STRATIFIED CRITICAL POINTS ON THE REAL MILNOR FIBRE AND INTEGRAL-GEOMETRIC FORMULAS

NICOLAS DUTERTRE

Dedicated to professor David Trotman on his 60th birthday

ABSTRACT. Let $(X,0)\subset (\mathbb{R}^n,0)$ be the germ of a closed subanalytic set and consider two subanalytic functions f and $g:(X,0)\to (\mathbb{R},0)$. Under some conditions, we relate the critical points of g on the real Milnor fibre $f^{-1}(\delta)\cap B_\epsilon, 0<|\delta|\ll\epsilon\ll 1$, to the topology of this fibre and other related subanalytic sets. As an application, when g is a generic linear function, we obtain an "asymptotic" Gauss-Bonnet formula for the real Milnor fibre of f. From this Gauss-Bonnet formula, we deduce "infinitesimal" linear kinematic formulas.

1. Introduction

Let $F = (f_1, \ldots, f_k) : (\mathbb{C}^n, 0) \to (\mathbb{C}^k, 0), 2 \le k \le n$, be a complete intersection with isolated singularity. The Lê-Greuel formula [21, 22] states that

$$\mu(F') + \mu(F) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{\mathbb{C}^n,0}}{I},$$

where $F':(\mathbb{C}^n,0)\to(\mathbb{C}^{k-1},0)$ is the map with components f_1,\ldots,f_{k-1},I is the ideal generated by f_1,\ldots,f_{k-1} and the $(k\times k)$ -minors $\frac{\partial(f_1,\ldots,f_k)}{\partial(x_{i_1},\ldots,x_{i_k})}$ and $\mu(F)$ (resp. $\mu(F')$) is the Milnor number of F (resp. F'). Hence the Lê-Greuel formula gives an algebraic characterization of a topological data, namely the sum of two Milnor numbers. However, since the right-hand side of the above equality is equal to the number of critical points of f_k , counted with multiplicity, on the Milnor fibre of F', the Lê-Greuel formula can be also viewed as a topological characterization of this number of critical points.

Many works have been devoted to the search of a real version of the Lê-Greuel formula. Let us recall them briefly. We consider an analytic map-germ $F = (f_1, \ldots, f_k) : (\mathbb{R}^n, 0) \to (\mathbb{R}^k, 0), 2 \le k \le n$, and we denote by F' the map-germ $(f_1, \ldots, f_{k-1}) : (\mathbb{R}^n, 0) \to (\mathbb{R}^{k-1}, 0)$. Some authors investigated the following difference:

$$D_{\delta,\delta'} = \chi \big(F'^{-1}(\delta) \cap \{ f_k \ge \delta' \} \cap B_{\epsilon} \big) - \chi \big(F'^{-1}(\delta) \cap \{ f_k \le \delta' \} \cap B_{\epsilon} \big),$$

where (δ, δ') is a regular value of F such that $0 \le |\delta'| \ll |\delta| \ll \epsilon$.

In [12], we proved that

$$D_{\delta,\delta'} \equiv \dim_{\mathbb{R}} \frac{\mathcal{O}_{\mathbb{R}^n,0}}{I} \bmod 2,$$

where $\mathcal{O}_{\mathbb{R}^n,0}$ is the ring of analytic function-germs at the origin and I is the ideal generated by f_1,\ldots,f_{k-1} and all the $k\times k$ minors $\frac{\partial(f_k,f_1,\ldots,f_{k-1})}{\partial(x_{i_1},\ldots,x_{i_k})}$. This is only a mod 2 relation and we may ask if it is possible to get a more precise relation.

When k = n and $f_k = x_1^2 + \cdots + x_n^2$, according to Aoki et al. ([1], [3]),

$$D_{\delta,0} = \chi(F'^{-1}(\delta) \cap B_{\varepsilon}) = 2\deg_0 H$$

and $2\deg_0 H$ is the number of semi-branches of $F'^{-1}(0)$, where

$$H = \left(\frac{\partial(f_n, f_1, \dots, f_{n-1})}{\partial(x_1, \dots, x_n)}, f_1, \dots, f_{n-1}\right).$$

They proved a similar formula in the case $f_k = x_n$ in [2] and Szafraniec generalized all these results to any f_k in [23].

When k = 2 and $f_2 = x_1$, Fukui [18] stated that

$$D_{\delta,0} = -\operatorname{sign}(-\delta)^n \operatorname{deg}_0 H,$$

where $H = (f_1, \frac{\partial f_1}{\partial x_2}, \dots, \frac{\partial f_1}{\partial x_n})$. Several generalizations of Fukui's formula are given in [19], [11], [20] and [13].

In all these papers, the general idea is to count algebraically the critical points of a Morse perturbation of f_k on $F'^{-1}(\delta) \cap B_{\epsilon}$ and to express this sum in two ways: as a difference of Euler characteristics and as a topological degree. Using the Eisenbud-Levine formula [16], this latter degree can be expressed as a signature of a quadratic form and so, we obtain an algebraic expression for $D_{\delta,\delta'}$.

In this paper, we give a real and stratified version of the Lê-Greuel formula. We restrict ourselves to the topological aspect and relate a sum of indices of critical points on a real Milnor fibre to some Euler characteristics (this is also the point of view adopted in [7]). More precisely, we consider a germ of a closed subanalytic set $(X,0) \subset (\mathbb{R}^n,0)$ and a subanalytic function $f:(X,0)\to (\mathbb{R},0)$. We assume that X is contained in a open set U of \mathbb{R}^n and that f is the restriction to X of a C^2 -subanalytic function $F:U\to\mathbb{R}$. We denote by X^f the set $f^{-1}(0)$ and we equip X with a Thom stratification adapted to X^f . If $0<|\delta|\ll\epsilon\ll 1$ then the real Milnor fibre of f is defined by

$$M_f^{\delta,\epsilon} = f^{-1}(\delta) \cap X \cap B_{\epsilon}.$$

We consider another subanalytic function $g:(X,0)\to(\mathbb{R},0)$ and we assume that it is the restriction to X of a C^2 -subanalytic function $G:U\to\mathbb{R}$. We denote by X^g the set $g^{-1}(0)$. Under two conditions on g, we study the topological behaviour of $g_{|M^{\delta,\epsilon}}$.

We recall that if $Z \subset \mathbb{R}^n$ is a closed subanalytic set, equipped with a Whitney stratification and $p \in Z$ is an isolated critical point of a subanalytic function $\phi : Z \to \mathbb{R}$, restriction to Z of a C^2 -subanalytic function Φ , then the index of ϕ at p is defined as follows:

$$\operatorname{ind}(\phi, Z, p) = 1 - \chi(Z \cap \{\phi = \phi(p) - \eta\} \cap B_{\epsilon}(p)),$$

where $0 < \eta \ll \epsilon \ll 1$ and $B_{\epsilon}(p)$ is the closed ball of radius ϵ centered at p. Let $p_1^{\delta,\epsilon}, \ldots, p_r^{\delta,\epsilon}$ be the critical points of g on $f^{-1}(\delta) \cap \mathring{B}_{\epsilon}$, where \mathring{B}_{ϵ} denotes the open ball of radius ϵ . We set

$$I(\delta, \epsilon, g) = \sum_{i=1}^{r} \operatorname{ind}(g, f^{-1}(\delta), p_i^{\delta, \epsilon}),$$

$$I(\delta, \epsilon, -g) = \sum_{i=1}^{r} \operatorname{ind}(-g, f^{-1}(\delta), p_i^{\delta, \epsilon}).$$

Our main theorem (Theorem 3.10) is the following:

$$I(\delta,\epsilon,g) + I(\delta,\epsilon,-g) = 2\chi(M_f^{\delta,\epsilon}) - \chi(f^{-1}(\delta) \cap S_{\epsilon}) - \chi(X^g \cap f^{-1}(\delta) \cap S_{\epsilon}).$$

As a corollary (Corollary 3.11), when $f:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0, we obtain that

$$I(\delta,\epsilon,g) + I(\delta,\epsilon,-g) = 2\chi(M_f^{\delta,\epsilon}) - \chi(\operatorname{Lk}(X^f)) - \chi(\operatorname{Lk}(X^f \cap X^g)),$$

where Lk(-) denotes the link at the origin.

Then we apply these results when g is a generic linear form to get an asymptotic Gauss-Bonnet formula for $M_f^{\delta,\epsilon}$ (Theorem 4.5). In the last section, we use this asymptotic Gauss-Bonnet formula to prove infinitesimal linear kinematic formulas for closed subanalytic germs (Theorem 5.5), that generalize the Cauchy-Crofton formula for the density due to Comte [8].

The paper is organized as follows. In Section 2, we prove several lemmas about critical points on the link of a subanalytic set. Section 3 contains real stratified versions of the Lê-Greuel formula. In Section 4, we establish the asymptotic Gauss-Bonnet formula and in Section 5, the infinitesimal linear kinematic formulas.

The author is grateful to Vincent Grandjean for a very useful discussion on generic distance functions and to the referee for the valuable suggested improvements.

The author is partially supported by the program

"Catédras Lévi-Strauss-USP/French Embassy, no. 2012.1.62.55.7".

This paper was written while the author was visiting the *Instituto de Ciências Matemáticas e de Computação*, *Universidade de São Paulo* - *Campus de São Carlos*. He thanks this institution, especially Raimundo Araújo dos Santos and Nivaldo Grulha, for the hospitality.

2. Lemmas on critical points on the link of a stratum

In this section, we study the behaviour of the critical points of a C^2 -subanalytic function on the link of stratum that contains 0 in its closure, for a generic choice of a C^2 -distance function to the origin.

Let $Y \subset \mathbb{R}^n$ be a C^2 -subanalytic manifold such that 0 belongs to its closure \overline{Y} . Let $\theta : \mathbb{R}^n \to \mathbb{R}$ be a C^2 -subanalytic function such that $\theta(0) = 0$. We will first study the behaviour of the critical points of $\theta_{|Y}: Y \to \mathbb{R}$ in the neighborhood of 0, and then the behaviour of the critical points of the restriction of θ to the link of 0 in Y.

Lemma 2.1. The critical points of $\theta_{|Y|}$ lie in $\{\theta = 0\}$ in a neighborhood of 0.

Proof. By the Curve Selection Lemma, we can assume that there is a C^1 -subanalytic curve $\gamma: [0,\nu[\to \overline{Y} \text{ such that } \gamma(0)=0 \text{ and } \gamma(t) \text{ is a critical point of } \theta_{|Y} \text{ for } t\in]0,\nu[$. Therefore, we have

$$(\theta \circ \gamma)'(t) = \langle \nabla \theta_{|Y}(\gamma(t)), \gamma'(t) \rangle = 0,$$

since $\gamma'(t)$ is tangent to Y at $\gamma(t)$. This implies that $\theta \circ \gamma(t) = \theta \circ \gamma(0) = 0$.

Let $\rho: \mathbb{R}^n \to \mathbb{R}$ be another C^2 -subanalytic function such that a is a regular value of ρ and $\rho^{-1}(a)$ intersects Y transversally. Then the set $Y \cap \{\rho \leq a\}$ is a manifold with boundary. Let p be a critical point of $\theta_{|Y \cap \{\rho \leq a\}}$ which lies in $Y \cap \{\rho = a\}$ and which is not a critical point of $\theta_{|Y}$. This implies that

$$\nabla \theta_{|Y}(p) = \lambda(p) \nabla \rho_{|Y}(p),$$

with $\lambda(p) \neq 0$.

