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SYMMETRIES AND STABILIZATION FOR SHEAVES

OF VANISHING CYCLES

C. BRAV, V. BUSSI, D. DUPONT, D. JOYCE, AND B. SZENDRŐI,

WITH AN APPENDIX BY JÖRG SCHÜRMANN

Abstract. We study symmetries and stabilization properties of perverse sheaves of vanishing
cycles PV•

U,f of a regular function f : U → C on a smooth C-scheme U , with critical locus

X = Crit(f). We prove four main results:

(a) If Φ : U → U is an isomorphism fixing X and compatible with f , then the action of Φ∗
on PV•

U,f is multiplication by det
(
dΦ|Xred

)
= ±1.

(b) PV•
U,f depends up to canonical isomorphism only on (X(3), f (3)), for X(3) the third-order

thickening of X in U , and f (3) = f |X(3) : X(3) → C.

(c) If U, V are smooth C-schemes, f : U → C, g : V → C are regular, X = Crit(f), Y = Crit(g),

and Φ : U → V is an embedding with f = g ◦ Φ and Φ|X : X → Y an isomorphism, there is
a natural isomorphism ΘΦ :PV•

U,f →Φ|∗X(PV•
V,g)⊗Z/2ZPΦ, for PΦ a principal Z/2Z-bundle

on X.

(d) If (X, s) is an oriented d-critical locus in the sense of Joyce [23], there is a natural perverse
sheaf P •

X,s on X, such that if (X, s) is locally modelled on Crit(f : U → C) then P •
X,s is locally

modelled on PV•
U,f .

We also generalize our results to replace U,X by complex analytic spaces, and PV•
U,f by

D-modules or mixed Hodge modules.

We discuss applications of (d) to categorifying Donaldson–Thomas invariants of Calabi–

Yau 3-folds, and to defining a ‘Fukaya category’ of Lagrangians in a complex symplectic
manifold using perverse sheaves.
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4. Dependence of PV•U,f on f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.1. Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2. Proof of Theorem 4.2 for C-schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3. D-modules and mixed Hodge modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5. Stabilizing vanishing cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1. Theorem 5.4(a): the isomorphism ΘΦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2. Theorem 5.4(b): ΘΦ depends only on Φ|X : X → Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3. Theorem 5.4(c): composition of the ΘΦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4. D-modules and mixed Hodge modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6. Perverse sheaves on oriented d-critical loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1. Background material on d-critical loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2. The main result, and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3. Proof of Theorem 6.9 for C-schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4. D-modules and mixed Hodge modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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1. Introduction

Let U be a smooth C-scheme and f : U → C a regular function, and write X = Crit(f), as
a C-subscheme of U . Then one can define the perverse sheaf of vanishing cycles PV•U,f on X.
Formally, X =

∐
c∈f(X)Xc, where Xc ⊆ X is the open and closed C-subscheme of points x ∈ X

with f(x) = c, and

PV•U,f |Xc = φpf−c(AU [dimU ])|Xc
for each c ∈ f(X), where AU [dimU ] is the constant perverse sheaf on U over a base ring A, and

φpf−c : Perv(U) −→ Perv(f−1(c))

is the vanishing cycle functor for f − c : U → C. See §2 for an introduction to perverse sheaves,
and an explanation of this notation.

This paper will prove four main results, Theorems 3.1, 4.2, 5.4 and 6.9. The first three give
properties of the PV•U,f , which we may summarize as follows:

(a) Let U, f,X be as above, and write Xred for the reduced C-subscheme of X. Suppose
Φ : U → U is an isomorphism with f ◦Φ = f and Φ|X = idX . Then Φ induces a natural
isomorphism Φ∗ : PV•U,f → PV

•
U,f .

Theorem 3.1 implies that dΦ|TU |
Xred

: TU |Xred → TU |Xred has determinant

det
(
dΦ|Xred

)
: Xred −→ C \ {0},

which is a locally constant map Xred → {±1}, and Φ∗ : PV•U,f → PV
•
U,f is multiplication

by det
(
dΦ|Xred

)
.

In fact Theorem 3.1 proves a more complicated statement, which only requires Φ to
be defined étale locally on U .

