
Journal of Singularities
Volume 13 (2015), 11-41

Proc. of Geometry and Topology
of Singular Spaces, CIRM, 2012

DOI: 10.5427/jsing.2015.13b

DEFORMATION OF SINGULARITIES AND ADDITIVE INVARIANTS

GEORGES COMTE

Abstract. In this survey on local additive invariants of real and complex definable singular

germs we systematically present classical or more recent invariants of different nature as
emerging from a tame degeneracy principle. For this goal, we associate to a given singular germ

a specific deformation family whose geometry degenerates in such a way that it eventually
gives rise to a list of invariants attached to this germ. Complex analytic invariants, real

curvature invariants and motivic type invariants are encompassed under this point of view.

We then explain how all these invariants are related to each other as well as we propose a
general conjectural principle explaining why such invariants have to be related. This last

principle may appear as the incarnation in definable geometry of deep finiteness results of

convex geometry, according to which additive invariants in convex geometry are very few.

Introduction

A beautiful and fruitful principle occurring in several branches of mathematics consists in
deforming the object under consideration in order to let appear some invariants attached to
this object. In this deformation process, the object X0 to study becomes the special fibre of a
deformation family (Xε)ε where each fibre Xε approximates X0, from a topological, metric or
geometric point of view, depending on the nature of the invariant that one aims for X0 through
(Xε)ε.

For instance in Morse theory, where a smooth real valued function f : M → R on a
smooth manifold M is given, such that f−1([f(m) − η, f(m) + η] contains no critical point
of f but m, the homotopy type of f−1(] − ∞, f(m) + η]) is given by the homotopy type of
f−1(] − ∞, f(m) − ε]), for any ε with 0 < ε ≤ η, plus a discrete invariant attached to f
at m, namely the index of f at m. In this case the family (f−1(] − ∞, f(m) − ε]))0<ε≤η
has the same fibres, from the differential point of view, and approximates the special set
f−1(] −∞, f(m) + η]), from the homotopy type point of view, up to some additional discrete
topological invariant.

Another instance of this deformation principle can be found in tropical geometry, where a
patchwork polynomial embeds a complex curve X0 of the complex torus (C∗)2 into a family
(Xε) of complex curves. This family may be viewed as a curve X on the non archimedean
valued field C((εR)) of Laurent series with exponents in R. Then, by a result of Mikhalkin and
Rullg̊ard ([82] and [91]), the amoebas family A (Xε) of (Xε) has limit (in the Hausdorff metric)
the non archimedean amoeba A (X ) of X .

In the theory of sufficiency of jets the aim is to approach a smooth map by its family of
Taylor polynomials up to some sufficient degree depending on the kind of equivalence considered
for maps (right, left, or V equivalence). Embedding a germ into a convenient deformation is
a seminal way of thinking for R. Thom that has been successfully achieved in his cobordism
theory or in his works on regular stratifications providing regular trivializations. We could
multiply examples in this spirit, old ones as well as recent ones (from recent developments in

http://dx.doi.org/10.5427/jsing.2015.13b


12 GEORGES COMTE

general deformation theory itself for instance 1), but in this introduction we will focus only on
two specific examples, that will be developed thereafter: the Milnor fibration and the Lipschitz-
Killing curvatures.

The Milnor fibre of a complex singularity. The first of these two examples is provided by
the Milnor fibre of a complex singular analytic hypersurface germ f : (Cn, 0)→ (C, 0). We will
assume for simplicity that this singularity is an isolated one, that is to say that we will assume
that 0 = f(0) is the only critical value of f , at least locally around 0. We denote B(0,η) the
open ball of radius η, centred at 0 of the ambient space depending upon the context. Now, for
η > 0 small enough and 0 < %� η, the family (f−1(ε)∩B(0,η))0<|ε|<% is a smooth bundle, with
projection f , over the punctured disc B(0,%) \ {0} ⊂ C. The topological type of a fibre

Xε := f−1(ε) ∩B(0,η)

does not depend on the choice of ε, and the homotopy type of this fibre is the homotopy of a
finite CW complex of dimension n−1, the one of a bouquet of µ spheres Sn−1, where µ is called
the Milnor number of the fibration (see [86]). On the other hand, the special singular fibre

X0 := f−1(0) ∩B(0,η)

is contractible, as a germ of a semialgebraic set. It follows that the family (Xε)0<|ε|<η approx-
imates the singular fibre X0 up to µ cycles that vanish as ε goes to 0. The number µ of these
cycles appears as an analytic invariant of the germ of the hypersurface f that is geometrically
embodied on the nearby fibres Xε of the deformation on the singular fibre (see also [23]). In
[102], B. Teissier embedded the Milnor number µ in a finite sequence of integers in the following
way. For a generic vector space V of Cn of dimension n− i, the Milnor number of the restriction
of f to V does not depend on V and is denoted µ(n−i). In particular µ = µ(n) and therefore the
sequence µ(∗) := (µ0, · · · , µ(n−1), µ(n)) gives a multidimensional version of µ.

We can consider other invariants attached to the Milnor fibre of f , also extending the simple
invariant µ: the Lefschetz numbers of the iterates of the monodromy of the Milnor fibration, that
we introduce now in order to fix notations in the sequel. The Milnor fibre Xε may be endowed
with an isomorphism M , the monodromy of the Milnor fibre, defined up to homotopy and that
induces in an unambiguous way an automorphism, also denoted M , on the cohomology group
H`(Xε,C)

M : H`(Xε,C)→ H`(Xε,C), ` = 0, · · · , n− 1.

For the m-th iterate Mm of M , for any m ≥ 0, one finally defines the Lefschetz number Λ(Mm)
of Mm by

Λ(Mm) :=
n−1∑
i=0

(−1)itr(Mm, Hi(Xε,C)),

where tr stands for the trace of endomorphisms. Note that Λ(M0) = χ(X0) = 1 + (−1)n−1µ
and that the eigenvalues of M are roots of unity (see for instance [99]).

A more convenient deformation of f−1(0) than the family (f−1(ε) ∩B(0,η))ε, at least for the
practical computation of the topological invariants we just have introduced, is provided by an
adapted resolution of the singularity of f at 0. To define such a resolution and fix the notations
used in Section 3, let us consider σ : (M,σ−1(0)) → (Cn, 0) a proper birational map which is
an isomorphism over the (germ of the) complement of f−1(0) in (Cn, 0), such that f ◦ σ and
the jacobian determinant jac σ are normal crossings and σ−1(0) is a union of components of the
divisor (f ◦ σ)−1(0). We denote by Ej , for j ∈ J , the irreducible components of (f ◦ σ)−1(0)

1As recalled by Kontsevich and Soibelman, Gelfand quoted that “any area of mathematics is a kind of
deformation theory”, see [68].
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and assume that Ek are the irreducible components of σ−1(0) for k ∈ K ⊂J . For j ∈J we
denote by Nj the multiplicity multEjf ◦ σ of f ◦ σ along Ej and for k ∈ K by νk the number

νk = 1 +multEk jac σ. For any I ⊂J , we set E0
I = (

⋂
i∈I Ei) \ (

⋃
j∈J \I Ej).

The collection (E0
I )I⊂J gives a canonical stratification of the divisor f◦σ = 0, compatible with

σ = 0 such that in some affine open subvariety U in M we have f ◦σ(x) = u(x)
∏
i∈I x

Ni
i , where

u is a unit, that is to say a rational function which does not vanish on U , and x = (x′, (xi)i∈I)
are local coordinates. Now the nearby fibres Xε are isomorphic to their lifting

X̃ε := σ−1(f−1(ε) ∩B(0,η))

in M and the family (X̃ε)0<|ε|<η approximates the divisor X̃0 := σ−1(f−1(0) ∩ B(0,η)). Of

course the geometry of X̃0 has apparently nothing to do with the geometry of our starting germ
(f−1(0), 0), but as the topological information concerning the singularity of f : (Cn, 0)→ (C, 0)
is carried by the nearby fibres family (Xε)0<|ε|<η, all this information is still encoded in the family

(X̃ε)0<|ε|<η, and the discrete data Nj , νk although depending on the choice of the resolution,
may be combined in order to explicitly compute invariants of the singularity.

Not only µ, the most elementary of our invariants, may be computed in the resolution, but
also more elaborated ones such as the Lefschetz numbers of the iterates of the monodromy of
the singularity. Indeed, by [1] we have the celebrated A’Campo formulas

Λ(Mm) =
∑

i∈K , Ni/m

Ni · χ(E0
{i}), m ≥ 0

and in particular

1 + (−1)n+1µ = χ(X0) = Λ(M0) =
∑
i∈K

Ni · χ(E0
{i}).

0.1. Remark. Denoting X̄0 the closure of the Milnor fibre of f : (C, 0) → (C, 0), since the
boundary X̄0\X0 is a compact smooth manifold with odd dimension, we have χ(X̄0\X0) = 0, and
in particular χ(X0) = χ(X̄0). This is why, in the complex case and for topological considerations
at the level of the Euler-Poincaré characteristic, the issue of the open or closed nature of balls
is not so relevant. In contrast, in the real case, this issue really matters.

Metric invariants coming from convex geometry. The second main example of invariants
arising from a deformation that we aim to emphasize and develop here, comes from convex
geometry. In this case, starting from a compact convex set of Rn, it is usual to approximate this
set by its family of ε-tubular neighbourhoods, ε > 0, since those neighbourhoods remain convex
and generally have a more regular shape than the original set. This method is notably used in
[101] to generate a finite sequence of metric invariants attached to a compact convex polytope
P (the convex hull of a finite number of points) in Rn (actually in R2 or R3 in [101]). It is
established in [101] that the volume of the tubular neighbourhood of radius ε ≥ 0 of P ,

TP,ε :=
⋃
x∈P

B̄(x,ε),

where B̄(x,ε) is the closed ball of Rn centred at x with radius ε, is a polynomial in ε with
coefficients Λ0(P ), · · · ,Λn(P ) depending only on P and being invariant under isometries of Rn.
We have

∀ε ≥ 0, V oln(TP,ε) =

n∑
i=0

αiΛn−i(P ) · εi, (1)

It is convenient to normalize the coefficients Λi(P ) by the introduction, in the equality (1)
defining them, of the i-volume αi of the i-dimensional unit ball.
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When ε = 0 in this formula, one gets Λn(P ) = V oln(P ). On the other hand, denoting
δ = max{|x− y|;x, y ∈ P} the diameter of P , for any x ∈ P , the inclusions

B(x,ε) ⊂ TP,ε ⊂ B(x,ε+δ)

show that V oln(TP,ε) ∼
ε→∞

αn · εn and thus Λ0(P ) = 1. Denoting the Euler-Poincaré character-

istic by χ and having in mind further generalizations, the relation Λ0(P ) = 1 has rather to be
considered as Λ0(P ) = χ(P ). A direct proof of (1) leads to an expression of the other coefficients
Λi(P ) in terms of some geometrical data of P . To give this proof, we set now some notation.