Definition 2.2. We say that $p \in Y \cap \{\rho = a\}$ is an outwards-pointing (resp. inwards-pointing) critical point of $\theta_{|Y \cap \{\rho < a\}}$ if $\lambda(p) > 0$ (resp. $\lambda(p) < 0$).

Now let us assume that $\rho: \mathbb{R}^n \to \mathbb{R}$ is a C^2 -subanalytic function such that $\rho \geq 0$ and $\rho^{-1}(0) = \{0\}$ in a neighborhood of 0. We call ρ a C^2 -distance function to the origin. By Lemma 2.1, we know that for $\epsilon > 0$ small enough, the level $\rho^{-1}(\epsilon)$ intersects Y transversally. Let p^{ϵ} be a critical point of $\theta_{|Y \cap \rho^{-1}(\epsilon)}$ such that $\theta(p^{\epsilon}) \neq 0$. This means that there exists $\lambda(p^{\epsilon})$ such that

$$\nabla \theta_{|Y}(p^{\epsilon}) = \lambda(p^{\epsilon}) \nabla \rho_{|Y}(p^{\epsilon}).$$

Note that $\lambda(p^{\epsilon}) \neq 0$ because $\nabla \theta_{|Y}(p^{\epsilon}) \neq 0$ for $\theta(p^{\epsilon}) \neq 0$.

Lemma 2.3. The point p^{ϵ} is an outwards-pointing (resp. inwards-pointing) for $\theta_{|Y \cap \{\rho \leq \epsilon\}}$ if and only if $\theta(p^{\epsilon}) > 0$ (resp. $\theta(p^{\epsilon}) < 0$).

Proof. Let us assume that $\lambda(p^{\epsilon}) > 0$. By the Curve Selection Lemma, there exists a C^1 -subanalytic curve $\gamma : [0, \nu[\to \overline{Y}]$ passing through p^{ϵ} such that $\gamma(0) = 0$ and for $t \neq 0$, $\gamma(t)$ is a critical point of $\theta_{|Y \cap \{\rho = \rho(\gamma(t))\}}$ with $\lambda(\gamma(t)) > 0$. Therefore we have

$$(\theta \circ \gamma)'(t) = \langle \nabla \theta_{|Y}(\gamma(t)), \gamma'(t) \rangle = \lambda(\gamma(t)) \langle \nabla \rho_{|Y}(\gamma(t)), \gamma'(t) \rangle.$$

But $(\rho \circ \gamma)' > 0$ for otherwise $(\rho \circ \gamma)' \leq 0$ and $\rho \circ \gamma$ would be decreasing. Since $\rho(\gamma(t))$ tends to 0 as t tends to 0, this would imply that $\rho \circ \gamma(t) \leq 0$, which is impossible. We can conclude that $(\theta \circ \gamma)' > 0$ and that $\theta \circ \gamma$ is strictly increasing. Since $\theta \circ \gamma(t)$ tends to 0 as t tends to 0, we see that $\theta \circ \gamma(t) > 0$ for t > 0. Similarly if $\lambda(p^{\epsilon}) < 0$ then $\theta(p^{\epsilon}) < 0$.

Now we will study these critical points for a generic choice of the C^2 -distance function to the origin. We denote by $\operatorname{Sym}(\mathbb{R}^n)$ the set of symmetric $n \times n$ -matrices with real entries, by $\operatorname{Sym}^*(\mathbb{R}^n)$ the open dense subset of such matrices with non-zero determinant and by $\operatorname{Sym}^{+,*}(\mathbb{R}^n)$ the open subset of these invertible matrices that are positive definite or negative definite. Note that these sets are semi-algebraic. For each $A \in \operatorname{Sym}^{+,*}(\mathbb{R}^n)$, we denote by ρ_A the following quadratic form:

$$\rho_A(x) = \langle Ax, x \rangle.$$

We denote by $\Gamma_{\theta,A}^{Y}$ the following subanalytic polar set

$$\Gamma_{\theta,A}^{Y} = \left\{ x \in Y \mid \operatorname{rank} \left[\nabla \theta_{|Y}(x), \nabla \rho_{A|Y}(x) \right] < 2 \right\},\,$$

and by Σ_{θ}^{Y} the set of critical points of $\theta_{|Y}$. Note that $\Sigma_{\theta}^{Y} \subset \{\theta = 0\}$ by Lemma 2.1.

Lemma 2.4. For almost all A in $\operatorname{Sym}^{+,*}(\mathbb{R}^n)$, $\Gamma_{\theta,A}^Y\setminus(\Sigma_{\theta}^Y\cup\{0\})$ is a C^1 -subanalytic curve (possible empty) in a neighborhood of 0.

Proof. We can assume that dim Y > 1. Let

$$Z = \Big\{ (x,A) \in \mathbb{R}^n \times \operatorname{Sym}^{+,*}(\mathbb{R}^n) \mid x \in Y \setminus (\Sigma_\theta^Y \cup \{0\}) \text{ and rank } \Big[\nabla \theta_{|Y}(x), \nabla \rho_{A|Y}(x) \Big] < 2 \Big\}.$$

Let (y, B) be a point in Z. We can suppose that around y, Y is defined by the vanishing of k subanalytic functions f_1, \ldots, f_k of class C^2 . Hence in a neighborhood of (y, B), Z is defined be the vanishing of f_1, \ldots, f_k and the minors

$$\frac{\partial(f_1,\ldots,f_k,\theta,\rho_A)}{\partial(x_{i_1},\ldots,x_{i_{k+2}})}.$$

Furthermore, since y does not belong to Σ_{θ}^{Y} , we can assume that

$$\frac{\partial(f_1,\ldots,f_k,\theta)}{\partial(x_1,\ldots,x_k,x_{k+1})}\neq 0,$$

in a neighborhood of y. Therefore Z is locally defined by $f_1 = \cdots = f_k = 0$ and

$$\frac{\partial(f_1,\ldots,f_k,\theta,\rho_A)}{\partial(x_1,\ldots,x_{k+1},x_{k+2})} = \cdots = \frac{\partial(f_1,\ldots,f_k,\theta,\rho_A)}{\partial(x_1,\ldots,x_{k+1},x_n)} = 0.$$

Let us write $M = \frac{\partial(f_1,\dots,f_k,\theta)}{\partial(x_1,\dots,x_k,x_{k+1})}$ and for $i \in \{k+2,\dots,n\}$, $m_i = \frac{\partial(f_1,\dots,f_k,\theta,\rho_A)}{\partial(x_1,\dots,x_{k+1},x_i)}$. If $A = [a_{ij}]$ then

$$\rho_A(x) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{i \neq j} a_{ij} x_i x_j,$$

and so $\frac{\partial \rho_A}{\partial x_i}(x) = 2\sum_{j=1}^n a_{ij}x_j$. For $i \in \{k+1,\ldots,n\}$ and $j \in \{1,\ldots,n\}$, we have

$$\frac{\partial m_i}{\partial a_{ij}} = 2x_j M.$$

Since $y \neq 0$, one of the x_j 's does not vanish in the neighborhood of y and we can conclude that the rank of

$$[\nabla f_1(x), \dots, \nabla f_k(x), \nabla m_{k+2}(x, A), \dots, \nabla m_n(x, A)]$$

is n-1 and that Z is a C^1 -subanalytic manifold of dimension $\frac{n(n+1)}{2}+1$. Now let us consider the projection $\pi_2:Z\to \operatorname{Sym}^{+,*}(\mathbb{R}^n),\ (x,A)\mapsto A$. Bertini-Sard's theorem implies that the set D_{π_2} of critical values of π_2 is a subanalytic set of dimension strictly less than $\frac{n(n+1)}{2}$. Hence, for all $A\notin D_{\pi_2},\ \pi_2^{-1}(A)$ is a C^1 -subanalytic curve (possibly empty). But this set is exactly $\Gamma_{\theta,A}^Y\setminus (\Sigma_\theta^Y\cup \{0\})$.

Let $R \subset Y$ be a subanalytic set of dimension strictly less than dim Y. We will need the following lemma.

Lemma 2.5. For almost all A in $\operatorname{Sym}^{+,*}(\mathbb{R}^n)$, $\Gamma_{\theta,A}^Y\setminus(\Sigma_{\theta}^Y\cup\{0\})\cap R$ is a subanalytic set of dimension at most 0 in a neighborhood of 0.

Proof. Let us put $l = \dim Y$. Since R admits a locally finite subanalytic stratification, we can assume that R is a C^2 -subanalytic manifold of dimension d with d < l. Let W be the following subanalytic set:

$$W = \Big\{ (x,A) \in \mathbb{R}^n \times \operatorname{Sym}^{+,*}(\mathbb{R}^n) \mid x \in R \setminus (\Sigma_\theta^Y \cup \{0\}) \text{ and } \operatorname{rank} \Big[\nabla \theta_{|Y}(x), \nabla \rho_{A|Y}(x) \Big] < 2 \Big\}.$$

Using the same method as in the previous lemma, we can prove that W is a C^1 -subanalytic manifold of dimension $\frac{n(n+1)}{2} + 1 + d - l$ and conclude, remarking that $d - l \leq -1$.

Now we introduce a new C^2 -subanalytic function $\beta : \mathbb{R}^n \to \mathbb{R}$ such that $\beta(0) = 0$. We denote by $\Gamma_{\theta,\beta,A}^Y$ the following subanalytic polar set:

$$\Gamma^Y_{\theta,\beta,A} = \left\{ x \in Y \mid \operatorname{rank} \left[\nabla \theta_{|Y}(x), \nabla \beta_{|Y}(x), \nabla \rho_{A|Y}(x) \right] < 3 \right\},\,$$

and by $\Gamma_{\theta,\beta}^{Y}$ the following subanalytic polar set:

$$\Gamma^Y_{\theta,\beta} = \left\{ x \in Y \mid \operatorname{rank}\left[\nabla \theta_{|Y}(x), \nabla \beta_{|Y}(x)\right] < 2 \right\}.$$

Lemma 2.6. For almost all A in $\operatorname{Sym}^{+,*}(\mathbb{R}^n)$, $\Gamma^Y_{\theta,\beta,A} \setminus (\Gamma^Y_{\theta,\beta} \cup \{0\})$ is a C^1 -subanalytic set of dimension at most 2 (possibly empty) in a neighborhood of 0.

Proof. We can assume that dim Y > 2. Let

$$Z = \Big\{ (x,A) \in \mathbb{R}^n \times \operatorname{Sym}^{+,*}(\mathbb{R}^n) \mid x \in Y, \operatorname{rank} \left[\nabla \theta_{|Y}(x), \nabla \beta_{|Y}(x) \right] = 2$$
 and
$$\operatorname{rank} \left[\nabla \theta_{|Y}(x), \nabla \beta_{|Y}(x), \nabla \rho_{A|Y}(x) \right] < 3 \Big\}.$$

Let (y, B) be a point in Z. We can suppose that around y, Y is defined by the vanishing of k subanalytic functions f_1, \ldots, f_k of class C^2 . Hence in a neighborhood of (y, B), Z is defined by the vanishing of f_1, \ldots, f_k and the minors

$$\frac{\partial(f_1,\ldots,f_k,\theta,\beta,\rho_A)}{\partial(x_{i_1},\ldots,x_{i_{k+2}})}.$$

Since y does not belong to $\Gamma_{\theta,\beta}^{Y}$, we can assume that

$$\frac{\partial(f_1,\ldots,f_k,\theta,\beta)}{\partial(x_1,\ldots,x_k,x_{k+1},x_{k+2})} \neq 0,$$

in a neighborhood of y. Therefore Z is locally defined by $f_1, \ldots, f_k = 0$ and

$$\frac{\partial(f_1,\ldots,f_k,\theta,\beta,\rho_A)}{\partial(x_1,\ldots,x_{k+2},x_{k+3})} = \cdots = \frac{\partial(f_1,\ldots,f_k,\theta,\beta,\rho_A)}{\partial(x_1,\ldots,x_{k+2},x_n)} = 0.$$

It is clear that we can apply the same method as Lemma 2.4 to get the result.

