
1 , . . . , t

(j)
2r−1, xj), j = 1, . . . , r + 1,

to the same point
q = (t1, . . . , t2r−1, z1, z2).

Then necessarily t
(j)
i = ti for all i = 1, . . . , 2r − 1 and j = 1, . . . , r + 1. Since the points pj are

pairwise different, the values x1, . . . , xr+1 are also pairwise different. But they are roots of the
polynomial

−z1 + t1x+ · · ·+ trx
r,

which has degree at most r, hence this polynomial must identically vanish. Consequently we
have z1 = t1 = · · · = tr = 0 on ∆r+1 and therefore also on ∆ as claimed.
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b) As in part a), in the preimage of ∆r+1 the coordinates x1, . . . , xr+1 are the roots of the
polynomial

−z2 + tr+1x+ · · ·+ t2r−1x
r−1 + xr+1.

This immediately implies part b) since for any polynomial that corresponds to a point in ∆ any
sum-preserving perturbation of its (real) roots that makes them distinct gives a polynomial that
corresponds to a point in ∆r+1. �

In the next lemma we describe ∆ by identifying it with the orthant

Rr∠ = {(u1, . . . , ur) : uj ≥ 0 for all j = 1, . . . , r}.

Moreover, we relate the natural stratification on P – where strata are sets of polynomials with
the same multiplicities of the ordered roots – to that on Rr∠, where the strata are the faces.

Lemma 11. ∆ is homeomorphic to the orthant Rr∠, and a homeomorphism ϕ : Rr∠ → ∆ can be

chosen to map the natural stratification of Rr∠ bijectively onto that of ∆ inherited from P, and
to be a diffeomorphism from each stratum onto the corresponding stratum.

Proof. For any point (u1, . . . , ur) ∈ Rr define real numbers x1, . . . , xr+1 in such a way that

xj+1 − xj = uj for all j = 1, . . . , r and
∑r+1
j=1 xj = 0; denote the resulting (injective linear) map

u = (u1, . . . , ur) 7→ x = (x1, . . . , xr+1) by A. Using the identification of Lemma 10 b), define
ϕ : Rr∠ → ∆ by sending (u1, . . . , ur) to the polynomial that has roots x1, . . . , xr+1. This map is
clearly a homeomorphism, we only need to show that ϕ maps strata onto strata diffeomorphically.

For computational reasons, we extend ϕ to a map Φ : Rr+1 → Rr+1 by mapping the point
(u1, . . . , ur, δ) to the coefficients of the monic polynomial with roots x1 + 1

r+1δ, . . . , xr+1 + 1
r+1δ.

Then ϕ(u) can be identified with Φ(u, 0) and to prove our claim it is enough to show that Φ
is a diffeomorphism from the strata of Rr∠ × R onto their images. It is clear that Φ maps the
strata of Rr∠ × R homeomorphically onto their images, we only need to show that the rank of
derivative at any point of an s-dimensional stratum is s.

To do this, we write Φ as the composition

Φ = E ◦ Ã,

where the linear map Ã is defined as

Ã(u, δ) = −Au− 1

r + 1
(δ, . . . , δ)

and E : Rr+1 → Rr+1 is the map whose jth coordinate function is the jth elementary symmetric
function:

E(x1, . . . , xr+1) =
(
e1(x1, . . . , xr+1), . . . , er+1(x1, . . . , xr+1)

)
.

The map Ã is a linear isomorphism, composing with it does not change the rank of the differential,
therefore it is enough to show that the differential of E has maximal rank when restricted to the
strata of Ã(Rr∠ × R). Note that these strata have the form

S(a1, . . . , as−1) = {(x1, . . . , xr+1) : x1 = · · · = xa1−1 <

<xa1 = · · · = xa2−1 <

< · · · < xas−1 = · · · = xr+1}

for some s ≥ 1 and an index set 1 < a1 < a2 < · · · < as−1 ≤ r + 1 (so that in particular
dimS(a1, . . . , as−1) = s).

The following claim is easily proved by induction on r:
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ϕ

R2
∠

∆3

σ2|t1=0,t2=0

Figure 1. The homeomorphism ϕ for r = 2.

Claim 3. The Jacobi matrix of E at the point x = (x1, . . . , xr+1) is

J(x) =


1 . . . 1 . . . 1

e1(x2, . . . , xr+1) . . . e1(. . . , xj−1, xj+1, . . . ) . . . e1(x1, . . . , xr)
e2(x2, . . . , xr+1) . . . e2(. . . , xj−1, xj+1, . . . ) . . . e2(x1, . . . , xr)

...
...