For P a polytope in Rn of dimension n, generated by n + 1 independent points, an affine
hyperplane in Rn generated by n of these points is called a facet of P . The normal vector to
a facet F of P is the unit vector orthogonal to F and pointing in the half-space defined by F
not containing P . For i ∈ {0, · · · , n − 1}, a i-face of P is the intersection of P with n − i
distinct facets of P . We denote Fi(P ) the set of i-faces of P . By convention Fn(P ) = {P}. For
x ∈ P one consider Fx, the unique face of P of minimal dimension containing x. If x ∈ ∂P (the
boundary of P ), the normal exterior cone of P at x, denoted C(x, P ), is the R+-cone of Rn

generated by the normal vectors to the facets of P containing x. By convention C(x, P ) = {0},
for x ∈ P \ ∂P .

We note that for Fx of dimension i ∈ {0, · · · , n − 1}, C(x, P ) is a R×+-invariant cone of Rn

of dimension n− i. Furthermore, for any y ∈ Fx, C(x, P ) = C(y, P ). One thus defines C(F, P ),
the exterior normal cone of P along a face F of P , by C(x, P ), where x is any point in F . One
has C(P, P ) = {0}.

For P a degenerated polytope of Rn, that is to say that the affine subspace [P ] of Rn generated
by P is of dimension < n, one denotes C[P ](x, P ) the exterior normal cone of P at x in [P ],
since P is of maximal dimension in [P ]. With this notation, the exterior normal cone of P at
x in Rn, denoted CRn(x, P ), or simply C(x, P ) when no confusion is possible, is defined by
C[P ](x, P ) × [P ]⊥. We finally define C(F, P ), for P general, as C(x, P ) for any x ∈ F . The
exterior normal cone of P depends on the ambient space in which we embed P , but we now
define an intrinsic measure attached to the normal exterior cone, the exterior angle.

fig.1
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0.2. Definition. Let P be a polytope of Rn and F ∈ Fi(P ). One defines the exterior angle
γ(F, P ) of P along F (see fig.1), by

γ(F, P ) :=
1

αn−i
· V oln−i(C(F, P ) ∩ B̄(0,1)) = V oln−i−1(C(F, P ) ∩ S(0,1)).

By convention γ(P, P ) = 1.

With the definition of the exterior angle, the proof of (1) is trivial.

Proof of equality (1). We observe that

V oln(TP,ε) =

n∑
i=0

αi · εn−i
∑

F∈Fi(P )

V oli(F ) · γ(F, P ).

In particular

Λi(P ) =
∑

F∈Fi(P )

V oli(F ) · γ(F, P ). (2)

�

The equality (2) shows how the invariant Λi(P ) captures the concentration γ(F, P ) of the
curvature of the family (TP,ε)ε>0 along the i-dimensional faces of P as ε goes to 0.

In the general convex case and not only in the convex polyhedral case, the equality (1) still
holds, defining invariants Λi on the set K n of convex sets of Rn. A proof of this equality by
approximation of a convex set by a sequence of polytopes is given in [97], section 4.2. Another
proof is indicated in [40] (3.2.35) and [74], using the Cauchy-Crofton formula, a classical formula
in integral geometry, that we recall here.

0.3. Cauchy-Crofton formula ([40] 5.11, [41] 2.10.15, 3.2.26, [94] 14.69). Let A ⊂ Rn a
(H d, d)-rectifiable set, where H d is the d-dimensional Hausdorff measure. We have

V old(A) =
1

β(d, n)

∫
P̄∈G(n−d,n)

Card(A ∩ P̄ ) dγn−d,n(P̄ ), (C C )

with G(n − d, n) the Grassmannian of (n − d)-dimensional affine planes P̄ of Rn, γn−d,n its
canonical measure and denoting Γ the Euler function, β(d, n) the universal constant

Γ(
n− d+ 1

2
)Γ(

d+ 1

2
)/Γ(

n+ 1

2
)Γ(

1

2
).

One can now prove equality (1) in the general compact convex case.

Proof of equality (1) in the convex case. We proceed by induction on the dimension of the am-
bient space is which our convex compact set K lies. If this dimension is 1, formula (1) is trivial,
and if this dimension is n > 1, one has

V oln(TK,ε) = V oln(K) +

∫ ε

r=0

V oln−1(Kr) dr,

where Kr is the set of points in Rn at distance r of K. We compute V oln−1(Kr) using the
Cauchy-Crofton formula.

Noting that Card(L ∩Kr) = 2 or Card(L ∩Kr) = 0, up to a γ1,n-null subset of G(1, n), we
obtain by definition of γ̄1,n

V oln(TK,ε) =

V oln(K) +

∫ ε

r=0

2

β(1, n)

∫
H∈G(n−1,n)

V oln−1(πH(Kr)) dγn−1,n(H) dr,
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where G(n− 1, n) is the Grassmannian of (n− 1)-dimensional vector subspace of Rn equipped
with its canonical measure γn−1,n invariant under the action of On(R) and πH is the orthogonal
projection onto H ∈ G(n− 1, n).

fig.2

By induction hypothesis, the expression of the volume of the tubular neighbourhood of radius
r of the convex sets of Rn−1 is a polynomial in r. Since πH(Kr) is TπH(K),r in H, we have

V oln(TK,ε) = V oln(K)

+
2

β(1, n)

∫ ε

r=0

∫
H∈G(n−1,n)

n−1∑
i=0

αiΛn−1−i(πH(K)) · ri dγn−1,n(H) dr

= V oln(K) +
2

β(1, n)

n−1∑
i=0

αi
i+ 1

· εi+1

∫
H∈G(n−1,n)

Λn−1−i(πH(K)) dγn−1,n(H).

�

In [101], the formula (1) is also proved for C2+ surfaces, giving a hint for a possible extension
of this formula to the smooth case. This extension is due to H. Weyl, who proved in [110] the
following statement (see also [74]).

0.4. Theorem (Weyl’s tubes formula). Let X be a smooth compact submanifold of Rn of di-
mension d. Let ηX > 0 such that for any ε, 0 < ε ≤ ηX , for any y ∈ TX,ε, there exists a unique
x ∈ X such that y ∈ x+ (TxX)⊥. Then for any ε ≤ ηX

V oln(TX,ε) =

[d/2]∑
i=0

αn−d+2iΛd−2i(X) · εn−d+2i,

where the Λk(X)′s are invariant under isometric embeddings of X into Riemannian manifolds.

When, on the other hand, X is a non convex union of two polytopes P,Q, V oln(TX,ε) is no
more necessarily a polynomial in ε. For example for X1 = P ∪Q where P = {(0, 0)} ⊂ R2 and
Q = {(0, 2)} ⊂ R2, and for 1 ≤ ε ≤ 2. In the same way, when X is a singular set, for any ε > 0,
V oln(TX,ε) is not necessarily a polynomial in ε. For example for

X2 = {(x, y) ∈ R2;x ≥ 0, (x2 + y2 − 1)(x2 + (y − 2)2 − 1) = 0},
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for any sufficiently small ε > 0, V ol2(TX,ε) = (1 + ε)2 arccos(
1

1 + ε
)−

√
ε2 + 2ε (see fig.3).

0.5. Remark. Nevertheless by [22] we know that for X a subanalytic subset of Rn, V ol(TX,ε) is
a polynomial in subanalytic functions with variable ε and the logarithms of these functions, and
thus that it is defined in some o-minimal structure over the reals.

0.6. Remark. The grey areas Σ1 and Σ2 in figure 3, counted with multiplicities 1 in V ol2(TXi,ε)
have non polynomial contributions. But when these areas are counted with multiplicity 2, on
one hand, with this modified computation for V ol2(TX1,ε), we obtain the sum of the areas of two
discs of radius ε centred at P and Q and, on the other hand, with this modified computation
for V ol2(TX2,ε), we obtain twice the volume of the tubular neighbourhood of radius ε of half a
circle minus the volume of a ball of radius ε.

fig.3

In conclusion, a multiple contribution of the volume of the grey areas provides two polynomials
in ε. Moreover, we observe that for j = 1, 2:

- ∀x ∈ Σj : 2 = χ(Xj ∩ B̄(x,ε)),

- ∀x ∈ TXj ,ε \ Σj : 1 = χ(Xj ∩ B̄(x,ε)),

- ∀x ∈ R2 \ TXj ,ε : χ(Xj ∩ B̄(x,ε)) = 0.

It follows that for j=1,2

∫
x∈R2

χ(Xj ∩ B̄(x,ε)) dx =

∫
x∈TXj,ε

χ(Xj ∩ B̄(x,ε)) dx is a polynomial

in ε. These examples are in the scope of a general fact: the formula (1) can be generalized
to compact sets definable in some o-minimal structure over the reals by the formula (1′) given
below.

0.7. Theorem ([45], [46], [47], [48], [49], [50], [51], [8], [9], [11]). Let X be a compact subset
of Rn definable in some o-minimal structure over the ordered real field. There exist constants
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Λ0(X), · · · ,Λn(X) such that for any ε ≥ 0∫
x∈Tε,X

χ(X ∩ B̄(x,ε)) dx =

n∑
i=0

αiΛn−i(X) · εi. (1′)

The real numbers Λi(X), i = 0, · · · , n are called the Lipschitz-Killing curvatures of X, they only
depend on definable isometric embeddings of X into euclidean spaces. Moreover, we have

Λi(X) =

∫
P̄∈Ḡ(n−i,n)

χ(X ∩ P̄ )
dγ̄n−i,n(P̄ )

β(i, n)
. (2′)

0.8. Remarks about (1′) and (2′). In Theorem 0.7 we assume the set X compact, although for
X bounded but not compact the equality (1′) together with (2′) is still true with χ the Euler-
Poincaré characteristic with compact support, usually considered for non-compact definable sets.
This characteristic is additive and multiplicative and defined by any finite cell decomposition
∪iCi of X by χ(X) =

∑
i(−1)dim(Ci) (see [39], p. 69). For simplicity, in what follows we will

still consider the compact case.