3. Lê-Greuel type formula

In this section, we prove the Lê-Greuel type formula announced in the introduction.

Let $(X,0) \subset (\mathbb{R}^n,0)$ be the germ of a closed subanalytic set and let $f:(X,0) \to (\mathbb{R},0)$ be a subanalytic function. We assume that X is contained in a open set U of \mathbb{R}^n and that f is the restriction to X of a C^2 -subanalytic function $F:U\to\mathbb{R}$. We denote by X^f the set $f^{-1}(0)$ and by [4], we can equip X with a subanalytic Thom stratification $\mathcal{V} = \{V_\alpha\}_{\alpha \in A}$ adapted to X^f . This means that $\{V_\alpha \in \mathcal{V} \mid V_\alpha \nsubseteq X^f\}$ is a Whitney stratification of $X \setminus X^f$ and that for any pair of strata (V_α, V_β) with $V_\alpha \nsubseteq X^f$ and $V_\beta \subset X^f$, the Thom condition is satisfied.

Let us denote by $\Sigma_{\mathcal{V}} f$ the critical locus of f. It is the union of the critical loci of f restricted to each stratum, i.e. $\Sigma_{\mathcal{V}} f = \bigcup_{\alpha} \Sigma(f_{|V_{\alpha}})$, where $\Sigma(f_{|V_{\alpha}})$ is the critical set of $f_{|V_{\alpha}}: V_{\alpha} \to \mathbb{R}$. Since $\Sigma_{\mathcal{V}} f \subset f^{-1}(0)$ (see Lemma 2.1), the fibre $f^{-1}(\delta)$ intersects the strata V_{α} 's, $V_{\alpha} \not\subseteq X^f$, transversally if δ is sufficiently small. Hence $f^{-1}(\delta)$ is Whitney stratified with the induced stratification $\{f^{-1}(\delta) \cap V_{\alpha} \mid V_{\alpha} \not\subseteq X^f\}$.

By Lemma 2.1, we know that if $\epsilon > 0$ is sufficiently small then the sphere S_{ϵ} intersects X^f transversally. By the Thom condition, this implies that there exists $\delta(\epsilon) > 0$ such that for each δ with $0 < |\delta| \le \delta(\epsilon)$, the sphere S_{ϵ} intersects the fibre $f^{-1}(\delta)$ transversally as well. Hence the set $f^{-1}(\delta) \cap B_{\epsilon}$ is a Whitney stratified set equipped with the following stratification:

$$\{f^{-1}(\delta)\cap V_{\alpha}\cap \mathring{B_{\epsilon}}, f^{-1}(\delta)\cap V_{\alpha}\cap S_{\epsilon}\mid V_{\alpha}\nsubseteq X^f\}.$$

Definition 3.1. We call the set $f^{-1}(\delta) \cap B_{\epsilon}$, where $0 < |\delta| \ll \epsilon \ll 1$, a real Milnor fibre of f.

We will use the following notation: $M_f^{\delta,\epsilon} = f^{-1}(\delta) \cap B_{\epsilon}$.

Now we consider another subanalytic function $g:(X,0)\to(\mathbb{R},0)$ and we assume that it is the restriction to X of a C^2 -subanalytic function $G:U\to\mathbb{R}$. We denote by X^g the set $g^{-1}(0)$. Under some restrictions on g, we will study the topological behaviour of $g_{|M^{\delta,\epsilon}}$.

First we assume that q satisfies the following Condition (A):

• Condition (A): $g:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0.

This means that for each strata V_{α} of \mathcal{V} , $g:V_{\alpha}\setminus\{0\}\to\mathbb{R}$ is a submersion in a neighborhood of the origin.

In order to give the second assumption on g, we need to introduce some polar sets. Let V_{α} be a stratum of \mathcal{V} not contained in X^f . Let $\Gamma^{V_{\alpha}}_{f,g}$ be the following set:

$$\Gamma_{f,g}^{V_{\alpha}} = \left\{ x \in V_{\alpha} \mid \operatorname{rank}[\nabla f_{|V_{\alpha}}(x), \nabla g_{|V_{\alpha}}(x)] < 2 \right\},\,$$

and let $\Gamma_{f,g}$ be the union $\cup \Gamma_{f,g}^{V_{\alpha}}$ where $V_{\alpha} \nsubseteq X^f$. We call $\Gamma_{f,g}$ the relative polar set of f and g with respect to the stratification \mathcal{V} . We will assume that g satisfies the following Condition (B):

• Condition (B): the relative polar set $\Gamma_{f,g}$ is a 1-dimensional C^1 -subanalytic set (possibly empty) in a neighborhood of the origin.

Note that Condition (B) implies that $\overline{\Gamma_{f,g}} \cap X^f \subset \{0\}$ in a neighborhood of the origin because the frontiers of the $\Gamma_{f,g}^{V_{\alpha}}$'s are 0-dimensional.

From Condition (Å) and Condition (B), we can deduce the following result.

Lemma 3.2. We have $\overline{\Gamma_{f,g}} \cap X^g \subset \{0\}$ in a neighborhood of the origin.

Proof. If it is not the case then there is a C^1 -subanalytic curve $\gamma:[0,\nu[\to\Gamma_{f,g}\cap X^g]$ such that $\gamma(0)=0$ and $\gamma(]0,\nu[)\subset X^g\setminus\{0\}$. We can also assume that $\gamma(]0,\nu[)$ is contained in a stratum V. For $t\in]0,\nu[$, we have

$$0 = (g \circ \gamma)'(t) = \langle \nabla g_{|V}(\gamma(t)), \gamma'(t) \rangle.$$

Since $\gamma(t)$ belongs to $\Gamma_{f,g}$ and $\nabla g_{|V}(\gamma(t))$ does not vanish for $g:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0, we can conclude that $\langle \nabla f_{|V}(\gamma(t)), \gamma'(t) \rangle = 0$ and that $(f \circ \gamma)'(t) = 0$ for all $t \in]0, \nu[$. Therefore $f \circ \gamma \equiv 0$ because f(0) = 0 and $\gamma([0,\nu[))$ is included in X^f . This is impossible by the above remark.

Let $\mathcal{B}_1, \ldots, \mathcal{B}_l$ be the connected components of $\Gamma_{f,g}$, i.e. $\Gamma_{f,g} = \bigsqcup_{i=1}^l \mathcal{B}_i$. Each \mathcal{B}_i is a C^1 -subanalytic curve along which f is strictly increasing or decreasing and the intersection points of the \mathcal{B}_i 's with the fibre $M_f^{\delta,\epsilon}$ are exactly the critical points (in the stratified sense) of g on $f^{-1}(\delta) \cap \mathring{\mathcal{B}}_{\epsilon}$. Let us write

$$M_f^{\delta,\epsilon} \cap \sqcup_{i=1}^l \mathcal{B}_i = \{p_1^{\delta,\epsilon}, \dots, p_r^{\delta,\epsilon}\}.$$

Note that $r \leq l$.

Let us recall now the definition of the index of an isolated stratified critical point.

Definition 3.3. Let $Z \subset \mathbb{R}^n$ be a closed subanalytic set, equipped with a Whitney stratification. Let $p \in Z$ be an isolated critical point of a subanalytic function $\phi : Z \to \mathbb{R}$, which is the restriction to Z of a C^2 -subanalytic function Φ . We define the index of ϕ at p as follows:

$$\operatorname{ind}(\phi, Z, p) = 1 - \chi(Z \cap \{\phi = \phi(p) - \eta\} \cap B_{\epsilon}(p)),$$

where $0 < \eta \ll \epsilon \ll 1$ and $B_{\epsilon}(p)$ is the closed ball of radius ϵ centered at p.

Our aim is to give a topological interpretation to the following sum:

$$\sum_{i=1}^{r} \operatorname{ind}(g, f^{-1}(\delta), p_i^{\delta, \epsilon}) + \operatorname{ind}(-g, f^{-1}(\delta), p_i^{\delta, \epsilon}).$$

For this, we will apply stratified Morse theory to $g_{|M_f^{\delta,\epsilon}}$. Note that the points p_i 's are not the only critical points of $g_{|M_f^{\delta,\epsilon}}$ and other critical points can occur on the "boundary" $M_f^{\delta,\epsilon} \cap S_{\epsilon}$.

The next step is to study the behaviour of these "boundary" critical points for a generic choice of the C^2 -distance function to the origin. Let $\rho: \mathbb{R}^n \to \mathbb{R}$ be a subanalytic C^2 -distance function to the origin. We denote by \tilde{S}_{ϵ} the level $\rho^{-1}(\epsilon)$ and by \tilde{B}_{ϵ} the set $\{\rho \leq \epsilon\}$. We will focus on the critical points of $g_{|X^f \cap \tilde{S}_{\epsilon}}$ and $g_{|f^{-1}(\delta) \cap \tilde{S}_{\epsilon}}$, with $0 < |\delta| \ll \epsilon \ll 1$.

For each stratum V of X^f , let

$$\Gamma_{q,\rho}^{V} = \left\{ x \in V \mid \operatorname{rank}[\nabla g_{|V}(x), \nabla \rho_{|V}(x)] < 2 \right\},\,$$

and let $\Gamma_{g,\rho}^{X^f} = \bigcup_{V \subset X^f} \Gamma_{g,\rho}^V$. By Lemma 2.4 and the fact that $g: (X^f,0) \to (\mathbb{R},0)$ has an isolated stratified critical point at 0, we can assume that $\Gamma_{g,\rho}^{X^f}$ is a C^1 -subanalytic curve in a neighborhood of the origin.

Lemma 3.4. We have $\Gamma_{q,\rho}^{X^f} \cap X^g \subset \{0\}$ in a neighborhood of the origin.

Proof. Same proof as Lemma 3.2.

Therefore if $\epsilon > 0$ is small enough, $g_{|\tilde{S}_{\epsilon} \cap X^f}$ has a finite number of critical points. They do not lie in the level $\{g=0\}$ so by Lemma 2.3, they are outwards-pointing for $g_{|X^f\cap \tilde{B}_{\epsilon}}$ if they lie in $\{g > 0\}$ and inwards-pointing if they lie in $\{g < 0\}$.

Let us study now the critical points of $g_{|f^{-1}(\delta)\cap \tilde{S}_c}$. We will need the following lemma.

Lemma 3.5. For every $\epsilon > 0$ sufficiently small, there exists $\delta(\epsilon) > 0$ such that for $0 < |\delta| \le \delta(\epsilon)$, the points $p_i^{\delta,\epsilon}$ lie in $\tilde{B}_{\epsilon/4}$.

Proof. Let

$$W = \left\{ (x, r, y) \in U \times \mathbb{R} \times \mathbb{R} \mid \rho(x) = r, y = f(x) \text{ and } x \in \overline{\Gamma_{f, g}} \right\}.$$

Then W is a subanalytic set of $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$ and since it is a graph over $\overline{\Gamma_{f,g}}$, its dimension is less or equal to 1. Let

$$\pi : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} (x, r, y) \mapsto (r, y),$$

be the projection on the last two factors. Then $\pi_{|W}:W\to\pi(W)$ is proper and $\pi(W)$ is a closed subanalytic set in a neighborhood of the origin.