...
er(x2, . . . , xr+1) . . . er(. . . , xj−1, xj+1, . . . ) . . . er(x1, . . . , xr)

 .
Its determinant is

∏
1≤i<j≤r+1(xi − xj).

In particular, this matrix is nondegenerate if the xj are pairwise different. To estimate the
rank of the differential of E restricted to S(a1, . . . , as−1) at a point x ∈ S(a1, . . . , as−1), notice
that the columns of J(x) with indices i and j coincide if xi = xj , therefore rank dE(x) ≤ s. On
the other hand, the columns with indices 1, a1, . . . , as−1 are linearly independent – the minor
formed by the first s rows of these columns can be calculated to be nonzero in the same way as
in Claim 3. Hence rank dE(x) = s and we get that the kernel of dE(x) is spanned by the vectors
ui − uj for those i and j for which xi = xj , where ul denotes the lth unit coordinate vector.
All these vectors are orthogonal to S(a1, . . . , as−1), consequently their span is also transverse
to S(a1, . . . , as−1) and hence the restriction of E to S(a1, . . . , as−1) has full rank because its
differential is the restriction of the differential dE to the tangent space of S(a1, . . . , as−1). �

We want to show that ∆ has a (homotopically) canonical parallelization. Clearly any home-
omorphism ϕ that is a diffeomorphism on the strata does give a parallelization induced from
Rr∠. But there are many possible choices of ϕ (even up to isotopy), and to obtain a paral-

lelization along the whole ∆ that does not depend on the choice of local coordinates we need
to show that there is a canonical (unique up to isotopy) such choice. For this purpose it is
enough to show that there is a canonical ordering of the 1-dimensional edges of ∆, because
if ϕ respects the ordering of the edges (and it can be chosen to do so), then it is isotopi-
cally unique. We shall consider σr as a prim map, namely the projection of the immersion
(t1, . . . , t2r−1, x) 7→ (σr(t1, . . . , t2r−1, x), x) ∈ R2r+2. This gives an ordering of the preimages
of multiple points: for an (r + 1)-tuple point with preimages a1, . . . , ar+1 we assume that the
indexing is such that i < j if and only if x(ai) < x(aj). If we choose a sequence (qn) ∈ ∆

converging to a point q ∈ ∆ \ 0 that lies on a 1-dimensional edge, then the σr-preimages of the

(r+ 1)-tuple points σ−1
r (qn) = {a(n)

1 , . . . , a
(n)
r+1} degenerate in the limit in the sense that there is

an integer s, 1 ≤ s ≤ r and there are two different points a and a with x(a) < x(a) such that

lim
n→∞

a
(n)
i = a for i = 1, . . . , s while lim

n→∞
a

(n)
i = a for i = s + 1, . . . , r + 1. Hence to each edge
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we can associate an integer s, 1 ≤ s ≤ r, and thus we obtain an ordering of the edges of ∆. We
choose the map ϕ in such a way that it respects the ordering of the edges.

Note that any automorphism of σr as a prim map keeps the ordering of the edges of ∆. We call
a pair (α, β) of germs of diffeomorphisms α : (R2r, 0)→ (R2r, 0) and β : (R2r+1, 0)→ (R2r+1, 0)
a prim automorphism of the prim germ σr = π ◦ σ̂r : (R2r, 0) # (R2r+2, 0) → (R2r+1, 0) if in
addition to being an automorphism of σr (that is, σr ◦ α = β ◦ σr) it preserves the selected
orientation of ker dσr(0), i.e. the partial derivative of the 2rth coordinate function of α with
respect to x is positive (recall that ∂σr

∂x (0) = 0).

Let now g : Mn # Rn+2 be an immersion, where M is a compact oriented n-dimensional
manifold. Let f be the prim map f = π ◦ g, with π : Rn+2 → Rn+1 the projection that omits
the last coordinate xn+2 in Rn+2. Suppose that f is a Σ1r -map, that is, it has no Σ1j points for
j > r. The set of Σ1r -points of f will be denoted by Σ1r (f), or Σ for brevity. It is a submanifold

of M of dimension n − 2r. Its image f(Σ1r (f)) (denoted by Σ̃) is an immersed submanifold in

Rn+1 and has codimension 2r+ 1. We claim that Σ̃ has a natural normal framing, unique up to
homotopy. To simplify the presentation of the proof, we will suppose that Σ̃ is embedded into
Rn+1.