(b) Let U, f,X be as above, and write IX ⊆ OU for the sheaf of ideals of regular functions
U → C vanishing on X. For each k = 1, 2, . . . , write X(k) for the kth order thickening
of X in U , that is, X(k) is the closed C-subscheme of U defined by the vanishing of the
sheaf of ideals IkX in OU . Write f (k) := f |X(k) : X(k) → C.
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Theorem 4.2 says that the perverse sheaf PV•U,f depends only on the third-order

thickenings (X(3), f (3)) up to canonical isomorphism.
As in Remark 4.5, étale locally, PV•U,f depends only on (X(2), f (2)) up to non-

canonical isomorphism, with isomorphisms natural up to sign.
(c) Let U, V be smooth C-schemes, f : U → C, g : V → C be regular, and X = Crit(f),

Y = Crit(g) as C-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding of C-
schemes with f = g ◦ Φ : U → C, and suppose Φ|X : X → Y is an isomorphism. Then
Theorem 5.4 constructs a natural isomorphism of perverse sheaves on X:

ΘΦ : PV•U,f −→ Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ, (1.1)

where πΦ : PΦ → X is a certain principal Z/2Z-bundle on X. Writing NUV for the
normal bundle of U in V , then the Hessian Hess g induces a nondegenerate quadratic
form qUV on NUV |X , and PΦ parametrizes square roots of det(qUV ) : K2

U |X → Φ|∗X(K2
V ).

Theorem 5.4 also shows that the ΘΦ in (1.1) are functorial in a suitable sense under
compositions of embeddings Φ : U ↪→ V , Ψ : V ↪→W .

Here (c) is proved by showing that étale locally there exist equivalences V ' U ×Cn identifying
Φ(U) with U ×{0} and g : V → C with f � z2

1 + · · ·+ z2
n : U ×Cn → C, and applying étale local

isomorphisms of perverse sheaves

PV•U,f ∼= PV
•
U,f

L

�PV•Cn,z2
1+···+z2

n

∼= PV•U×Cn,f�z2
1+···+z2

n

∼= PV•V,g,

using PV•Cn,z2
1+···+z2

n

∼= A{0} in the first step, and the Thom–Sebastiani Theorem for perverse

sheaves in the second.
Passing from f : U → C to g = f � z2

1 + · · · + z2
n : U × Cn → C is an important idea in

singularity theory, as in Arnold et al. [1] for instance. It is known as stabilization, and f and
g are called stably equivalent. So, Theorem 5.4 concerns the behaviour of perverse sheaves of
vanishing cycles under stabilization.

Our fourth main result, Theorem 6.9, concerns a new class of geometric objects called d-critical
loci, introduced in Joyce [23], and explained in §6.1. An (algebraic) d-critical locus (X, s) over
C is a C-scheme X with a section s of a certain natural sheaf S0

X on X. A d-critical locus (X, s)
may be written Zariski locally as a critical locus Crit(f : U → C) of a regular function f on a
smooth C-scheme U , and s records some information about U, f (in the notation of (b) above,
s remembers f (2)). There is also a complex analytic version.

Algebraic d-critical loci are classical truncations of the derived critical loci (more precisely,
−1-shifted symplectic derived schemes) introduced in derived algebraic geometry by Pantev,
Toën, Vaquié and Vezzosi [42]. Theorem 6.9 roughly says that if (X, s) is an algebraic d-critical
locus over C with an ‘orientation’, then we may define a natural perverse sheaf P •X,s on X, such

that if (X, s) is locally modelled on Crit(f : U → C) then P •X,s is locally modelled on PV•U,f .
The proof uses Theorem 5.4.

These results have exciting applications in the categorification of Donaldson–Thomas theory
on Calabi–Yau 3-folds, and in defining a new kind of ‘Fukaya category’ of complex Lagrangians
in complex symplectic manifold, which we will discuss at length in Remarks 6.14 and 6.15.

Although we have explained our results only for C-schemes and perverse sheaves upon them,
the proofs are quite general and work in several contexts:

(i) Perverse sheaves on C-schemes or complex analytic spaces with coefficients in any well-
behaved commutative ring A, such as Z,Q or C.

(ii) D-modules on C-schemes or complex analytic spaces.
(iii) Saito’s mixed Hodge modules on C-schemes or complex analytic spaces.
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We discuss all these in §2, before proving our four main results in §3–§6. Appendix A, by
Jörg Schürmann, proves two compatibility results between duality and Thom–Sebastiani type
isomorphisms needed in the main text.

This is one of six linked papers [6, 9–11, 23], with more to come. The best logical order is
that the first is Joyce [23] defining d-critical loci, and the second Bussi, Brav and Joyce [9],
which proves Darboux-type theorems for the k-shifted symplectic derived schemes of Pantev et
al. [42], and defines a truncation functor from −1-shifted symplectic derived schemes to algebraic
d-critical loci.

This paper is the third in the sequence. Combining our results with [23,42] gives new results
on categorifying Donaldson–Thomas invariants of Calabi–Yau 3-folds, as in Remark 6.14. In the
fourth paper Bussi, Joyce and Meinhardt [11] will generalize the ideas of this paper to motivic
Milnor fibres (we explain the relationship between the motivic and cohomological approaches
below in Remark 6.10), and deduce new results on motivic Donaldson–Thomas invariants using
[23,42]. In the fifth, Ben-Bassat, Brav, Bussi and Joyce [6] generalize [9,11] and this paper from
(derived) schemes to (derived) Artin stacks.

Sixthly, Bussi [10] will show that if (S, ω) is a complex symplectic manifold, and L,M are
complex Lagrangians in S, then the intersection X = L ∩M, as a complex analytic subspace
of S, extends naturally to a complex analytic d-critical locus (X, s). If the canonical bundles

KL,KM have square roots K
1/2
L ,K

1/2
M then (X, s) is oriented, and so Theorem 6.9 below defines

a perverse sheaf P •L,M on X, which Bussi also constructs directly.
As in Remark 6.15, we hope in future work to define a ‘Fukaya category’ of complex La-

grangians in (X,ω) in which Hom(L,M) ∼= H−n(P •L,M ).

Conventions. All C-schemes are assumed separated and of finite type. All complex analytic
spaces are Hausdorff and locally of finite type.

Acknowledgements. We would like to thank Oren Ben-Bassat, Alexandru Dimca,
Young-Hoon Kiem, Jun Li, Kevin McGerty, Sven Meinhardt, Pierre Schapira, and especially
Morihiko Saito and Jörg Schürmann for useful conversations and correspondence, and
Jörg Schürmann for a very careful reading of our manuscript, leading to many improvements,
as well as providing the Appendix. This research was supported by EPSRC Programme Grant
EP/I033343/1.

2. Background on perverse sheaves

Perverse sheaves, and the related theories of D-modules and mixed Hodge modules, make
sense in several contexts, both algebraic and complex analytic:

(a) Perverse sheaves on C-schemes with coefficients in a ring A (usually Z,Q or C), as in
Beilinson, Bernstein and Deligne [5] and Dimca [14].

(b) Perverse sheaves on complex analytic spaces with coefficients in a ring A (usually Z,Q
or C), as in Dimca [14].

(c) D-modules on C-schemes, as in Borel [8] in the smooth case, and Saito [48] in general.
(d) D-modules on complex manifolds as in Björk [7], and on complex analytic spaces as in

Saito [48].
(e) Mixed Hodge modules on C-schemes, as in Saito [45,47].
(f) Mixed Hodge modules on complex analytic spaces, as in Saito [45,47].

All our main results and proofs work, with minor modifications, in all six settings (a)–(f).
As (a) is arguably the simplest and most complete theory, we begin in §2.1–§2.4 with a general
introduction to constructible complexes and perverse sheaves on C-schemes, the nearby and
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vanishing cycle functors, and perverse sheaves of vanishing cycles PV •U,f on C-schemes, following

Dimca [14].
Several important properties of perverse sheaves in (a) either do not work, or become more

complicated, in settings (b)–(f). Section 2.5 lists the parts of §2.1–§2.4 that we will use in proofs
in this paper, so the reader can check that they do work in (b)–(f). Then §2.6–§2.10 give brief
discussions of settings (b)–(f), focussing on the differences with (a) in §2.1–§2.4.

A good introductory reference on perverse sheaves on C-schemes and complex analytic spaces
is Dimca [14]. Three other books are Kashiwara and Schapira [27], Schürmann [50], and Hotta,
Tanisaki and Takeuchi [21]. Massey [36] and Rietsch [43] are surveys on perverse sheaves, and
Beilinson, Bernstein and Deligne [5] is an important primary source, who cover both Q-perverse
sheaves on C-schemes as in (a), and Ql-perverse sheaves on K-schemes as in (g) below.

Remark 2.1. Two further possible settings, in which not all the results we need are available
in the literature, are the following.

(g) Perverse sheaves on K-schemes with coefficients in Z/lnZ, Zl, Ql, or Q̄l for
l 6= charK 6= 2 a prime, as in Beilinson et al. [5].

(h) D-modules on K-schemes for K an algebraically closed field, as in Borel [8].

The issue is that the Thom–Sebastiani theorem is not available in these contexts in the
generality we need it. Once an appropriate form of this result becomes available, our main
theorems will hold also in these two contexts, sometimes under the further assumption that
char K = 0, needed for the results quoted from [9, 42]. We leave the details to the interested
reader.

2.1. Constructible complexes on C-schemes. We begin by discussing constructible com-
plexes, following Dimca [14, §2–§4].

Definition 2.2. Fix a well-behaved commutative base ring A (where ‘well-behaved’ means
that we need assumptions on A such as A is regular noetherian, of finite global dimension or
finite Krull dimension, a principal ideal domain, or a Dedekind domain, at various points in the
theory), to study sheaves of A-modules. For some results A must be a field. Usually we take
A = Z,Q or C.