Let us write $Y_1 = \mathbb{R} \times \{0\}$ and let Y_2 be the closure of $\pi(W) \setminus Y_1$. Since Y_2 is a curve for Wis a curve, 0 is isolated in $Y_1 \cap Y_2$. By Lojasiewicz's inequality, there exists a constant C > 0and an integer N>0 such that $|y|\geq Cr^N$ for (r,y) in Y_2 sufficiently close to the origin. So if $x\in \Gamma_{f,g}$ then $|f(x)|\geq C\rho(x)^N$ if $\rho(x)$ is small enough. Let us fix $\epsilon>0$ small. If $0<|\delta|\leq \frac{1}{C}(\frac{\epsilon}{4})^N$ and $x\in f^{-1}(\delta)\cap \Gamma_{f,g}$ then $\rho(x)\leq \frac{\epsilon}{4}$.

Let us fix
$$\epsilon > 0$$
 small. If $0 < |\delta| \le \frac{1}{C} (\frac{\epsilon}{4})^N$ and $x \in f^{-1}(\delta) \cap \Gamma_{f,g}$ then $\rho(x) \le \frac{\epsilon}{4}$.

For each stratum $V \not\subseteq X^f$, let

$$\Gamma^{V}_{f,g,\rho} = \left\{ x \in V \mid \operatorname{rank}[\nabla f_{|V}(x), \nabla g_{|V}(x), \nabla \rho_{|V}(x)] < 3 \right\},\,$$

and let $\Gamma_{f,g,\rho} = \bigcup_{V \not\subseteq X^f} \Gamma_{f,g,\rho}^V$. By Lemma 2.6, we can assume that $\Gamma_{f,g,\rho} \setminus \Gamma_{f,g}$ is a C^1 -subanalytic manifold of dimension 2. Let us choose $\epsilon > 0$ small enough so that \tilde{S}_{ϵ} intersects $\Gamma_{f,q,\rho} \setminus \Gamma_{f,q}$ transversally. Therefore $(\Gamma_{f,g,\rho} \setminus \Gamma_{f,g}) \cap \tilde{S}_{\epsilon}$ is a subanalytic curve. By Lemma 3.4, we can find $\delta(\epsilon) > 0$ such that $f^{-1}([-\delta(\epsilon), \delta(\epsilon)]) \cap \tilde{S}_{\epsilon} \cap \Gamma_{f,q}$ is empty and so

$$f^{-1}\big([-\delta(\epsilon),\delta(\epsilon)]\big)\cap (\Gamma_{f,g,\rho}\setminus \Gamma_{f,g})\cap \tilde{S}_{\epsilon}=f^{-1}\big([-\delta(\epsilon),\delta(\epsilon)]\big)\cap \Gamma_{f,g,\rho}\cap \tilde{S}_{\epsilon}.$$

Let C_1, \ldots, C_t be the connected components of $f^{-1}([-\delta(\epsilon), \delta(\epsilon)]) \cap \Gamma_{f,q,\rho} \cap \tilde{S}_{\epsilon}$ whose closure intersects $X^f \cap \tilde{S}_{\epsilon}$. Note that by Thom's (a_f) -condition, for each $i \in \{1, \ldots, t\}$, $\overline{C_i} \cap X^f$ is a subset of $\Gamma_{q,\rho}^{X^f}$. Let z_i be a point in $\overline{C_i} \cap X^f$. Since $C_i \cap X^f = \emptyset$, there exists $0 < \delta'_i(\epsilon) \le \delta(\epsilon)$ such that the fibre $f^{-1}(\delta)$, $0 < |\delta| \le \delta'_i(\epsilon)$, intersects C_i transversally in a neighborhood of z_i .

Let us choose δ such that $0 < |\delta| \le \min\{\delta'_i(\epsilon) \mid i = 1, \dots, t\}$. Then the fibre $f^{-1}(\delta)$ intersects the C_i 's transversally and $f^{-1}(\delta) \cap (\cup_i C_i)$ is exactly the set of critical points of $g_{|f^{-1}(\delta) \cap \tilde{S}_{\epsilon}}$. We have proved:

Lemma 3.6. For $0 < |\delta| \ll \epsilon \ll 1$, $g_{|f^{-1}(\delta) \cap \tilde{S}_{\epsilon}}$ has a finite number of critical points, which are exactly the points in $\Gamma_{f,q,\rho} \cap \tilde{S}_{\epsilon} \cap f^{-1}(\delta)$.

Let $\{s_1^{\delta,\epsilon},\ldots,s_u^{\delta,\epsilon}\}$ be the set of critical points of $g_{|f^{-1}(\delta)\cap \tilde{S}_{\epsilon}}$.

Lemma 3.7. For $i \in \{1, \dots, u\}$, $g(s_i^{\delta, \epsilon}) \neq 0$ and $s_i^{\delta, \epsilon}$ is outwards-pointing (resp. inwards-pointing) if and only if $g(s_i^{\delta, \epsilon}) > 0$ (resp. $g(s_i^{\delta, \epsilon}) < 0$).

Proof. Note that $s_i^{\delta,\epsilon}$ is necessarily outwards-pointing or inwards-pointing because $s_i^{\delta,\epsilon} \notin \Gamma_{f,g}$.

Assume that for each $\delta > 0$ small enough, there exists a point $s_i^{\delta,\epsilon}$ such that $g(s_i^{\delta,\epsilon}) = 0$. Then we can construct a sequence of points $(\sigma_n)_{n \in \mathbb{N}}$ such that $g(\sigma_n) = 0$ and σ_n is a critical point of $g_{|f^{-1}(\frac{1}{n}) \cap X \cap \widetilde{S}_{\epsilon}}$. We can also assume that the points σ_n 's belong to the same stratum S and that they tend to $\sigma \in V$ where $V \subseteq X^f$ and $V \subset \partial \overline{S}$. Therefore we have a decomposition:

$$\frac{\nabla g_{|S}(\sigma_n)}{\|\nabla g_{|S}(\sigma_n)\|} = \lambda_n \frac{\nabla f_{|S}(\sigma_n)}{\|\nabla f_{|S}(\sigma_n)\|} + \mu_n \frac{\nabla \rho_{|S}(\sigma_n)}{\|\nabla \rho_{|S}(\sigma_n)\|}.$$

Now by Whitney's condition (a), $T_{\sigma_n}S$ tends to a linear space T such that $T_{\sigma}V \subset T$. So $\nabla g_{|S}(\sigma_n)$ tends to a vector u in T whose orthogonal projection on $T_{\sigma}V$ is exactly $\nabla g_{|V}(\sigma)$. Since $g_{|V\setminus\{0\}}$ is a submersion, $\nabla g_{|V}(\sigma) \neq 0$ and so $u \neq 0$ and u is not orthogonal to $T_{\sigma}V$. So $\frac{\nabla g_{|S}(\sigma_n)}{\|\nabla g_{|S}(\sigma_n)\|}$ tends to $\frac{u}{\|u\|}$. Similarly $\nabla \rho_{|S}(\sigma_n)$ tends to a vector $u' \neq 0$ in T, not orthogonal to $T_{\sigma}V$ and whose orthogonal projection on $T_{\sigma}V$ is exactly $\nabla \rho_{|V}(\sigma)$. So $\frac{\nabla \rho_{|S}(\sigma_n)}{\|\nabla \rho_{|S}(\sigma_n)\|}$ tends to $\frac{u'}{\|u'\|}$.

By Thom's condition, $\frac{\nabla f_{|S}(\sigma_n)}{\|\nabla f_{|S}(\sigma_n)\|}$ tends to a vector w in T which is orthogonal to $T_{\sigma}V$. Since $\left|\langle w, \frac{u'}{\|u'\|} \rangle\right| < 1$, there exist C, $0 \le C < 1$, and n_0 such that for $n \ge n_0$, we have

$$\left| \left\langle \frac{\nabla f_{|S}(\sigma_n)}{\|\nabla f_{|S}(\sigma_n)\|}, \frac{\nabla \rho_{|S}(\sigma_n)}{\|\nabla \rho_{|S}(\sigma_n)\|} \right\rangle \right| \le C.$$

Since $\langle \frac{\nabla g_{|S}(\sigma_n)}{\|\nabla g_{|S}(\sigma_n)\|}, \frac{\nabla g_{|S}(\sigma_n)}{\|\nabla g_{|S}(\sigma_n)\|} \rangle = 1$, this implies that for $n \geq n_0$, $\lambda_n^2 + \mu_n^2 + 2C\lambda_n\mu_n \leq 1$ or $\lambda_n^2 + \mu_n^2 - 2C\lambda_n\mu_n \leq 1$. Then it is not difficult to see that $(\lambda_n)_{n\geq n_0}$ and $(\mu_n)_{n\geq n_0}$ are bounded. Taking a subsequence if necessary, we can assume that λ_n tends to a real λ and λ tends to a real λ . Taking the limit in the above equality, we obtain

$$\frac{u}{\|u\|} = \lambda w + \mu \frac{u'}{\|u'\|},$$

and so

$$u = \lambda ||u|| w + \mu \frac{||u||}{||u'||} u'.$$

Projecting this equality on $T_{\sigma}V$, we see that $\nabla g_{|V}(\sigma)$ and $\nabla \rho_{|V}(\sigma)$ are colinear which means that σ is a critical point of $g_{|X^f \cap \tilde{S}_{\epsilon}}$. But since $g(\sigma_n) = 0$, we find that $g(\sigma) = 0$, which is impossible by Lemma 3.4. This proves the first assertion.

To prove the second one, we use the same method. Assume that for each $\delta>0$ small enough, there exists a point $s_i^{\delta,\epsilon}$ such that $g(s_i^{\delta,\epsilon})>0$ and $s_i^{\delta,\epsilon}$ is an inwards-pointing critical point for $g_{|f^{-1}(\delta)\cap \tilde{S}_{\epsilon}}$. Then we can construct a sequence of points $(\tau_n)_{n\in\mathbb{N}}$ such that $g(\tau_n)>0$ and τ_n is an inwards-pointing critical point for $g_{|f^{-1}(\frac{1}{n})\cap X\cap \tilde{S}_{\epsilon}}$. We can also assume that the points τ_n 's belong to the same stratum S and that they tend to $\tau\in V$ where $V\subseteq X^f$ and $V\subset \partial \overline{S}$. Therefore, we have a decomposition:

$$\frac{\nabla g_{|S}(\tau_n)}{\|\nabla g_{|S}(\tau_n)\|} = \lambda_n \frac{\nabla f_{|S}(\tau_n)}{\|\nabla f_{|S}(\tau_n)\|} + \mu_n \frac{\nabla \rho_{|S}(\tau_n)}{\|\nabla \rho_{|S}(\tau_n)\|},$$

with $\mu_n < 0$. Using the same arguments as above, we find that $\nabla g_{|V}(\tau) = \mu \nabla \rho_{|S}(\tau)$ with $\mu \leq 0$ and $g(\tau) \geq 0$. This contradicts the remark after Lemma 3.4. Of course, this proof works for $\delta < 0$.