There is an embedding θ : Σ × (−ε, ε) ↪→ Rn+1 (for some small positive number ε), unique
up to isotopy, such that

• θ(x, 0) = f(x) for all x ∈ Σ,
• θ(x, t) is an (r + 1)-tuple point of f for all 0 < t < ε.

Choose any t∗ ∈ (0, ε) and denote by Σ∗ the image set θ(Σ× {t∗}). Clearly it is enough to give
a canonical normal framing of Σ∗. Let ∆r+1(f) denote the set of (r + 1)-tuple points of f that

lie in a tubular neighbourhood of Σ̃ and let ∆r+1(f) be its relative closure. There is a fibration

∆r+1(f)→ Σ∗ with fiber ∆.
The normal bundle of Σ∗ in Rn+1 is the sum of its normal bundle in ∆r+1(f) and the

restriction of the normal bundle of ∆r+1(f) in Rn+1 to Σ∗. The latter bundle is trivial, because
it is the sum of the trivial normal line bundles of the (r + 1) non-singular branches of f that
intersect at the points of ∆r+1(f) (and these branches have a canonical ordering by the last
coordinate of g). The former bundle is trivial because there exists a canonical parallelization of
∆ that is (homotopically) invariant under the prim automorphisms of σr.

In general, when Σ̃ is not embedded, we need to consider only the preimages of multiple points
that are close to the singular points in the source manifold to make the same argument work.

Alternatively, one can notice that the structure group of the bundle ∆r+1(f)
∆→ Σ∗ can be

reduced to the maximal compact subgroup of the group of automorphisms of σr that also respect
the orientation of the kernel of dσr, and that group is trivial [RSz]. Consequently the normal
bundle of Σ∗ in ∆r+1(f) has a homotopically unique trivialization. We have seen above that
the normal bundle of ∆r+1(f) admits a canonical trivialization as well. Therefore we get a
(homotopically unique) normal framing of Σ∗.

Appendix 3: Proof of the Compression Theorem

Throughout the proof we will assume that all the vector fields vj have unit length and are
pairwise orthogonal. To see that this can be achieved, assume that in the process of the proof

an isotopy Φ̃t has already been constructed but it does not satisfy our assumption; we will now
correct it to make it preserve the lengths and the pairwise orthogonality of the fields vj . Let
A(t, p) for all t ∈ R and p ∈ i(M) be the (unique) linear transformation of the linear space

N(t, p) = 〈dΦ̃t(v1(p)), . . . , dΦ̃t(vk(p))〉 that sends the base dΦ̃t(v1(p)), . . . , dΦ̃t(vk(p)) to the
orthonormed base obtained from it by the Gram-Schmidt orthonormalization process. There
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exists an orthonorming isotopy Ot of Rn ×Rk that fixes i(M) and the complement of a tubular
neighbourhood of i(M) pointwise such that for all p ∈ i(M) it maps a small disk of the affine

space p+N(0, p) into the same affine space by the affine transformation dΦ̃−1
t |Φt(p)◦A(t, p)◦dΦ̃t|p.

Defining Φt = Φ̃t ◦ Ot yields the claimed isotopy. It is easy to check that this construction can
be performed in such a way as to respect the extra requirements of statements b) and d) of
Theorem 2 – the details are mentioned at the corresponding points of the proof. Repeating this
process every time a new isotopy is introduced ensures that the fields vj stay pairwise orthogonal
throughout the construction.

We first address the case k = 1, when we have an embedding i : M ↪→ Rn × R1. For brevity
the unit normal vector field v1 will be denoted by v, the vector e1 will be denoted by ↑ and ↓
will be the vector −e1. We think of the direction of 0 × R1 as vertical, and those in Rn × 0 as
horizontal. We may and will assume that v is perpendicular to i(M) (but it may not remain so
during the constructed isotopy).

Case k = 1, n > m.
Step 1: construct a diffeomorphism Ψ ∈ Diff(Rn×R1) in order to obtain the reparametriza-

tion i′ = Ψ ◦ i such that

• the image dΨ(v) of v under the differential of Ψ – we denote it by w – is orthogonal to
i′(M) and grounded, that is, w is never directed parallel to ↓;

• Ψ is the identity outside a compact subset of Rn × R1.