0.9. Remark. The formula (1′) is clearly a generalization to the non convex case of the formula
(1), since for X compact convex, for any ε ≥ 0, for any x ∈ TX,ε, χ(X ∩ B̄(x,ε)) = 1, thus∫
x∈Tε,X χ(X ∩ B̄(x,ε)) dx = V oln(TX,ε). In the same way (1′) generalizes Weyl’s tube formula to

the singular case, since for X smooth, there exists ηX > 0 such that for any ε, 0 < ε < ηX , for
any x ∈ TX,ε, χ(X ∩ B̄(x,ε)) = 1 and

∫
x∈Tε,X χ(X ∩ B̄(x,ε)) dx = V oln(TX,ε).

The formula (1′) comes from a more general cinematic formula (see [11], [49]). For X and Y
two definable sets of Rn∫

g∈G
Λk(X ∩ g · Y ) dg =

∑
i+j=k+n

cn,i,j · Λi(X) · Λj(Y )

with G the group of isometries of Rn and cn,i,j universal constants.
The expression of Λi given by (2′) generalizes to the definable case the representation formula

(2) of Λi given in the polyhedral case. Furthermore, from (2′) we get the following characteriza-
tion of Λ0 and Λd, d = dim(X), already obtained from (1) in the compact convex case

Λ0(X) = χ(X)

and, using the Cauchy-Crofton formula,

Λd(X) = V old(X).

Finally,

Λd+1(X) = · · · = Λn(X) = 0,

for d < n.
The last remark made now here is a remark that, having in mind geometric measure theory,

we are eager to address: the Euler-Poincaré characteristic being additive for definable sets (see
[39]) the equality (1′) or (2′) shows that the Λi’s are additive invariants of definable sets, in the
following sense

∀i ∈ {0, · · · , n}, Λi(X ∪ Y ) = Λi(X) + Λi(Y )− Λi(X ∩ Y ),

for any definable sets X and Y of Rn.
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We have now in hand two kinds of deformation of a singular set. When this set is an analytic
isolated hypersurface singularity, we may consider its Milnor fibration, providing in particular
as invariant the Milnor number of the singularity, and in the more general definable case, we
have recalled in details the notion of Lipschitz-Killing curvatures, coming from the deformation
family provided by the tubular neighbourhoods. It is worth noting that in these two cases, the
deformations considered lead to additive invariants attached to the given germ.

In what follows, we explain how to localize the Lipschitz-Killing curvatures in order to attach
to a singular germ a finite sequence of additive invariants (Section 1). We will then explain
how all our local invariants are related and how such kind of relation illustrates, in the very
general context of definable sets over the reals, the emergence of a well-known principle in
convex geometry wherein additive invariants (with some additional properties) may not be so
numerous (Section 2). Finally, we will stress the fact that the additive nature of an invariant
coming from a deformation allows us to compute this invariant in some adapted scissors ring
via some generating zeta function capturing the nature of the deformation. This is the point of
view which underlies the work of Denef and Loeser (Section 3).

0.10. Notation. As well as in this introduction, in the sequel, B(x,r), B̄(x,r) and S(x,r) are re-
spectively the open ball, the closed ball and the sphere centred at x and with radius r of the
real or the complex vector spaces Rn or Cn. If necessary, to avoid confusion, we emphasize the
dimension d of the ambient space to which the ball belongs by denoting Bd(x,r). Definable means

definable in some given o-minimal structure expanding the ordered real field (R,+,−, ·, 0, 1, <)
(see [14], [39]).

1. Local invariants from the tubular neighbourhoods deformation

The invariants Λ0, · · · ,Λn defined in the introduction for compact definable sets (or at least
bounded definable sets) may be extended to non bounded definable sets as well as they may be
localized in order to be attached to any definable germ (X, 0). The extension of the invariants
Λi to non bounded definable sets has been proposed in [36]. These two possible extensions are
similar; they essentially use the fact that near a given point or near infinity the topological types
of affine sections of a definable set are finite in number. As we are mainly interested in local
singularities, we explain in this section how to localize the sequence (Λ0, · · · ,Λn) at a given
point.

For this goal, let us consider X ⊂ Rn a compact definable set. We assume that 0 ∈ X and we
denote by X0 the germ of X at 0, d its dimension. Representing elements P̄ of the Grassmann
manifold Ḡ(n− i, n) of (n− i)-dimensional affine subspaces of Rn by pairs (x, P ) ∈ Rn×G(i, n),
where x ∈ P , and P̄ is the affine subspace of Rn orthogonal to P at x, the measure γ̄n−i,n
on Ḡ(n − i, n) is the image through this representation of the product m ⊗ γi,n, where m is
the Lebesgue measure on P and P is identified with Ri. It follows by formula (2’) that Λi is
i-homogeneous, that is to say Λi(λ ·X) = λiΛi(X), for any λ ∈ R∗+. In consequence, it is natural

to consider the asymptotic behaviour of
1

αi
Λi(

1

%
· (X ∩ B̄(0,%))) =

1

αi%i
Λi(X ∩ B̄(0,%)), as %→ 0,

in order to obtain invariants attached to the germ X0 of X at 0.
Using standard arguments for the definable family

(
1

%
· (X ∩ B̄(0,%)) ∩ P̄ ))(%,P̄ )∈R∗

+×Ḡ(n−i,n)

such as Thom-Mather’s isotopy lemma or cell decomposition theorem, one knows that, for any
fixed P̄ ∈ Ḡ(n−i, n), the topological type of the family ( 1

% ·(X∩B̄(0,%))∩P̄ ))%)∈R∗
+

is constant for

% small enough and therefore the limit of χ( 1
% ·(X∩B̄(0,%))∩P̄ ) for %→ 0 does exist. Furthermore,
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still by finiteness arguments proper to definable sets, the family (χ( 1
% ·(X∩B̄(0,%))∩P̄ ))P̄∈Ḡ(n−i,n)

is bounded with respect to P̄ .
The next definition follows from these observations (see [21], Theorem 1.3).

1.1. Definition (Local Lipschitz-Killing invariants, see [21]). Let X be a (compact) definable
set of Rn, representing the germ X0 at 0 ∈ X. The limit

Λ`oci (X0) := lim
%→0

1

αi.%i
Λi(X ∩ B̄(0, %)) (3)

exists and the finite sequence of real numbers (Λ`oci (X0))i∈{0,...,n} is called the sequence of local
Lipschitz-Killing invariants of the germ X0.

1.2. Remark. Another kind of localization of the invariants Λi have been obtained and studied
in [9], by considering the family (X ∩ S(0,%))%>0 instead of the family (X ∩ B̄(0,%))%>0.

1.3. Remarks. For any i ∈ {0, · · · , n}, just as Λi, Λ`oci is invariant under isometries of Rn

and defines an additive function on the set of definable germs at the origin of Rn. Moreover
Λ`oci (X0) = 0, for i > d, since Λi = 0 for definable sets of dimension < i and for any definable
compact germ X0, Λ`oc0 (X0) = 1, since Λ0 = χ and a definable germ is contractible. Finally,
since by the Cauchy-Crofton formula (C C ) and (2′) we have

Λ`ocd (X0) = lim
%→0

V old(X ∩B(0,%))

V old(Bd(0,%))
, (4)

we observe that Λ`ocd (X0) is by definition the local density Θd(X0) of X0, and thus we have
obtained, by finiteness arguments leading to Definition 1.1, the following theorem of Kurdyka
and Raby.

1.4. Corollary ([69], [70], [78]). The local density of definable sets of Rn exists at each point of
Rn.

On figure 4 are represented the data taken into account in the computation of Λ`oci (X).

For P ∈ G(i, n), we denote by KP,%
` the domains of P above which the Euler-Poincaré

characteristic of the fibres of πP |X∩B̄(0,%) is constant and equals χP,%` ∈ Z. The quantity

Λi(X∩B̄n(0,%)) is then obtained as the mean value over the vector planes P of the sum
∑`P
`=1 χ

P,%
` ·

V oli(K
P,%
` ). In particular we’d like to stress the fact that are considered in this sum the volumes

of the domains KP,%
` (in green on figure 4) defined by the critical values of πP coming from the

link X ∩ S(0,%). We draw attention to these green domains, far from the origin, in view of other
local invariants, the polar invariants, that will be defined in the next section, and for which only

the domains KP,%
` close to the origin will be considered.
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X ∩Bn(0,%)

fig.4

2. Additive invariants of singularities and Hadwiger principle

In the previous section we have localized the Lipschitz-Killing invariants. We’d like now to
investigate the question of how these invariants are related to classical local invariants of singu-
larities, such as Milnor number, or Milnor numbers of generic plane sections of the singularity
(for the complex case). The question of the correspondence of invariants coming from differen-
tial geometry and invariants of singularities has been tackled by several authors. In the first
section 2.1, we briefly recall some of these works. We then introduce in section 2.2 a sequence
of invariants of real singularities that is the real counterpart of classical invariants of complex
singularities and we finally relate the localized Lipschitz-Killing invariants to the polar invariants
in section 2.3. In section 2.4 we recall results from convex geometry and convex valuation theory
giving a strong hint, called here Hadwiger principle, of the reason why such invariants have to
be linearly related.

2.1. Differential geometry of complex and real hypersurface singularities. The first
example we’d like to recall of such a correspondence may be found in [71] (see also [72] and [73]).
In [71] R. Langevin relates the concentration of the curvature of the Milnor fibre

F ηε = f−1(ε) ∩B(0,η), 0 < ε� η � 1,

as ε and η go to 0 to the Milnor numbers µ and µ(n−1) of the isolated hypersurface singularity
f : (Cn, 0)→ (C, 0). To present this relation, we need some definitions.

For a given real smooth oriented hypersurface H of Rn and for x ∈ H, we classically define
the Gauss curvature K(x) of H at x by K(x) := jac(ν), where ν : H → Sn−1 is the mapping
giving the unit normal vector to H induced by the canonical orientation of Rn and the given
orientation of H. The curvature K(x) can be generalized in the following way to any submanifold
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M of Rn of dimension d, d ∈ {0, · · · , n − 1} (see [42]). Let x be a point of M and denote by
N(x) ' Sn−d−1 the manifold of normal vectors to M at x, and, for ν ∈ N(x), by K(x, ν) the
Gauss curvature at x of the projection Mν of M to TxM ⊕ ν. Note that the projection Mν

defines at x a smooth hypersurface of TxM ⊕ ν oriented by ν. The mean value of K(x, ν) over
N(x) define the desired generalized Gauss curvature.

2.1.1. Definition (see [42]). With the above notation, the curvature K(x) of M at x is defined
by

K(x) :=

∫
ν∈PN(x)

K(x, ν) dν

2.1.2. Remarks. The curvature K(x, ν) is εd−n times the Gauss curvature of the boundary ∂TM,ε

of the ε-neighbourhood of M at x+ εν (see [15]).
In [71], following Milnor, it is observed that for M a smooth complex hypersurface of Cn,

K(x) = (−1)n−1π|jacγC(x)|2, where γC is the complex Gauss map sending x ∈M to the normal
complex line γC(x) ∈ PCn−1 to M at x.

In case M is a compact submanifold of Rn, using a so-called exchange formula ([72] Theorem
II.1, [74], [35]) relating

∫
M
K(x) dx and the mean value over generic lines L in Rn of the total

index of the projection of M on L, we obtain the Gauss-Bonnet theorem∫
M

K(x) dx = c(n, d)χ(M).

Applying Definition 2.1.1 to the Milnor fibre F ηε of an isolated hypersurface singularity
f : (Cn, 0)→ (C, 0) and using again the exchange formula, we can estimate the concentration
of the curvature K(x) of the Milnor fibre F ηε as ε and η go to 0. This value is related to the
invariants µ and µ(n−1) of the singularity, thanks to a result of [103], by the following formula

2.1.3. Theorem ([71], [72]). The curvature K of a complex Milnor fibre satisfies

lim
η→0

lim
ε→0

c(n)

∫
Fηε

(−1)n−1K(x) dx = µ+ µ(n−1),

where c(n) is a constant depending only on n.

This formula has been generalized to the other terms of the sequence µ(∗) by Loeser in [79]
in the following way.

2.1.4. Theorem ([79]). For k ∈ {1, · · · , n− 1}, we have

lim
η→0

lim
ε→0

(−1)n−kc(n, k)

η2k

∫
Fηε

cn−1−k(Ωf−1(ε)) ∧ Φk = µ(n−k) + µ(n−k−1),

where cn−1−k(Ωf−1(ε)) is the (n−1−k)-th Chern form of f−1(ε), Φ the Kähler form of Cn and
as usual c(n, k) a constant depending only on n and k.

A real version of these two last statements has been given by N. Dutertre, in [35] for the real
version of Theorem 2.1.3 and in [36] for the real version of Theorem 2.1.4. In [35] (see Theorem
5.6), a real polynomial germ f : (Rn, 0)→ (R, 0) having an isolated singularity at 0 is considered
and the following equalities are given for the asymptotic behaviour of the Gauss curvature on
the real Milnor fibre F ηε = f−1(ε) ∩B(0,η).

2.1.5. Theorem ([35], Theorem 5.6). The Gauss curvature K of the real Milnor fibre F ηε have
the following asymptotic behaviour

lim
η→0

lim
ε→0+

∫
Fηε

K(x) dx =
V ol(Sn−1)

2
deg0∇f +

1

2

∫
G(n−1,n)

deg0∇(f|P ) dP
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lim
η→0

lim
ε→0−

∫
Fηε

K(x) dx = −V ol(S
n−1)

2
deg0∇f +

1

2

∫
G(n−1,n)

deg0∇(f|P ) dP

In [36], the asymptotic behaviour of the symmetric functions s0, · · · , sn−1 of the curvature of
the real Milnor fibre are studied. For a given smooth hypersurface H of Rn, the si’s are defined
by

det(Id+ tDν(x)) =

n−1∑
i=0

si(x) · ti =

n−1∏
i=1

(1 + ki(x)t),

where the ki’s are the principal curvatures of H, that is to say, the eigenvalues of the symmetric
morphism Dν(x). The limits

lim
η→0

lim
ε→0

1

ηk

∫
Fηε

sn−k(x) dx

are then given in terms of the mean value of deg0∇(f|P ) for P ∈ G(n − k + 1, n) and for
P ∈ G(n − k − 1, n) (see [36], Theorem 7.1). In particular, the asymptotic behaviour of the
symmetric functions s0, · · · , sn−1 of the curvature of the real Milnor fibre is related to the Euler-
Poincaré characteristic of the real Milnor fibre by the following statement.

2.1.6. Theorem ([36], Corollary 7.2). For n odd,

χ(F ηε ) =

(n−1)/2∑
k=0

c(n, k) lim
η→0

lim
ε→0

1

η2k

∫
Fηε

sn−1−2k(x) dx,

and for n even

χ(F ηε ) =
1

2
χ(f−1(0) ∩ Sn−1

(0,η)) =

(n−2)/2∑
k=0

c′(n, k) lim
η→0

lim
ε→0

1

η2k

∫
Fηε

sn−2−2k(x) dx,

2.2. Local invariants of definable singular germs. In the present survey we aim to relate
the local Lipschitz-Killing invariants Λ`oci , i = 0, · · · , n, coming from the tubular neighbourhoods
deformation, to local invariants of definable singular germs of Rn. These germs have not neces-
sarily to be of codimension 1 in Rn, as it is the case in the complex and real statements recalled
above in Section 2.1. Therefore we have to define local invariants of singularities attached to de-
finable germs of Rn of any dimension and try to relate them to the sequence Λ`oc∗ . Furthermore
those invariants have to extend, to the real setting, classical invariants of complex singularities,
such as the sequence µ(∗) in the hypersurface case or the sequence of the local multiplicity of
polar varieties in the general case. For this purpose we introduce now a new sequence σ∗ of local
invariants, called the sequence of polar invariants.

Let, as before, X ⊂ Rn be a closed definable set, and assume that X contains the origin of Rn

and that d is the dimension of X at 0. We denote by C (X) the group of definable constructible
functions on X, that is to say the group of definable Z-valued functions on X. These functions
f are characterized by the existence of a finite definable partition (Xi) of X (depending on f)
such that f|Xi is a constant integer ni ∈ Z, for any i. We denote by C (X0) the group of germs at
the origin of functions of C (X). For Y ⊂ Rm a definable set, f : X → Y a definable mapping, a
definable set Z ⊂ X and y ∈ Y , we introduce the notation f∗(1Z)(y) := χ(f−1(y) ∩ Z) and we
then define the following functor from the category of definable sets to the category of groups

X  C (X)
f ↓ ↓ f∗
Y  C (Y )
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In [21], Theorem 2.6, it is stated that, for f = πP the (orthogonal) projection onto a generic
i-dimensional vector subspace P of Rn, this diagram leads to the following diagram for germs

X0  C (X0)
πP0 ↓ ↓ πP0∗
P0  C (P0)

(5)

where for Z0 ⊂ X0 and y ∈ P , πP0∗(1Z0)(y) is defined by χ(π−1
P (y) ∩ Z ∩ B̄(0,%)), % being

sufficiently small and 0 < ‖y‖ � %. The existence of such a diagram for germs simply amounts
to prove that a generic projection of a germ defines a germ 2 and that, for such a projection and
for any c ∈ Z, the germ at 0 of the definable set {y ∈ P ;χ(π−1

P (y) ∩ Z ∩ B̄(0,%)) = c} does not
depend on %.

Denoting by θi(ϕ) the integral with respect to the local density Θi at 0 ∈ Ri of a germ
ϕ : P0 → Z of constructible function, that is to say

θi(ϕ) :=

N∑
j=1

nj ·Θi(K
j
0),

when ϕ =
∑N
j=1 nj · 1Kj

0
, for some definable germs Kj

0 ⊂ P0 partitioning P0, we can define the

desired polar invariants σi(X0) of X0.

2.2.1. Definition (Polar invariants). With the previous notation, the polar invariants of the
definable germ X0 are

σi(X0) :=

∫
P∈G(i,n)

θi(πP0∗(1X0
)) dγi,n(P ), i = 0, · · · , n

2.2.2. Remarks. Since they are defined as mean values over generic projections, the σi’s are
invariant under the action of isometries of Rn. On the other hand the σi’s define additive invari-
ants (as well as the Λ`oci ’s do), since they are defined through the Euler-Poincaré characteristic
χ and the local density Θi, two additive invariants.

Observe that σi(X0) = 0, for i > d, since a general k-dimensional affine subspace of Rn does
not encounter a definable set of codimension > k. We also have σ0(X0) = Λ`oc0 (X0) = 1, again
by the local conic structure of definable sets and because X0 is closed. Finally, for i = d, one
shows that

σd(X0) = Θd(X0) = Λ`ocd (X0)

(we recall that by the Cauchy-Crofton formula (C C ) and by definition (2′) and (3) of Λd and of
Λ`ocd , we have Θd(X0) = Λ`ocd (X0), as already observed for Corollary 1.4). Since the relation

σd(X0) = Θd(X0)

asserts that the localization Θd of the d-volume is σd, that is to say, by definition of σd, that
the localization of the volume may be computed by the mean value over (generic) d-dimensional
vector subspaces P ⊂ Rn of the number of points in the fibre of the projections of the germ
X0 onto the germ P0, this relation appears as the local version of the global Cauchy-Crofton
formula (C C ). We state it as follows.

2 Let us for instance denote X the blowing-up of R2 at the origin and x ∈ X a point of the exceptional divisor
of X. We then note that the projection of the germ (X)x on R2, along the exceptional divisor of X, does not

define a germ of R2. Indeed, the projection of X ∩ U , for U a neighbourhood of x in X, defines a germ at the
origin of R2 that depends of U .
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2.2.3. Local Cauchy-Crofton formula ([18], [19] 1.16, [21] 3.1). Let X be a definable subset
of Rn of dimension d (containing the origin), let G be a definable subset of G(d, n) on which
transitively acts a subgroup G of On(R) and let m be a G-invariant measure on G , such that

- the tangent spaces to the tangent cone of X0 are in G ,
- There exists P 0 ∈ G such that {g ∈ G; g · P 0 = P 0}, the isotropy group of P 0, transitively

acts on the d-dimensional vector subspace P 0 and m(G ) = m(G ∩ EX) = 1, where EX is the
generic set of G(d, n) for which the localization (5) is possible.

Then, we have

σG
d (X0) = Θd(X0), (C C `oc)

where σG
d is defined as in Definition 2.2.1, but relatively to G and m.

In the case G = G(d, n) and G = On(R), the formula (C C `oc) is just

σd(X0) = Θd(X0) = Λ`ocd (X0).

In the case X is a complex analytic subset of Cn, G = G̃(d/2, n) (the d/2-dimensional complex
vector subspaces of Cn) and G = Un(C), since by definition the number of points in the fibre
of a projection of the germ X0 onto a generic d/2-dimensional complex vector subspace of Cn

is the local multiplicity e(X, 0) of X0, formula (C C `oc) gives

e(X, 0) = σ
G̃(d/2,n)
d (X0) = Θd(X0).

Obtaining the equality e(X, 0) = Θd(X0) as a by-product of the formula (C C `oc) provides a new
proof of Draper’s result (see [32]).

2.2.4. Remark. When (Xj)j∈{0,··· ,k} is a Whitney stratification of the closed set X (see for

instance [105] and [106] for a survey on regularity conditions for stratifications) and 0 ∈ X0,
σi(X0) = 1, for i ≤ dim(X0) (see [21], Remark 2.9). Therefore, to sum up, when (Xj)j∈{0,··· ,k}
is a Whitney stratification of the closed definable set X and d0 is the dimension of the stratum
containing 0, one has

σ∗(X0) = (1, · · · , 1, σd0+1(X0), · · · , σd−1(X0),Λ`ocd (X0)(X0) = Θd(X0), 0, · · · , 0).

On figure 5 we represent the data taken into account in the computation of the invariant

σi(X0). Here, contrary to the computation of the Λ`oci (X0) where all the domains KP,%
` matter

(see figure 4), only the domains KP,%
` having the origin in their adherence (these domains are

coloured in red in figure 5) are considered, since only these domains appear as

χ(π−1
P (y) ∩ Z ∩ B̄(0,%)) ·Θi((K

P,%
` )0)

in the computation of θ(πP0∗(1X0
)).

In particular the domains KP,%
` (in green on figure 5) defined by the critical values of the

projection πP restricted to the link X∩S(0,%) are not considered in the definition of θ(πP0∗(1X0
)).

One can indeed prove (see [21], Proposition 2.5) that for any generic projection πP exists rP > 0,
such that for all %, 0 < % < rP , the discriminant of the restriction of πP to the link X ∩ S(0,%) is
at a positive distance from 0 = πP (0).
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X ∩ B̄n(0,%)

fig.5

Let us now deal with the question of what kind of invariants of complex singularities the
sequence σ∗ of invariants of real singularities generalizes. For this goal, we consider that X is a
complex analytic subset of Cn of complex dimension d. One may define, like in the real case,
the polar invariants of the germ X0, denoted σ̃i, i = 0, · · · , n. These invariants are defined
by generic projections on i-dimensional complex vector subspaces of Cn. In the complex case,
assuming 0 ∈ X, there exists r > 0, such that for y generic in a generic i-dimensional vector
space P of Cn and y sufficiently closed to 0

σ̃i(X0) = χ(π−1
P (y) ∩X ∩ B̄(0,r)).

In particular, as already observed, σ̃d(X0) is e(X, 0), the local multiplicity of X at 0.
In the case where X is a complex hypersurface f−1(0), given by an analytic function

f : (Cn, 0)→ (C, 0) having at 0 an isolated singularity, one has for a generic y in the germ
at 0 of a generic i-dimensional vector space P0 of Cn

χ(π−1
P (y) ∩X ∩ B̄(0,η)) = χ(π−1

P (0) ∩ f−1(ε) ∩ B̄(0,η)),

where ε is generic in C, sufficiently close to 0 and 0 < |ε| � η � 1.
Therefore, for 0 < |ε| � η � 1, the integer χ(π−1

P (0) ∩ f−1(ε) ∩ B̄(0,η)) is the Euler-Poincaré

characteristic of the Milnor fibre of f restricted to P⊥, that is to say 1 + (−1)n−i−1µ(n−i). In
the case where X is a complex analytic hypersurface of Cn with an isolated singularity at 0, we
thus have

σ̃i(X0) = 1 + (−1)n−i−1µ(n−i).

For X a complex analytic subset of Cn of dimension d, d being not necessarily n − 1, the
complex invariants σ̃i(X0) have been first considered by Kashiwara in [65] (where the balls are
open and not closed as it is the case here). An invariant E0

X0
is then defined in [65] by induction
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on the dimension of X0 using σ̃i. This invariant is studied in [33], [34] and in [12] where a
multidimensional version EkX0

of E0
X0

is given (see also [85]). The definition is the following

EkX0
=

∑
Xj0⊂X̄j\Xj , dim(Xj)<dim(X0)

EkX̄j · σ̃k+dim(Xj)+1(X0),

where (Xj) is a Whitney stratification of X0, Xj0 the stratum containing 0 and Ek{0} = 1. The

authors then remark that (see also [33], [34])

EkX0
= EukX0

,

where EukX0
= Eu(X0∩H), H is a general vector subspace of dimension k of Cn and where Eu

is the local Euler obstruction of X at 0, introduced by MacPherson in [84]. In particular,

E0
X0

= EuX0
.

Let us now denote Pi(X0), i = 0, · · · , d, the codimension i polar variety of X0, that is to say
the closure of the critical locus of the projection of the regular part of X0 to a generic vector
space of Cn of dimension d− i+ 1. The following relation between invariants EkX0

and the local

multiplicity of the polar varieties Pi(X0) is obtained in [12]

(−1)i(E
dim(X0)−i−1
X0

− Edim(X0)−i
X0

) = e(Pi(X0), 0),

which in turn gives (see also [85], [75], [76], [77], [34])

EuX0 =

d−1∑
i=0

(−1)ie(Pi(X0), 0),

where e(Pi(X0), 0) is, as before, the local multiplicity at 0 of the codimension i polar variety
Pi(X0) of X0 at 0.

All the invariants σ̃i(Xy), EiXy , e(Pi(Xy), y), viewed as functions of the base-point y, enjoy

the same remarkable property: they can detect subtle variations of the geometry of an analytic
family (Xy), in the sense that the family (Xy) may be Whitney stratified with y staying in
the same stratum if and only if these invariants are constant with respect to the parameter y.
Without proof, it is actually stated in [33] Proposition 1, [34] Theorem II.2.7 page 30, and [12],
that the invariants σ̃i(Xy) are constant as y varies in a stratum of a Whitney stratification of
X0 (see also [21] Corollary 4.5). And in [58], [87], [104] it is proved that the constancy of the
multiplicities e(Pi(Xy), y) as y varies in a stratum of a stratification of X0, is equivalent to the
Whitney regularity of this stratification, giving also a proof, considering the relations between
e(Pi(Xy), y) and σ̃i(Xy) stated above, of the constancy of y 7→ σ̃i(Xy) along Whitney strata.

We sum-up these results in the following theorem, where e(∆i(Xy), y) is the local multiplicity
at y of the discriminant ∆i(Xy) associated to Pi(Xy), that is the image of Pi(Xy) under the
generic projection that gives rise to Pi(Xy).

2.2.5. Theorem ([58], [87], [77], [104] ). Let X0 be a complex analytic germ at 0 of Cn endowed
with a stratification (Xj). The following statements are equivalent

(1) The stratification (Xj) is a Whitney stratification.
(2) The functions Xj 3 y 7→ e(Pi(X`

y), y), for i = 0, · · · , d− 1 and any pairs (Xj , X`) such

that Xj ⊂ X`, are constant.
(3) The functions Xj 3 y 7→ e(∆i(X`

y), y), for i = 0, · · · , d − 1 and for any pairs (Xj , X`)

such that Xj ⊂ X`, are constant.
(4) The functions y 3 Xj 7→ σ̃i(Xy), for i = 1, · · · , d are constant.
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2.2.6. Remark. In the real case the functions y 7→ σi(Xy) are not Z-valued functions as in the
complex case, but R-valued functions and in general one can not stratify a compact definable
set in such a way that the restriction of these functions to the strata are constant. However, it is
proved in [21] Theorems 4.9 and 4.10, that Verdier regularity for a stratification implies continuity
of the restriction of y 7→ σi(Xy) to the strata of this stratification. Since, in the complex setting,
Verdier regularity is the same as Whitney regularity, this result is the real counterpart of Theorem
2.2.5. Note that in the real case one can not expect that the continuity or even the constancy of
the functions y 7→ σi(Xy) in restriction to the strata of a given stratification implies a convenient
regularity condition for this stratification (see the introduction of [21]).

As a conclusion of this section, the complex version σ̃i of the real polar invariants σi of
definable singularities plays a central role in singularity theory since they let us compute classical
invariants of singularities and since their constancy, with respect to the parameter of an analytic
family, as well as the constancy of other classical invariants related to them, means that the
family does not change its geometry. Since our polar invariants σi appear now as the real
counterpart of classical complex invariants, we’d like to understand in the sequel how they are
related to the local Lipschitz-Killing invariants Λ`oci (X0) coming from the differential geometry
of the deformation of the germ X0 through its tubular neighbourhoods family.

This is the goal of the next section.

2.3. Multidimensional local Cauchy-Crofton formula. The local Cauchy-Crofton formula
(C C `oc) given at 2.2.3 already equals σd and Λ`ocd over definable germs. This relation suggests a
more general relation between the Λ`oci ’s and the σj ’s. We actually can prove that each invariant
of one family is a linear combination of the invariants of the other family. The precise statement
is given by the following formula (C C `oc

mult).

2.3.1. Multidimensional local Cauchy-Crofton formula ([21] Theorem 3.1). There exist

real numbers (mj
i )1≤i,j≤n,i<j such that, for any definable germ X0, one has

Λ`oc1 (X0)
...

Λ`ocn (X0)

 =


1 m2

1 . . . mn−1
1 mn

1

0 1 . . . mn−1
2 mn

2
...

...
0 0 . . . 0 1

 ·
σ1(X0)

...
σn(X0)

 (C C `oc
mult)

These constant real numbers are given by

mj
i =

αj
αj−i · αi

(
i
j

)
− αj−1

αj−1−i · αi

(
i

j − 1

)
,

for i+ 1 ≤ j ≤ n.

2.3.2. Remark. Applied to a d-dimensional definable germX0, the last a priori non-trivial equality
provided by formula (C C `oc

mult), involving the d-th line of the matrices, is

Θd(X0) = Λ`ocd (X0) = σd(X0),

which is the local Cauchy-Crofton formula (C C `oc). The local Cauchy-Crofton formula (C C `oc)
expresses the d-density of a d-dimensional germ as the mean value of the number of points in
the intersection of this germ with a (n − d)-dimensional affine space of Rn. This number of
points may be viewed as the Euler-Poincaré characteristic of this intersection. Now, since for
d-dimensional germs the d-density is the last invariant of the sequence Λ`oc∗ and since formula
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(C C `oc
mult) expresses all invariants Λ`oci in terms of the mean values of the Euler-Poincaré char-

acteristics of the multidimensional plane sections of our germ, we see in formula (C C `oc
mult) a

multimensional version of the local Cauchy-Crofton formula.

2.4. Valuations theory and Hadwiger principle. In the previous section 2.3, with formula
(C C `oc

mult), we have answered the question: how are the local Lipschitz-Killing invariants and
the polar invariants related? In this section we would like to risk some speculative and maybe
prospective insights about formulas similar to (C C `oc

mult), that is to say formulas linearly relating
two families of local invariants of singularities. We include in this scope the complex formulas
presented in Section 2.1. For this goal we first recall some definitions and celebrated statements
from convex geometry, since it appears that from the theory of valuations on convex bodies one
can draw precious lessons on the question: why our additive invariants are linearly dependent?

We have already observed that the additive functions Λi, Λ`oci and σj are invariant under
isometries of Rn. Therefore the first question we would like to address to convex geometry is the
following: to what extend those invariants are models of additive and rigid motion invariants?

The systematic study of additive invariants (of compact convex sets of Rn) has been inau-
gurated by Hadwiger and his school and motivated by Hilbert’s third problem (solved by Dehn
by introducing the so-called Dehn invariants) consisting in classifying scissors invariants of poly-
topes (see for instance [13] for a quick introduction to Hilbert’s third problem). One of the most
striking results in this field is Hadwiger’s theorem that characterises the set of additive and rigid
motion invariant functions (on the set of compact convex subsets of Rn) as the vector space
spanned by the Λi’s. We give now the needful definitions to state Hadwiger’s theorem and the
still-open question of its extension to the spherical case (for more details one can refer to [83],
[97] or [98]).

We denote by K n (resp. K Sn−1) the set of compact convex sets of Rn (resp. of Sn−1, that
is to say the intersection of the sphere Sn−1 and conic compact convex sets of K n with vertex
the origin of Rn). A function v : K n → R (resp. v : K Sn−1 → R) is called a valuation (resp.
a spherical valuation) when v(∅) = 0 and for any K,L ∈ K n (resp. K,L ∈ K Sn−1) such that
K ∪ L ∈ K n (resp. K ∪ L ∈ K Sn−1), one has the additivity property

v(K ∪ L) = v(K) + v(L)− v(K ∩ L).

One says that a valuation v on K n (resp. K Sn−1) is continuous when it is continuous with
respect to the Hausdorff metric on K n (resp. on K Sn−1). A valuation v on K n (resp. K Sn−1)
is called simple when the restriction of v to convex sets with empty interior is zero. Let G be a
subgroup of the orthogonal group On(R). A valuation v on K n (resp. K Sn−1) is G-invariante
when it is invariant under the action of translations of Rn and the action of G on K n (resp.
the action of G on K Sn−1).

The Hadwiger theorem emphasizes the central role played in convex geometry by the Lipschitz-
Killing invariants as additive rigid motion invariants.

2.4.1. Theorem ([55], [66]). A basis of the vector space of SOn(R)-invariant and continuous
valuations on K n is (Λ0 = 1,Λ1, · · · ,Λn = V oln).

Equivalently (by an easy induction argument) a basis of the vector space of continuous and
SOn(R)-invariant simple valuations on K n is Λn = V oln.

This statement forces a family of n+ 2 additive, continuous and SOn(R)-invariant functions
on euclidean convex bodies to be linearly dependent. The second formulation of Hadwiger’s
theorem, concerning the space of simple valuations, enables to address the question of such
a rigid structure of the space of valuations in the setting of spherical convex geometry. This
question of a spherical version of Hadwiger’s result has been address by Gruber and Schneider.



30 GEORGES COMTE

2.4.2. Question ([53] Problem 74, [83] Problem 14.3). Is a simple, continuous and On(R)-
invariant valuation on K Sn−1 a multiple of the (n− 1)-volume on Sn−1?

2.4.3. Remark. In the case n ≤ 3 a positive answer to this question given in [83], Theorem 14.4,
and in the easy case where the simple valuation has constant sign one also has a positive answer
given in [95] Theorem 6.2, and [96]. Note that in this last case the continuity is not required
and that the valuation is a priori defined only on convex spherical polytopes.

This difficult and still unsolved problem naturally appears as soon as one consider the local-
izations Λ`oci of Λi and their relation with other classical additive invariants such as the σj ’s.
Indeed, the question of why and how such invariants are related falls within the framework of
Question 2.4.2. Let’s clarify this principled position.

The invariants (Λ`oci )i∈{0,··· ,n} define spherical On(R)-invariant and continuous valuations

(Λ̂i)i∈{0,··· ,n} on the convex sets of Sn−1 by the formula

Λ̂i(K) := Λ`oci (K̂0) =
1

αi
Λi(K̂ ∩ B̄(0,1)), (8̂)

where K is a convex set of Sn−1, that is to say the trace in Sn−1 of the cone K̂ = R+ ·K with
vertex the origin of Rn. Another possible finite sequence of continuous and On(R)-invariant
spherical valuations on convex polytopes of Sn−1 is

Ξi(P ) :=
∑

F∈Fi(P )

V oli(F ) · γ(F̂ , P̂ ) = V oli(S
i(0, 1))

∑
F∈Fi(P )

Θi(F̂0) · γ(F̂ , P̂ ), (9̂)

where P ⊂ Sn−1 is a spherical polytope, that is to say that R+ · P = P̂ is the intersection
of a finite number of closed half vector spaces of Rn, Fi(P ) the set of all i-dimensional faces

of P (the (i + 1)-dimensional faces of P̂ ) and γ(F̂ , P̂ ) the external angle of P̂ along F̂ . The
valuations Ξi are the natural spherical substitutes of the euclidean Lipschitz-Killing curvatures
Λi according to formula (2).

Finally the polar invariants (σi)i∈{0,··· ,n} also define continuous and On(R)-invariants spher-

ical valuations (σ̂i)i∈{0,··· ,n} on the convex sets of Sn−1, according to a formula of the same type

that formula (8̂)

σ̂i(K) := σi(K̂0). (1̂0)

These three families of continuous and On(R)-invariant spherical valuations

(Λ̂i)i∈{0,··· ,n}, (Ξi)i∈{0,··· ,n}, (σ̂i)i∈{0,··· ,n}

being linearly independent families in the space of spherical valuations, a positive answer to
Question 2.4.2 would have for direct consequence that each element of one family is a linear
combination of elements of any of the other two families.

Therefore, in restriction to polyhedral cones, each element of the family (Λ`oci )i∈{0,··· ,n} could
be expressed as a linear combination (with universal coefficients) of elements of the family
(σi)i∈{0,··· ,n} and conversely. Despite the absence of any positive answer to Question 2.4.2 for
n > 3, this linear dependence is proved in [21] (Theorem A4 and A5) over the set of convex
polytopes (and in [21], section 3.1, even over the set of definable cones). It is actually shown
that each invariant Λ`oci and each invariant σj may be expressed as a linear combination (with
universal coefficients) of elements of the family (Ξi)i∈{0,··· ,n}. The coefficients involved in such
linear combinations may be explicitly computed by considering the case of polytopes.

In conclusion, an anticipating positive answer to this question would imply the existence of
a finite number of independent models for additive, continuous and On(R)-invariant functions
on convex and conic germs. Consequently, solely following this principle and restricted at least
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to convex cones, our local invariants σj and Λ`oci would be automatically linearly dependent. In
the next step, in order to extend a relation formula involving some valuations from the set of
finite union of convex conic polytopes to the set of general conic definable set one has to prove
some general statement according to which the normal cycle of a definable conic set may be
approximate by the normal cycles of a family of finite union of convex conic polytopes. We do
not want to go more into technical details and even define the notion of normal cycle introduced
by Fu; we just point out that this issue has been tackled recently in [44]. Finally to extend a
relation formula from the set of conic definable set to the set of all definable germs one just has
to use the local conic structure of definable germs and the deformation on the tangent cone (see
[21], [38]).

To finish to shed light on convex geometry as an area from which some strong relations
between singularity invariants may be understood, let us remark that the following generalization
of Hadwiger’s theorem 2.4.1 has been obtained by Alesker.

2.4.4. Theorem. Let G be a compact subgroup of On(R).

(1) The vector space V alG(K n) of continuous, translation and G-invariant valuations on
K n has finite dimension if and only if G acts transitively on Sn−1 (see [2] Theorem 8.1,
[4] Proposition 2.6).

(2) One can endowed the vector space V alG(K n) with a product (see [3], [5]) providing
a graded algebra structure (the graduation coming from the homogeneity degree of the
valuations) and

R[x]/(xn+1) → V alOn(R)(K n) = V alSOn(R)(K n)
x 7→ Λ1

is an isomorphism of graded algebras (see [3], Theorem 2.6).

3. Generating additive invariants via generating functions

The possibility of generating invariants from a deformation of a singular set into a family
of approximating and less complicated sets is perfectly illustrated by the work developed by
Denef and Loeser consisting in stating that some generating series attached to a singular germ
are rational. Such generating series have their coefficients in some convenient ring reflecting
the special properties of the invariants to highlight, such as additivity, multiplicativity, analytic
invariance, the relation with some specific group action and so forth, and on the other hand
each of these coefficients is attached to a single element of the deformation family. It follows
that such a generating series captures the geometrical aspect that one aims to focus on through
the deformation family as well as its rationality indicates that asymptotically this geometry
specializes on the geometry of the special fibre approximated by the deformation family. Indeed,
being rational strongly expresses that a series is encoded by a finite amount of data concentrated
in its higher coefficients.

To be more explicit we now roughly describe how Denef and Loeser define the notion of
motivic Milnor fibre (for far more complete and precise introductions to motivic integration
which is the central tool of the theory, and to motivic invariants in general, the reader may refer
to [10], [16], [17], [25], [28], [29], [30], [31], [52], [54], [56], [57], [80], [81], [107]).

3.1. The complex case. A possible starting point of the theory of motivic invariants may
be attributed to the works of Igusa (see [62], [63], [64]) on zeta functions introduced by Weil
(see [109]). In the works of Igusa the rationality of some generating Poincaré series is proved.
These series, called zeta functions, have for coefficients the number of points in O/Mm of f = 0
mod Mm, for f a n-ary polynomial with coefficients in the valuation ring O of some discrete
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valuation field of characteristic zero, with maximal ideal M and finite residue field of cardinal
q. This result amounts to prove the rationality (as a function of q−s, s ∈ C, <e(s) > 0) of an
integral of type ∫

On
|f |s|ds| (11)

(the Igusa local zeta function) which is achieve using a convenient resolution of singularities of f ,
as described in the introduction (see also [24] for comparable statements on Serre’s series and a
strategy based on Macintyre’s proof of elimination of quantifiers as an alternative to Hironaka’s
resolution of singularities). In the opposite direction, the rational function, expressed in terms
of the data of a resolution of f , associated to a polynomial germ f : (C, 0) → (C, 0) by the
expression provided by the computation of Igusa’s integral in the discrete valuation field case
let Denef and Loeser define intrinsic invariants attached to the complex germ (f−1(0), 0), called
topological zeta functions (see [26]).

Another key milestone in the systematic use of discrete valuation fields (here with finite
residue field and more explicitely in the p-adic context) have been reached in Batyrev’s paper
[7], where it is shown that two birationally equivalent Calabi-Yau manifolds over C have the
same Betti numbers. Indeed, by Weil’s conjectures, these Betti numbers are obtained from the
rational expression of the local zeta functions having for coefficients the number of points in the
reductions modulo pm of the manifolds into consideration (viewed as defined over Qp when they
are defined over Q ⊂ C) and on the other hand, these local zeta functions may be computed
by Igusa’s integrals over these manifolds. Being birationally equivalent, these manifolds provide
the same integrals.

Kontsevich, in his seminal talk [67], extended this method (consisting in shifting a complex
geometric problem in a discrete valuation field setting) in the equicharacteristic setting by de-
veloping an integration theory in particular over C[[t]]. Note that the theory may be developed
in great generality and not only in equicharacteristic zero (see [81], [16]). The idea of Kontse-
vich was to define an integration theory over arc spaces, say C[[t]], by considering a measure
with values in the Grothendieck ring K0(VarC) of algebraic varieties over C (localized by the
multiplicative set generated by the class L of A1 in K0(VarC)). The main tool in this context
being a change of variables formula that allows computation of integrals through morphisms,
and in particular through a morphism given by a resolution of singularities. Formally the ring
K0(VarC) is the free abelian group generated by isomorphism classes [X] of varieties X over C,
with the relations

[X \ Y ] = [X]− [Y ],

for Y closed in X, the product of ring being given by the product of varieties (see for in-
stance [88]). Denoting L the class of A1 in K0(VarC), we then denote MC the localization
K0(VarC)[L−1]. Any additive and multiplicative invariant on VarC with non zero value at A1,
such as the Euler-Poincaré characteristic or the Hodge characteristic (both with compact sup-
port), factorizes through the universal additive and multiplicative map VarC 3 X 7→ [X] ∈MC.
Now we equip the space L (Cn, 0) of formal arcs of Cn passing through 0 at 0 with the above-

mentioned measure that provides a σ-additive measure, with values in a completion M̂C of MC,
for sets of the boolean algebra of the so-called constructible sets of L (Cn, 0). Finally denoting
Lm(Cn, 0), m ≥ 0, the set of polynomial arcs of Cn of degree ≤ m, passing through 0 at 0, and
for f : (An, 0)→ (A1, 0) a morphism having a (isolated) singularity at the origin, inducing the
morphism fm : Lm(Cn, 0)→ L (C, 0), we denote

Xm,0,1 := {ϕ ∈ Lm(Cn, 0); (fm ◦ ϕ)(t) = tm + high order terms},
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and we define (see for instance [31]) the motivic zeta function of f with formal variable T by

Zf (T ) :=
∑
m≥1

[Xm,0,1] L−mnTm.

This generating series appears as the C[[t]]-substitute of p-adic zeta functions introduced by Weil,
and whose rationality, following Igusa, amounts to compute an integral of type (11). Inspired
by the analogy of Zf (T ) with Igusa integrals, and also using a resolution of singularities of
f as presented in the introduction and using the Kontsevich change of variables formula for

this resolution applied to the coefficients of Zf viewed as measures (in the ring M̂C) of the
constructible sets Xm,0,1, Denef and Loeser proved (see [27], [28], [31]) the rationality of Zf (T ).
With the notation given in the introduction, we then have

Zf (T ) =
∑

I∩K 6=∅

(L− 1)|I|−1[Ẽ0
I ]
∏
i∈I

L−νiTNi
1− L−νiTNi

(12)

where Ẽ0
I is a covering of E0

I defined in the following way. Let U be some affine open subset

of M such that on U , f ◦ σ(x) = u(x)
∏
i∈I x

Ni
i , with u a unit. Then Ẽ0

I is obtained by gluing

along E0
I ∩ U the sets

{(x, z) ∈ (E0
I ∩ U)×A1; zmI · u(x) = 1},

where mI = gcd(Ni)i∈I .

3.1.1. Question (Monodromy conjecture). We do not know how the poles (in some sense) of the
rational expression of Zf relates on the eigenvalues of the monodromy function M associated
to the singular germ f : (Cn, 0) → (C, 0). The Monodromy Conjecture of Igusa, that has
been stated in many different forms after Igusa, asserts that when Lν − TN indeed appears as

denominator of the rational expression of Zf viewed as an element of the ring generated by M̂C

and TN/(Lν − TN ), ν,N > 0, then e2iπν/N is an eigenvalue of M (see for instance [25] and the
references given in this article for additional classical references).

3.1.2. Remark. The rationality of Zf illustrates again a deformation principle; the family
(Xm,0,1)m≥1 may be considered as a family of tubular neighbourhoods in L (Cn, 0) around
the singular fibre X0 = {f = 0} and in a neighbourhood of the origin, with respect to the ultra-
metric distance given by the order of arcs. Now the rationality of Zf expresses the regularity of
the degeneracy of the geometry of Xm,0,1 onto the geometry of X0. Following this principle, the
rational expression (12) of Zf is supposed to concentrate the part of the geometrical information
encoded in (Xm,0,1)m≥1 that accumulates at infinity in the series Zf .

This is achieved in particular by the following observation (see [27], [30], [31]): the negative
of the constant term of the formal expansion as a power series in 1/T of the rational expression

of Zf given by formula (12) defines the following element in M̂C

Sf :=
∑

I∩K 6=∅

(L− 1)|I|−1 [Ẽ0
I ],

called the motivic Milnor fibre of f = 0 at the singular point 0 of f . Taking the realization of

Sf under the morphism χ : M̂C → Z (note that χ(L) = 1) gives, in particular, by the A’Campo
formula recalled in the introduction,

χ(Sf ) =
∑
i∈K

Ni · χ(E0
{i}) = χ(X0) = 1 + (−1)n−1µ. (13)
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3.1.3. Remark. Generally speaking, taking the constant term in the expansion of a rational
function Z as a power series in 1/T , amounts to consider limT→∞ Z(T ) (in a setting where
this makes sense). A process that gives an increasing importance to the m-th coefficient of Z
as m itself increases. On the other hand, the coefficients of Zf may be directly interpreted at
the level of the Euler-Poincaré characteristic, which could be seen as the first topological degree
of realization of K0(VarC), and it turns out that the sequence (χ(Xm,0,1))m≥1 has a strong
regularity since it is in fact periodic. Indeed, one has by [31] Theorem 1.1 (we recall that M is
the monodromy map and Λ the Lefschetz number)

χ(Xm,0,1) = Λ(Mm), ∀m ≥ 1 (14)

and by quasi-unipotence of M (see [99] I.1.2) there exists N > 1 such that the order of the
eigenvalues of M divides N . It follows from (14) that χ(Xm+N,0,1) = χ(Xm,0,1),m ≥ 1.

Now formula (13), showing that the motivic Milnor fibre has a realization, via the Euler-
Poincaré characteristic, on the Euler-Poincaré characteristic of the set-theoretic Milnor fibre,
is a direct consequence of formulas (14) (note in fact that the proofs of (13) and (14), using
A’Campo’s formulas and a resolution of singularities, are essentially the same and thus gives
comparable statements). Indeed, as noticed by Loeser (personal communication), working with
χ instead of formal classes of K0(VarC), on gets L = χ(A1) = 1 and thus by definition of Zf ,
the series χ(Zf ), realization of the class Zf under the Euler-Poincaré characteristic is

χ(Zf ) =
∑
m≥1

χ(Xm,0,1)Tm

that gives in turn, by formula (14),

χ(Zf ) =
∑
m≥1

Λ(Mm)Tm =

N∑
m=1

Λ(Mm)
∑
k≥0

Tm+kN =

N∑
m=1

Λ(Mm)
Tm

1− TN
.

Since χ(Sf ) = − limT→∞ χ(Zf ), on finally find again that

χ(Sf ) = Λ(MN ) = Λ(Id) = χ(X0) = χ(X̄0) = 1 + (−1)n−1µ.

3.1.4. Remark. One may consider a more specific Grothendieck ring, that is to say a ring with
more relations, in order to take into account the monodromy action on the Milnor fibre. In this
equivariant and more pertinent ring equalities (12) and (14) are still true (see [30], [31] Section
2.9)

3.1.5. Remark. In [61], Hrushovski and Loeser gave a proof of equality (14) without using a
resolution of singularity, and therefore without using A’Campo’s formulas. Since a computation
of Zf in terms of the data associated to a particular resolution of the singularities of f leads to the
simple observation that one computes in this way an expression already provided by A’Campo’s
formulas, the original proof of (14) may, in some sense, appear as a not direct proof. The proof
proposed in [61] uses étale cohomology of non-archimedean spaces and motivic integration in
the model theoretic version of [59] and [60].

3.1.6. Remark. To finish with the complex case, let us note that in [93] and [100] a mixed Hodge
structure on the Milnor fibre f−1(t) at infinity (|t| � 1) has been defined by a deformation
process, letting t goes to infinity (see also [92]). In [89] and [90] a corresponding motivic Milnor
fibre S∞f has then be defined.
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3.2. The real case. A real version of (12), giving rise to a real version of (13) has been obtained
in [20] (see also [43]). In the real case, a singular germ

f : (Rn, 0)→ (R, 0)

defines two smooth bundles (f−1(ε) ∩ B(0,η))0<−ε�η�1 and (f−1(ε) ∩ B(0,η))0<ε�η�1 and as
well as Xm,0,−1 and Xm,0,1, it is natural to consider the two sets

Xm,0,> := {ϕ ∈ Lm(Rn, 0); fm ◦ ϕ = atm + high order terms, a > 0},
and

Xm,0,< := {ϕ ∈ Lm(Rn, 0); fm ◦ ϕ = atm + high order terms, a < 0}.
Let us denote X−1

0 and X+1
0 the fibre f−1(ε) ∩ B(0,η) for respectively ε < 0 and ε > 0. While

Xm,0,a, for a ∈ C×, is a constructible set having a class inK0(VarC), the sets Xm,0,< and Xm,0,>

are real semialgebraic sets and unfortunately, the Grothendieck ring of real semialgebraic sets is
the trivial ring Z, since semialgebraic sets admit semialgebraic cells decomposition.

Therefore, in the real case, since we have to deal with two signed Milnor fibres, we cannot
mimic the construction of K0(VarC). To overcome this issue, in [43] we proposed to work in the
Grothendieck ring of real (basic) semialgebraic formulas, K0(BSR). In this ring no semialgebraic
isomorphism relations between semialgebraic sets, but algebraic isomorphim relations between
sets given by algebraic formulas, are imposed and distinct real semialgebraic formulas having
the same set of real points in Rn may have different classes. In particular, a first order basic
formula in the language of ordered rings with parameters from R may have a nonzero class
in K0(BSR) whereas no real point satisfies it. The ring K0(BSR) may be sent to the more
convenient ring K0(VarR)⊗ Z[ 1

2 ], where explicit computations of classes of basic semialgebraic
formula are possible as long as computations of classes of real algebraic formulas in the classical
Grothendieck ring of real algebraic varieties K0(VarR) are possible.

In this setting, since Xm,0,> and Xm,0,< are given by explicit basic semialgebraic formulas,
they do have natural classes in K0(BSR) and this allows the consideration of the associated zeta
series

Z?
f =

∑
m≥1

[Xm,0,?] L−mnTm ∈ (K0(VarR)⊗ Z[
1

2
])[L−1][[T ]], ? ∈ {−1,+1, <,>}.

It is then proved, with the same strategy as in the complex case (using a resolution of singularities
of f and the Kontsevich change of variables in motivic integration) that the real zeta function
Z?
f is a rational function that can be expressed as

Z?
f (T ) =

∑
I∩K 6=∅

(L− 1)|I|−1[Ẽ0,?
I ]
∏
i∈I

L−νiTNi
1− L−νiTNi

(12′)

for ? being −1,+1, > or <, where Ẽ0,ε
I is defined as the gluing along E0

I ∩ U of the sets

{(x, t) ∈ (E0
I ∩ U)× R; tm · u(x) !? },

where !? is = −1, = 1, > 0 or < 0 in case ? is respectively −1,+1, > or <. The real motivic
Milnor ?-fibre S?

f of f may finally be defined as

S?
f := − lim

T→∞
Zεf (T ) := −

∑
I∩K 6=∅

(−1)|I|[Ẽ0,?
I ](L− 1)|I|−1 ∈ K0(VarR)⊗ Z

[
1

2

]
.

3.2.1. Remark. The class S?
f , although having an expression in terms of the data coming from a

chosen resolution of f , does not depend of such a choice, since the definition of Z?
f as nothing

to do with any choice of a resolution.
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3.2.2. Remark. There is no a priori obvious reason, from the definition of Z?
f (T ), that the

constant term S?
f in the power series in T−1 induced by the rational expression of Z?

f (T ) could

be accurately related to the topology of the corresponding set-theoretic Milnor fibre X?
0 , that is

to say that S?
f could be the motivic version of the signed Milnor fibre X?

0 of f . In the complex

case, it has just been observed that χ(Sf ) is the expression of χ(X0) provided by the A’Campo
formula. In the real case, taking into account that χ(R) = −1, the expression of χ(S?

f ) is

χ(S?
f ) =

∑
I∩K 6=∅

(−2)|I|−1χ(Ẽ0,?
I ),

showing a greater complexity than in the complex case where only strata E{i} of maximal

dimension in the exceptional divisor σ−1(0) appear. Despite this increased complexity, in the
real case the correspondence still holds, since it is proved in [20] that χ(S?

f ) is still χ(X̄?
0), where

? ∈ {−1,+1}. This justifies the terminology of motivic real semialgebraic Milnor fibre of f at 0
for S?

f , at least at the first topological level represented by the morphism

χ : K0(VarR)⊗ Z
[

1

2

]
→ Z.

In order to accurately state the correspondence between the motivic real semialgebraic Milnor
fibre and the set-theoretic Milnor fibre we set now the following notation.

3.2.3. Notation. Let us denote Lk(f) the link f−1(0)∩S(0, η) of f at the origin, 0 < η � 1. We
recall that the topology of Lk(f) is the same as the topology of the boundary f−1(ε) ∩ S(0, η),
0 < ε� η, of the Milnor fibre f−1(ε) ∩B(0,η), when f has an isolated singularity at 0.

- Let us denote, for ? ∈ {<,>}, the topological type of f−1(]0, c?[) ∩ B(0, η) by X?
0 , and the

topological type of f−1(]0, c?[) ∩ B̄(0, η) by X̄?
0 , where c< ∈]− η, 0[ and c> ∈]0, η[.

- Let us denote, for ? ∈ {<,>}, the topological type of {f ?̄ 0} ∩ S(0, η) by G?
0, where ?̄ is ≤

when ? is < and ?̄ is ≥ when ? is >.

3.2.4. Remark. When n is odd, Lk(f) is a smooth odd-dimensional submanifold of Rn and
consequently χ(Lk(f)) = 0. For ? ∈ {−1,+1, <,>}, we thus have in this situation, that
χ(X?

0) = χ(X̄?
0). This is the situation in the complex setting. When n is even, since X̄?

0 is
a compact manifold with boundary Lk(f), one knows from general algebraic topology that

χ(X̄?
0) = −χ(X?

0) =
1

2
χ(Lk(f)),

for ? ∈ {−1,+1, <,>}. For general n ∈ N and for ? ∈ {−1,+1, <,>}, we thus have

χ(X̄?
0) = (−1)n+1χ(X?

0).

On the other hand we recall that for ? ∈ {<,>}

χ(G?
0) = χ(X̄δ?

0 ),

where δ> is + and δ< is − (see [6], [108]).

We can now state the real version of (13). We have, for ? ∈ {−1,+1, <,>}

χ(S?
f ) =

∑
I∩K 6=∅

(−2)|I|−1χ(Ẽ0,?
I ) = χ(X̄?

0) = (−1)n+1χ(X?
0), (13′)

and for ? ∈ {<,>}
χ(S?

f ) =
∑

I∩K 6=∅

(−2)|I|−1χ(Ẽ0,?
I ) = −χ(G?

0). (13′′)
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The formula (13′) below is the real analogue of the A’Campo-Denef-Loeser formula (13) for
complex hypersurface singularities and thus appears as the extension to the reals of this complex
formula, or, in other words, the complex formula is the notably first level of complexity of the
more general real formula (13′).

3.2.5. Remark. In [111], following the construction of Hrushovski and Kazhdan (see [59], [60]),
Yin develops a theory of motivic integration for polynomial bounded T -convex valued fields and
studies, in this setting, topological zeta functions attached to a function germ, showing that they
are rational. This a first step towards a real version of Hrushovski and Loeser work [61], where
no resolution of singularities is used, in contrast with [20].

3.2.6. Questions. The question of finding a real analogue of the complex monodromy with real
analogues of the invariants Λ(Mm) is open. Similarly the question of defining a convenient zeta
function with coefficients in an adapted Grothendieck ring in order to let appear invariants of
type Λ`oci or σj (e(Pi) in the complex case) from a rational expression of this zeta function also
naturally arises.
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1984-1985, exp. no 646, p. 261-288

14. Z. Chatzidakis, Introduction notes on the model theory of valued fields, Motivic integration and its inter-

actions with model theory and non-Archimedean geometry, Volume I, London Math. Soc. Lecture Note
Ser., 383, Cambridge Univ. Press, Cambridge, Edited by R. Cluckers, J. Nicaise, J. Sebag, (2011), 189-243

15. S. S. Chern, R. Lashof, On the total curvature of immersed manifolds, Amer. J. Math., 79 (1957), 306-318

DOI: 10.2307/2372684
16. R. Cluckers, F. Loeser, Constructible motivic functions and motivic integration Invent. Math. 173 (2008),

no 1, 23-121

17. R. Cluckers, F. Loeser, Motivic integration in mixed characteristic with bounded ramification: a summary
Motivic integration and its interactions with model theory and non-Archimedean geometry, Volume I,

305-334, London Math. Soc. Lecture Note Ser., 383, Cambridge Univ. Press, Cambridge, (2011)

http://dx.doi.org/10.1007/BF02565748
http://dx.doi.org/10.1006/aima.2000.1918
http://dx.doi.org/10.1007/s00039-004-0450-2
http://dx.doi.org/10.1007/s00039-007-0631-x
http://dx.doi.org/10.1090/S0002-9947-07-04489-3
http://dx.doi.org/10.1007/BF01077558
http://dx.doi.org/10.1002/1522-2616(200211)245:1%3C5::AID-MANA5%3E3.0.CO;2-E
http://dx.doi.org/10.1002/1522-2616(200211)245:1%3C5::AID-MANA5%3E3.0.CO;2-E
http://dx.doi.org/10.2307/2372684


38 GEORGES COMTE

18. G. Comte, Formule de Cauchy-Crofton pour la densité des ensembles sous-analytiques C. R. Acad. Sci.
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XIII, 1967-69, Lecture Notes in Mathematics 340 (1973)
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Sci. École Norm. Sup. arVix: 1111.1954

62. J. Igusa, Forms of higher degree Tata Institute of Fundamental Research Lectures on Mathematics and

Physics, 59, Tata Institute of Fundamental Research, Bombay, Narosa Publishing House, New Delhi, (1978)
63. J. Igusa, Complex powers and asymptotic expansions II. Asymptotic expansions. J. Reine Angew. Math.

278/279 (1975), 307-321

64. J. Igusa, An introduction to the theory of local zeta functions AMS/IP Studies in Advanced Mathematics,
14. American Mathematical Society, Providence, RI, International Press, Cambridge, MA, (2000)

65. M. Kashiwara, Index theorem for a maximally overdetermined system of linear differential equations, Proc.

Japan Acad. 49 (1973), 803-804 DOI: 10.3792/pja/1195519148
66. D. A. Klain, A short proof of Hadwiger’s characterization theorem, Mathematika 42 (1995), 329-339

DOI: 10.1112/S0025579300014625

67. M. Kontsevich, Lecture at Orsay, (December, 7 1995)
68. M. Kontsevich, Y. Soibelman Deformation Theory I, preliminary draft

http://www.math.ksu.edu/~soibel/Book-vol1.ps
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75. Lê Dũng Tráng, B. Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Annals

of Math. 114 (1981), 457-491 DOI: 10.2307/1971299
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86. J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies 61 (1968)
87. V. Navarro Aznar, Stratifications régulières et variétés polaires locales Manuscrit, (1981)

88. J. Nicaise, J. Sebag, The Grothendieck rings of varieties, Motivic integration and its interactions with
model theory and non-Archimedean geometry, Volume I, London Math. Soc. Lecture Note Ser., 383,

Cambridge Univ. Press, Cambridge, Edited by R. Cluckers, J. Nicaise, J. Sebag, (2011), 145-188
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99. SGA 7, Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969, Groupes de monodromie en
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