Let $\Gamma_{q,\rho}$ be the following polar set:

$$\Gamma_{q,\rho} = \{x \in U \mid \text{rank}[\nabla g(x), \nabla \rho(x)] < 2\}.$$

By Lemma 2.5 and Lemma 2.1, we can assume that $\Gamma_{g,\rho} \setminus \{g=0\}$ does not intersect $X^f \setminus \{0\}$ in a neighborhood of 0 and so $\Gamma_{g,\rho} \setminus \{g=0\}$ does not intersect $X^f \cap \tilde{S}_{\epsilon}$ for $\epsilon > 0$ sufficiently small. Since the critical points of $g_{|X^f \cap \tilde{S}_{\epsilon}}$ lie outside $\{g=0\}$, they do not belong to $\Gamma_{g,\rho} \cap \tilde{S}_{\epsilon}$ and so the critical points of $g_{|f^{-1}(\delta) \cap X \cap \tilde{S}_{\epsilon}}$ do not neither if δ is sufficiently small. Hence at each critical point of $g_{|f^{-1}(\delta) \cap X \cap \tilde{S}_{\epsilon}}$, $g_{|\tilde{S}_{\epsilon}}$ is a submersion. We are in position to apply Theorem 3.1 and Lemma 2.1 in [15]. For $0 < |\delta| \ll \epsilon \ll 1$, we set

$$I(\delta, \epsilon, g) = \sum_{i=1}^{r} \operatorname{ind}(g, f^{-1}(\delta), p_i^{\delta, \epsilon}),$$

$$I(\delta, \epsilon, -g) = \sum_{i=1}^{r} \operatorname{ind}(-g, f^{-1}(\delta), p_i^{\delta, \epsilon}).$$

Theorem 3.8. We have

$$I(\delta, \epsilon, g) + I(\delta, \epsilon, -g) = 2\chi \left(f^{-1}(\delta) \cap \tilde{B}_{\epsilon} \right) - \chi \left(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \right) - \chi \left(X^g \cap f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \right).$$

Proof. Let us denote by $\{a_j^+\}_{j=1}^{\alpha^+}$ (resp. $\{a_j^-\}_{j=1}^{\alpha^-}$) the outwards-pointing (resp. inwards-pointing) critical points of $g: f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \to \mathbb{R}$. Applying Morse theory type theorem ([15], Theorem 3.1) and using Lemma 2.1 in [15], we can write

$$I(\delta, \epsilon, g) + \sum_{i=1}^{\alpha^{-}} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{-}) = \chi(f^{-1}(\delta) \cap \tilde{B}_{\epsilon})$$
(1),

$$I(\delta, \epsilon, -g) + \sum_{j=1}^{\alpha^+} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_j^+) = \chi(f^{-1}(\delta) \cap \tilde{B}_{\epsilon})$$
 (2).

Let us evaluate

$$\sum_{j=1}^{\alpha^{-}} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{-}) + \sum_{j=1}^{\alpha^{+}} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{+}).$$

Since the outwards-pointing critical points of $g_{|f^{-1}(\delta)\cap \tilde{S}_{\epsilon}}$ lie in $\{g>0\}$ and the inwards-pointing critical points of $g_{|f^{-1}(\delta)\cap \tilde{S}_{\epsilon}}$ lie in $\{g<0\}$, we have

$$\chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \cap \{g \ge 0\}) - \chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \cap \{g = 0\}) = \sum_{j=1}^{\alpha^{+}} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{+})$$
 (3),

and

$$\chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \cap \{g \le 0\}) - \chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \cap \{g = 0\}) = \sum_{j=1}^{\alpha^{-}} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{-}) \quad (4).$$

Therefore making (3) + (4) and using the Mayer-Vietoris sequence, we find

$$\chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon}) - \chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \cap \{g = 0\}) = \sum_{j=1}^{\alpha^{+}} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{+}) + \sum_{j=1}^{\alpha^{-}} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{-}) \quad (5).$$

Moreover we have

$$\chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon}) = \sum_{j=1}^{\alpha^{+}} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{+}) + \sum_{j=1}^{\alpha^{-}} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_{j}^{-})$$
 (6)

$$\chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon}) = \sum_{j=1}^{\alpha^+} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_j^+) + \sum_{j=1}^{\alpha^-} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_j^-) \quad (7).$$

The combination -(5) + (6) + (7) leads to

$$\chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon}) + \chi(f^{-1}(\delta) \cap \tilde{S}_{\epsilon} \cap \{g = 0\}) =$$

$$\sum_{j=1}^{\alpha^+} \operatorname{ind}(-g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_j^+) + \sum_{j=1}^{\alpha^-} \operatorname{ind}(g, f^{-1}(\delta) \cap \tilde{S}_{\epsilon}, a_j^-).$$

Let us assume now that (X,0) is equipped with a Whitney stratification $\mathcal{W} = \bigcup_{\alpha \in A} W_{\alpha}$ and $f:(X,0) \to (\mathbb{R},0)$ has an isolated critical point at 0. In this situation, our results apply taking for \mathcal{V} the following stratification:

$$\{W_{\alpha} \setminus f^{-1}(0), W_{\alpha} \cap f^{-1}(0) \setminus \{0\}, \{0\} \mid W_{\alpha} \in \mathcal{W}\}.$$

Corollary 3.9. If $f:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0, then

$$I(\delta, \epsilon, g) + I(\delta, \epsilon, -g) = 2\chi (f^{-1}(\delta) \cap \tilde{B}_{\epsilon}) - \chi (X^f \cap \tilde{S}_{\epsilon}) - \chi (X^f \cap X^g \cap \tilde{S}_{\epsilon}).$$

Proof. For each stratum W of X, let

$$\Gamma_{f,\rho}^{W} = \left\{ x \in W \mid \operatorname{rank}[\nabla f_{|W}(x), \nabla \rho_{|W}(x)] < 2 \right\},\,$$

and let $\Gamma_{f,\rho} = \bigcup_W \Gamma_{f,\rho}^W$. By Lemma 3.4 applied to X and f instead of X^f and g,

$$\Gamma_{f,\rho} \cap \{f=0\} \subset \{0\}$$

in a neighborhood of the origin and so 0 is a regular value of $f: X \cap \tilde{S}_{\epsilon} \to \mathbb{R}$ for ϵ sufficiently small. By Thom-Mather's second isotopy lemma, $f^{-1}(0) \cap \tilde{S}_{\epsilon}$ is homeomorphic to $f^{-1}(\delta) \cap \tilde{S}_{\epsilon}$ for δ sufficiently small.

Now let p be a stratified critical point of $f: X^g \to \mathbb{R}$. By Lemma 2.1, we know that p belongs to $f^{-1}(0) \cap X^g$ and so p is also a critical point of $g: X^f \to \mathbb{R}$. Hence p = 0 by Condition (A) and $f: X^g \to \mathbb{R}$ has an isolated stratified critical point at 0. As above, we conclude that $X^f \cap X^g \cap \tilde{S}_{\epsilon}$ is homeomorphic to $X^g \cap f^{-1}(\delta) \cap \tilde{S}_{\epsilon}$.

Let $\omega(x) = \sqrt{x_1^2 + \dots + x_n^2}$ be the euclidian distance to the origin. As explained by Durfee in [10], Lemma 1.8 and Lemma 3.6, there is a neighborhood Ω of 0 in \mathbb{R}^n such that for every stratum V of X^f , $\nabla \omega_{|V}$ and $\nabla \rho_{|V}$ are non-zero and do not point in opposite direction in $\Omega \setminus \{0\}$. Applying Durfee's argument ([10], Proposition 1.7 and Proposition 3.5), we see that $X^f \cap \tilde{S}_{\epsilon}$ is homeomorphic to $X^f \cap S_{\epsilon'}$ for $\epsilon, \epsilon' > 0$ sufficiently small. Similarly $X^f \cap X^g \cap \tilde{S}_{\epsilon}$ and $X^f \cap X^g \cap S_{\epsilon'}$ are homeomorphic. Now let us compare $f^{-1}(\delta) \cap \tilde{B}_{\epsilon}$ and $f^{-1}(\delta) \cap B_{\epsilon'}$. Let us choose ϵ' and ϵ such that

$$f^{-1}(\delta) \cap B_{\epsilon'} \subset f^{-1}(\delta) \cap \tilde{B}_{\epsilon} \subset \Omega.$$

If δ is sufficiently small then, for every stratum $V \nsubseteq X^f$, $\nabla \omega_{|V \cap f^{-1}(\delta)}$ and $\nabla \rho_{|V \cap f^{-1}(\delta)}$ are non-zero and do not point in opposite direction in $\tilde{B}_{\epsilon} \setminus \tilde{B}_{\epsilon'}$. Otherwise, by Thom's (a_f) -condition, we would find a point p in $X^f \cap (\tilde{B}_{\epsilon} \setminus \tilde{B}_{\epsilon'})$ such that either $\nabla \omega_{|S}(p)$ or $\nabla \rho_{|S}(p)$ vanish or $\nabla \omega_{|S}(p)$ and $\nabla \rho_{|S}(p)$ point in opposite direction, where S is the stratum of X^f that contains p. This

is impossible if we are sufficiently close to the origin. Now, applying the same arguments as Durfee [10], Proposition 1.7 and Proposition 3.5, we see that $f^{-1}(\delta) \cap \tilde{B}_{\epsilon}$ is homeomorphic to $f^{-1}(\delta) \cap B_{\epsilon'}$ and that $f^{-1}(\delta) \cap \tilde{S}_{\epsilon}$ is homeomorphic to $f^{-1}(\delta) \cap S_{\epsilon'}$.

Theorem 3.10. We have

$$I(\delta,\epsilon,g) + I(\delta,\epsilon,-g) = 2\chi(M_f^{\delta,\epsilon}) - \chi(f^{-1}(\delta) \cap S_{\epsilon}) - \chi(X^g \cap f^{-1}(\delta) \cap S_{\epsilon}).$$

Corollary 3.11. If $f:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0, then

$$I(\delta,\epsilon,g) + I(\delta,\epsilon,-g) = 2\chi(M_f^{\delta,\epsilon}) - \chi(\operatorname{Lk}(X^f)) - \chi(\operatorname{Lk}(X^f \cap X^g)).$$

Let us remark if dim X=2 then in Theorem 3.10 and in Corollary 3.11, the last term of the right-hand side of the equality vanishes. If dim X=1 then in Theorem 3.10 and in Corollary 3.11, the last two terms of the right-hand side of the equality vanish.

4. An infinitesimal Gauss-Bonnet formula

In this section, we apply the results of the previous section to the case of linear forms and we establish a Gauss-Bonnet type formula for the real Milnor fibre.

We will first show that generic linear forms satisfy Condition (A) and Condition (B). For $v \in S^{n-1}$, let us denote by v^* the function $v^*(x) = \langle v, x \rangle$.

Lemma 4.1. There exists a subanalytic set $\Sigma_1 \subset S^{n-1}$ of positive codimension such that if $v \notin \Sigma_1$, $\{v^* = 0\}$ intersects $X \setminus \{0\}$ transversally (in the stratified sense) in a neighborhood of the origin.

Proof. It is a particular case of Lemma 3.8 in [14].

Corollary 4.2. If $v \notin \Sigma_1$ then $v_{|X}^* : (X,0) \to (\mathbb{R},0)$ has an isolated stratified critical point at 0.

Proof. By Lemma 2.1, we know that the stratified critical points of $v_{|X}^*$ lie in $\{v^*=0\}$. But since $\{v^*=0\}$ intersects $X\setminus\{0\}$ transversally, the only possible critical point of $v_{|X}^*:(X,0)\to(\mathbb{R},0)$ is the origin.

Lemma 4.3. There exists a subanalytic set $\Sigma_2 \subset S^{n-1}$ of positive codimension such that if $v \notin \Sigma_2$, then Γ_{f,v^*} is a C^1 -subanalytic curve (possibly empty) in a neighborhood of 0.

Proof. Let V be stratum of dimension e such that $V \not\subseteq X^f$. We can assume that $e \geq 2$. Let

$$M_V = \left\{ (x, y) \in V \times \mathbb{R}^n \mid \operatorname{rank}[\nabla f_{|V}(x), \nabla y_{|V}^*(x)] < 2 \right\}.$$

It is a subanalytic manifold of class C^1 and of dimension n+1. To see this, let us pick a point (x,y) in M_V . In a neighborhood of x, V is defined by the vanishing of k=n-e C^2 -subanalytic functions f_1, \ldots, f_k . Since V is not included in X^f , $f: V \to \mathbb{R}$ is a submersion and we can assume that in a neighborhood of x, the following $(k+1) \times (k+1)$ -minor:

$$\frac{\partial(f_1,\ldots,f_k,f)}{\partial(x_1,\ldots,x_k,x_{k+1})},$$

does not vanish. Therefore, in a neighborhood of (x, y), M_V is defined by the vanishing of the following $(k + 2) \times (k + 2)$ -minors:

$$\frac{\partial(f_1,\ldots,f_k,f,y^*)}{\partial(x_1,\ldots,x_k,x_{k+1},x_{k+2})},\ldots,\frac{\partial(f_1,\ldots,f_k,f,y^*)}{\partial(x_1,\ldots,x_k,x_{k+1},x_n)}.$$

A simple computation of determinants shows that the gradient vectors of these minors are linearly independent. As in previous lemmas, we show that Σ_{f,v^*} is one-dimensional considering the projection

$$\begin{array}{cccc} \pi_2 & : & M^V & \to & \mathbb{R}^n \\ & (x,y) & \mapsto & y. \end{array}$$

Since $\Gamma_{f,v^*} = \bigcup_{V \not\subseteq X^f} \Gamma_{f,v^*}^V$, we get the result.

Let $\Sigma = \Sigma_1 \cup \Sigma_2$, it is a subanalytic subset of S^{n-1} of positive codimension and if $v \notin \Sigma$ then v^* satisfies Conditions (A) and (B). In particular, $v^*_{|f^{-1}(\delta) \cap X \cap \mathring{B}_{\epsilon}}$ has a finite number of critical points $p_1^{\delta,\epsilon}, \ldots, p_{r_v}^{\delta,\epsilon}$. We recall that

$$I(\delta, \epsilon, v^*) = \sum_{i=1}^{r_v} \operatorname{ind}(v^*, f^{-1}(\delta), p_i^{\delta, \epsilon}),$$

$$I(\delta, \epsilon, -v^*) = \sum_{i=1}^{r_v} \operatorname{ind}(-v^*, f^{-1}(\delta), p_i^{\delta, \epsilon}).$$

In this situation, Theorem 3.10 and Corollary 3.11 become

Corollary 4.4. If $v \notin \Sigma$ then

$$I(\delta, \epsilon, v^*) + I(\delta, \epsilon, -v^*) = 2\chi(M_f^{\delta, \epsilon}) - \chi(f^{-1}(\delta) \cap S_{\epsilon}) - \chi(X^{v^*} \cap f^{-1}(\delta) \cap S_{\epsilon}).$$

Furthermore, if $f:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0, then

$$I(\delta, \epsilon, v^*) + I(\delta, \epsilon, -v^*) = 2\chi(M_f^{\delta, \epsilon}) - \chi(\operatorname{Lk}(X^f)) - \chi(\operatorname{Lk}(X^f \cap X^{v^*})).$$

As an application, we give a Gauss-Bonnet formula for the Milnor fibre $M_f^{\delta,\epsilon}.$

Let $\Lambda_0(f^{-1}(\delta), -)$ be the Gauss-Bonnet measure on $f^{-1}(\delta)$ defined by

$$\Lambda_0(f^{-1}(\delta), U') = \frac{1}{s_{n-1}} \int_{S^{n-1}} \sum_{x \in U'} \operatorname{ind}(v^*, f^{-1}(\delta), x) dx,$$

where U' is a Borel set of $f^{-1}(\delta)$ (see [6], page 299) and s_{n-1} is the volume of the unit sphere S^{n-1} . Note that if x is not a critical point of $v_{|f^{-1}(\delta)}^*$ then $\operatorname{ind}(v^*, f^{-1}(\delta), x) = 0$. We are going to evaluate

$$\lim_{\epsilon \to 0} \lim_{\delta \to 0} \Lambda_0(f^{-1}(\delta), M_f^{\delta, \epsilon}).$$

Theorem 4.5. We have

$$\lim_{\epsilon \to 0} \lim_{\delta \to 0} \Lambda_0(f^{-1}(\delta), M_f^{\delta, \epsilon}) = \chi(M_f^{\delta, \epsilon}) - \frac{1}{2} \chi(f^{-1}(\delta) \cap S_{\epsilon}) - \frac{1}{2s_{n-1}} \int_{S^{n-1}} \chi(f^{-1}(\delta) \cap \{v^* = 0\} \cap S_{\epsilon}) dv.$$

Furthermore, if $f:(X,0)\to(\mathbb{R},0)$ has an isolated stratified critical point at 0, then

$$\lim_{\epsilon \to 0} \lim_{\delta \to 0} \Lambda_0(f^{-1}(\delta), M_f^{\delta, \epsilon}) = \chi(M_f^{\delta, \epsilon}) - \frac{1}{2} \chi(\operatorname{Lk}(X^f)) - \frac{1}{2s_{n-1}} \int_{S^{n-1}} \chi(\operatorname{Lk}(X^f \cap X^{v^*})) dv.$$

Proof. By definition, we have

$$\Lambda_0(f^{-1}(\delta), M_f^{\delta, \epsilon}) = \frac{1}{s_{n-1}} \int_{S^{n-1}} \sum_{x \in M_f^{\delta, \epsilon}} \operatorname{ind}(v^*, f^{-1}(\delta), x) dv.$$

It is not difficult to see that

$$\Lambda_0(f^{-1}(\delta), M_f^{\delta, \epsilon}) = \frac{1}{2s_{n-1}} \int_{S^{n-1}} \Big[\sum_{x \in M_{\epsilon}^{\delta, \epsilon}} \operatorname{ind}(v^*, f^{-1}(\delta), x) + \operatorname{ind}(-v^*, f^{-1}(\delta), x) \Big] dv.$$

Note that if $v \notin \Sigma$ then

$$\sum_{x \in M_f^{\delta,\epsilon}} \operatorname{ind}(v^*, f^{-1}(\delta), x) + \operatorname{ind}(-v^*, f^{-1}(\delta), x)$$

is equal to $I(\delta, \epsilon, v^*) + I(\delta, \epsilon, -v^*)$ and is uniformly bounded by Hardt's theorem. By Lebesgue's theorem, we obtain

$$\lim_{\epsilon \to 0} \lim_{\delta \to 0} \Lambda_0(f^{-1}(\delta), M_f^{\delta, \epsilon}) = \frac{1}{2s_{n-1}} \int_{S^{n-1}} \lim_{\epsilon \to 0} \lim_{\delta \to 0} [I(\delta, \epsilon, v^*) + I(\delta, \epsilon, -v^*)] dv.$$

We just have to apply the previous corollary to conclude.

5. Infinitesimal linear kinematic formulas

In this section, we apply the results of the previous section to the case of a linear function in order to obtain "infinitesimal" linear kinematic formulas for closed subanalytic germs.

We start recalling known facts on the geometry of subanalytic sets. We need some notations:

• for $k \in \{0, ..., n\}$, G_n^k is the Grassmann manifold of k-dimensional linear subspaces in \mathbb{R}^n and g_n^k is its volume,

• for $k \in \mathbb{N}$, b_k is the volume of the k-dimensional unit ball and s_k is the volume of the k-dimensional unit sphere.

In [17], Fu developed integral geometry for compact subanalytic sets. Using the technology of the normal cycle, he associated with every compact subanalytic set $X \subset \mathbb{R}^n$ a sequence of curvature measures

$$\Lambda_0(X,-),\ldots,\Lambda_n(X,-),$$

called the Lipschitz-Killing measures. He proved several integral geometry formulas, among them a Gauss-Bonnet formula and a kinematic formula. Later another description of the measures using stratified Morse theory was given by Broecker and Kuppe [6] (see also [5]). The reader can refer to [14], Section 2, for a rather complete presentation of these two approaches and for the definition of the Lipschitz-Killing measures.

Let us give some comments on these Lipschitz-Killing curvatures. If dim X = d then

$$\Lambda_{d+1}(X, U') = \dots = \Lambda_n(X, U') = 0,$$

for any Borel set U' of X and $\Lambda_d(X, U') = \mathcal{L}_d(U')$, where \mathcal{L}_d is the d-dimensional Lebesgue measure in \mathbb{R}^n . Furthemore if X is smooth then for any Borel set U' of X and for $k \in \{0, \ldots, d\}$, $\Lambda_k(X, U')$ is related to the classical Lipschitz-Killing-Weil curvature K_{d-k} through the following equality:

$$\Lambda_k(X, U') = \frac{1}{s_{n-k-1}} \int_{U'} K_{d-k}(x) dx.$$

In [14], Section 5, we studied the asymptotic behaviour of the Lipschitz-Killing measures in the neighborhood of a point of X. Namely we proved the following theorem ([14], Theorem 5.1).

Theorem 5.1. Let $X \subset \mathbb{R}^n$ be a closed subanalytic set such that $0 \in X$. We have:

$$\lim_{\epsilon \to 0} \Lambda_0(X, X \cap B_{\epsilon}) = 1 - \frac{1}{2} \chi(\operatorname{Lk}(X)) - \frac{1}{2g_n^{n-1}} \int_{G_n^{n-1}} \chi(\operatorname{Lk}(X \cap H)) dH.$$

Furthermore for $k \in \{1, ..., n-2\}$, we have:

$$\lim_{\epsilon \to 0} \frac{\Lambda_k(X, X \cap B_\epsilon)}{b_k \epsilon^k} = -\frac{1}{2g_n^{n-k-1}} \int_{G_n^{n-k-1}} \chi(\operatorname{Lk}(X \cap H)) dH + \frac{1}{2g_n^{n-k+1}} \int_{G_n^{n-k+1}} \chi(\operatorname{Lk}(X \cap L)) dL,$$

and:

$$\begin{split} &\lim_{\epsilon \to 0} \frac{\Lambda_{n-1}(X, X \cap B_{\epsilon})}{b_{n-1}\epsilon^{n-1}} = \frac{1}{2g_n^2} \int_{G_n^2} \chi(\mathrm{Lk}(X \cap H)) dH, \\ &\lim_{\epsilon \to 0} \frac{\Lambda_n(X, X \cap B_{\epsilon})}{b_n\epsilon^n} = \frac{1}{2g_n^1} \int_{G_n^1} \chi(\mathrm{Lk}(X \cap H)) dH. \end{split}$$

In the sequel, we will use these equalities and Theorem 4.5 to establish linear kinematic types formulas for the quantities $\lim_{\epsilon \to 0} \frac{\Lambda_k(X, X \cap B_\epsilon)}{b_k \epsilon^k}$, $k = 1, \ldots, n$. Let us start with some lemmas. We work with a closed subanalytic set X such that $0 \in X$, equipped with a Whitney stratification $\{W_\alpha\}_{\alpha \in A}$.

Lemma 5.2. Let f be a C^2 -subanalytic function such that $f_{|X}: X \to \mathbb{R}$ has an isolated stratified critical point at 0. Then for $0 < \delta \ll \epsilon \ll 1$, we have

$$\chi(M_f^{\delta,\epsilon}) + \chi(M_f^{-\delta,\epsilon}) = \chi(\mathrm{Lk}(X)) + \chi(\mathrm{Lk}(X^f)).$$

Proof. With the same technics and arguments as the ones we used in order to establish Corollary 3.11, we can prove that

$$\operatorname{ind}(f, X, 0) + \operatorname{ind}(-f, X, 0) = 2\chi(X \cap B_{\epsilon}) - \chi(\operatorname{Lk}(X)) - \chi(\operatorname{Lk}(X^f)).$$

We conclude thanks to the following equalities

$$\operatorname{ind}(f,X,0) = 1 - \chi(M_f^{-\delta,\epsilon}), \ \operatorname{ind}(-f,X,0) = 1 - \chi(M_f^{\delta,\epsilon}), \ \ \operatorname{and} \ \ \chi(X \cap B_\epsilon) = 1.$$

Corollary 5.3. There exist a subanalytic set $\Sigma_1 \subset S^{n-1}$ of positive codimension such that if $v \notin \Sigma$ then for $0 < \delta \ll \epsilon \ll 1$,

$$\chi(M_{v^*}^{\delta,\epsilon}) + \chi(M_{v^*}^{-\delta,\epsilon}) = \chi(\operatorname{Lk}(X)) + \chi(\operatorname{Lk}(X \cap \{v^* = 0\})).$$

Proof. Apply Corollary 4.2 and Lemma 5.2.

Lemma 5.4. Let $S \subset \mathbb{R}^n$ be a C^2 -subanalytic manifold. Let $H \in G_n^{n-k}$, $k \in \{1, \ldots, n\}$, such that H intersects $S \setminus \{0\}$ transversally and let $G_{H^{\perp}}^1$ be the Grassmann manifold of lines in the orthogonal complement H^{\perp} of H. There exists a subanalytic set $\Sigma'_H \subset G_{H^{\perp}}^1$ of positive codimension such that if $\nu \notin \Sigma'_H$ then $H \oplus \nu$ intersects $S \setminus \{0\}$ transversally.

Proof. Assume that S has dimension e and that H is given by the equations $x_1 = \ldots = x_k = 0$ so that $H^{\perp} = \mathbb{R}^k$ with coordinate system (x_1, \ldots, x_k) . Since H intersects $S \setminus \{0\}$ transversally, we just have to consider points outside H. Let W be defined by

$$W = \left\{ (x, v_1, \dots, v_{k-1}) \in \mathbb{R}^n \times (\mathbb{R}^k)^{k-1} \mid x \in S \setminus H \text{ and } \langle x, v_1 \rangle = \dots = \langle x, v_{k-1} \rangle = 0 \right\},$$

where $v_i \in \mathbb{R}^k \times \{0\} \subset \mathbb{R}^n$. Let us show that W is a C^2 -subanalytic manifold of dimension $e + (k-1)^2$. Let (y, w) be a point in W. We can assume that around y, S is defined by the

vanishing of n - e C^2 -subanalytic functions f_1, \ldots, f_{n-e} . Hence in a neighborhood of (y, w), W is defined by the equations:

$$f_1(x) = \ldots = f_{n-e}(x) = 0$$
 and $\langle x, v_1 \rangle = \cdots = \langle x, v_{k-1} \rangle = 0$.

The gradient vectors of this n-e+k-1 functions are linearly independent in a neighborhood of (y,w). To see this, we observe that there exists $j \in \{1,\ldots,k\}$ such that $x_j \neq 0$ because y does not belong to H. Therefore, writing $v_i = (v_i^1,\ldots,v_i^k,0,\ldots,0)$ for $i \in \{1,\ldots,k-1\}$, we see that

$$\frac{\partial \langle x, v_i \rangle}{\partial v_i^j}(x) \neq 0,$$

for i = 1, ..., k-1. This enables us to conclude that W is a C^2 -subanalytic manifold of dimension $e + (k-1)^2$. Let π_2 be the following projection:

$$\pi_2: W \to (\mathbb{R}^n)^{n-k}, (x, v_1, \dots, v_{n-k}) \mapsto (v_1, \dots, v_{n-k}).$$

Bertini-Sard's theorem implies that the set of critical values of π_2 is a subanalytic set of positive codimension. If (v_1, \ldots, v_{k-1}) lies outside this subanalytic set then the (n-k+1)-plane

$$\{x \in \mathbb{R}^n \mid \langle x, v_1 \rangle = \dots = \langle x, v_{k-1} \rangle = 0\}$$

contains H and intersects $S \setminus \{0\}$ transversally.

Now we can present our infinitesimal linear kinematic formulas.

Let $H \in G_n^{n-k}$, $k \in \{1, \ldots, n\}$, and let $S_{H^{\perp}}^{k-1}$ be the unit sphere of the orthogonal complement of H. Let v be an element in $S_{H^{\perp}}^{k-1}$. For $\delta > 0$, we denote by $H_{v,\delta}$ the (n-k)-dimensional affine space $H + \delta v$ and we set

$$\beta_0(H,v) = \lim_{\epsilon \to 0} \lim_{\delta \to 0} \Lambda_0(H_{\delta,v} \cap X, H_{\delta,v} \cap X \cap B_{\epsilon}).$$

Then we set

$$\beta_0(H) = \frac{1}{s_{k-1}} \int_{S_{n-1}^{k-1}} \beta_0(H, v) dv.$$

Theorem 5.5. *For* $k \in \{1, ..., n\}$ *, we have*

$$\lim_{\epsilon \to 0} \frac{\Lambda_k(X, X \cap B_{\epsilon})}{b_k \epsilon^k} = \frac{1}{g_n^{n-k}} \int_{G_n^{n-k}} \beta_0(H) dH.$$

Proof. We treat first the case $k \in \{1, \dots, n-2\}$. By Theorem 5.1 , we know that

$$\lim_{\epsilon \to 0} \frac{\Lambda_k(X, X \cap B_\epsilon)}{b_k \epsilon^k} = -\frac{1}{2g_n^{n-k-1}} \int_{G_n^{n-k-1}} \chi(\operatorname{Lk}(X \cap H)) dH + \frac{1}{2g_n^{n-k+1}} \int_{G_n^{n-k+1}} \chi(\operatorname{Lk}(X \cap L)) dL.$$

By Lemma 3.8 in [14], we know that generically H intersects $X \setminus \{0\}$ transversally in a neighborhood of the origin. Let us fix H that satisfies this generic property. For any $v \in S_{H^{\perp}}^{k-1}$, let ν be the line generated by v and let L_v be the (n-k+1)-plane defined by $L_v = H \oplus \nu$. By Lemma 5.4, we know that for v generic in $S_{H^{\perp}}^{k-1}$, L_v intersects $X \setminus \{0\}$ transversally in a neighborhood of the origin. Therefore, $v_{|X \cap L_v|}^*$ has an isolated singular point at 0 and we can apply Theorem 4.5. We have

$$\lim_{\epsilon \to 0} \lim_{\delta \to 0} \Lambda_0(X \cap L_v \cap \{v^* = \delta\}, X \cap L_v \cap \{v^* = \delta\} \cap B_{\epsilon}) = \\
\chi(X \cap L_v \cap \{v^* = \delta\} \cap B_{\epsilon}) - \frac{1}{2}\chi(\text{Lk}(X \cap L_v \cap \{v^* = 0\})) \\
- \frac{1}{2s_{n-k}} \int_{S_{L_v}^{n-k}} \chi(\text{Lk}(X \cap L_v \cap \{v^* = 0\} \cap \{w^* = 0\})) dw,$$

where $S_{L_v}^{n-k}$ is the unit sphere of L_v . Let us remark that $L_v \cap \{v^* = \delta\}$ is exactly $H_{v,\delta}$ and that $L_v \cap \{v^* = 0\}$ is H. We can also apply Lemma 5.2 to $v^*_{|X \cap L_v|}$ to obtain the following relation:

$$\beta_0(H, v) + \beta_0(H, -v) = \chi(\text{Lk}(X \cap L_v)) - \frac{1}{s_{n-k}} \int_{S_{L_v}^{n-k}} \chi(\text{Lk}(X \cap H \cap \{w^* = 0\})) dw.$$

Since $\beta_0(H)$ is equal to

$$\frac{1}{2s_{k-1}} \int_{S_{u\perp}^{k-1}} \left[\beta_0(H, v) + \beta_0(H, -v) \right] dv,$$

we find that

$$\beta_0(H) = \frac{1}{2s_{k-1}} \int_{S_{H^{\perp}}^{k-1}} \chi(\text{Lk}(X \cap L_v)) dv - \frac{1}{2s_{k-1}s_{n-k}} \int_{S_{L_v}^{k-1}} \int_{S_{L_v}^{n-k}} \chi(\text{Lk}(X \cap H \cap \{w^* = 0\})) dw dv.$$

Replacing spheres with Grassman manifolds in this equality, we obtain

$$\beta_0(H) = \frac{1}{2g_k^1} \int_{G_{H^{\perp}}^1} \chi(\operatorname{Lk}(X \cap H \oplus \nu)) d\nu$$
$$-\frac{1}{2g_k^1 g_{n-k+1}^{n-k}} \int_{G_{H^{\perp}}^1} \int_{G_{H \oplus \nu}^{n-k}} \chi(\operatorname{Lk}(X \cap H \cap K)) dK d\nu.$$

Therefore, we have

$$\begin{split} \frac{1}{g_n^{n-k}} \int_{G_n^{n-k}} \beta_0(H) dH &= \frac{1}{2g_k^1 g_n^{n-k}} \int_{G_n^{n-k}} \int_{G_{H^{\perp}}^1} \chi(\text{Lk}(X \cap H \oplus \nu)) d\nu dH - \\ &\qquad \frac{1}{2g_n^{n-k} g_k^1 g_{n-k+1}^{n-k}} \int_{G_n^{n-k}} \int_{G_{H^{\perp}}^1} \int_{G_{H^{\oplus \nu}}^{n-k}} \chi(\text{Lk}(X \cap H \cap K)) dK d\nu dH. \end{split}$$

Let us compute

$$\mathcal{I} = \frac{1}{2g_n^{n-k}g_k^1} \int_{G_n^{n-k}} \int_{G_{n+1}^1} \chi(\mathrm{Lk}(X \cap H \oplus \nu)) d\nu dH.$$

Let \mathcal{H} be the flag variety of pairs (L, H), $L \in G_n^{n-k+1}$ and $H \in G_L^{n-k}$. This variety is a bundle over G_n^{n-k} , each fibre being a G_k^1 . Hence we have

$$\int_{G_n^{n-k}} \int_{G_{H^{\perp}}^1} \chi(\operatorname{Lk}(X \cap H \oplus \nu)) d\nu dH = \int_{G_n^{n-k+1}} \int_{G_L^{n-k}} \chi(\operatorname{Lk}(X \cap L)) dH dL = g_{n-k+1}^{n-k} \int_{G_n^{n-k+1}} \chi(\operatorname{Lk}(X \cap L)) dL.$$

Finally, we get that

$$\mathcal{I} = \frac{g_{n-k+1}^{n-k}}{2g_n^{n-k}g_k^1} \int_{G_n^{n-k+1}} \chi(\operatorname{Lk}(X \cap L)) dL = \frac{1}{2g_n^{n-k+1}} \int_{G_n^{n-k+1}} \chi(\operatorname{Lk}(X \cap L)) dL.$$

Let us compute now

$$\mathcal{J} = \frac{1}{2g_n^{n-k}g_k^1g_{n-k+1}^{n-k}}\int_{G_n^{n-k}}\int_{G_{H^{\perp}}^1}\int_{G_{H^{\oplus \nu}}^{n-k}}\chi(\mathrm{Lk}(X\cap H\cap K))dKd\nu dH.$$

First, as we have just done above, we can write

$$\mathcal{J} = \frac{1}{2g_n^{n-k}g_k^1g_{n-k+1}^{n-k}} \int_{G_n^{n-k+1}} \int_{G_L^{n-k}} \int_{G_L^{n-k}} \chi(\mathrm{Lk}(X \cap H \cap K)) dK dH dL.$$

Then we remark (see [14], Corollary 3.11 for a similar argument) that

$$\frac{1}{g_{n-k+1}^{n-k}}\int_{G_L^{n-k}}\chi(\operatorname{Lk}(X\cap H\cap K))dK = \frac{1}{g_{n-k}^{n-k-1}}\int_{G_H^{n-k-1}}\chi(\operatorname{Lk}(X\cap J))dJ,$$

and so

$$\mathcal{J} = \frac{1}{2g_n^{n-k}g_k^1g_{n-k}^{n-k-1}} \int_{G_n^{n-k+1}} \int_{G_L^{n-k}} \int_{G_H^{n-k-1}} \chi(\mathrm{Lk}(X \cap J)) dJ dH dL.$$

Considering the flag variety of pairs (H, J), $H \in G_L^{n-k}$ and $J \in G_H^{n-k-1}$, and proceeding as above, we find

$$\int_{G_{L}^{n-k}}\int_{G_{L}^{n-k-1}}\chi(\operatorname{Lk}(X\cap J))dJdH=g_{1}^{1}\int_{G_{L}^{n-k-1}}\chi(\operatorname{Lk}(X\cap J))dJ,$$

so

$$\mathcal{J} = \frac{g_2^1}{2g_n^{n-k}g_k^1g_{n-k}^{n-k-1}} \int_{G_n^{n-k+1}} \int_{G_r^{n-k-1}} \chi(\text{Lk}(X \cap J))dJ.$$

To finish the computation, we consider the flag variety of pairs (L,J), $L\in G_n^{n-k+1}$ and $J\in G_L^{n-k-1}$. It is a bundle over G_n^{n-k-1} , each fibre being a G_{k+1}^2 . Hence we have

$$\mathcal{J} = \frac{g_2^1}{2g_n^{n-k}g_k^1g_{n-k}^{n-k-1}} \int_{G_n^{n-k-1}} \int_{G_{J^{\perp}}^2} \chi(\mathrm{Lk}(X \cap J)) dJ dM,$$

$$\mathcal{J} = \frac{g_2^1g_{k+1}^2}{2g_n^{n-k}g_k^1g_{n-k}^{n-k-1}} \int_{G_n^{n-k-1}} \chi(\mathrm{Lk}(X \cap J)) dJ = \frac{1}{2g_n^{n-k-1}} \int_{G_n^{n-k-1}} \chi(\mathrm{Lk}(X \cap J)) dJ.$$

This ends the proof for the case $k \in \{1, ..., n-2\}$. For k = n-1 or n, the proof is the same. We just have to remark that in these cases

$$\beta_0(H, v) + \beta_0(H, -v) = \chi(\operatorname{Lk}(X \cap L_v)),$$

and if k = n - 1, dim $L_v = 2$ and if k = n, dim $L_v = 1$.

Let us end with some remarks on the limits $\lim_{\epsilon \to 0} \frac{\Lambda_k(X,X \cap B_\epsilon)}{b_k \epsilon^k}$. We already know that if dim X = d then $\lim_{\epsilon \to 0} \frac{\Lambda_k(X,X \cap B_\epsilon)}{b_k \epsilon^k} = 0$ for $k \ge d+1$. This is also the case if $l < d_0$, where d_0 is the dimension of the stratum that contains 0. To see this let us first relate the limits $\lim_{\epsilon \to 0} \frac{\Lambda_k(X,X \cap B_\epsilon)}{b_k \epsilon^k}$ to the polar invariants defined by Comte and Merle in [9]. They can be defined as follows. Let $H \in G_n^{n-k}$, $k \in \{1,\ldots,n\}$, and let v be an element in $S_{H^{\perp}}^{k-1}$. For $\delta > 0$, we set

$$\lambda_0(H, v) = \lim_{\epsilon \to 0} \lim_{\delta \to 0} \chi(H_{\delta, v} \cap X \cap B_{\epsilon}),$$

$$\lambda_0(H) = \frac{1}{s_{k-1}} \int_{S^{k-1}} \lambda_0(H, v) dv,$$

and then

$$\sigma_k(X,0) = \frac{1}{g_n^{n-k}} \int_{G_n^{n-k}} \lambda_0(H) dH.$$

Moreover, we put $\sigma_0(X,0) = 1$.

Theorem 5.6. For $k \in \{0, ..., n-1\}$, we have

$$\lim_{\epsilon \to 0} \frac{\Lambda_k(X, X \cap B_{\epsilon})}{b_k \epsilon^k} = \sigma_k(X, 0) - \sigma_{k+1}(X, 0).$$

Furthermore, we have

$$\lim_{\epsilon \to 0} \frac{\Lambda_n(X, X \cap B_{\epsilon})}{b_n \epsilon^n} = \sigma_n(X, 0).$$

Proof. It is the same proof as Theorem 5.5. For example if $k \in \{0, ..., n-1\}$, we just have to remark that

$$\lambda_0(H, v) + \lambda_0(H, -v) = \chi(\operatorname{Lk}(X \cap L_v)) + \chi(\operatorname{Lk}(X \cap H)),$$

by Lemma 5.2, which implies that

$$\sigma_k(X,0) = \frac{1}{2g_n^{n-k+1}} \int_{G_n^{n-k+1}} \chi(\text{Lk}(X \cap L)) dL + \frac{1}{2g_n^{n-k}} \int_{G_n^{n-k}} \chi(\text{Lk}(X \cap H)) dH.$$

It is explained in [9] that $\sigma_k(X,0) = 1$ if $0 \le k \le d_0$, so if $k < d_0$ then $\lim_{\epsilon \to 0} \frac{\Lambda_k(X,X \cap B_{\epsilon})}{b_k \epsilon^k} = 0$.

References

- AOKI, K., FUKUDA, T., NISHIMURA. T.: On the number of branches of the zero locus of a map germ (Rⁿ,0) → (Rⁿ⁻¹,0). Topology and Computer Science: Proceedings of the Symposium held in honor of S. Kinoshita, H. Noguchi and T. Homma on the occasion of their sixtieth birthdays (1987), 347-363.
- AOKI, K., FUKUDA, T., NISHIMURA. T.: An algebraic formula for the topological types of one parameter bifurcation diagrams, Archive for Rational Mechanics and Analysis 108 (1989), 247-265. 10.1007/BF01052973
- [3] AOKI, K., FUKUDA, T., SUN, W.Z.: On the number of branches of a plane curve germ, Kodai Math. Journal 9 (1986), 179-187. 10.2996/kmj/1138037200
- [4] BEKKA, K.: Regular stratification of subanalytic sets, Bull. London Math. Soc. 25 no. 1 (1993), 7-16. 10.1112/blms/25.1.7
- [5] BERNIG, A., BRÖCKER, L.: Courbures intrinsèques dans les catégories analytico-géométriques, Ann. Inst. Fourier (Grenoble) 53(6) (2003), 1897-1924. 10.1023/A:1005248711077
- [6] BRÖCKER, L., KUPPE, M.: Integral geometry of tame sets, Geometriae Dedicata 82 (2000), 285-323.
- [7] CISNEROS-MOLINA, J. L., GRULHA JR., N. G., SEADE, J.: On the topology of real analytic maps, Internat. J. Math. 25 (2014), no. 7, 1450069, 30 pp. DOI: 10.1142/S0129167X14500694
- [8] COMTE, G.: Equisingularité réelle: nombres de Lelong et images polaires, Ann. Sci. Ecole Norm. Sup (4) 33(6) (2000), 757-788.
- [9] COMTE, G., MERLE, M.: Equisingularité réelle II: invariants locaux et conditions de régularité, Ann. Sci. Éc. Norm. Supér (4) 41 (2008), no. 2, 221-269.
- [10] DURFEE, A.H.: Neighborhoods of algebraic sets, Trans. Am. Math. Soc. 276 (1983), no. 2, 517-530.
- [11] DUTERTRE, N.: Degree formulas for a topological invariant of bifurcations of function germs, Kodai Math. J. 23, no. 3 (2000), 442-461. 10.2996/kmj/1138044270
- [12] DUTERTRE, N.: On the Milnor fibre of a real map-germ, Hokkaido Mathematical Journal 31 (2002), 301-319. 10.14492/hokmj/1350911866
- [13] DUTERTRE, N.: On the Euler characteristics of real Milnor fibres of partially parallelizable maps of $(\mathbb{R}^n,0) \to (\mathbb{R}^2,0)$, Kodai Math. J. **32**, no. 2 (2009), 324-351. 10.2996/kmj/1245982908
- [14] DUTERTRE, N.: Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets, Geom. Dedicata 158, no.1 (2012),167-189. 10.1007/s10711-011-9627-7
- [15] DUTERTRE, N.: On the topology of semi-algebraic functions on closed semi-algebraic sets, Manuscripta Mathematica 139, no. 3-4 (2012), 415-441. 10.1007/s00229-011-0523-0
- [16] EISENBUD, D., LEVINE, H.I.: An algebraic formula for the degree of a C^{∞} map-germ, Annals of Mathematics 106 (1977), 19-44. 10.2307/1971156
- [17] FU, J.H.G.: Curvature measures of subanalytic sets, Amer. J. Math. 116 (1994), no. 4, 819-880.

- [18] FUKUI, T.: An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, in Stratifications, singularities, and differential equations, II (Marseille, 1990; Honolulu, HI, 1990), Travaux en cours 55, Hermann, Paris, 45-54 1997.
- [19] FUKUI, T.: Mapping degree formula for 2-parameter bifurcation of function-germs, Topology 32 (1993), 567-571. 10.1016/0040-9383(93)90007-I
- [20] FUKUI, T., KHOVANSKII, A.: Mapping degree and Euler characteristic, Kodai Math. J. 29, no. 1 (2006), 144-162. 10.2996/kmj/1143122391
- [21] GREUEL, G.M.: Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständingen Durschnitten, Math. Annalen 214 (1975), 235-266. 10.1007/BF01352108
- [22] LÊ, D.T.: Calcul du nombre de Milnor d'une singularité isolée d'intersection complète, Funct. Anal. Appl. 8 (1974), 45-52.
- [23] SZAFRANIEC, Z.: On the number of branches of a 1-dimensional semi-analytic set, Kodai Math. Journal 11 (1988), 78-85. 10.2996/kmj/1138038822

AIX-MARSEILLE UNIVERSITÉ, CNRS, CENTRALE MARSEILLE, I2M, UMR 7373, 13453 MARSEILLE, FRANCE. E-mail address: nicolas.dutertre@univ-amu.fr