We perform the construction by taking the flow Ψt of a vector field θ on Rn × R1 and setting
Ψ = Ψε for a suitably chosen ε > 0; we start by constructing θ. Since m < n, the image of
v in the unit sphere Sn has measure zero. Consequently, for almost every horizontal direction
h ∈ Sn−1 ↪→ Sn the arc {cosλ · ↓ + sinλ · h : λ ∈ [0, π]} intersects the image of v in a null
set according to the 1-dimensional Lebesgue measure. Taking such an h, let R denote the
rotation of Rn × R1 that turns h into ↓ and is the identity on the orthogonal complement of
the 2-dimensional linear subspace spanned by ↓ and h. Let the vector field θ be equal to the
infinitesimal generator of R in a tubular neighbourhood V of i(M) and extend it arbitrarily
to a smooth vector field on Rn × R1 that vanishes outside a compact set. For all sufficiently
small ε > 0 the time-ε flow of the vector field θ will keep the points of i(M) within the tubular
neighbourhood V , hence the vector field v will be moved to Rεv and for almost all such ε the
rotated vector field Rεv will miss ↓. Note that the diffeomorphism Ψ preserves the orthogonality
of v to the tangent space of M (i.e. w ⊥ i′(M)).

Step 2: denote by b the inner bisector vector field (along i′(M)) of ↑ and w. Note that

a) b nowhere belongs to the tangent bundle T (i′(M));
b) the scalar product 〈b,↑〉 is everywhere positive.

In this step we construct an isotopy Ξt ∈ Diff(Rn × R1), t ∈ R such that

(i) Ξ0 is the identity;
(ii) for some t∗ > 0 the image dΞt∗(b) of b under dΞt∗ is ↑;
(iii) Ξt∗+t(x) = Ξt∗(x) + t · ↑ for all t > 0 and for all x ∈ Rn × R1.

We proceed like in [RS], by extending the vector field b given on i′(M) to a vector field b on
Rn × R1 in such a way that b also satisfies 〈b,↑〉 > δ > 0 everywhere for some δ > 0 and

b = ↑ holds outside a tubular neighbourhood V ′ of i′(M). Let Ξ̃t be the 1-parameter family

of diffeomorphisms generated by the vector field b; note that Ξ̃t satisfies properties (i) and (ii),
while property (iii) holds for x ∈ i′(M) but not everywhere else. In order to define Ξt that also
satisfies property (iii) we choose a function ϕ : [0,∞)→ [0, 1] such that

• ϕ(t) = 1 for all t for which Ξ̃t(i
′(M)) ∩ V ′ 6= ∅, and
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• ϕ(t) = 0 for all t ≥ t∗ for some t∗ > 0.

We define Ξt to be the 1-parameter family of diffeomorphisms generated by the vector field
b̂t = ϕ(t) · b + (1− ϕ(t)) · ↑.

Since in a neighbourhood of Ξ̃t(i
′(M)) the vector fields b and b̂t coincide, so do the flows Ξ̃t

and Ξt in a neighbourhood of i′(M). This ensures that Ξt still satisfies properties (i) and (ii),

and property (iii) holds by the definition of b̂t.
Step 3: construct another isotopy Θt ∈ Diff(Rn × R1), t ∈ [0, 1] (with Θ0 the identity) that

keeps i′(M) fixed pointwise and turns the vector w into b. First, we set wτ , τ ∈ [0, 1] to be the
vector field on i′(M) obtained by smoothly rotating w = w0 into b = w1 along the shortest arc
connecting them, staying constant in neighbourhoods of τ = 0 and of τ = 1, respectively. Since
w is orthogonal to i′(M) and b forms an acute angle with w, the vector field wτ is not tangent
to i′(M) for any τ ∈ [0, 1]. Consequently the map

Iτ : M × [0, 1]→ Rn+1

(p, s) 7→ i′(p) + ετ · s · wτ (i′(p))

is an embedding for every τ for some sufficiently small ετ > 0.
By compactness of the interval [0, 1] there is a common ε > 0 such that Iτ is an embedding

for all τ with the choice ετ = ε. Then Iτ is an isotopy of embeddings of the cylinder M × [0, 1]
as τ changes from 0 to 1. This isotopy can be extended to an isotopy of Rn × R1, which we
denote by Θt; since wτ stayed constant in a neighbourhood of τ = 1, we may assume that Θt

also stays constant in a neighbourhood of t = 1. The isotopy Θt can then be extended to all
times t ∈ [0,∞) by putting Θt = Θ1 for t > 1.

Step 4: we compose the isotopies constructed in the previous steps:

Φt = Ψ−1 ◦ Ξt ◦Θt ◦Ψ.

We claim that for t sufficiently big this isotopy will turn the vector field v into the constant
vector field ↑. Indeed, Ψ sends v to w; for t sufficiently big Θt sends w into b; and Ξt sends
b into ↑. Additionally, Ξt ◦ Θt|i′(M) = Ξt|i′(M) moves the image of M at a constant nonzero
velocity for t > t∗. In finite time it leaves the compact set where Ψ differs from the identity
map. Therefore Ψ−1 is the identity on the image of Ξt ◦Θt ◦Ψ ◦ i for t big enough. That is, the
image of v under Φt is eventually ↑.

We need to show that the map (p, t) 7→ Φt(i(p)) is an immersion of M × [0,∞) into Rn ×R1.
Let p ∈ M be an arbitrary point and consider the image of the ray p × [0,∞): it is the curve
Ψ−1 (Ξt (Θt (Ψ (i(p))))) = Ψ−1 (Ξt (Θt (i′(p)))). The isotopy Θt keeps i′(p) fixed, and the curve

Ξt(i
′(p)) (= Ξ̃t(i

′(p))) is the trajectory of the point i′(p) under the (time-independent) flow of the
vector field b. The derivative of this trajectory at the starting point i′(p) is b(p), a vector linearly
independent of Ti′(p)i

′(M), hence the same independence condition holds for the images under

Ξt at any time t > 0. A final composition with the diffeomorphism Ψ−1 keeps the condition
intact.

Case k = 1, n = m. Since M has no closed components, there is an (n − 1)-dimensional
compact subcomplex K in M such that for any neighbourhood U of K there is an isotopy αUτ ,
τ ∈ [0, 1] of M that deforms M into U , i.e. αU0 = idM and αU1 (M) ⊂ U . The neighbourhood U
will be chosen later and ατ will denote the isotopy corresponding to that choice of U .

We consider the compressing procedure (turning v to ↑) of the case n > m on the subcomplex

K. The result is an isotopy Φ̂t such that for some t∗ and for all t ≥ t∗

• dΦ̂t(v) = ↑ holds on K;

• Φ̂t(p) = Φ̂t∗(p) + (t− t∗) · ↑ holds for all p ∈ K;
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• for a neighbourhood N of K in M the restriction of the isotopy to the image i(N ) is an
immersion of the infinite cylinder N × [0,∞).

Since on K the image dΦ̂t∗(v) = ↑ does not belong to the tangent space T Φ̂t∗(i(M)), there is
neighbourhood U ⊂ N of K in M such that in the closure of U the shortest arc connecting the
image dΦ̂t∗(v|i(U)) with ↑ does not intersect T Φ̂t∗(i(M)). This neighbourhood U will be the one

defining ατ . We also consider the following extension ατ of ατ to the cylinder M × [0, 1] in the
ambient space Rn × R1:

ατ (p, s) = i(ατ (p)) + ε · s · v(i(ατ (p))) for p ∈M, s ∈ [0, 1]

for an ε > 0 small enough so that α0 (and consequently every ατ ) is an embedding, and extend
it to an isotopy α̃τ of Rn × R1. It can be supposed that α̃τ is the identity outside a compact
set B ⊂ Rn × R1. By increasing t∗ if needed we may also assume that for all t ≥ t∗ we have
Φ̂t(i(M)) ∩B = ∅.

In the neighbourhood U we can again repeat the argument of Step 3 to obtain an isotopy Λt,
t ≥ 0 of the identity of Rn × R1 that fixes i(M) pointwise, turns v into dΦ̂−1

t∗ (↑)|i(U) and stays

constant Λt = Λt∗ for t ≥ t∗. We can now define the isotopy

Φt = α̃−1
1 ◦ Φ̂t ◦ Λt ◦ α̃1.

This isotopy will send v to ↑ for t ≥ t∗ (for t ≥ t∗ the image Φ̂t(i(M)) is disjoint from B, hence

α̃−1
1 is the identity near Φ̂t(i(M))), and on i(M) we have that Φt = α̃−1

1 ◦Φ̂t◦Λt◦α̃1 = α̃−1
1 ◦Φ̂t◦α̃1

is a reparametrization of Φ̂t|i(U), hence the restriction of the obtained isotopy to i(M) is an
immersion of the cylinder M × [0,∞) as required.

Case k > 1. Here we perform the construction in two steps, first straightening out the
vector field v1 as detailed above both when n = m and when n > m, and then utilizing differ-
ent corollaries of the original Rourke-Sanderson compression theorem appropriate for the cases
n = m and n > m to straighten the rest of the normal vector fields. In the first step we obtain

an isotopy Φ
(0)
t such that for some t∗ and all t > t∗ we have Φ

(0)
t (p) = Φ

(0)
t∗ (p) + (t− t∗)e1 for all

p ∈ Rn ×Rk and dΦ
(0)
t (v1) = e1, while the restriction of the isotopy to i(M) is an immersion of

the cylinder M × [0,∞). Then we apply [RS, Multi-compression Theorem 4.5] when n > m and

[RS, Addendum (v) to Multi-compression Theorem 4.5] when n = m to the composition Φ
(0)
t∗ ◦ i

and obtain an isotopy Φ
(1)
t , t ∈ [0, t1], such that it straightens the images of all the vector fields

v1, . . . , vk. By construction the isotopy Φ
(1)
t |Φ(0)

t∗ (i(M))
is a lift of a C0-small regular homotopy

Φ̌t of the projection of Φ
(0)
t∗ (i(M)) parallel to e1, hence we can choose this lift to be locally of

the form Φ̌t × id〈e1〉 and consequently preserve the first coordinate function as well as the v1

direction.
By reparametrizing time we may assume that Φ

(1)
t can be extended smoothly to all t ∈ R

as the identity for all t < 0 and as a time-independent diffeomorphism for all t > t∗, and by

multiplying the time-dependent generating vector field
∂Φ

(1)
t

∂t by an appropriate bump function

we may also assume that Φ
(1)
t only moves points within a compact subset of Rn × Rk.

We define

(♦) Φt(p) =

{
Φ

(0)
t (p) if t ≤ t∗,

Φ
(1)
t−t∗(Φ

(0)
t∗ (p)) + (t− t∗)e1 if t ≥ t∗.

This is an isotopy that straightens all the vector fields v1, . . . , vk, we only need to check that its
restriction to i(M) is an immersion of the cylinder M × [0,∞). For times t ≤ t∗ this is already



SINGULARITIES AND STABLE HOMOTOPY GROUPS OF SPHERES. I 25

proven above in the k = 1 case. For t ≥ t∗ and all p ∈ i(M) we have

∂Φt(p)

∂t
=
∂Φ

(1)
t−t∗(Φ

(0)
t∗ (p))

∂t
+ e1,

and this is not in the tangent space of Φt(i(M)) exactly if the image of
∂Φ

(1)

t−t∗ (Φ
(0)

t∗ (p))

∂t avoids
−e1 +dΦt(di(TM)). This latter condition can be achieved by a linear reparametrization of time

in Φ
(1)
t : we can slow down Φ

(1)
t by a sufficiently small factor ε > 0 so that the length of the

derivative
∂Φ

(1)
εt

∂t becomes always less than the minimum of the distance between e1 and im dΦt

on i(M) – this latter is positive since the projection of Φ
(1)
t parallel to the e1 direction is a

regular homotopy of the projection of Φ
(0)
t∗ (i(M)).

For part b) of Theorem 2 we proceed in the same way: first we straighten the vector field v̂
for some ̂ 6∈ I (if I = {1, . . . , k}, then we are already done). Next we apply [RS, Addendum (vi)

to Multi-compression Theorem 4.5] to the projection of Φ
(0)
t∗ (i(M)) parallel to the linear span

〈eh : h ∈ I ∪ {̂}〉 and obtain a regular homotopy of this projection. We choose an isotopy lift

Φ
(1)
t of the obtained regular homotopy that keeps coordinates with indices in I ∪ {̂} fixed and

combine it with the constant speed shift in the e̂ direction as given by (♦) (with e̂ substituted
for e1). This yields an isotopy Φt that straightens all the vector fields v1, . . . , vk and keeps the
coordinates that belong to I fixed. Therefore we only need to perform the straightening of the
vector field v̂ in a manner that satisfies the requirements of part b) of the theorem. In order to
keep unchanged the coordinates that belong to I, all the vector fields that generate the isotopies
forming the final isotopy Φt will be tangent to the orthogonal complement of the linear span of
ej , the linear space W = WI = 〈ej : j ∈ I〉⊥:

• In Step 1, the vector field v̂ lies in the (n+ k − |I| − 1)-dimensional unit sphere of the
linear space W , and we can make it miss the ↓ direction by a small move parallel to W .

• Step 2 can be performed so that the isotopy Ξt preserves parallel translates of W since
v̂ and its target state e̂ are both parallel to W .

• Step 3 can be performed so that the isotopy Θt preserves parallel translates of W since
both v̂ and b are parallel to W .

• The orthonorming isotopy Ot mentioned in the beginning of Appendix 3 is constructed as
an extension of an isotopy that acts affinely on normal disks of i(M). Each of these affine
transformations fixes a point in i(M) and has a linear part that is a composition of the
differential of Φt, its inverse map and the maps A(t, p); all of these linear maps preserve
W if the Gram-Schmidt orthogonalization process is run on the vj with j ∈ I first.
Hence Ot is an extension of an isotopy that preserves translates of W and can therefore
be chosen to preserve translates of W itself. Consequently the corrected isotopy Φt ◦Ot
will preserve translates of W as well.

If, in the course of the proof, instead of di(TpM) we use its orthogonal projection onto W ,
(di(TpM) +W⊥) ∩ (W + i(p)), then not only will the map (p, t) 7→ Φt(i(p)) be an immersion of
M × [0,∞), but the map

(p, (xj)j∈I , t) 7→ Φt(i(p)) +
∑
j∈I

xj · vj

will be an immersion of M ×D|I|ε × [0,∞) for some sufficiently small positive ε.
The relative version of Theorem 2 only requires substantial adaption of Steps 1 and 2 of

the proof – in Step 3, we only have to additionally require that Θt is the identity on L× Rk at
all times, and in the construction of Ot (see the beginning of Appendix 3) we have to require
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that Ot should be the identity on a neighbourhood of L×Rk. We shall again consider only the
field v1, which we denote by v. If the vector field v is grounded (v 6= ↓ everywhere) then Step
1 can be skipped (setting Ψ = idRn×R1) and no further change in the proof is needed. If the
subset {p ∈ M : v(i(p)) = ↓} is non-empty, then we need to modify the definition of the vector
field θ in Step 1 since its flow does not necessarily preserve v on L×R1. We choose θ to satisfy
the following for some positive δ < π/6 (∠ stands for angle):

• θ is the infinitesimal generator of the rotation R (chosen as in the m < n case) on a
neighbourhood of the set

U = {p ∈M : ∠(v(i(p)),↑) ≥ δ};

• θ = 0 outside a compact set;
• θ = 0 in a neighbourhood of L× R1.

While this θ no longer preserves orthogonality, taking a sufficiently small ε in the construction
of Ψ = Ψε will make Ψ

• preserve orthogonality on i(U );
• change direction of all vectors by less than δ;
• act as the identity in a neighbourhood of L× R1.

Hence the image of v under Ψ (again denoted by w) will still miss ↓ – at points in U the
diffeomorphism Ψ is the fixed rotation Rε and at points outside U a rotation of an angle less
than δ cannot turn them into the lower hemisphere {z ∈ Sn : 〈z,↑〉 < 0}. On L×R1 the vector
fields v and w coincide. We now define the vector field b to be the inner bisector of ↑ and w
as in Step 2; once its property a) is verified, the rest of the proof will proceed without change
(property b) holds trivially).

To check condition a) of Step 2, first note that for any vector w 6= ↓ the new vector b forms an
acute angle with w, hence the condition is satisfied on U , where w is orthogonal to M . Outside
U the angle ∠(w,↑) is less than 2δ since Ψ changed all angles by at most δ. At these points
the angle ∠(b, w) is at most δ, hence b(i′(p)) and v(i(p)) form an angle of at most δ+ δ = 2δ for
all p ∈ M \U . Since the tangent space of i(M) was also rotated by Ψ by an angle less than δ,
the vector field b and Ti′(M) form a strictly positive angle as required by condition a) since we
chose δ < π/6.
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András Szűcs, Department of Analysis, Eötvös Loránd University (ELTE), Budapest, Pázmány P.
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