Let X be a C-scheme, always assumed of finite type. Write Xan for the set of C-points of
X with the complex analytic topology. Consider sheaves of A-modules S on Xan. A sheaf S
is called (algebraically) constructible if all the stalks Sx for x ∈ Xan are finite type A-modules,
and there is a finite stratification Xan =

∐
j∈J X

an
j of Xan, where Xj ⊆ X for j ∈ J are C-

subschemes of X and Xan
j ⊆ Xan the corresponding subsets of C-points, such that S|Xan

j
is an

A-local system for all j ∈ J .
Write D(X) for the derived category of complexes C• of sheaves of A-modules on Xan. Write

Db
c(X) for the full subcategory of bounded complexes C• in D(X) whose cohomology sheaves
Hm(C•) are constructible for all m ∈ Z. Then D(X), Db

c(X) are triangulated categories. An
example of a constructible complex on X is the constant sheaf AX on X with fibre A at each
point.

Grothendieck’s “six operations on sheaves” f∗, f !, Rf∗, Rf!,RHom,
L

⊗ act onD(X) preserving
the subcategory Db

c(X). That is, if f : X → Y is a morphism of C-schemes, then we have two
different pullback functors f∗, f ! : D(Y )→ D(X), which also map Db

c(Y )→ Db
c(X). Here f∗ is

called the inverse image [14, §2.3], and f ! the exceptional inverse image [14, §3.2].
We also have two different pushforward functors

Rf∗, Rf! : D(X) −→ D(Y )
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mapping Db
c(X)→ Db

c(Y ), where Rf∗ is called the direct image [14, §2.3] and is right adjoint to
f∗ : D(Y )→ D(X), and Rf! is called the direct image with proper supports [14, §2.3] and is left
adjoint to f ! : D(Y ) → D(X). We need the assumptions from §1 that X,Y are separated and
of finite type for Rf∗, Rf! : Db

c(X)→ Db
c(Y ) to be defined for arbitrary morphisms f : X → Y .

For B•, C• in Db
c(X), we may form their derived Hom RHom(B•, C•) [14, §2.1], and left

derived tensor product B•
L

⊗C• in Db
c(X), [14, §2.2]. Given B• ∈ Db

c(X) and C• ∈ Db
c(Y ), we

define B•
L

� C• = π∗X(B•)
L

⊗π∗Y (C•) in Db
c(X × Y ), where πX : X × Y → X, πY : X × Y → Y are

the projections.
If X is a C-scheme, there is a functor DX : Db

c(X)→ Db
c(X)op with

DX ◦ DX ∼= id : Db
c(X) −→ Db

c(X),

called Verdier duality. It reverses shifts, that is, DX
(
C•[k]

)
=
(
DX(C•)

)
[−k] for C• in Db

c(X)
and k ∈ Z.

Remark 2.3. Note how Definition 2.2 mixes the complex analytic and the complex algebraic:
we consider sheaves on Xan in the analytic topology, which are constructible with respect to an
algebraic stratification X =

∐
j Xj .

Here are some properties of all these:

Theorem 2.4. In the following, X,Y, Z are C-schemes, and f, g are morphisms, and all iso-
morphisms ‘∼=’ of functors or objects are canonical.

(i) For f : X → Y and g : Y → Z, there are natural isomorphisms of functors

R(g ◦ f)∗ ∼= Rg∗ ◦Rf∗, R(g ◦ f)!
∼= Rg! ◦Rf!,

(g ◦ f)∗ ∼= f∗ ◦ g∗, (g ◦ f)! ∼= f ! ◦ g!.

(ii) If f : X → Y is proper then Rf∗ ∼= Rf!.

(iii) If f : X → Y is étale then f∗ ∼= f !. More generally, if f : X → Y is smooth of relative
(complex) dimension d, then f∗[d] ∼= f ![−d], where f∗[d], f ![−d] are the functors f∗, f ! shifted
by ±d.

(iv) If f : X → Y then Rf!
∼= DY ◦Rf∗ ◦ DX and f ! ∼= DX ◦ f∗ ◦ DY .

(v) If U is a smooth C-scheme then DU (AU ) ∼= AU [2 dimU ].

If X is a C-scheme and C• ∈ Db
c(X), the hypercohomology H∗(C•) and compactly-supported

hypercohomology H∗c(C•), both graded A-modules, are

Hk(C•) = Hk(Rπ∗(C•)) and Hkc (C•) = Hk(Rπ!(C•)) for k ∈ Z, (2.1)

where π : X → ∗ is projection to a point.
If X is proper then H∗(C•) ∼= H∗c(C•) by Theorem 2.4(ii). They are related to usual coho-

mology by Hk(AX) ