GEOMETRY OF D_{4} CONFORMAL TRIALITY AND SINGULARITIES OF TANGENT SURFACES

GOO ISHIKAWA, YOSHINORI MACHIDA, AND MASATOMO TAKAHASHI

Abstract

It is well known that projective duality can be understood in the context of geometry of A_{n}-type. In this paper, as D_{4}-geometry, we construct explicitly a flag manifold, its triple-fibration and differential systems which have D_{4}-symmetry and conformal triality. Then we give the generic classification for singularities of the tangent surfaces to associated integral curves, which exhibits the triality. The classification is performed in terms of the classical theory on root systems combined with the singularity theory of mappings. The relations of D_{4}-geometry with G_{2}-geometry and B_{3}-geometry are mentioned. The motivation of the tangent surface construction in D_{4}-geometry is provided.

1. Introduction

The projective structure and the conformal structure are the most important ones among various kinds of geometric structures. For the projective structures, we do have an important notion, the projective duality. Then we can ask the existence of any counterpart to the projective duality for the conformal structures. Let us try to find it from the view point of Dynkin diagrams. The projective duality can be understood in the context of geometry of A_{n}-type. In fact, Dynkin diagrams of A_{n}-type, which lay under the projective structures, enjoy the obvious \mathbb{Z}_{2}-symmetry. It induces the projective duality after all. On the other hand, the base of the conformal structures is provided by diagrams of type B_{n} and D_{n}. We observe that only the diagram of type D_{4} possesses \mathfrak{S}_{3}-symmetry. In fact, among all simple Lie algebras, only D_{4} has \mathfrak{S}_{3} as the outer automorphism group.

The triality was first discussed by Cartan ([7], see also [19]). Then algebraic triality was studied via octonions by Chevelley, Freudenthal, Springer, Jacobson and so on ([21]). The real geometric triality was studied first by Study [22]. Porteous, in [20], gave a modern exposition on geometric triality. Note that in [20], the null Grassmannians in $B_{n^{-}}$and D_{n}-geometry are called "quadric Grassmannians" and the D_{4} triality is called "quadric triality". For relations to representation theory of $S O(4,4)$ and to mathematical physics, also see [10][18].

The triality has close relations with singularity theory, in particular, theory of simple singularities (see [3]). The D_{4}-singularities of function-germs, wavefronts, caustics, etc. have the natural \mathfrak{S}_{3}-symmetry and also the relations of D_{4}-singularities and G_{2}-singularities are found ([2][9][19]).

In general, for each complex semi-simple Lie algebra, to construct geometric homogeneous models in terms of Borel subalgebras and parabolic subalgebras is known, for instance, in the classical Tits geometry ([23][24][1]). However it is another non-trivial problem to construct the explicit real model from an appropriate real form of the complex Lie algebra, with the detailed analysis on associated canonical geometric structures. Moreover singularities naturally arising from the geometric model provide new problems. We do treat in this paper both the realization problem of geometric models and the classification problem of singularities for D_{4}.

We would like to call a "conformal triality" any phenomenon which arises from this \mathfrak{S}_{3} symmetry of D_{4}. In this paper, we construct an explicit diagram of fibrations, which is called a tree of fibrations, or a cascade of fibrations or a quiver of fibrations, and associated geometric structures on it with D_{4}-symmetry. Moreover we show, as one of conformal trialities, the classification of singularities of surfaces arising from conformal geometry on the explicit tree of fibrations arising from the D_{4}-diagram. The appearance of singularities often depends on geometric structure behind. Thus the geometric triality becomes visible via the triality on the data of singularities.

We provide, as the real geometric model for D_{4}-diagram, the tree of fibrations on null flag manifolds on the 8 -space with $(4,4)$-metric in $\S 2$. In $\S 3$, we recall the structure of $\mathfrak{s o}(4,4)=\mathfrak{o}(4,4)$, the Lie algebra of the orthogonal group $O(4,4)$ on $\mathbf{R}^{4,4}$, as a basic structure of our constructions, and then we describe the canonical geometric structures. In $\S 4$, we give the statement of the main classification result (Theorem 4.3). We describe explicitly the tree of fibrations of D_{4} in $\S 5$, and the canonical differential system on null flags in $\S 6$, where Theorem 4.3 is proved. In $\S 7$, we provide one of motivations for the tangent surface construction in D_{4}-geometry, introducing the notion of "null frontals", and a relation to "bi-Monge-Ampère equations".

The authors thank to the referees for valuable comments to improve the paper.

2. Null flag manifolds associated to D_{4}-Diagram

Let $V=\mathbf{R}^{4,4}$ and $(\cdot \mid \cdot)$ be the inner product of signature $(4,4)$. A linear subspace $W \subset V$ is called null if $(u \mid v)=0$ for any $u, v \in W$. We set

$$
Q_{0}:=\left\{V_{1} \mid V_{1} \subset V, \operatorname{dim}\left(V_{1}\right)=1, V_{1} \text { is null }\right\}
$$

Then Q_{0} is a 6-dimensional quadric in the projective space $P^{7}=P(V)=G_{1}(V)$. The set of 2-dimensional null subspaces,

$$
M:=\left\{V_{2} \mid V_{2} \subset V, \operatorname{dim}\left(V_{2}\right)=2, V_{2} \text { is null }\right\}
$$

is a 9-dimensional submanifold of the Grassmannian $G_{2}(V)$. The set of 3-dimensional null subspaces,

$$
R:=\left\{V_{3} \mid V_{3} \subset V, \operatorname{dim}\left(V_{3}\right)=3, V_{3} \text { is null }\right\}
$$

is a 9-dimensional submanifold of the Grassmannian $G_{3}(V)$.
The totality of maximal null subspaces, namely, 4-dimensional null subspaces, form disjoint two families $Q_{+}=\left\{V_{4}^{+}\right\}$and $Q_{-}=\left\{V_{4}^{-}\right\}$, which are both 6-dimensional submanifolds of the Grassmannian $G_{4}(V)$.

Remark 2.1. We have diffeomorphisms $Q_{0} \cong Q_{+} \cong Q_{-} \cong \mathrm{SO}(4) \cong S^{3} \times_{\mathbb{Z}_{2}} S^{3}$, where $S^{3} \times_{\mathbb{Z}_{2}} S^{3}$ means the quotient by the diagonal action of the \mathbb{Z}_{2}-action on S^{3} by the antipodal map (see [20][18]).

For any $V_{4}^{+} \in Q_{+}$and $V_{4}^{-} \in Q_{-}$from the two families, we have that

$$
\operatorname{dim}\left(V_{4}^{+} \cap V_{4}^{-}\right)=1 \text { or } 3
$$

We call V_{4}^{+}and V_{4}^{-}incident if $\operatorname{dim}\left(V_{4}^{+} \cap V_{4}^{-}\right)=3$. For $W, W^{\prime} \in Q_{+}$(resp. $W, W^{\prime} \in Q_{-}$) from one family, we have $\operatorname{dim}\left(W \cap W^{\prime}\right)=0,2$ or 4 . For any $V_{3} \in R$, there exists unique incident pair $V_{4}^{+} \in Q_{+}, V_{4}^{-} \in Q_{-}$with $V_{3}=V_{4}^{+} \cap V_{4}^{-}$. For null subspaces $V_{i}, V_{j} \subset V$ of dimensions i, j respectively with $i<j$, we call them incident if $V_{i} \subset V_{j}$.

Now we consider flags of mutually incident null subspaces in $\mathbf{R}^{4,4}$. We define the 11dimensional flag manifold

$$
\begin{aligned}
N & :=\left\{\left(V_{1}, V_{4}^{+}, V_{4}^{-}\right) \in Q_{0} \times Q_{+} \times Q_{-} \mid V_{1} \subset V_{4}^{+} \cap V_{4}^{-}, \operatorname{dim}\left(V_{4}^{+} \cap V_{4}^{-}\right)=3 .\right\} \\
& =\left\{\left(V_{1}, V_{4}^{+}, V_{4}^{-}\right) \in Q_{0} \times Q_{+} \times Q_{-} \mid V_{1}, V_{4}^{+}, V_{4}^{-} \text {are mutually incident. }\right\},
\end{aligned}
$$

which is diffeomorphic to

$$
N^{\prime}:=\left\{\left(V_{1}, V_{3}\right) \in Q_{0} \times R \mid V_{1} \subset V_{3}\right\}
$$

In fact the map $\Phi: N \rightarrow N^{\prime}$ defined by $\Phi\left(V_{1}, V_{4}^{+}, V_{4}^{-}\right)=\left(V_{1}, V_{4}^{+} \cap V_{4}^{-}\right)$is a diffeomorphism.
Moreover we define the 12-dimensional complete flag manifold

$$
\begin{aligned}
& Z:=\left\{\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right) \in Q_{0} \times M \times Q_{+} \times Q_{-} \mid V_{1} \subset V_{2} \subset V_{4}^{+} \cap V_{4}^{-}\right. \\
&\left.\operatorname{dim}\left(V_{4}^{+} \cap V_{4}^{-}\right)=3\right\}
\end{aligned}
$$

which is diffeomorphic to

$$
Z^{\prime}:=\left\{\left(V_{1}, V_{2}, V_{3}\right) \in Q_{0} \times M \times R \mid V_{1} \subset V_{2} \subset V_{3}\right\}
$$

by the diffeomorphism $\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right) \mapsto\left(V_{1}, V_{2}, V_{4}^{+} \cap V_{4}^{-}\right)$.
Thus we get the tree of fibrations for the D_{4}-diagram:

where $\pi_{N}, \pi_{M}, \pi_{0}^{\prime}, \pi_{+}^{\prime}$ and π_{-}^{\prime} are natural projections.
Let $O(4,4)$ be the orthogonal group of $V=\mathbf{R}^{4,4}$, and $\mathfrak{g}=\mathfrak{o}(4,4)$ its Lie algebra. Note that $O(4,4)$ has 4 connected component. Let $O(4,4)_{e}$ be the identity component of $O(4,4)$, and G the universal covering of $O(4,4)_{e}$. Then G is a simply connected Lie group having \mathfrak{g} as its Lie algebra. Here we consider the Lie group G in order to realize the triality not only in the level of Lie algebras but also in the level of Lie groups ([18]).

In the above diagram, each flag manifold is in fact G-homogeneous, as well as $O(4,4)$ homogeneous, and each projection is G-equivariant.

The lower left diagram indicates the conformal triality.

3. Gradations to $\mathfrak{o}(4,4)$ and Geometric structures on null flag manifolds

We recall the structure of $\mathfrak{g}=\mathfrak{o}(4,4)$, the Lie algebra of the orthogonal group $O(4,4)$ on $\mathbf{R}^{4,4}$, that is the split real form of $\mathfrak{o}(8, \mathbf{C})$. See [11][6][25] for details and for other simple Lie algebras.

With respect to a basis e_{1}, \ldots, e_{8} of $\mathbf{R}^{4,4}$ with inner products

$$
\left(e_{i} \mid e_{9-j}\right)=\frac{1}{2} \delta_{i j}, 1 \leq i, j \leq 8
$$

we have

$$
\begin{aligned}
\mathfrak{o}(4,4) & =\left\{\left.A \in \mathfrak{g l}(8, \mathbf{R})\right|^{t} A K+K A=O\right\} \\
& =\left\{A=\left(a_{i j}\right) \in \mathfrak{g l}(8, \mathbf{R}) \mid a_{9-j, 9-i}=-a_{i j}, 1 \leq i, j \leq 8\right\}
\end{aligned}
$$

where $K=\left(k_{i j}\right)$ is the 8×8-matrix defined by $k_{i, 9-j}=\frac{1}{2} \delta_{i j}$. Let $E_{i j}$ denote the 8×8-matrix whose (k, ℓ)-component is defined by $\delta_{i k} \delta_{j \ell}$. Then

$$
\mathfrak{h}:=\mathfrak{g}_{0}=\left\langle E_{i i}-E_{9-i, 9-i} \mid 1 \leq i \leq 4\right\rangle_{\mathbf{R}}
$$

is a Cartan subalgebra of \mathfrak{g}. Let $\left(\varepsilon_{i} \mid 1 \leq i \leq 4\right)$ denote the dual basis of \mathfrak{h}^{*} to the basis $\left(E_{i i}-E_{9-i, 9-i} \mid 1 \leq i \leq 4\right)$ of \mathfrak{h}. Then the root system is given by $\pm \varepsilon_{i} \pm \varepsilon_{j}, 1 \leq i<j \leq 4$, and \mathfrak{g} is decomposed, over \mathbf{R}, into the direct sum of root spaces

$$
\begin{aligned}
\mathfrak{g}_{\varepsilon_{i}-\varepsilon_{j}} & =\left\langle E_{i, j}-E_{9-j, 9-i}\right\rangle_{\mathbf{R}}, \mathfrak{g}_{\varepsilon_{i}+\varepsilon_{j}}=\left\langle E_{i, 9-j}-E_{j, 9-i}\right\rangle_{\mathbf{R}}, \\
\mathfrak{g}_{-\varepsilon_{i}+\varepsilon_{j}} & =\left\langle E_{j, i}-E_{9-i, 9-j}\right\rangle_{\mathbf{R}}, \mathfrak{g}_{-\varepsilon_{i}-\varepsilon_{j}}=\left\langle E_{9-j, i}-E_{9-i, j}\right\rangle_{\mathbf{R}}
\end{aligned}
$$

$(1 \leq i<j \leq 4)$.
The simple roots are given by

$$
\alpha_{1}:=\varepsilon_{1}-\varepsilon_{2}, \quad \alpha_{2}:=\varepsilon_{2}-\varepsilon_{3}, \quad \alpha_{3}:=\varepsilon_{3}-\varepsilon_{4}, \quad \alpha_{4}:=\varepsilon_{3}+\varepsilon_{4}
$$

(The numbering of simple roots is the same as in [5] and is slightly different from [18].)
By labeling the root just on the left-upper-half part, we illustrate the structure of \mathfrak{g} :

ε_{1}	α_{1}	$\alpha_{1}+\alpha_{2}$	$\alpha_{1}+\alpha_{2}$ $+\alpha_{3}$	$\alpha_{1}+\alpha_{2}$ $+\alpha_{4}$	$\alpha_{1}+\alpha_{2}$ $+\alpha_{3}+\alpha_{4}$	$\alpha_{1}+2 \alpha_{2}$ $+\alpha_{3}+\alpha_{4}$	0
$-\alpha_{1}$	ε_{2}	α_{2}	$\alpha_{2}+\alpha_{3}$	$\alpha_{2}+\alpha_{4}$	$\alpha_{2}+\alpha_{3}$ $+\alpha_{4}$	0	
$-\alpha_{1}-\alpha_{2}$	$-\alpha_{2}$	ε_{3}	α_{3}	α_{4}	0		
$-\alpha_{1}-\alpha_{2}$ $-\alpha_{3}$	$-\alpha_{2}-\alpha_{3}$	$-\alpha_{3}$	ε_{4}	0			
$-\alpha_{1}-\alpha_{2}$ $-\alpha_{4}$	$-\alpha_{2}-\alpha_{4}$	$-\alpha_{4}$	0	$-\varepsilon_{4}$			
$-\alpha_{1}-\alpha_{2}$ $-\alpha_{3}-\alpha_{4}$	$-\alpha_{2}-\alpha_{3}$ $-\alpha_{4}$	0			$-\varepsilon_{3}$		
$-\alpha_{1}-2 \alpha_{2}$ $-\alpha_{3}-\alpha_{4}$	0					$-\varepsilon_{2}$	
0							$-\varepsilon_{1}$

The Borel subalgebra is given by $\mathfrak{g}_{\geq 0}=\mathfrak{g}_{0} \oplus \sum_{\alpha>0} \mathfrak{g}_{\alpha}$, the sum of Cartan subalgebra $\mathfrak{h}=\mathfrak{g}_{0}$ and positive root spaces \mathfrak{g}_{α} with respect to the simple root system $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.

We take parabolic subalgebras $\mathfrak{g}^{1}, \mathfrak{g}^{2}, \mathfrak{g}^{3}, \mathfrak{g}^{4}$, where \mathfrak{g}^{i} is the sum of $\mathfrak{g} \geq 0$ and all \mathfrak{g}_{α} for a negative root α without α_{i}-term. For instance,

$$
\mathfrak{g}^{1}=\left\langle E_{i j}-E_{9-j, 9-i} \mid 2 \leq j \leq 7,1 \leq i \leq 8-j\right\rangle_{\mathbf{R}}+\left\langle E_{11}-E_{88}\right\rangle_{\mathbf{R}}
$$

Moreover we have a parabolic subalgebra

$$
\mathfrak{g}^{134}:=\mathfrak{g}^{1} \cap \mathfrak{g}^{3} \cap \mathfrak{g}^{4}=\mathfrak{g}_{\geq 0} \oplus \mathfrak{g}_{-\alpha_{2}} .
$$

Let Ad: $G \rightarrow \mathrm{GL}(\mathfrak{g})$ denote the adjoint representation, B (resp. G^{i}) the normalizer in G under Ad of the subalgebra $\mathfrak{g}_{\geq 0}$ (resp. the subalgebras $\mathfrak{g}^{i}, i=1,2,3,4$). Then B (resp. G^{i}) has $\mathfrak{g}_{\geq 0}$ (resp. \mathfrak{g}^{i}) as its Lie algebra. The subgroup

$$
G^{134}:=G^{1} \cap G^{3} \cap G^{4}
$$

has \mathfrak{g}^{134} as its Lie algebra. Then the flag manifolds $Z, Q_{0}, M, Q_{+}, Q_{-}$and N are G-homogeneous spaces with isotropy groups $B, G^{1}, G^{2}, G^{3}, G^{4}$ and G^{134} respectively. We have

$$
Z=G / B, Q_{0}=G / G^{1}, M=G / G^{2}, Q_{+}=G / G^{3}, Q_{-}=G / G^{4}, N=G / G^{134}
$$

Define the linear isomorphisms $\sigma, \tau: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ on the dual space

$$
\mathfrak{h}^{*}=\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right\rangle_{\mathbf{R}}=\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle_{\mathbf{R}}
$$

of the Cartan subalgebra \mathfrak{h} by

$$
\sigma\left(\alpha_{1}\right)=\alpha_{3}, \sigma\left(\alpha_{2}\right)=\alpha_{2}, \sigma\left(\alpha_{3}\right)=\alpha_{4}, \sigma\left(\alpha_{4}\right)=\alpha_{1},
$$

and

$$
\tau\left(\alpha_{1}\right)=\alpha_{1}, \tau\left(\alpha_{2}\right)=\alpha_{2}, \tau\left(\alpha_{3}\right)=\alpha_{4}, \tau\left(\alpha_{4}\right)=\alpha_{3}
$$

which induce Lie algebra isomorphisms $\sigma, \tau: \mathfrak{g} \rightarrow \mathfrak{g}$, expressed by the same letters, satisfying

$$
\sigma\left(\mathfrak{g}_{ \pm \alpha_{1}}\right)=\mathfrak{g}_{ \pm \alpha_{3}}, \sigma\left(\mathfrak{g}_{ \pm \alpha_{2}}\right)=\mathfrak{g}_{ \pm \alpha_{2}}, \sigma\left(\mathfrak{g}_{ \pm \alpha_{3}}\right)=\mathfrak{g}_{ \pm \alpha_{4}}, \sigma\left(\mathfrak{g}_{ \pm \alpha_{4}}\right)=\mathfrak{g}_{ \pm \alpha_{1}}
$$

and

$$
\tau\left(\mathfrak{g}_{ \pm \alpha_{1}}\right)=\mathfrak{g}_{ \pm \alpha_{1}}, \tau\left(\mathfrak{g}_{ \pm \alpha_{2}}\right)=\mathfrak{g}_{ \pm \alpha_{2}}, \tau\left(\mathfrak{g}_{ \pm \alpha_{3}}\right)=\mathfrak{g}_{ \pm \alpha_{4}}, \tau\left(\mathfrak{g}_{ \pm \alpha_{4}}\right)=\mathfrak{g}_{ \pm \alpha_{3}}
$$

(See the related references [18] §1.8, [19] §7.1. For the general theory, see [11] Ch.III, Theorem 5.4.)

The isomorphisms σ, τ are of order 3,2 respectively. Thus \mathfrak{g} has \mathfrak{S}_{3}-symmetry. Since G, the universal covering of $O(4,4)_{e}$, is simply connected, the \mathfrak{S}_{3}-symmetry on \mathfrak{g} lifts to the \mathfrak{S}_{3} symmetry of G. In particular the associated isomorphism $\sigma: G \rightarrow G$ satisfies

$$
\sigma(B)=B, \sigma\left(G^{1}\right)=G^{3}, \sigma\left(G^{2}\right)=G^{2}, \sigma\left(G^{3}\right)=G^{4}, \sigma\left(G^{4}\right)=G^{1}, \sigma\left(G^{134}\right)=G^{134}
$$

Thus, in particular, we have induced diffeomorphisms $Q_{0} \cong Q_{+} \cong Q_{-}$.
The null quadric $Q_{0} \subset P(V)=P\left(\mathbf{R}^{4,4}\right)$ has the canonical conformal structure of type (3,3). In fact, for each $V_{1} \in Q_{0}$, consider $V_{1}^{\perp} \subset V=\mathbf{R}^{4,4}$. Then the tangent space $T_{V_{1}} Q_{0}$ is isomorphic to V_{1}^{\perp} / V_{1}, up to similarity transformation. Therefore the metric on V induces the canonical conformal structure on Q_{0} of signature $(3,3)$. In other words, the conformal structure on Q_{0} is defined by the quadric tangent cone C_{x} of the Schubert variety

$$
S_{x}:=\left\{W_{1} \in Q_{0} \mid W_{1} \subset V_{1}^{\perp}\right\}=P\left(V_{1}^{\perp}\right) \cap Q_{0} \subset Q_{0}
$$

for each $x=V_{1} \in Q_{0}$. Note that $S_{x}=\pi_{0} \pi_{M}^{-1} \pi_{M} \pi_{0}^{-1}(x)$, in terms of the tree of fibrations.
Also Q_{+}(resp. Q_{-}) has a conformal structure of type (3,3). In fact, for each $y=V_{4}^{ \pm} \in Q_{ \pm}$, the Schubert variety

$$
S_{y}^{ \pm}:=\left\{W_{4} \in Q_{ \pm} \mid W_{4} \cap V_{4}^{ \pm} \neq\{0\}\right\} \subset Q_{ \pm}
$$

induces invariant quadratic cone field (conformal structure) $C_{y}^{ \pm}$on $Q_{ \pm}$defined by the Pfaffian, respectively. Note that $S_{y}^{ \pm}=\pi_{ \pm} \pi_{M}^{-1} \pi_{M} \pi_{ \pm}^{-1}(y)$. The triality

$$
Q_{0} \cong Q_{+} \cong Q_{-}
$$

preserves the conformal structures.
Now we turn to construct the invariant differential systems on null flag manifolds.
Let

$$
\mathfrak{g}_{-1}:=\mathfrak{g}_{-\alpha_{1}} \oplus \mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{-\alpha_{3}} \oplus \mathfrak{g}_{-\alpha_{4}} .
$$

The subspace

$$
\mathfrak{g}_{\geq-1}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{\geq 0}=\mathfrak{g}^{134}+\mathfrak{g}^{2}
$$

in \mathfrak{g} satisfies $\operatorname{Ad}(G)\left(\mathfrak{g}_{\geq-1}\right)=\mathfrak{g}_{\geq-1}$ and defines a left invariant distribution \widetilde{E} on G, which induces the standard differential system $E \subset T Z$ with rank 4 and with growth $(4,7,10,11,12)$ (see [25]). In fact we can read the growth from the above table. We call E the D_{4} Engel distribution on Z.

Remark 3.1. We would like to call the distribution E "Engel", simply because it lives on the top place (heaven) of our real spaces, referring the contributions of the mathematician Friedrich Engel on the theory of Lie algebras.

The flag manifold M^{9} has the canonical contact structure D_{M} with growth $(8,9)$. In fact we define the subspace

$$
\begin{aligned}
\mathfrak{d}_{M}:= & \left(\mathfrak{g}_{-\varepsilon_{1}+\varepsilon_{3}} \oplus \mathfrak{g}_{-\varepsilon_{2}+\varepsilon_{3}} \oplus \mathfrak{g}_{-\varepsilon_{1}+\varepsilon_{4}} \oplus \mathfrak{g}_{-\varepsilon_{2}+\varepsilon_{4}}\right. \\
& \left.\quad \oplus \mathfrak{g}_{-\varepsilon_{1}-\varepsilon_{4}} \oplus \mathfrak{g}_{-\varepsilon_{2}-\varepsilon_{4}} \oplus \mathfrak{g}_{-\varepsilon_{1}-\varepsilon_{3}} \oplus \mathfrak{g}_{-\varepsilon_{2}-\varepsilon_{3}}\right) \oplus \mathfrak{g}^{2} \\
= & \left(\mathfrak{g}_{-\alpha_{1}-\alpha_{2}} \oplus \mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{-\alpha_{1}-\alpha_{2}-\alpha_{3}} \oplus \mathfrak{g}_{-\alpha_{2}-\alpha_{3}}\right. \\
& \left.\oplus \mathfrak{g}_{-\alpha_{1}-\alpha_{2}-\alpha_{4}} \oplus \mathfrak{g}_{-\alpha_{2}-\alpha_{4}} \oplus \mathfrak{g}_{-\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}} \oplus \mathfrak{g}_{-\alpha_{2}-\alpha_{3}-\alpha_{4}}\right) \oplus \mathfrak{g}^{2}
\end{aligned}
$$

in \mathfrak{g}. Then we have that $\operatorname{Ad}\left(G^{2}\right) \mathfrak{d}_{M}=\mathfrak{d}_{M}$ and therefore \mathfrak{d}_{M} defines the invariant distribution $D_{M} \subset T M=T\left(G / G^{2}\right)$ with rank 8 , which is a contact structure. We call D_{M} the D_{4} contact structure on M.

The contact structure D_{M} carries a structure of $2 \times 2 \times 2$-hyper-matrices and it possesses a Lagrange cone field defined by a decomposable cubic. In fact, define the subalgebra \mathfrak{g}_{M}^{0} of \mathfrak{g} by

$$
\mathfrak{g}_{M}^{0}:=\mathfrak{g}_{0} \oplus \mathfrak{g}_{ \pm \alpha_{1}} \oplus \mathfrak{g}_{ \pm \alpha_{3}} \oplus \mathfrak{g}_{ \pm \alpha_{4}}
$$

Then \mathfrak{g}_{M}^{0} is isomorphic to $\mathfrak{s l}(2, \mathbf{R}) \oplus \mathfrak{s l}(2, \mathbf{R}) \oplus \mathfrak{s l}(2, \mathbf{R}) \oplus \mathbf{R}$ and it acts on \mathfrak{d}_{M}. Thus the group $S L(2, \mathbf{R}) \times S L(2, \mathbf{R}) \times S L(2, \mathbf{R}) \times \mathbf{R}^{\times}$acts on the contact structure D_{M}. We set

$$
\mathfrak{d}_{M}^{1}=\mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{-\alpha_{1}-\alpha_{2}} \oplus \mathfrak{g}^{2}, \mathfrak{d}_{M}^{3}=\mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{-\alpha_{2}-\alpha_{3}} \oplus \mathfrak{g}^{2}, \mathfrak{d}_{M}^{4}=\mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{-\alpha_{2}-\alpha_{4}} \oplus \mathfrak{g}^{2}
$$

Then they induce subbundles $D_{M}^{1}, D_{M}^{3}, D_{M}^{4}$ of rank 2 on M respectively. Moreover an isomorphism

$$
\mathfrak{d}_{M} / \mathfrak{g}^{2} \cong\left(\mathfrak{d}_{M}^{1} / \mathfrak{g}^{2}\right) \otimes\left(\mathfrak{d}_{M}^{3} / \mathfrak{g}^{2}\right) \otimes\left(\mathfrak{d}_{M}^{4} / \mathfrak{g}^{2}\right)
$$

between vector spaces of dimension 8 induces an isomorphism

$$
D_{M} \cong D_{M}^{1} \otimes D_{M}^{3} \otimes D_{M}^{4}
$$

of vector bundles on M. This means that the distribution D_{M} has a structure of $2 \times 2 \times 2$-hypermatrices. By the diagonal action of $S L(2, \mathbf{R})$ we have a Lagrange cone field in D_{M}, which we call the D_{4} Monge cone structure on M.

The flag manifold N^{11} has a distribution D_{N} with growth $(6,9,11)$ with a direct sum decomposition into three subbundles of rank two. We define the subspace

$$
\begin{aligned}
\mathfrak{d}_{N} & :=\left(\mathfrak{g}_{-\varepsilon_{1}+\varepsilon_{2}} \oplus \mathfrak{g}_{-\varepsilon_{1}+\varepsilon_{3}}\right) \oplus\left(\mathfrak{g}_{-\varepsilon_{2}+\varepsilon_{4}} \oplus \mathfrak{g}_{-\varepsilon_{3}+\varepsilon_{4}}\right) \oplus\left(\mathfrak{g}_{-\varepsilon_{2}-\varepsilon_{4}} \oplus \mathfrak{g}_{-\varepsilon_{3}-\varepsilon_{4}}\right) \oplus \mathfrak{g}^{134} \\
& =\left(\mathfrak{g}_{-\alpha_{1}} \oplus \mathfrak{g}_{-\alpha_{1}-\alpha_{2}}\right) \oplus\left(\mathfrak{g}_{-\alpha_{2}-\alpha_{3}} \oplus \mathfrak{g}_{-\alpha_{3}}\right) \oplus\left(\mathfrak{g}_{-\alpha_{2}-\alpha_{4}} \oplus \mathfrak{g}_{-\alpha_{4}}\right) \oplus \mathfrak{g}^{134}
\end{aligned}
$$

of \mathfrak{g}. Then we have that $\operatorname{Ad}\left(G^{134}\right) \mathfrak{d}_{N}=\mathfrak{d}_{N}$, and therefore \mathfrak{d}_{N} defines the invariant distribution $D_{N} \subset T N=T\left(G / G^{134}\right)$ with rank 6. Define the subalgebra $\mathfrak{g}_{N}^{0}:=\mathfrak{g}_{0} \oplus \mathfrak{g}_{ \pm \alpha_{2}}$ of \mathfrak{g}. Then \mathfrak{g}_{N}^{0} is isomorphic to $\mathfrak{s l}(2, \mathbf{R}) \oplus \mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R}$ and acts on \mathfrak{d}_{N}. We set

$$
\mathfrak{d}_{N}^{1}=\mathfrak{g}_{-\alpha_{1}} \oplus \mathfrak{g}_{-\alpha_{1}-\alpha_{2}} \oplus \mathfrak{g}^{134}, \mathfrak{d}_{N}^{3}=\mathfrak{g}_{-\alpha_{2}-\alpha_{3}} \oplus \mathfrak{g}_{-\alpha_{3}} \oplus \mathfrak{g}^{134}, \mathfrak{d}_{N}^{4}=\mathfrak{g}_{-\alpha_{2}-\alpha_{4}} \oplus \mathfrak{g}_{-\alpha_{4}} \oplus \mathfrak{g}^{134}
$$

Then we have an invariant decomposition

$$
D_{N}=D_{N}^{1} \oplus D_{N}^{3} \oplus D_{N}^{4},
$$

into subbundles $D_{N}^{1}, D_{N}^{3}, D_{N}^{4}$ of rank 2 . We call D_{N} the D_{4} Cartan distribution.
Remark 3.2. The D_{4} Engel distributions E on Z and the D_{4} Cartan distribution D_{N} on N are related, via the projection $\pi_{N}: Z \rightarrow N$, as follows: The pull-back $\left(\pi_{N *}\right)^{-1}\left(D_{N}\right)$ is equal to the square $E^{2}:=E+[E, E]$ of the distribution E, which is a distribution on Z of rank 7 . The Cauchy characteristic of E^{2} is equal to $\operatorname{Ker}\left(\pi_{N *}: T Z \rightarrow T N\right)$. Therefore the reduced space $Z / \operatorname{Ker}\left(\pi_{N *}\right)$ is identified with N and the reduction of E^{2} on N is identified with D_{N}. (See for instance, [25]).

Remark 3.3. We can compare the above mentioned facts with G_{2}-diagram: We consider the purely imaginary split octonions $\operatorname{Im} \mathbb{O}^{\prime}$ with the inner product of type $(3,4)$ and consider the null projective space N^{5} (resp. the null Grassmannian M^{5}, the flag manifold Z^{6}) which consists of 1-dimensional null subalgebras (resp. 2-dimensional null subalgebras, the incident pairs of 1-dimensional null subalgebras and 2-dimensional null subalgebras) for the multiplication on the split octonions \mathbb{O}^{\prime}. The flag manifold Z has the Engel distribution with growth $(2,3,4,5,6), N^{5}$ has a distribution with growth $(2,3,5)$, and the null projective space M^{5} has a contact structure with growth $(4,5)$ with a cubic Lagrange cone field ([15])

4. D_{4}-TRIALITY AND SINGULARITIES OF NULL TANGENT SURFACES

We consider the canonical projections

$$
\pi_{0}=\pi_{0}^{\prime} \circ \pi_{N}: Z \longrightarrow Q_{0}, \pi_{+}=\pi_{+}^{\prime} \circ \pi_{N}: Z \longrightarrow Q_{+}, \pi_{-}=\pi_{-}^{\prime} \circ \pi_{N}: Z \longrightarrow Q_{-}
$$

and the diagram

induced by D_{4} Dynkin diagram.
The D_{4} Engel distribution E on Z is described from the tree of fibrations, by

$$
E=\left(\operatorname{ker} \pi_{0 *} \cap \operatorname{ker} \pi_{+*} \cap \operatorname{ker} \pi_{-*}\right) \oplus \operatorname{ker} \pi_{M *} \subset T Z
$$

which is of rank 4. We regard the definition of E as the standard differential system for $\mathfrak{o}(4,4)$ in $\S 3$.

A curve $f: I \rightarrow Z$ on Z is called E-integral if it is tangent to E, namely, if $f_{*}(T I) \subset E(\subset T Z)$.
Definition 4.1. For the given (indefinite) conformal structure $\left\{C_{x}\right\}_{x \in Q_{0}}$ on Q_{0}, we call a curve $\gamma: I \rightarrow Q_{0}$ a null curve if

$$
\gamma^{\prime}(t) \in C_{\gamma(t)},(t \in I)
$$

A geodesic on Q_{0} is called a null geodesic if it is a null curve.
A surface $F: U \rightarrow Q_{0}$ is called a null surface if

$$
F_{*}\left(T_{u} U\right) \subset C_{F(u)},(u \in U)
$$

The same definition is applied also to $Q_{ \pm}$.
Proposition 4.2. (Guillemin-Sternberg [10]) The null geodesics on Q_{0} for the conformal structure on Q_{0} are given by null lines, namely, projective lines on $Q_{0} \subset P(V)=P\left(\mathbf{R}^{4,4}\right)$.

We will take null geodesics, namely, null lines as "tangent lines" for null curves in Q_{0}. Note that any null line in Q_{0} is given by $\pi_{0}\left(\pi_{M}^{-1}\left(V_{2}\right)\right)$ for some $V_{2} \in M$. Then we are naturally led to consider tangent surfaces of null curves in Q_{0}, Q_{+}and Q_{-}. For $Q_{ \pm}$we take, as the family of "lines" in $Q_{ \pm}$,

$$
\pi_{ \pm}\left(\pi_{M}^{-1}\left(V_{2}\right)\right)=\left\{W_{4} \in Q_{ \pm} \mid V_{2} \subset W_{4}\right\}, \quad V_{2} \in M
$$

If we consider a special class of null curves which are projections of E-integral curves $f: I \rightarrow Z$ to Q_{0}, Q_{+}or Q_{-}, then their tangent surfaces turn to be null surfaces in Q_{0}, Q_{+}or Q_{-}in the above sense. In fact we show later more strict results (Proposition 7.4).

For M, we regard

$$
\pi_{M}\left(\pi_{0}^{-1}\left(V_{1}\right) \cap \pi_{+}^{-1}\left(V_{4}^{+}\right) \cap \pi_{-}^{-1}\left(V_{4}^{-}\right)\right)=\left\{W_{2} \mid V_{1} \subset W_{2} \subset V_{4}^{+} \cap V_{4}^{-}\right\},\left(V_{1}, V_{4}^{+}, V_{4}^{-}\right) \in N
$$

as lines in M.

We will give the explicit classification of singularities of "tangent surfaces" in the viewpoint of geometry of D_{4}-triality:

Theorem 4.3. (Triality of singularities.) For a generic E-integral curve $f: I \longrightarrow Z$, the singularities of tangent surfaces, to the curves $\gamma_{0}=\pi_{0} \circ f, \gamma_{+}=\pi_{+} \circ f, \gamma_{-}=\pi_{-} \circ f, \gamma_{M}=\pi_{M} \circ f$ on Q_{0}, Q_{+}, Q_{-}, M,

$$
\begin{gathered}
\operatorname{Tan}\left(\gamma_{0}\right)=\pi_{0} \pi_{M}^{-1} \pi_{M} f(I)\left(\subset Q_{0}\right) \\
\operatorname{Tan}\left(\gamma_{+}\right)=\pi_{+} \pi_{M}^{-1} \pi_{M} f(I)\left(\subset Q_{+}\right), \quad \operatorname{Tan}\left(\gamma_{-}\right)=\pi_{-} \pi_{M}^{-1} \pi_{M} f(I)\left(\subset Q_{-}\right) \\
\operatorname{Tan}\left(\gamma_{M}\right)=\pi_{M}\left(\pi_{0}^{-1} \pi_{0} f(I) \cap \pi_{+}^{-1} \pi_{+} f(I) \cap \pi_{-}^{-1} \pi_{-} f(I)\right)(\subset M)
\end{gathered}
$$

at any point $t \in I$ is classified, up to local diffeomorphisms, as follows:

$\operatorname{Tan}\left(\gamma_{0}\right)$	$\operatorname{Tan}\left(\gamma_{+}\right)$	$\operatorname{Tan}\left(\gamma_{-}\right)$	$\operatorname{Tan}\left(\gamma_{M}\right)$
$C E$	$C E$	$C E$	$C E$
$O S W$	$C E$	$C E$	$C E$
$C E$	$O S W$	$C E$	$C E$
$C E$	$C E$	$O S W$	$C E$
$O M$	$O M$	$O M$	$O S W$

Here CE (resp. OSW, OM) means the cuspidal edge (resp. open swallowtail, open Mond surface).

The cuspidal edge (resp. open swallowtail, open Mond surface) is defined as a diffeomorphism class of the tangent surface-germ to a curve of type $(1,2,3, \cdots)$ (resp. $(2,3,4,5, \cdots)$, $(1,3,4,5, \cdots))$ in an affine space. The type of a curve is the strictly increasing sequence of orders (degrees of initial terms) of components in an appropriate system of linear coordinates. Their normal forms are given as follows:

$$
\begin{aligned}
\mathrm{CE}: \quad(u, t) & \mapsto\left(u, t^{2}-2 u t, 2 t^{3}-3 u t^{2}, 0,0,0\right),\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{6}, 0\right), \\
(u, t) & \mapsto\left(u, t^{2}-2 u t, 2 t^{3}-3 u t^{2}, 0,0,0,0,0,0\right),\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{9}, 0\right),
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{OSW}: \quad(u, t) & \mapsto\left(u, t^{3}-3 u t, t^{4}-2 u t^{2}, 3 t^{5}-5 u t^{3}, 0,0\right),\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{6}, 0\right), \\
& (u, t) \mapsto\left(u, t^{3}-3 u t, t^{4}-2 u t^{2}, 3 t^{5}-5 u t^{3}, 0,0,0,0,0\right),\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{9}, 0\right) \\
\mathrm{OM} \quad: \quad(u, t) & \mapsto\left(u, 2 t^{3}-3 u t^{2}, 3 t^{4}-4 u t^{3}, 4 t^{5}-5 u t^{4}, 0,0\right),\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{6}, 0\right)
\end{aligned}
$$

cuspidal edge

open swallowtail

open Mond surface

The classification is performed in terms of the classical theory on root systems combined with the singularity theory of mappings. From the root system which defines the flag manifolds, we have the type of an appropriate projection of the E-integral curve and we can determine the normal forms of tangent surfaces.

We have the following sequence of diagrams from the D_{4}-diagram by "foldings" and "removings":

In fact for each Dynkin diagram P we can associate an explicit tree of fibrations T_{P}. See for the general theory [4]. A folding of Dynkin diagram $P \rightarrow Q$ corresponds to an embedding $T_{Q} \rightarrow T_{P}$ of tree of fibrations, and a removing $R \rightarrow S$ corresponds to a local projection $T_{R} \rightarrow T_{S}$. In fact, an embedding $\mathfrak{g}(P) \rightarrow \mathfrak{g}(Q)$ is induced, via the root decompositions, from a folding $P \rightarrow Q$ such that any parabolic subalgebra of $\mathfrak{g}(P)$ is the pull-back of a parabolic subalgebra of $\mathfrak{g}(Q)$. A projection $\mathfrak{g}(R) \rightarrow \mathfrak{g}(S)$ of Lie algebras is induced by a removing $R \rightarrow S$ such that any parabolic subalgebra of $\mathfrak{g}(R)$ projects to a parabolic subalgebra of $\mathfrak{g}(S)$.

From this perspective on Dynkin diagrams, we can observe relations between geometry, singularity and differential equations arising from diagrams of fibrations.

For example, in G_{2}-diagram, the singularities of tangent surfaces to projections of a generic E-integral curve on Z^{6} to N^{5}, M^{5} respectively has the duality

$$
\begin{array}{rlc}
\mathrm{CE} & \longleftrightarrow & \mathrm{CE} \\
\mathrm{OM} & \longleftrightarrow & \text { OSW } \\
\mathrm{OGFP} & \longleftrightarrow & \text { OS }
\end{array}
$$

Here OGFP (resp. OS) means the open generic folded pleat (resp. open Shcherbak surface) which is the tangent surface to a generic curve of type $(2,3,5,7,8)$ (resp. a curve of type $(1,3,5,7,8)$) ([15]) For the cases $C_{2}=B_{2}$ and A_{2}, see [14][15] and [16].

5. Fibrations Via flag coordinates

Let $\left(V_{1}, V_{2}, V_{3}\right) \in Z^{\prime}=Z^{\prime}\left(D_{4}\right)$ or $\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right) \in Z=Z\left(D_{4}\right)$ with $V_{3}=V_{4}^{+} \cap V_{4}^{-}$. Then the flag is completed into the multiple double flag:

$$
V_{1} \subset V_{2} \subset V_{3} \subset V_{4}^{+} \subset V_{4}^{-} \quad \subset V_{3}^{\perp} \subset V_{2}^{\perp} \subset V_{1}^{\perp} \subset V=\mathbf{R}^{4,4}
$$

combined with the intermediate V_{4}^{+}, V_{4}^{-}, the unique pair of 4-null subspaces containing V_{3}, which are contained in V_{3}^{\perp}.

Fix any $\left(V_{1}^{0}, V_{2}^{0}, V_{3}^{0}\right) \in Z^{\prime}=Z^{\prime}\left(D_{4}\right)$ and set $V_{3}^{0}=V_{4}^{0+} \cap V_{4}^{0-}$. Then there exists a basis $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}$ of $V=\mathbf{R}^{4,4}$ such that

$$
\begin{gathered}
V_{1}^{0}=\left\langle e_{1}\right\rangle_{\mathbf{R}}, \quad V_{2}^{0}=\left\langle e_{1}, e_{2}\right\rangle_{\mathbf{R}}, \quad V_{3}^{0}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle_{\mathbf{R}} \\
V_{4}^{0+}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle_{\mathbf{R}}, \quad V_{4}^{0-}=\left\langle e_{1}, e_{2}, e_{3}, e_{5}\right\rangle_{\mathbf{R}}, \quad V_{3}^{0 \perp}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\rangle_{\mathbf{R}} \\
V_{2}^{0 \perp}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\rangle_{\mathbf{R}}, \quad V_{1}^{0 \perp}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\rangle_{\mathbf{R}}
\end{gathered}
$$

and with inner products

$$
\left(e_{1} \mid e_{8}\right)=\frac{1}{2},\left(e_{2} \mid e_{7}\right)=\frac{1}{2},\left(e_{3} \mid e_{6}\right)=\frac{1}{2},\left(e_{4} \mid e_{5}\right)=\frac{1}{2}
$$

other pairings being null. Such a basis $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}$ of $V=\mathbf{R}^{4,4}$ is called an adapted basis for $\left(V_{1}, V_{2}, V_{3}\right) \in Z^{\prime}=Z^{\prime}\left(D_{4}\right)$ or $\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right) \in Z=Z\left(D_{4}\right)$. Then the metric on V is
expressed via the coordinates x_{1}, \ldots, x_{8} associated to the above basis by

$$
d s^{2}=d x_{1} d x_{8}+d x_{2} d x_{7}+d x_{3} d x_{6}+d x_{4} d x_{5} .
$$

For any curve $f: I \rightarrow Z$, we can take a moving frame $\boldsymbol{f}: I \rightarrow O(4,4)$ such that $\boldsymbol{f}(t)$ is an adapted basis for $f(t)$, which is called an adapted frame for f.

Remark 5.1. If we set

$$
\widetilde{Z}:=\left\{\left(V_{1}, V_{2}, V_{3}, V_{4}\right) \mid V_{1} \subset V_{2} \subset V_{3} \subset V_{4} \subset \mathbf{R}^{4,4}, \operatorname{dim}\left(V_{i}\right)=i, V_{i} \text { is null, } i=1,2,3,4\right\}
$$

then the projection $\pi: \widetilde{Z} \rightarrow Z^{\prime}, \pi\left(V_{1}, V_{2}, V_{3}, V_{4}\right)=\left(V_{1}, V_{2}, V_{3}\right)$ is a trivial double covering. In fact, if we set

$$
Z_{ \pm}:=\left\{\left(V_{1}, V_{2}, V_{3}, V_{4}\right) \in \widetilde{Z} \mid V_{4} \in Q_{ \pm}\right\}
$$

then $\widetilde{Z}=Z_{+} \cup Z_{-}$, disjoint union, and $\left.\pi\right|_{Z_{ \pm}}: Z_{ \pm} \rightarrow Z^{\prime}$ is a diffeomorphism. As is seen as above, we have an embedding \widetilde{Z} into the complete flag manifold $\mathcal{F}_{1,2,3,4,5,6,7}\left(\mathbf{R}^{4,4}\right)$.

Let us give local charts on Z^{\prime}, Z and Q_{0}. Take another flag defined by

$$
\begin{gathered}
W_{1}^{0}=\left\langle e_{8}\right\rangle_{\mathbf{R}}, \quad W_{2}^{0}=\left\langle e_{8}, e_{7}\right\rangle_{\mathbf{R}}, \quad W_{3}^{0}=\left\langle e_{8}, e_{7}, e_{6}\right\rangle_{\mathbf{R}} \\
W_{4}^{0+}=\left\langle e_{8}, e_{7}, e_{6}, e_{5}\right\rangle_{\mathbf{R}}, \quad W_{4}^{0-}=\left\langle e_{8}, e_{7}, e_{6}, e_{4}\right\rangle_{\mathbf{R}}, \quad W_{3}^{0 \perp}=\left\langle e_{8}, e_{7}, e_{6}, e_{5}, e_{4}\right\rangle_{\mathbf{R}} \\
W_{2}^{0 \perp}=\left\langle e_{8}, e_{7}, e_{6}, e_{5}, e_{4}, e_{3}\right\rangle_{\mathbf{R}}, \quad W_{1}^{0 \perp}=\left\langle e_{8}, e_{7}, e_{6}, e_{5}, e_{4}, e_{3}, e_{2}\right\rangle_{\mathbf{R}}
\end{gathered}
$$

and take the open neighborhood

$$
U^{\prime}=\left\{\left(V_{1}, V_{2}, V_{3}\right) \in Z^{\prime} \mid V_{1} \cap W_{1}^{0 \perp}=\{0\}, V_{2} \cap W_{2}^{0 \perp}=\{0\}, V_{3} \cap W_{3}^{0 \perp}=\{0\}\right\}
$$

of $\left(V_{1}^{0}, V_{2}^{0}, V_{3}^{0}\right)$ in Z^{\prime}. Then, for any $\left(V_{1}, V_{2}, V_{3}\right) \in U^{\prime}$, there exist unique $f_{1}, f_{2}, f_{3} \in V_{3}$ such that f_{1} forms a basis of V_{1}, f_{1}, f_{2} form a basis of V_{2} and f_{1}, f_{2}, f_{3} form a basis of V_{3} respectively and they are of form

$$
\left\{\begin{array}{rrr}
f_{1}= & e_{1}+x_{21} e_{2}+x_{31} e_{3}+x_{41} e_{4}+x_{51} e_{5}+x_{61} e_{6}+x_{71} e_{7}+x_{81} e_{8} \\
f_{2} & = & e_{2}+x_{32} e_{3}+x_{42} e_{4}+x_{52} e_{5}+x_{62} e_{6}+x_{72} e_{7}+x_{82} e_{8} \\
f_{3} & = & e_{3}+x_{43} e_{4}+x_{53} e_{5}+x_{63} e_{6}+x_{73} e_{7}+x_{83} e_{8}
\end{array}\right.
$$

for some $x_{i j} \in \mathbf{R}$. Then we have

$$
\begin{aligned}
\left(f_{1} \mid f_{1}\right) & =x_{81}+x_{21} x_{71}+x_{31} x_{61}+x_{41} x_{51}=0 \\
2\left(f_{1} \mid f_{2}\right) & =x_{82}+x_{21} x_{72}+x_{31} x_{62}+x_{41} x_{52}+x_{51} x_{42}+x_{61} x_{32}+x_{71}=0 \\
2\left(f_{1} \mid f_{3}\right) & =x_{83}+x_{21} x_{73}+x_{31} x_{63}+x_{41} x_{53}+x_{51} x_{43}+x_{61}=0 \\
\left(f_{2} \mid f_{2}\right) & =x_{72}+x_{32} x_{62}+x_{42} x_{52}=0 \\
2\left(f_{2} \mid f_{3}\right) & =x_{73}+x_{32} x_{63}+x_{42} x_{53}+x_{52} x_{43}+x_{62}=0 \\
\left(f_{3} \mid f_{3}\right) & =x_{63}+x_{43} x_{53}=0
\end{aligned}
$$

Therefore we see that

$$
\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{32}, x_{42}, x_{52}, x_{62}, x_{43}, x_{53}\right)
$$

is a chart on $U^{\prime} \subset Z^{\prime}$.
Moreover we take

$$
f_{4}=e_{4}+x_{54} e_{5}+x_{64} e_{6}+x_{74} e_{7}+x_{84} e_{8}
$$

from V_{4}^{+}so that $f_{1}, f_{2}, f_{3}, f_{4}$ form a basis of V_{4}^{+}, and take

$$
f_{5}=x_{45} e_{4}+e_{5}+x_{65} e_{6}+x_{75} e_{7}+x_{85} e_{8}
$$

from V_{4}^{-}so that $f_{1}, f_{2}, f_{3}, f_{5}$ form a basis of V_{4}^{-}. We have

$$
\begin{aligned}
2\left(f_{1} \mid f_{4}\right) & =x_{84}+x_{21} x_{74}+x_{31} x_{64}+x_{41} x_{54}+x_{51}=0 \\
2\left(f_{2} \mid f_{4}\right) & =x_{74}+x_{32} x_{64}+x_{42} x_{54}+x_{52}=0 \\
2\left(f_{3} \mid f_{4}\right) & =x_{64}+x_{43} x_{54}+x_{53}=0 \\
\left(f_{4} \mid f_{4}\right) & =x_{54}=0 \\
2\left(f_{1} \mid f_{5}\right) & =x_{85}+x_{21} x_{75}+x_{31} x_{65}+x_{41}+x_{51} x_{45}=0 \\
2\left(f_{2} \mid f_{5}\right) & =x_{75}+x_{32} x_{65}+x_{42}+x_{52} x_{45}=0 \\
2\left(f_{3} \mid f_{5}\right) & =x_{65}+x_{43}+x_{53} x_{45}=0, \\
\left(f_{4} \mid f_{5}\right) & =x_{45}=0
\end{aligned}
$$

We set

$$
U:=\left\{\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right) \in Z \mid V_{1} \cap W_{1}^{0 \perp}=\{0\}, V_{2} \cap W_{2}^{0 \perp}=\{0\}, V_{4}^{ \pm} \cap W_{4}^{0 \pm}=\{0\},\right\}
$$

Consider the diffeomorphism $\Phi: Z \rightarrow Z^{\prime}$ defined by

$$
\Phi\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right)=\left(V_{1}, V_{2}, V_{4}^{+} \cap V_{4}^{-}\right)\left(=\left(V_{1}, V_{2}, V_{3}\right)\right)
$$

Then $\Phi(U)=U^{\prime}$. After replacing x_{43}, x_{53} by x_{64}, x_{65}, we have a chart

$$
\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{32}, x_{42}, x_{52}, x_{62}, x_{64}, x_{65}\right)
$$

on $U=\Phi^{-1}\left(U^{\prime}\right) \subset Z$ and the mapping Φ is locally given by just $x_{53}=-x_{64}, x_{43}=-x_{65}$. In fact other components are calculated as follows:

$$
\left\{\begin{array}{l}
x_{81}=-x_{71} x_{21}-x_{61} x_{31}-x_{51} x_{41} \\
x_{72}=-x_{62} x_{32}-x_{52} x_{42}, \\
x_{82}=x_{62}\left(x_{32} x_{21}-x_{31}\right)+x_{52}\left(x_{42} x_{21}-x_{41}\right)-x_{51} x_{42}-x_{61} x_{32}-x_{71} \\
x_{43}=-x_{65} \\
x_{53}=-x_{64}, \\
x_{63}=-x_{65} x_{64} \\
x_{73}=x_{65} x_{64} x_{32}+x_{64} x_{42}+x_{65} x_{52}-x_{62}, \\
x_{83}=x_{65} x_{64}\left(x_{31}-x_{32} x_{21}\right)+x_{64}\left(x_{41}-x_{42} x_{21}\right)+x_{65}\left(x_{51}-x_{52} x_{21}\right)-x_{61}+x_{62} x_{21}, \\
x_{74}=-x_{64} x_{32}-x_{52} \\
x_{84}=x_{64}\left(x_{32} x_{21}-x_{31}\right)+x_{52} x_{21}-x_{51} \\
x_{75}=-x_{65} x_{32}-x_{42} \\
x_{85}=x_{65}\left(x_{32} x_{21}-x_{31}\right)+x_{42} x_{21}-x_{41}
\end{array}\right.
$$

Now we will explicitly describe $\pi_{0}, \pi_{+}, \pi_{-}$and π_{M} locally on $U \subset Z$.
It is easy to describe π_{0} in terms of our charts: Consider the open neighborhood of $V_{1}^{0} \in Q_{0}$:

$$
U_{0}:=\left\{V_{1} \in Q_{0} \mid V_{1} \cap W_{1}^{0 \perp}=\{0\}\right\}
$$

Then, using the above notations, $\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}\right)$ provides a chart on $U_{0} \subset Q_{0}$. Moreover

$$
\pi_{0}: U \rightarrow U_{0}
$$

is given by

$$
\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{32}, x_{42}, x_{52}, x_{62}, x_{64}, x_{65}\right) \mapsto\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}\right)
$$

Remark 5.2. We have the description of the conformal structure on Q_{0} using the local coordinates: The Schubert variety $S_{x}=P\left(V_{1}^{\perp}\right) \cap Q_{0}, x=V_{1} \in Q_{0}$ (see $\S 3$) is given in U_{0} by

$$
\left\{X \in U_{0} \mid\left(X_{21}-x_{21}\right)\left(X_{71}-x_{71}\right)+\left(X_{31}-x_{31}\right)\left(X_{61}-x_{61}\right)+\left(X_{41}-x_{41}\right)\left(X_{51}-x_{51}\right)=0\right\}
$$

Then the null cone filed $C \subset T Q_{0}$ of the conformal structure on Q_{0} is given, in our local coordinates, by

$$
d x_{21} d x_{71}+d x_{31} d x_{61}+d x_{41} d x_{51}=0
$$

in terms of the symmetric two tensor.
Next we describe π_{M}. Set

$$
U_{M}:=\left\{V_{2} \in M \mid V_{2} \cap W_{2}^{0 \perp}=\{0\}\right\}
$$

and take a basis of $V_{2} \in M$ of form

$$
\left\{\begin{array}{l}
h_{1}=e_{1} \quad \begin{array}{l}
+z_{31} e_{3}+z_{41} e_{4}+z_{51} e_{5}+z_{61} e_{6}+z_{71} e_{7}+z_{81} e_{8} \\
h_{2}=e_{22} \\
+z_{32} e_{3}+z_{42} e_{4}+z_{52} e_{5}+z_{62} e_{6}+z_{72} e_{7}+z_{82} e_{8}
\end{array} . \quad e^{2}
\end{array}\right.
$$

Then we have a chart on $U_{M} \subset M$ by

$$
\left(z_{31}, z_{41}, z_{51}, z_{61}, z_{71}, z_{32}, z_{42}, z_{52}, z_{62}\right)
$$

Using the modification $h_{1}=f_{1}-x_{21} f_{2}, h_{2}=f_{2}$, we have that the projection

$$
\pi_{M}: U \rightarrow U_{M}
$$

is given by

$$
\begin{aligned}
& z_{31}=x_{31}-x_{32} x_{21}, \quad z_{41}=x_{41}-x_{42} x_{21}, \quad z_{51}=x_{51}-x_{52} x_{21}, \quad z_{61}=x_{61}-x_{62} x_{21} \\
& z_{71}=x_{71}+x_{62} x_{32} x_{21}+x_{52} x_{42} x_{21}, \quad z_{32}=x_{32}, \quad z_{42}=x_{42}, \quad z_{52}=x_{52}, \quad z_{62}=x_{62}
\end{aligned}
$$

To describe π_{+}, we set

$$
U_{+}:=\left\{V_{4}^{+} \in Q_{+} \mid V_{4}^{+} \cap W_{4}^{0+}=\{0\}\right\}
$$

and take a basis of $V_{4}^{+} \in U_{+}$of form

$$
\left\{\begin{array}{llllllll}
g_{1} & = & e_{1} & & & +y_{51} e_{5} & +y_{61} e_{6} & +y_{71} e_{7}, \\
g_{2} & = & e_{2} & & & \\
g_{32} e_{5} & +y_{62} e_{6} & & & -y_{71} e_{8} \\
g_{3} & = & & e_{3} & & -y_{64} e_{5} & & -y_{62} e_{7} \\
g_{4} & = & & & e_{4} & & +y_{61} e_{8} \\
+y_{64} e_{6} & -y_{52} e_{7} & -y_{51} e_{8}
\end{array}\right.
$$

Then we have a chart on U_{+}by

$$
\left(y_{51}, y_{61}, y_{71}, y_{52}, y_{62}, y_{64}\right)
$$

We use the modifications

$$
\left\{\begin{array}{l}
g_{1}=f_{1}-x_{21} f_{2}-\left(x_{31}-x_{32} x_{21}\right) f_{3}-\left(x_{41}-x_{42} x_{21}-x_{43}\left(x_{31}-x_{32} x_{21}\right)\right) f_{4} \\
g_{2}=f_{2}-x_{32} f_{3}-\left(x_{42}-x_{43} x_{32}\right) f_{4} \\
g_{3}=f_{3}-x_{43} f_{4}
\end{array}\right.
$$

Then the projection

$$
\pi_{+}: U \rightarrow U_{+}
$$

is described in terms of our charts, by

$$
\left\{\begin{aligned}
y_{51} & =x_{51}-x_{52} x_{21}+x_{64}\left(x_{31}-x_{32} x_{21}\right) \\
y_{61} & =x_{61}-x_{62} x_{21}-x_{64}\left(x_{41}-x_{42} x_{21}\right) \\
y_{71} & =x_{71}+x_{62} x_{31}+x_{52} x_{41}-x_{64}\left(x_{42} x_{31}-x_{41} x_{32}\right) \\
y_{52} & =x_{52}+x_{64} x_{32} \\
y_{62} & =x_{62}-x_{64} x_{42} \\
y_{64} & =x_{64}
\end{aligned}\right.
$$

To describe π_{-}, similarly we set

$$
U_{-}:=\left\{V_{4}^{-} \in Q_{-} \mid V_{4}^{-} \cap W_{4}^{0-}=\{0\}\right\}
$$

and take a basis of $V_{4}^{-} \in U_{-}$:

$$
\left\{\begin{array}{lllllllll}
g_{1} & = & e_{1} & & & +y_{41} e_{4} & & +y_{61} e_{6} & +y_{71} e_{7}, \\
g_{2} & = & e_{2} & & +y_{42} e_{4} & & +y_{62} e_{6} & & \\
g_{3} & = & & e_{3} & -y_{65} e_{4} & & & -y_{71} e_{8} \\
g_{5} & = & & & & +e_{5} & +y_{65} e_{6} & -y_{42} e_{7} & -y_{61} e_{8} \\
\hline
\end{array}\right.
$$

Then a chart on U_{-}is given by

$$
\left(y_{41}, y_{61}, y_{71}, y_{42}, y_{62}, y_{65}\right)
$$

Use the modifications

$$
\left\{\begin{array}{l}
g_{1}=f_{1}-x_{21} f_{2}-\left(x_{31}-x_{32} x_{21}\right) f_{3}-\left(x_{51}-x_{52} x_{21}-x_{53}\left(x_{31}-x_{32} x_{21}\right)\right) f_{5} \\
g_{2}=f_{2}-x_{32} f_{3}-\left(x_{52}-x_{53} x_{32}\right) f_{5} \\
g_{3}=f_{3}-x_{53} f_{5}
\end{array}\right.
$$

Then the projection

$$
\pi_{-}: U \rightarrow U_{-}
$$

is given by

$$
\left\{\begin{array}{l}
y_{41}=x_{41}-x_{42} x_{21}+x_{65}\left(x_{31}-x_{32} x_{21}\right) \\
y_{61}=x_{61}-x_{62} x_{21}-x_{65}\left(x_{51}-x_{52} x_{21}\right) \\
y_{71}=x_{71}+x_{62} x_{31}+x_{51} x_{42}-x_{65}\left(x_{51} x_{32}-x_{52} x_{31}\right) \\
y_{42}=x_{42}+x_{65} x_{32} \\
y_{62}=x_{62}-x_{65} x_{52} \\
y_{65}=x_{65}
\end{array}\right.
$$

Remark 5.3. We have also the description of the conformal structure on $Q_{ \pm}$using the local coordinates: The Schubert variety $S_{y}=\left\{W \in Q_{ \pm} \mid W \cap V_{4}^{ \pm} \neq\{0\}\right\}, y=V_{4}^{ \pm} \in Q_{ \pm}$(see $\S 3$), is given in U_{+}(resp. in U_{-}) by

$$
\left\{Y \in U_{+} \mid\left(Y_{51}-y_{51}\right)\left(Y_{62}-y_{62}\right)-\left(Y_{61}-y_{61}\right)\left(Y_{52}-y_{52}\right)-\left(Y_{71}-y_{71}\right)\left(Y_{64}-y_{64}\right)=0\right\}
$$

(resp. $\left.\left\{Y \in U_{-} \mid\left(Y_{41}-y_{41}\right)\left(Y_{62}-y_{62}\right)-\left(Y_{61}-y_{61}\right)\left(Y_{42}-y_{42}\right)-\left(Y_{71}-y_{71}\right)\left(Y_{65}-y_{65}\right)=0\right\}\right)$. Then the null cone field $C \subset T Q_{+}$(resp. $T Q_{-}$) of the conformal structure on Q_{+}(resp. Q_{-}) is given locally by

$$
d y_{51} d y_{62}-d y_{61} d y_{52}-d y_{71} d y_{64}=0, \quad\left(\text { resp. } \quad d y_{41} d y_{62}-d y_{61} d y_{42}-d y_{71} d y_{65}=0\right)
$$

in terms of two tensors.

6. The Engel system via flag coordinates

Recall that

$$
E=\left(\operatorname{ker} \pi_{0 *} \cap \operatorname{ker} \pi_{+*} \cap \operatorname{ker} \pi_{-*}\right) \oplus \operatorname{ker} \pi_{M *} \subset T Z
$$

First we show
Lemma 6.1. Let $f=\left(V_{1}, V_{2}, V_{4}^{+}, V_{4}^{-}\right) \in Z$ and $e=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right)$ be an adapted basis for $f($ see $\S 5)$. For each tangent vector $v \in T_{f} Z$, the following conditions are equivalent to each other:
(1) The tangent vector v belongs to E_{f}.
(2) There exists a representative $c:(\mathbf{R}, 0) \rightarrow(Z, f), c(t)=\left(V_{1}(t), V_{2}(t), V_{4}^{+}(t), V_{4}^{-}(t)\right)$ of the tangent vector v, with a framing

$$
\begin{gathered}
V_{1}(t)=\left\langle f_{1}(t)\right\rangle_{\mathbf{R}}, \quad V_{2}(t)=\left\langle f_{1}(t), f_{2}(t)\right\rangle_{\mathbf{R}} \\
V_{4}^{+}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)\right\rangle_{\mathbf{R}}, V_{4}^{-}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t), f_{5}(t)\right\rangle_{\mathbf{R}}
\end{gathered}
$$

by a curve-germ $\boldsymbol{f}:(\mathbf{R}, 0) \rightarrow \mathrm{GL}\left(\mathbf{R}^{4,4}\right)$,

$$
\boldsymbol{f}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t), f_{7}(t), f_{8}(t)\right)
$$

with $\boldsymbol{f}(0)=e$, which satisfies that $f_{1}^{\prime}(0) \in V_{2}, f_{2}^{\prime}(0) \in V_{4}^{+} \cap V_{4}^{-}$.
(3) The tangent vector v satisfies that

$$
\pi_{0 *} v \in T_{V_{1}}\left(G_{1}\left(V_{2}\right)\right) \text { and } \pi_{M *} v \in T_{V_{2}}\left(G_{2}\left(V_{4}^{+} \cap V_{4}^{-}\right)\right)
$$

Proof. (1) \Rightarrow (2): Let $v=w+u, w \in \operatorname{ker} \pi_{0 *} \cap \operatorname{ker} \pi_{+*} \cap \operatorname{ker} \pi_{-*}, u \in \operatorname{ker} \pi_{M *}$. Take a frame

$$
\boldsymbol{g}(t)=\left(g_{1}(t), g_{2}(t), g_{3}(t), g_{4}(t), g_{5}(t), g_{6}(t), g_{7}(t), g_{8}(t)\right)
$$

of V such that $\boldsymbol{g}(t)$ defines the tangent vector u at $t=0$ and that $\left\langle g_{1}(t), g_{2}(t)\right\rangle_{\mathbf{R}}=V_{2}$. Take a frame

$$
\left.\boldsymbol{h}(t)=\left(h_{1}(t), h_{2}(t), h_{3}(t), h_{4}(t), h_{5}(t), h_{6}(t), h_{7}(t), h_{8}(t)\right)\right)
$$

such that $\boldsymbol{h}(t)$ defines the tangent vector w at $t=0$ and that

$$
\left\langle h_{1}(t)\right\rangle_{\mathbf{R}}=V_{1},\left\langle h_{1}(t), h_{2}(t), h_{3}(t), h_{4}(t)\right\rangle_{\mathbf{R}}=V_{4}^{+},\left\langle h_{1}(t), h_{2}(t), h_{3}(t), h_{5}(t)\right\rangle_{\mathbf{R}}=V_{4}^{-}
$$

with $\boldsymbol{g}(0)=\boldsymbol{h}(0)=e$. Then the curve $\boldsymbol{f}(t):=\boldsymbol{g}(t)+\boldsymbol{h}(t)-\boldsymbol{g}(0)$ represents v. Moreover $f_{1}^{\prime}(0)=g_{1}^{\prime}(0)+h_{1}^{\prime}(0) \in V_{2}, f_{2}^{\prime}(0)=g_{2}^{\prime}(0)+h_{2}^{\prime}(0) \in V_{4}^{+} \cap V_{4}^{-}$.
The assertion $(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$: We take a frame $\boldsymbol{f}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right)$ for v such that $f_{1}(t) \in$ $V_{2}, f_{2}(t) \in V_{3}=V_{4}^{+} \cap V_{4}^{-}$. Write

$$
\left\{\begin{array}{rlr}
f_{1} & = & e_{1}+x_{21} e_{2}, \\
f_{2} & = & e_{2}+x_{32} e_{3}, \\
f_{3} & = & e_{3}-x_{65} e_{4}-x_{64} e_{5}+x_{63} e_{6}+x_{73} e_{7}+x_{83} e_{8} \\
f_{4} & = & e_{4} \\
f_{5} & = & \\
& & e_{64} e_{6}+x_{74} e_{7}+x_{84} e_{8} \\
e_{6}+x_{75} e_{7}+x_{85} e_{8}
\end{array}\right.
$$

with functions $x_{i j}=x_{i j}(t)$ with $x_{i j}(0)=0$. Then we have

$$
x_{83}=-x_{21} x_{73}, x_{84}=-x_{21} x_{74}, x_{85}=-x_{21} x_{75}, x_{73}=-x_{32} x_{63}, x_{74}=-x_{32} x_{64}, x_{75}=-x_{32} x_{65}
$$

Therefore $x_{83}^{\prime}(0)=0, x_{84}^{\prime}(0)=0, x_{85}^{\prime}(0)=0, x_{73}^{\prime}(0)=0, x_{74}^{\prime}(0)=0, x_{75}^{\prime}(0)=0$. We define $\boldsymbol{g}(t)$ and $\boldsymbol{h}(t)$ by

$$
\left\{\begin{array}{lll}
g_{1} & =e_{1}, & \\
g_{2} & = \\
g_{3} & = \\
g_{4} & = \\
g_{5} & = & e_{2}+x_{32} e_{3} \\
e_{3}, & e_{4} & e_{5}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{rrr}
h_{1} & = & e_{1}+x_{21} e_{2}, \\
h_{2} & = & e_{2}, \\
h_{3} & = & e_{3}-x_{65} e_{4}-x_{64} e_{5}+x_{63} e_{6} \\
h_{4} & = & e_{4} \\
h_{5} & = &
\end{array}\right.
$$

Let $w \in T_{f} Z$ (resp. $u \in T_{f} Z$) be tangent vectors defined by the curve $\boldsymbol{g}(t)$ (resp. $\boldsymbol{h}(t)$) at $t=0$. Then $w($ resp. $u)$ belongs to $\operatorname{ker} \pi_{0 *} \cap \operatorname{ker} \pi_{+*} \cap \operatorname{ker} \pi_{-*}$ (resp. to $\operatorname{ker} \pi_{M *}$). Set $\boldsymbol{k}(t)=\boldsymbol{g}(t)+\boldsymbol{h}(t)-\boldsymbol{g}(0)$. Then we see that $\boldsymbol{f}^{\prime}(0)=\boldsymbol{k}^{\prime}(0)=\boldsymbol{g}^{\prime}(0)+\boldsymbol{h}^{\prime}(0)$. Thus we have that $v=w+u \in\left(\operatorname{ker} \pi_{0 *} \cap \operatorname{ker} \pi_{+*} \cap \operatorname{ker} \pi_{-*}\right) \oplus \operatorname{ker} \pi_{M *}$.

Regarding Lemma 6.1, the differential system $E \subset T Z$ is given by the condition

$$
f_{1}^{\prime} \in\left\langle f_{1}, f_{2}\right\rangle_{\mathbf{R}}, f_{2}^{\prime} \in\left\langle f_{1}, f_{2}, f_{3}\right\rangle_{\mathbf{R}}
$$

In terms of component functions $x_{i j}$ introduced in $\S 5$, the condition $f_{1}^{\prime} \in\left\langle f_{1}, f_{2}\right\rangle_{\mathbf{R}}$ is equivalent to that for any t, there exists $p_{1}, p_{2} \in \mathbf{R}$ satisfying

$$
\begin{aligned}
& \left(0, x_{21}^{\prime}(t), x_{31}^{\prime}(t), x_{41}^{\prime}(t), x_{51}^{\prime}(t), x_{61}^{\prime}(t), x_{71}^{\prime}(t), x_{81}^{\prime}(t)\right) \\
& =p_{1}\left(1, x_{21}(t), x_{31}(t), x_{41}(t), x_{51}(t), x_{61}(t), x_{71}(t), x_{81}(t)\right) \\
& \\
& +p_{2}\left(0,0, x_{32}(t), x_{42}(t), x_{52}(t), x_{62}(t), x_{72}(t), x_{82}(t)\right)
\end{aligned}
$$

Then $p_{1}=0, p_{2}=x_{21}^{\prime}(t)$ and

$$
\left(x_{21}^{\prime}, x_{31}^{\prime}, x_{41}^{\prime}, x_{51}^{\prime}, x_{61}^{\prime}, x_{71}^{\prime}, x_{81}^{\prime}\right)=p_{2}\left(1, x_{32}, x_{42}, x_{52}, x_{62}, x_{72}, x_{82}\right)
$$

Similarly, the condition $f_{2}^{\prime} \in\left\langle f_{1}, f_{2}, f_{3}\right\rangle_{\mathbf{R}}$ is equivalent to that, for each t, there exists $q \in \mathbf{R}$ satisfying

$$
\left(x_{32}^{\prime}(t), x_{42}^{\prime}(t), x_{52}^{\prime}(t), x_{62}^{\prime}(t), x_{72}^{\prime}(t), x_{82}^{\prime}(t)\right)=q\left(1, x_{43}(t), x_{53}(t), x_{63}(t), x_{73}(t), x_{83}(t)\right)
$$

Then $q=x_{32}^{\prime}(t)$. Therefore we have that the differential system $E \subset T Z$ on our coordinate neighborhood U is given by

$$
d x_{i 1}=x_{i 2} d x_{21}(3 \leq i \leq 8), \quad d x_{j 2}=x_{j 3} d x_{32}(4 \leq j \leq 8)
$$

We introduce a weight $w_{i j} \in \mathbf{R}$ on each component $x_{i j}$. From the above equations for E, we impose the relations

$$
w_{i 1}=w_{i 2}+w_{21}(3 \leq i \leq 8), \quad w_{j 2}=w_{j 3}+w_{32}(4 \leq j \leq 8)
$$

Then the weights of all components $x_{i j}$ are well-defined and they are explicitly expressed by w_{21}, w_{32}, w_{65} and w_{64}. Moreover we have

Lemma 6.2. (Triality of weights.) The projections $\pi_{0}, \pi_{+}, \pi_{-}$and π_{M} are equivariant under the action generated by the Cartan subalgebra. Each component of projections for the flag coordinates is weighted homogeneous. The weights of components of the projections $\pi_{0}, \pi_{+}, \pi_{-}$to Q_{0}, Q_{+}, Q_{-} are given by the following table:

Q_{0}	Q_{+}	Q_{-}
w_{21}	w_{65}	w_{64}
$w_{32}+w_{21}$	$w_{65}+w_{32}$	$w_{64}+w_{32}$
$w_{64}+w_{32}+w_{21}$	$w_{65}+w_{32}+w_{21}$	$w_{64}+w_{32}+w_{21}$
$w_{65}+w_{32}+w_{21}$	$w_{65}+w_{64}+w_{32}$	$w_{65}+w_{64}+w_{32}$
$w_{65}+w_{64}+w_{32}+w_{21}$	$w_{65}+w_{64}+w_{32}+w_{21}$	$w_{65}+w_{64}+w_{32}+w_{21}$
$w_{65}+w_{64}+2 w_{32}+w_{21}$	$w_{65}+w_{64}+2 w_{32}+w_{21}$	$w_{65}+w_{64}+2 w_{32}+w_{21}$

The weights of components of the projection π_{M} to M are given by

$$
\begin{gathered}
w_{32}, w_{32}+w_{21}, w_{65}+w_{32}, w_{64}+w_{32} \\
w_{65}+w_{32}+w_{21}, w_{64}+w_{32}+w_{21}, w_{65}+w_{64}+w_{32} \\
w_{65}+w_{64}+w_{32}+w_{21}, w_{65}+w_{64}+2 w_{32}+w_{21}
\end{gathered}
$$

Remark 6.3. We observe that the formula of weights coincides with the formula of negative (or positive) roots of D_{4} (see [5] for example). In fact, given a simple root system $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, we identify $-\alpha_{1},-\alpha_{2},-\alpha_{3},-\alpha_{4}$ with $w_{21}, w_{32}, w_{65}, w_{64}$. Then the weight w of a component for a negative root α is given by $w=m_{1} w_{21}+m_{2} w_{32}+m_{3} w_{65}+m_{4} w_{64}$ if

$$
\alpha=-m_{1} \alpha_{1}-m_{2} \alpha_{2}-m_{3} \alpha_{3}-m_{4} \alpha_{4}
$$

See the following D_{4} diagram with weights $w_{21}, w_{32}, w_{65}, w_{64}$ at appropriate positions:

Then we have the orders of flag coordinates for generic E-integral curves, and normal forms of singularities appeared in tangent surfaces.

Lemma 6.4. Let $f: I \rightarrow Z$ be a generic E-integral curve. Then, for any $t_{0} \in I$ and for any flag chart $\left(x_{i j}\right)$ on Z centered at $f\left(t_{0}\right)$, the sets of orders on components for the projections $\pi_{0} f, \pi_{+} f, \pi_{-} f, \pi_{M} f$ are given as in the following table:

$\left(w_{21}, w_{65}, w_{64}, w_{32}\right)$	$\pi_{0} f$	$\pi_{+} f$	$\pi_{-} f$	$\pi_{M} f$
$(1,1,1,1)$	$1,2,3,3,4,5^{*}$	$1,2,3,3,4,5^{*}$	$1,2,3,3,4,5^{*}$	$1,2,2,2,3,3,3,4,5^{*}$
$(2,1,1,1)$	$2,3,4,4,5,6$	$1,2,4,3,5,6$	$1,2,4,3,5,6$	$1,3,2,2,4,4,3,5,6$
$(1,2,1,1)$	$1,2,3,4,5,6$	$2,3,4,4,5,6$	$1,2,3,4,5,6$	$1,2,3,2,4,3,4,5,6$
$(1,1,2,1)$	$1,2,4,3,5,6$	$1,2,3,4,5,6$	$2,3,4,4,5,6$	$1,2,2,3,3,4,4,5,6$
$(1,1,1,2)$	$1,3,4,4,5,7$	$1,3,4,4,5,7$	$1,3,4,4,5,7$	$2,3,3,3,4,4,4,5,7$

where 5^{*} means 5 or 6 on an isolated points.
Remark 6.5. From the formula on weights of components, we can estimate the orders of component functions of E-integral curves. However it is possible that the orders of some components become higher than expected by accidental cancelings of leading terms. Therefore, in order to determine the exact order of each component of generic curves, we need the explicit local expressions of the projections $\pi_{0}, \pi_{+}, \pi_{-}, \pi_{M}$ and the differential system $E \subset T Z$.

Proof of Lemma 6.4. As we have seen in the above arguments, all components of $\pi_{0} \circ f$ (resp. $\left.\pi_{+} \circ f, \pi_{-} \circ f, \pi_{M} \circ f\right)$ are obtained just from the four components $x_{21} \circ f, x_{65} \circ f, x_{64} \circ f, x_{32} \circ f$ by differentiations, multiplications, summations and integrations. We can spell out, from the explicit expression of components obtained in $\S 5$, which component may have higher order than expected. For example, since $\left(x_{52} \circ f\right)^{\prime}=\left(x_{53} \circ f\right)\left(x_{32} \circ f\right)^{\prime}$, we see $x_{52} \circ f=\int\left(x_{53} \circ f\right)\left(x_{32} \circ f\right)^{\prime} d t$. Therefore $\operatorname{ord}\left(x_{52} \circ f\right)=\operatorname{ord}\left(x_{53} \circ f\right)+\operatorname{ord}\left(x_{32} \circ f\right)$. As another example, for the component $z_{31} \circ f=\left(x_{31}-x_{32} x_{21}\right) \circ f$ of π_{M}, we have $\left(z_{31} \circ f\right)^{\prime}=\left\{\left(x_{31}-x_{32} x_{21}\right) \circ f\right\}^{\prime}=-\left(x_{32} \circ f\right)^{\prime}\left(x_{21} \circ f\right)$. Therefore $z_{31} \circ f=-\int\left(x_{32} \circ f\right)^{\prime}\left(x_{21} \circ f\right) d t$ and $\operatorname{ord}\left(z_{31} \circ f\right)=\operatorname{ord}\left(\left(x_{32} \circ f\right)+\operatorname{ord}\left(x_{21} \circ f\right)\right.$.

By the ordinary transversality theorem, we have, generically, just four cases where

$$
\left(\operatorname{ord}\left(x_{21} \circ f\right), \operatorname{ord}\left(x_{65} \circ f\right), \operatorname{ord}\left(x_{64} \circ f\right), \operatorname{ord}\left(x_{32} \circ f\right)\right)
$$

is equal to

$$
(1,1,1,1),(2,1,1,1),(1,2,1,1),(1,1,2,1),(1,1,1,2),
$$

respectively. The last four cases occur just on isolated points, where the orders of all components are equal to the weights of components. In the first case, the order of one component may increase by one from the weight of the component accidentally on an isolated points. Thus we have the above table.

Proof of Theorem 4.3: We use several results proved in [12]. If the set of orders contains 1, 2, 3 (resp. 2, 3, 4, 5, 1, 3, 4, 5), then the tangent surface to the projection of the Engel integral curve is locally diffeomorphic to the cuspidal edge (resp. the open swallowtail, the open Mond surface)
in $\left(\mathbf{R}^{6}, 0\right)$ or $\left(\mathbf{R}^{9}, 0\right)$. This is proved essentially by the versality of the cuspidal edge (resp. the open swallowtail, the open Mond surface) as an "opening" of the fold map (resp. the Whitney's cusp, the beak-to beak map) $\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$. For example, we show one case where the set of orders of components is given by $\{1,2,3,3,4,5\}$. Then the projection of the Engel integral curve is locally expressed by $c:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{6}, 0\right)$ with components

$$
\left\{\begin{array}{l}
x_{1}(t)=a_{1} t+\cdots \\
x_{2}(t)=a_{2} t^{2}+\cdots \\
x_{3}(t)=a_{3} t^{3}+\cdots \\
x_{4}(t)=a_{4} t^{3}+\cdots \\
x_{5}(t)=a_{5} t^{4}+\cdots \\
x_{6}(t)=a_{6} t^{5}+\cdots
\end{array}\right.
$$

where $a_{i} \neq 0,1 \leq i \leq 6$ and \cdots means higher order terms.
Then, by a local diffeomorphism on $(\mathbf{R}, 0)$ and a linear transformation on $\left(\mathbf{R}^{6}, 0\right)$ the curve is transformed into a curve $\tilde{c}:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{6}, 0\right)$ with components

$$
\begin{gathered}
x_{1}(t)=t, x_{2}(t)=t^{2}+\varphi_{2}(t), x_{3}(t)=t^{3}+\varphi_{3}(t) \\
x_{4}(t)=t^{3}+\varphi_{4}(t), x_{5}(t)=t^{4}+\varphi_{5}(t), x_{6}(t)=t^{5}+\varphi_{6}(t),
\end{gathered}
$$

where $\operatorname{ord}\left(\varphi_{2}\right) \geq 3, \operatorname{ord}\left(\varphi_{3}\right) \geq 4, \operatorname{ord}\left(\varphi_{4}\right) \geq 4, \operatorname{ord}\left(\varphi_{5}\right) \geq 5, \operatorname{ord}\left(\varphi_{6}\right) \geq 6$. The tangent surface of \tilde{c} is parametrized by $F(t, s)=\tilde{c}(t)+s \tilde{c}^{\prime}(t)$, namely,

$$
\begin{array}{ll}
x_{1}(t, s)=t+s, & x_{2}(t, s)=t^{2}+2 s t+\varphi_{2}(t)+s \varphi_{2}^{\prime}(t) \\
x_{3}(t, s)=t^{3}+3 s t^{2}+\varphi_{3}(t)+s \varphi_{3}^{\prime}(t), & x_{4}(t, s)=t^{3}+3 s t^{2}+\varphi_{4}(t)+s \varphi_{4}^{\prime}(t) \\
x_{5}(t, s)=t^{4}+4 s t^{3}+\varphi_{5}(t)+s \varphi_{5}^{\prime}(t), & x_{6}(t, s)=t^{5}+5 s t^{4}+\varphi_{6}(t)+s \varphi_{6}^{\prime}(t)
\end{array}
$$

If we put $u=t+s$, then we have that F is diffeomorphic to a map-germ $G:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{6}, 0\right)$ with components

$$
\begin{array}{ll}
x_{1}(t, u)=u, & x_{2}(t, u)=-t^{2}+2 u t+\psi_{2}(t, u) \\
x_{3}(t, u)=-2 t^{3}+3 u t^{2}+\psi_{3}(t, u), & x_{4}(t, u)=-2 t^{3}+3 u t^{2}+\psi_{4}(t, u) \\
x_{5}(t, u)=-3 t^{4}+4 u t^{3}+\psi_{5}(t, u), & x_{6}(t, u)=-4 t^{5}+5 u t^{4}+\psi_{3}(t, u)
\end{array}
$$

where $\psi_{i}(t, u)=\varphi_{i}(t)+(u-t) \varphi_{i}^{\prime}(t)$. Now consider the set \mathcal{R} of functions $h(t, u)$ such that $\frac{\partial h}{\partial t}$ is a functional multiple of $u-t$. All components of G belong to \mathcal{R}. We define $g, \tilde{g}:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$, by $g(t, u)=\left(u,-t^{2}+2 u t+\psi_{2}(t, u)\right)$ and $\tilde{g}(t, u)=\left(u,-t^{2}+2 u t\right)$, both of which are diffeomorphic to the fold map. Then \mathcal{R} coincides with \mathcal{R}_{g}, the totality of $h:\left(\mathbf{R}^{2}, 0\right) \rightarrow \mathbf{R}$ such that $d h$ is a functional linear combination of $d u$ and $d\left(-t^{2}+2 u t+\psi_{2}(t, u)\right)$, and with $\mathcal{R}_{\tilde{g}}$ which is similarly defined. In this situation, we say that G is an opening of g. We can show that any $h \in \mathcal{R}$ is a function on

$$
\widetilde{G}=\left(u,-t^{2}+2 u t,-2 t^{3}+3 u t^{2}\right)
$$

which is a versal opening of \tilde{g}. Thus we see, in fact, that there exist functions

$$
\Phi_{2}, \Phi_{3}, \Phi_{4}, \Phi_{5}, \Phi_{6}:\left(\mathbf{R}^{3}, 0\right) \rightarrow(\mathbf{R}, 0)
$$

on $\left(\mathbf{R}^{3}, 0\right)$ with coordinates y_{1}, y_{2}, y_{3} such that

$$
\begin{array}{ll}
x_{1}(t, u)=u, & x_{2}(t, u)=-t^{2}+2 u t+\Phi_{2} \circ \widetilde{G} \\
x_{3}(t, u)=-2 t^{3}+3 u t^{2}+\Phi_{3} \circ \widetilde{G}, & x_{4}(t, u)=-2 t^{3}+3 u t^{2}+\Phi_{4} \circ \widetilde{G} \\
x_{5}(t, u)=\Phi_{5} \circ \widetilde{G}, & x_{6}(t, u)=\Phi_{6} \circ \widetilde{G} .
\end{array}
$$

Then we see necessarily that $\frac{\partial \Phi_{2}}{\partial y_{2}}(0)=0, \frac{\partial \Phi_{3}}{\partial y_{3}}(0)=0$. Define a map-germ $\tau:\left(\mathbf{R}^{6}, 0\right) \rightarrow\left(\mathbf{R}^{6}, 0\right)$ by

$$
\begin{aligned}
\tau\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)= & \left(y_{1}, y_{2}+\Phi_{2}\left(y_{1}, y_{2}, y_{3}\right), y_{3}+\Phi_{3}\left(y_{1}, y_{2}, y_{3}\right)\right. \\
& \left.y_{3}+y_{4}+\Phi_{4}\left(y_{1}, y_{2}, y_{3}\right), y_{5}+\Phi_{5}\left(y_{1}, y_{2}, y_{3}\right), y_{6}+\Phi_{6}\left(y_{1}, y_{2}, y_{3}\right)\right)
\end{aligned}
$$

Then we have that τ is a diffeomorphism-germ of $\left(\mathbf{R}^{6}, 0\right)$ and $G=\tau \circ(\widetilde{G}, 0,0,0)$. Thus F is diffeomorphic to ($\widetilde{G}, 0,0,0$), which is diffeomorphic to

$$
(u, v) \mapsto\left(u, v^{2}, v^{3}, 0,0,0\right)
$$

the cuspidal edge in \mathbf{R}^{6}. Note that $(\widetilde{G}, 0,0,0)$ provides a normal form among tangent mappings.
On the notions of openings and versal openings, and related results, see [12]. We can treat other cases similarly using Lemma 6.4. Thus we have Theorem 4.3.

7. D_{4} Cartan distributions and null frontals

In the previous sections we have studied tangent surfaces to null curves of special kind, that is, null curves which are projections of E-integral curves (see Theorem 4.3). In general the tangent surface to a null curve is a ruled surface by null lines, which is not necessarily a null surface. However, for a projection of an E-integral curve, its null tangent lines do form a null surface, which we have called the null tangent surface. In this section we provide the geometric characterization (Proposition 7.4, Remark 7.5) of our main objects in this paper, the null tangent surfaces, by introducing the new notion of "null frontals" and by using the triality. Moreover we characterize the null tangent surfaces as geometric solutions to "bi-Monge-Ampère system". Thus we will make clear the significance of our constructions.

We have defined in $\S 3$ the distribution $D_{N} \subset T N$ on the flag manifold N.
Definition 7.1. A mapping $F: U \rightarrow Q_{0}$ (resp. $F: U \rightarrow Q_{+}, F: U \rightarrow Q_{-}$) from a 2dimensional manifold U is called a null frontal if there exists a D_{N}-integral lift $\widetilde{F}: U \rightarrow N$ of F, i.e. which satisfies $\widetilde{F}_{*}\left(T_{x} U\right) \subset\left(D_{N}\right)_{\widetilde{F}(x)}$ and $\pi_{0}^{\prime}(\widetilde{F}(x))=F(x)$ (resp. $\pi_{+}^{\prime}(\widetilde{F}(x))=F(x)$, $\left.\pi_{-}^{\prime}(\widetilde{F}(x))=F(x)\right)$, for any $x \in U$.

Remark 7.2. In the above definition, if we can take \widetilde{F} an immersion, then we call F a null front.

Recall that Q_{0}, Q_{+}, Q_{-}are endowed with conformal structures of type $(3,3)$ and we have defined the notion of null surfaces (Definition 4.1).

Proposition 7.3. (1) If $F: U \rightarrow Q_{0}$ (resp. $F: U \rightarrow Q_{+}, F: U \rightarrow Q_{-}$) is a regular (immersive) null surface, then F is a null frontal.
(2) If $F: U \rightarrow Q_{0}$ (resp. $F: U \rightarrow Q_{+}, F: U \rightarrow Q_{-}$) is a null frontal, then F is a null surface.

As is mentioned in $\S 4$ (after Proposition 4.2), we have the following:
Proposition 7.4. Let $f: I \rightarrow Z$ be an E-integral curve. Consider the projections $\gamma_{0}=\pi_{0} \circ f$: $I \rightarrow Q_{0}, \gamma_{+}=\pi_{+} \circ f: I \rightarrow Q_{+}$and $\gamma_{-}=\pi_{-} \circ f: I \rightarrow Q_{-}$. Then the tangent surfaces $F_{0}=\operatorname{Tan}\left(\gamma_{0}\right), F_{+}=\operatorname{Tan}\left(\gamma_{+}\right)$and $F_{-}=\operatorname{Tan}\left(\gamma_{-}\right)$are null frontals. In fact, there exists a $D_{N^{-}}$ integral lifting $\widetilde{F_{0}}$ of F_{0} (resp. $\widetilde{F_{+}}$of $F_{+}, \widetilde{F_{-}}$of F_{-}) such that $\pi_{+} \circ \widetilde{F_{0}}$ and $\pi_{-} \circ \widetilde{F_{0}}\left(\right.$ resp. $\pi_{-} \circ \widetilde{F_{+}}$ and $\pi_{0} \circ \widetilde{F_{+}}, \pi_{0} \circ \widetilde{F_{-}}$and $\left.\pi_{+} \circ \widetilde{F_{-}}\right)$are constant along tangent lines.

Remark 7.5. The converse of Proposition 7.4 holds in the following sense: Let $\gamma_{0}: I \rightarrow Q_{0}$ be an immersion. Suppose that γ_{0} is a null immersion, its tangent surface $F_{0}=\operatorname{Tan}\left(\gamma_{0}\right)$ is a null frontal, and, for a D_{N}-integral lifting $\widetilde{F_{0}}$ of $F_{0}, \pi_{+} \circ \widetilde{F_{0}}$ and $\pi_{-} \circ \widetilde{F_{0}}$ are constant along tangent lines. Then there exists an E-integral curve $f: I \rightarrow Z$ such that $\gamma_{0}=\pi_{0} \circ f$ and $\pi_{+} \circ \widetilde{F_{0}}$ (resp. $\pi_{-} \circ \widetilde{F_{0}}$) is parametrized by $\pi_{+} \circ f$ (resp. $\pi_{-} \circ f$). In fact, we set $f(t)=\left(V_{1}(t), V_{2}(t), V_{4}^{+}(t), V_{4}^{-}(t)\right)$, where $V_{1}(t)=\gamma_{0}(t)$ regarded as a null line in $V=\mathbf{R}^{4,4}, V_{2}(t)$ is the tangent line to γ_{0} at t regarded as a null plane containing $V_{1}(t)$. Moreover the null 4-space $V_{4}^{+}(t)\left(\operatorname{resp} . V_{4}^{-}(t)\right)$ is given by the value of $\pi_{+} \circ \widetilde{F_{0}}$ (resp. $\pi_{-} \circ \widetilde{F_{0}}$) along the tangent line corresponding to $V_{2}(t)$.

Note that D_{N} is described, in terms of tree of fibrations, by

$$
\left(\operatorname{ker} \pi_{+*}^{\prime} \cap \operatorname{ker} \pi_{-*}^{\prime}\right) \oplus\left(\operatorname{ker} \pi_{0 *}^{\prime} \cap \operatorname{ker} \pi_{-*}^{\prime}\right) \oplus\left(\operatorname{ker} \pi_{0 *}^{\prime} \cap \operatorname{ker} \pi_{+*}^{\prime}\right) \subset T N
$$

To show Propositions 7.3 and 7.4, we need the following Lemma 7.6 which gives the equivalent descriptions of D_{N} in different forms.

Lemma 7.6. Let $f=\left(V_{1}, V_{4}^{+}, V_{4}^{-}\right) \in N$. For each tangent vector $\boldsymbol{v} \in T_{f} N$, the following conditions are equivalent to each other:
(1) The tangent vector \boldsymbol{v} belongs to $\left(D_{N}\right)_{f}$.
(2) There exists a representative $c:(\mathbf{R}, 0) \rightarrow(N, f), c(t)=\left(V_{1}(t), V_{4}^{+}(t), V_{4}^{-}(t)\right)$ of the tangent vector \boldsymbol{v}, with a framing

$$
\begin{gathered}
V_{1}(t)=\left\langle f_{1}(t)\right\rangle_{\mathbf{R}}, V_{4}^{+}(t) \cap V_{4}^{-}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle_{\mathbf{R}} \\
V_{4}^{+}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)\right\rangle_{\mathbf{R}}, V_{4}^{-}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t), f_{5}(t)\right\rangle_{\mathbf{R}}
\end{gathered}
$$

by a curve-germ $\boldsymbol{f}:(\mathbf{R}, 0) \rightarrow \operatorname{GL}\left(\mathbf{R}^{4,4}\right)$,

$$
\boldsymbol{f}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t), f_{7}(t), f_{8}(t)\right)
$$

which satisfies that $\boldsymbol{f}(0)$ is an adapted basis for some flag in $\pi_{N}^{-1}(f) \subset Z$, and that

$$
f_{1}^{\prime}(0) \in V_{4}^{+} \cap V_{4}^{-}, f_{2}^{\prime}(0), f_{3}^{\prime}(0) \in\left(V_{4}^{+} \cap V_{4}^{-}\right)^{\perp}
$$

To show Lemma 7.6, we give local coordinates of N^{\prime} and of N. First fix a complete flag as before

$$
W_{1}^{0} \subset W_{2}^{0} \subset W_{3}^{0} \begin{array}{ccc}
\subset & W_{4}^{0+} & \subset \\
& \subset & W_{4}^{0-}
\end{array} W_{3}^{0 \perp} \subset W_{2}^{0 \perp} \subset W_{1}^{0 \perp} \subset V=\mathbf{R}^{4,4}
$$

and take the open neighborhood

$$
\Omega^{\prime}=\left\{\left(V_{1}, V_{3}\right) \in N^{\prime} \mid V_{1} \cap W_{1}^{0 \perp}=\{0\}, V_{3} \cap W_{3}^{0 \perp}=\{0\}\right\}
$$

of $\left(V_{1}^{0}, V_{3}^{0}\right)$ in N^{\prime}. Then, for any $\left(V_{1}, V_{3}\right) \in \Omega^{\prime}$, there exist unique $f_{1}, f_{2}, f_{3} \in V_{3}$ such that f_{1} forms a basis of V_{1}, and f_{1}, f_{2}, f_{3} form a basis of V_{3} respectively and they are of form

$$
\left\{\begin{array}{llrll}
f_{1} & = & e_{1}+ & x_{21} e_{2} & +x_{31} e_{3} \\
f_{2}= & & +x_{41} e_{4}+x_{51} e_{5}+x_{61} e_{6}+x_{71} e_{7}+x_{81} e_{8} \\
f_{3}= & e_{2} & & +x_{42} e_{4}+x_{52} e_{5}+x_{62} e_{6}+x_{72} e_{7}+x_{82} e_{8} \\
f_{3} & & e_{3} & +x_{43} e_{4}+x_{53} e_{5}+x_{63} e_{6}+x_{73} e_{7}+x_{83} e_{8}
\end{array}\right.
$$

for some $x_{i j} \in \mathbf{R}$. Then we have

$$
\begin{aligned}
\left(f_{1} \mid f_{1}\right) & =x_{81}+x_{21} x_{71}+x_{31} x_{61}+x_{41} x_{51}=0 \\
2\left(f_{1} \mid f_{2}\right) & =x_{82}+x_{21} x_{72}+x_{31} x_{62}+x_{41} x_{52}+x_{51} x_{42}+x_{71}=0 \\
2\left(f_{1} \mid f_{3}\right) & =x_{83}+x_{21} x_{73}+x_{31} x_{63}+x_{41} x_{53}+x_{51} x_{43}+x_{61}=0 \\
\left(f_{2} \mid f_{2}\right) & =x_{72}+x_{42} x_{52}=0 \\
2\left(f_{2} \mid f_{3}\right) & =x_{73}+x_{32} x_{63}+x_{42} x_{53}+x_{52} x_{43}+x_{62}=0 \\
\left(f_{3} \mid f_{3}\right) & =x_{63}+x_{43} x_{53}=0
\end{aligned}
$$

Therefore we see that

$$
\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{42}, x_{52}, x_{62}, x_{43}, x_{53}\right)
$$

is a chart on $\Omega^{\prime} \subset N^{\prime}$. We take

$$
f_{4}=e_{4}+x_{54} e_{5}+x_{64} e_{6}+x_{74} e_{7}+x_{84} e_{8}
$$

from V_{4}^{+}so that $f_{1}, f_{2}, f_{3}, f_{4}$ form a basis of V_{4}^{+}, and take

$$
f_{5}=x_{45} e_{4}+e_{5}+x_{65} e_{6}+x_{75} e_{7}+x_{85} e_{8}
$$

from V_{4}^{-}so that $f_{1}, f_{2}, f_{3}, f_{5}$ form a basis of V_{4}^{-}. Then we have a local chart for N :

$$
\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{42}, x_{52}, x_{62}, x_{64}, x_{65}\right)
$$

Note that the calculations of coordinates for N^{\prime} and N go similarly to that for Z^{\prime} and Z, and we obtain the local forms of $\pi_{0}^{\prime}, \pi_{+}^{\prime}, \pi_{-}^{\prime}$ from those for $\pi_{0}, \pi_{+}, \pi_{-}$in $\S 5$, by just putting $x_{32}=0$. In fact, we have the coordinate expressions for the projection

$$
\pi_{0}^{\prime}: N \rightarrow Q_{0}
$$

by

$$
\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{42}, x_{52}, x_{62}, x_{64}, x_{65}\right) \mapsto\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}\right)
$$

for

$$
\pi_{+}^{\prime}: N \rightarrow Q_{+}
$$

by

$$
\left\{\begin{array}{l}
y_{51}=x_{51}-x_{52} x_{21}+x_{64} x_{31} \\
y_{61}=x_{61}-x_{62} x_{21}-x_{64}\left(x_{41}-x_{42} x_{21}\right) \\
y_{71}=x_{71}+x_{62} x_{31}+x_{52} x_{41}-x_{64} x_{42} x_{31} \\
y_{52}=x_{52} \\
y_{62}=x_{62}-x_{64} x_{42} \\
y_{64}=x_{64}
\end{array}\right.
$$

and for

$$
\pi_{-}^{\prime}: N \rightarrow Q_{-}
$$

by

$$
\left\{\begin{array}{l}
y_{41}=x_{41}-x_{42} x_{21}+x_{65} x_{31} \\
y_{61}=x_{61}-x_{62} x_{21}-x_{65}\left(x_{51}-x_{52} x_{21}\right) \\
y_{71}=x_{71}+x_{62} x_{31}+x_{51} x_{42}+x_{65} x_{52} x_{31} \\
y_{42}=x_{42} \\
y_{62}=x_{62}-x_{65} x_{52} \\
y_{65}=x_{65}
\end{array}\right.
$$

Proof of Lemma 7.6:
$(1) \Rightarrow(2):$ Let $\boldsymbol{v} \in\left(D_{N}\right)_{f}$. Decompose $\boldsymbol{v}=v_{1}+v_{3}+v_{4}$ into

$$
v_{1} \in \operatorname{ker} \pi_{+*}^{\prime} \cap \operatorname{ker} \pi_{-*}^{\prime}, v_{3} \in \operatorname{ker} \pi_{0 *}^{\prime} \cap \operatorname{ker} \pi_{-*}^{\prime}
$$

and $v_{4} \in \operatorname{ker} \pi_{0 *}^{\prime} \cap \operatorname{ker} \pi_{+*}^{\prime}$. We take representatives $\boldsymbol{g}(t), \boldsymbol{h}(t), \boldsymbol{k}(t)$ of v_{1}, v_{3}, v_{4} at 0 respectively, such that $\boldsymbol{g}(0)=\boldsymbol{h}(0)=\boldsymbol{k}(0)$ is an adapted frame for f, and

$$
\begin{gathered}
\left\langle g_{1}(t), g_{2}(t), g_{3}(t), g_{4}(t)\right\rangle_{\mathbf{R}}=V_{4}^{+},\left\langle g_{1}(t), g_{2}(t), g_{3}(t), g_{5}(t)\right\rangle_{\mathbf{R}}=V_{4}^{-}, \\
\left\langle h_{1}(t)\right\rangle_{\mathbf{R}}=V_{1},\left\langle h_{1}(t), h_{2}(t), h_{3}(t), h_{5}(t)\right\rangle_{\mathbf{R}}=V_{4}^{-}, \\
\left\langle k_{1}(t)\right\rangle_{\mathbf{R}}=V_{1},\left\langle k_{1}(t), k_{2}(t), k_{3}(t), k_{4}(t)\right\rangle_{\mathbf{R}}=V_{4}^{+},
\end{gathered}
$$

for any t near 0 . Set $\boldsymbol{f}(t)=\boldsymbol{g}(t)+\boldsymbol{h}(t)+\boldsymbol{k}(t)-2 \boldsymbol{g}(0)$. Then we have

$$
f_{1}^{\prime}(0)=g_{1}^{\prime}(0)+h_{1}^{\prime}(0)+k_{1}^{\prime}(0)=g_{1}^{\prime}(0) \in V_{4}^{+} \cap V_{4}^{-}
$$

and

$$
f_{2}^{\prime}(0)=g_{2}^{\prime}(0)+h_{2}^{\prime}(0)+k_{2}^{\prime}(0) \in V_{4}^{+}+V_{4}^{-}=\left(V_{4}^{+} \cap V_{4}^{-}\right)^{\perp}
$$

$(2) \Rightarrow(1):$ Write down the first five components of $\boldsymbol{f}(t)$ as
where $x_{i j}=x_{i j}(t)$ with $x_{i j}(0)=0$. Then, by the condition (2), we have $x_{i j}^{\prime}(0)=0$, except for the components $x_{21}, x_{31}, x_{42}, x_{52}, x_{64}, x_{65}, x_{74}, x_{75}$, and $x_{74}^{\prime}(0)=-x_{52}^{\prime}(0), x_{75}^{\prime}(0)=-x_{42}^{\prime}(0)$. Then we take curves $\boldsymbol{g}(t), \boldsymbol{h}(t), \boldsymbol{k}(t)$ satisfying

$$
\begin{aligned}
& \left\{\begin{array}{llrll}
g_{1} & = & e_{1} & +x_{21} e_{2} & +x_{31} e_{3}, \\
g_{2} & = & e_{2}, & & \\
g_{3} & = & e_{3}, & \\
g_{4} & = & & e_{4}, & \\
g_{5} & = & & & e_{5},
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{rlllllll}
k_{1} & = & e_{1}, & & & \\
k_{2} & = & & & +x_{52} e_{5}, & \\
k_{3} & = & & e_{3} & & -x_{64} e_{5}, & \\
k_{4}= & & e_{4} & & +x_{64} e_{6} & -x_{52} e_{7}, \\
k_{5} & = & & & e_{5} .
\end{array}\right.
\end{aligned}
$$

Let $g: I \rightarrow N, h: I \rightarrow N, k: I \rightarrow N$ be curves with the frame $\boldsymbol{g}(t), \boldsymbol{h}(t), \boldsymbol{k}(t)$ respectively. Let $v_{1}, v_{3}, v_{4} \in T_{f} N$ be tangent vectors defined by g, h, k respectively. Then $\boldsymbol{v}=v_{1}+v_{2}+v_{3}$. Since $\pi_{+}^{\prime} \circ g$ and $\pi_{-}^{\prime} \circ g$ are constant (resp. $\pi_{0}^{\prime} \circ h$ and $\pi_{-}^{\prime} \circ h$ are constant, $\pi_{0}^{\prime} \circ k$ and $\pi_{+}^{\prime} \circ k$ are constant), we have $v_{1} \in \operatorname{ker} \pi_{+*}^{\prime} \cap \operatorname{ker} \pi_{-*}^{\prime}, v_{3} \in \operatorname{ker} \pi_{0 *}^{\prime} \cap \operatorname{ker} \pi_{-*}^{\prime}, v_{4} \in \operatorname{ker} \pi_{0 *}^{\prime} \cap \operatorname{ker} \pi_{+*}^{\prime}$.

Proof of Proposition 7.3:
(1) Regarding $F(u, v)$ as a 1-dimensional subspace in V, we take a frame $f(u, v)$ of $F(u, v)$. Since F is regular,

$$
f(u, v), \frac{\partial f}{\partial u}(u, v), \frac{\partial f}{\partial v}(u, v)
$$

are linearly independent and

$$
V_{3}(u, v):=\left\langle f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right\rangle_{\mathbf{R}}
$$

is a null 3 space in $V=\mathbf{R}^{4,4}$, for any $(u, v) \in U$. Then by the partial differentiations with respect to u, v of the equalities

$$
\left(f \left\lvert\, \frac{\partial f}{\partial u}\right.\right)=0,\left(f \left\lvert\, \frac{\partial f}{\partial v}\right.\right)=0,\left(\left.\frac{\partial f}{\partial u} \right\rvert\, \frac{\partial f}{\partial u}\right)=0,\left(\left.\frac{\partial f}{\partial u} \right\rvert\, \frac{\partial f}{\partial v}\right)=0,\left(\left.\frac{\partial f}{\partial v} \right\rvert\, \frac{\partial f}{\partial v}\right)=0
$$

we have that

$$
\frac{\partial^{2} f}{\partial u^{2}}, \frac{\partial^{2} f}{\partial u \partial v}, \frac{\partial^{2} f}{\partial v^{2}} \in V_{3}(u, v)^{\perp}
$$

We set $V_{1}(u, v)=\langle f(u, v)\rangle_{\mathbf{R}} \subset V$, and take the unique null 4-spaces $V_{4}^{+}(u, v), V_{4}^{-}(u, v)$ such that $V_{3}(u, v)=V_{4}^{+}(u, v) \cap V_{4}^{-}(u, v)$. Then define $\widetilde{F}: U \rightarrow N$ by

$$
\widetilde{F}(u, v)=\left(V_{1}(u, v), V_{4}^{+}(u, v), V_{4}^{-}(u, v)\right)
$$

Then $\pi_{0}^{\prime} \circ \widetilde{F}=F$. Moreover \widetilde{F} is a D_{N}-integral map.
In fact, for the differential map $\widetilde{F}_{*}: T_{(u, v)} U \rightarrow T_{\widetilde{F}(u, v)} N$ at any $(u, v) \in U$, we have that

$$
\widetilde{F}_{*}\left(\frac{\partial}{\partial u}\right) \in\left(D_{N}\right)_{\widetilde{F}(u, v)}, \quad \widetilde{F}_{*}\left(\frac{\partial}{\partial v}\right) \in\left(D_{N}\right)_{\widetilde{F}(u, v)}
$$

To show the first assertion using Lemma 7.6, we set

$$
f_{1}(t):=f(u+t, v) \in V_{1}(u+t, v)
$$

and

$$
f_{2}(t):=\frac{\partial f}{\partial u}(u+t, v) \in V_{3}(u+t, v), \quad f_{3}(t):=\frac{\partial f}{\partial v}(u+t, v) V_{3}(u+t, v)
$$

Take $f_{4}(t)$ and $f_{5}(t)$ such that

$$
V_{4}^{+}(u+t, v)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)\right\rangle_{\mathbf{R}}, V_{4}^{-}(u+t, v)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t), f_{5}(t)\right\rangle_{\mathbf{R}}
$$

for any sufficiently small t. Note that $\widetilde{F}(u+t, v)=\left(V_{1}(u+t, v), V_{4}^{+}(u+t, v), V_{4}^{-}(u+t, v)\right)$ regarded as a curve on N with parameter t represents the tangent vector $\widetilde{F}_{*}\left(\frac{\partial}{\partial u}\right) \in T_{\widetilde{F}(u, v)} N$. We can extend $\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right)$ to a curve-germ $\boldsymbol{f}:(\mathbf{R}, 0) \rightarrow \operatorname{GL}\left(\mathbf{R}^{4,4}\right)$,

$$
\boldsymbol{f}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t), f_{7}(t), f_{8}(t)\right)
$$

such that $\boldsymbol{f}(0)$ is an adapted basis for a flag in $\left.\pi_{N}^{-1}(\widetilde{F}(u, v))\right) \subset Z$. Moreover, as is shown in above,

$$
f_{1}^{\prime}(0) \in V_{4}^{+}(u, v) \cap V_{4}^{-}(u, v), \quad f_{2}^{\prime}(0), f_{3}^{\prime}(0) \in\left(V_{4}^{+}(u, v) \cap V_{4}^{-}(u, v)\right)^{\perp}
$$

Therefore, applying Lemma 7.6 to $\boldsymbol{v}=\widetilde{F}_{*}\left(\frac{\partial}{\partial u}\right)$, we have that $\widetilde{F}_{*}\left(\frac{\partial}{\partial u}\right)$ belongs to $\left(D_{N}\right)_{\widetilde{F}(u, v)}$. The assertion that $\widetilde{F}_{*}\left(\frac{\partial}{\partial v}\right)$ belongs to $\left(D_{N}\right)_{\widetilde{F}(u, v)}$ is proved similarly. Thus we have that

$$
\widetilde{F}_{*}\left(T_{(u, v)} U\right) \subset\left(D_{N}\right)_{\widetilde{F}(u, v)}
$$

for any $(u, v) \in U$.
Therefore F is a null frontal. By triality we have the same result also for regular null surfaces in $Q_{ \pm}$.
(2) Let $x=(u, v) \in U$. Let $\boldsymbol{v} \in T_{x} U$. Suppose $F_{*}(\boldsymbol{v}) \neq 0$. Then we have $\widetilde{F}_{*}(\boldsymbol{v}) \in\left(D_{N}\right)_{\widetilde{F}(x)}$. Take a curve $\left(V_{1}(t), V_{4}^{+}(t), V_{4}^{-}(t)\right)$ on N which represents, at $t=0$, the tangent vector $\widetilde{F}_{*}(\boldsymbol{v})$ at $\widetilde{F}(x)$. Then $f_{1}^{\prime}(0) \in V_{4}^{+}(0) \cap V_{4}^{-}(0)$. The vector $f_{1}^{\prime}(0)$ corresponds to $F_{*}(v)$. Therefore

$$
F_{*}(\boldsymbol{v}) \in T_{F(x)}\left(P\left(V_{4}^{+}(0) \cap V_{4}^{-}(0)\right)\right) \subset T_{F(x)}\left(P\left(V_{1}(0)\right)^{\perp} \cap Q_{0}\right)=C_{F(x)}
$$

and F is a null surface. By triality we have the same result also null frontals in $Q_{ \pm}$.

Proof of Proposition 7.4:

Let $f: I \rightarrow Z, f(t)=\left(V_{1}(t), V_{2}(t), V_{4}^{+}(t), V_{4}^{-}(t)\right)$ be an E-integral curve. Take a frame $f_{1}(t)$ of $V_{1}(t), f_{1}(t), f_{2}(t)$ of $V_{2}(t), f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ of $V_{4}^{+}(t)$ and $f_{1}(t), f_{2}(t), f_{3}(t), f_{5}(t)$ of $V_{4}^{-}(t)$. Then the curve $\gamma_{0}(t)$ is defined by the family $V_{1}(t)$.

Consider, for each $t \in I, V_{1}(t, s)=f_{1}(t)+s f_{2}(t)$, which can be regarded a projective line. By the condition $f_{1}^{\prime}(t) \in V_{2}(t), V_{1}(t, s)$ gives the tangent line to γ at t, even when $f_{1}(t), f_{1}^{\prime}(t)$ are linearly dependent. Then $F_{0}=\operatorname{Tan}\left(\gamma_{0}(t)\right)$ is given by $F_{0}(t, s)=V_{1}(t, s)$ and s is the parameter of tangent lines. We define the lift $\widetilde{F_{0}}$ of F_{0} to N by

$$
\widetilde{F_{0}}(t, s):=\left(V_{1}(t, s), V_{4}^{+}(t), V_{4}^{-}(t)\right)
$$

We have that

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(f_{1}(t)+s f_{2}(t)\right) & =f_{1}^{\prime}(t)+s f_{2}^{\prime}(t) \in V_{4}^{+}(t) \cap V_{4}^{-}(t) \\
\frac{\partial}{\partial s}\left(f_{1}(t)+s f_{2}(t)\right) & =f_{2}(t) \in V_{2}(t) \subset V_{4}^{+}(t) \cap V_{4}^{-}(t)
\end{aligned}
$$

and that $\frac{\partial}{\partial t} f_{3}(t) \in\left(V_{4}^{+}(t) \cap V_{4}^{-}(t)\right)^{\perp}, \frac{\partial}{\partial s} f_{3}(t)=0$. Thus we have that $\widetilde{F_{0}}$ is D_{N}-integral by Lemma 7.6. Therefore we have that F_{0} is a null frontal. Moreover $\left(\pi_{+} \circ \widetilde{F_{0}}\right)(t, s)=V_{4}^{+}(t)$ and $\left(\pi_{-} \circ \widetilde{F_{0}}\right)(t, s)=V_{4}^{-}(t)$ do not depend on s.

By the triality, we have the results also for $F_{+}=\operatorname{Tan}\left(\gamma_{+}(t)\right)$ and $F_{-}=\operatorname{Tan}\left(\gamma_{-}(t)\right)$.
In fact, under the diffeomorphism

$$
\Phi: N \rightarrow N^{\prime}, \Phi\left(V_{1}, V_{4}^{+}, V_{4}^{-}\right)=\left(V_{1}, V_{4}^{+} \cap V_{4}^{-}\right)
$$

$\Phi \circ \widetilde{F_{+}}: I \rightarrow N^{\prime}$ is given by

$$
\Phi \circ \widetilde{F_{+}}(t)=\left(V_{1}(t), V_{3}(t, s)\right), V_{3}(t, s):=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)+s f_{5}(t)\right\rangle_{\mathbf{R}}, \quad(t, s) \in I \times \mathbf{R}
$$

and $\Phi \circ \widetilde{F_{-}}: I \rightarrow N^{\prime}$ is given by

$$
\Phi \circ \widetilde{F_{-}}(t)=\left(V_{1}(t), V_{3}(t, s)\right), V_{3}(t, s):=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)+s f_{4}(t)\right\rangle_{\mathbf{R}},(t, s) \in I \times \mathbf{R}
$$

If we arrange to take an adapted frame $\boldsymbol{f}: I \rightarrow O(4,4)$,

$$
\boldsymbol{f}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t), f_{7}(t), f_{8}(t)\right)
$$

for the Engel integral curve $f: I \rightarrow Z$ (see $\S 5$), then we may write

$$
\widetilde{F_{+}}(t, s)=\left(V_{1}(t), V_{4}^{+}(t, s), V_{4}^{-}(t)\right), V_{4}^{+}(t, s):=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)+s f_{5}(t), f_{3}(t)-s f_{6}(t)\right\rangle_{\mathbf{R}}
$$

and

$$
\widetilde{F_{-}}(t, s)=\left(V_{1}(t), V_{4}^{+}(t), V_{4}^{-}(t, s)\right), V_{4}^{-}(t, s):=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)+s f_{4}(t), f_{3}(t)-s f_{6}(t)\right\rangle_{\mathbf{R}}
$$

for any $(t, s) \in I \times \mathbf{R}$. Therefore F_{+}(resp. F_{-}) has a D_{N}-integral lift $\widetilde{F_{+}}$(resp. $\widetilde{F_{-}}$) such that $\pi_{-} \circ \widetilde{F_{+}}$and $\pi_{0} \circ \widetilde{F_{+}}\left(\right.$resp. $\pi_{0} \circ \widetilde{F_{-}}$and $\left.\pi_{+} \circ \widetilde{F_{-}}\right)$do not depend on s

Let us describe D_{N} in coordinates. By Lemma 7.6, we pose the condition on a frame

$$
\boldsymbol{f}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t), f_{7}(t), f_{8}(t)\right)
$$

such that

$$
\begin{gathered}
f_{1}^{\prime}(0) \in\left\langle f_{1}(0), f_{2}(0), f_{3}(0)\right\rangle_{\mathbf{R}}, f_{2}^{\prime}(0) \in\left\langle f_{1}(0), f_{2}(0), f_{3}(0), f_{4}(0), f_{5}(0)\right\rangle_{\mathbf{R}} \\
f_{3}^{\prime}(0) \in\left\langle f_{1}(0), f_{2}(0), f_{3}(0), f_{4}(0), f_{5}(0)\right\rangle_{\mathbf{R}}
\end{gathered}
$$

Then there exist $p_{i}, q_{i} \in \mathbf{R}, i=1,2,3$ such that

$$
f_{1}^{\prime}(0)=p_{1} f_{2}(0)+q_{1} f_{3}(0), \quad f_{2}^{\prime}(0)=p_{2} f_{4}(0)+q_{2} f_{5}(0), \quad f_{3}^{\prime}(0)=p_{3} f_{4}(0)+q_{3} f_{5}(0)
$$

Then we have the differential system $D_{N^{\prime}}$ on N^{\prime} of rank 6:

$$
\left\{\begin{array}{l}
d x_{41}-x_{42} d x_{21}-x_{43} d x_{31}=0 \\
d x_{51}-x_{52} d x_{21}-x_{53} d x_{31}=0 \\
d x_{61}-x_{62} d x_{21}+x_{43} x_{53} d x_{31}=0 \\
d x_{71}+x_{42} x_{52} d x_{21}+\left(x_{42} x_{53}+x_{43} x_{52}+x_{62}\right) d x_{31}=0 \\
d x_{62}+x_{53} d x_{42}+x_{43} d x_{52}=0
\end{array}\right.
$$

The integrability condition is given by

$$
\left\{\begin{array}{l}
d x_{42} \wedge d x_{21}+d x_{43} \wedge d x_{31}=0 \\
d x_{52} \wedge d x_{21}+d x_{53} \wedge d x_{31}=0 \\
d x_{53} \wedge d x_{42}+d x_{43} \wedge d x_{52}=0
\end{array}\right.
$$

By replacing x_{43}, x_{53} by $-x_{65},-x_{64}$, we have the integrability condition for D_{N} :

$$
\left\{\begin{array}{l}
d x_{42} \wedge d x_{21}-d x_{65} \wedge d x_{31}=0 \\
d x_{52} \wedge d x_{21}-d x_{64} \wedge d x_{31}=0 \\
d x_{64} \wedge d x_{42}+d x_{65} \wedge d x_{52}=0
\end{array}\right.
$$

Thus we observe that the problem on the local construction of D_{N}-integral surfaces and null frontals is reduced to the construction of isotropic surface-germs for a kind of "tri-symplectic" structure on \mathbf{R}^{6} as above.

Moreover we observe that, by Proposition 7.4 , the tangent surfaces of π_{0}-projections of E integral curves satisfy, in addition to the above system,

$$
d x_{42} \wedge d x_{65}=0, \quad d x_{52} \wedge d x_{64}=0
$$

To make the situation clear, we consider \mathbf{R}^{6} with coordinates $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ with three 2-forms:

$$
\left\{\begin{array}{l}
\omega_{1}=d x_{3} \wedge d x_{1}+d x_{4} \wedge d x_{2} \\
\omega_{2}=d x_{5} \wedge d x_{1}+d x_{6} \wedge d x_{2} \\
\omega_{3}=d x_{6} \wedge d x_{3}+d x_{4} \wedge d x_{5}
\end{array}\right.
$$

Let us consider an integral surface of the differential system $\omega_{1}=\omega_{2}=\omega_{3}=0$ which projects to $\left(x_{1}, x_{2}\right)$ regularly. Then, from $\omega_{1}=\omega_{2}=0$, it is written locally

$$
x_{3}=\frac{\partial f}{\partial x_{1}}, x_{4}=\frac{\partial f}{\partial x_{2}}, x_{5}=\frac{\partial g}{\partial x_{1}}, x_{6}=\frac{\partial g}{\partial x_{2}}
$$

for some functions $f=f\left(x_{1}, x_{2}\right), g=g\left(x_{1}, x_{2}\right)$. Then from $\omega_{3}=0$, we have the second order bilinear partial differential equation on $f=f\left(x_{1}, x_{2}\right), g=g\left(x_{1}, x_{2}\right)$,

$$
\frac{\partial^{2} f}{\partial x_{1}^{2}} \frac{\partial^{2} g}{\partial x_{2}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}} \frac{\partial^{2} g}{\partial x_{1}^{2}}-2 \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} g}{\partial x_{1} \partial x_{2}}=0
$$

This equation is regarded as an orthogonality condition of Lagrange-Gauss mapping of two Lagrange immersions defined by f and g.
Remark 7.7. Similarly to above, the calculations in B_{3} geometry, namely geometry of $O(3,4)$, lead us to the differential system

$$
\omega_{1}=d x_{3} \wedge d x_{1}+d x_{4} \wedge d x_{2}=0, \quad \omega_{2}=d x_{3} \wedge d x_{4}=0
$$

on \mathbf{R}^{4} with coordinates $x_{1}, x_{2}, x_{3}, x_{4}$, which is expressed as the Monge-Ampère equation

$$
\frac{\partial^{2} f}{\partial x_{1}^{2}} \frac{\partial^{2} f}{\partial x_{2}^{2}}-\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\right)^{2}=0
$$

on "developable surfaces" (see [17][13]). We observe that the Monge-Ampère equation is obtained by the reduction $g=f$ or $x_{5}=x_{3}, x_{6}=x_{4}$ from the D_{4} case to the B_{3} case. See also [16] for relations of D_{4}-geometry and B_{3}-geometry.

Returning to D_{4} case, consider the differential system on \mathbf{R}^{6},

$$
\omega_{1}=0, \omega_{2}=0, \omega_{3}=0, \Omega_{1}:=d x_{3} \wedge d x_{4}=0, \Omega_{2}:=d x_{5} \wedge d x_{6}=0
$$

which we call a "bi-Monge-Ampère system". Then the differential system is expressed by the system of equations

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x_{1}^{2}} \frac{\partial^{2} g}{\partial x_{2}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}} \frac{\partial^{2} g}{\partial x_{1}^{2}}-2 \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} g}{\partial x_{1} \partial x_{2}}=0 \\
\frac{\partial^{2} f}{\partial x_{1}^{2}} \frac{\partial^{2} f}{\partial x_{2}^{2}}-\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\right)^{2}=0, \quad \frac{\partial^{2} g}{\partial x_{1}^{2}} \frac{\partial^{2} g}{\partial x_{2}^{2}}-\left(\frac{\partial^{2} g}{\partial x_{1} \partial x_{2}}\right)^{2}=0
\end{gathered}
$$

We conclude that the tangent surface construction in D_{4}-geometry offers geometric solutions with singularities of the above bi-Monge-Ampère system of equations.

References

[1] J.F. Adams, $\operatorname{Spin}(8)$, triality, F_{4} and all that, in the selected works of J. Frank Adams, vol.2, pp. 435-445.
[2] V.I. Arnold, Wave front evolution and equivariant Morse lemma, Communications on Pure and Applied Mathematics, 29 (1976), 557-582. DOI: 10.1002/cpa. 3160290603
[3] V.I. Arnol'd, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts, Monographs in Math. 82, Birkhäuser (1986).
[4] R.J. Baston, M.G. Eastwood, The Penrose Transform. Its Interaction with Representation Theory, Oxford Math. Monographs. Oxford Science Publ. The Clarendon Press, Oxford Univ. Press, New York, (1989).
[5] N. Bourbaki, Groupes et Algebres de Lie, Chapitre 4 a 6, Hermann (1968), Springer (2007).
[6] A. Čap, J. Slovák, Parabolic Geometries I, Background and General Theory, Math. Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, (2009).
[7] E. Cartan, Le principe de dualité et la théorie des groupes simple et semi-simple, Bull. Sci. Math, 48 (1925) 361-374.
[8] C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected works, vol. 2, SpringerVerlag (1997). Chapter 2.
[9] V. V. Goryunov, Unitary reflection groups associated with singularities of functions with cyclic symmetry, Uspekhi Mat. Nauk 54-5 (1999), 3-24, English translation Russian Math. Surveys 54-5 (1999), 873-893 DOI: 10.1070/RM1999v054n05ABEH000202
[10] V. Guillemin, S. Sternberg, Variations on a Theme by Kepler, Amer. Math. Colloquium Publ. 42, Amer. Math. Soc. (1990).
[11] S. Helgason, Differential geometry, Lie groups, and Symmetric spaces, Pure and Applied Math., 80, Academic Press, Inc. New York-London, (1978).
[12] G. Ishikawa, Singularities of tangent varieties to curves and surfaces, Journal of Singularities, 6 (2012), 54-83.
[13] G. Ishikawa, Y. Machida, Singularities of improper affine spheres and surfaces of constant Gaussian curvature, Intern. J. of Math., 17-3 (2006), 269-293.
[14] G. Ishikawa, Y. Machida, M. Takahashi, Asymmetry in singularities of tangent surfaces in contact-cone Legendre-null duality, Journal of Singularities, 3 (2011), 126-143.
[15] G. Ishikawa, Y. Machida, M. Takahashi, Singularities of tangent surfaces in Cartan's split G2-geometry, Hokkaido University Preprint Series in Mathematics \#1020, (2012). (submitted).
[16] G. Ishikawa, Y. Machida, M. Takahashi, D_{n}-geometry and singularities of tangent surfaces, Hokkaido University Preprint Series in Mathematics \#1058, (2014), to appear in RIMS Kôkyûroku Bessatsu.
[17] G. Ishikawa, T. Morimoto, Solution surfaces of the Monge-Ampère equation, Diff. Geom. its Appl., 14 (2001), 113-124.
[18] B. Kostant, The principle of triality and a distinguished unitary representation of $S O(4,4)$, Differential geometrical methods in theoretical physics (Como, 1987), 65-108, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988.
[19] M. Mikosz, A. Weber, Triality in $\mathfrak{s o}(4,4)$, characteristic classes, D_{4} and G_{2} singularities, preprint (December 2013). www.mimuw.edu.pl/~aweber/ps/triality-popop.pdf
[20] I.R. Porteous, Clifford Algebras and the Classical Groups, Cambridge Studies in Adv. Math., 50, Cambridge Univ. Press (1995). DOI: 10.1017/CBO9780511470912
[21] T.A. Springer, F.D. Veldkamp, Octonion, Jordan Algebras and Exceptional Groups, Springer-Verlag (2000), Chapter 3. DOI: 10.1007/978-3-662-12622-6
[22] E. Study, Grundlagen und Ziele der analytischen Kinematik, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 12 (1913), 36-60.
[23] J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique, Bull. Soc. Math. Belg. 8 (1956), 48-81.
[24] J. Tits, Sur la trialité et certains groups qui s'en déduisent, I.H.E.S Publ. Math. 2 (1959), 13-60. DOI: 10.1007/BF02684706
[25] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Progress in Differential Geometry, Advanced Studies in Pure Math., 22 (1993), pp. 413-494.

Goo ISHIKAWA, Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: ishikawa@math.sci.hokudai.ac.jp
Yoshinori MACHIDA, Numazu College of Technology, Shizuoka 410-8501, Japan
E-mail address: machida@numazu-ct.ac.jp
Masatomo TAKAHASHI, Muroran Institute of Technology, Muroran 050-8585, Japan
E-mail address: masatomo@mm.muroran-it.ac.jp

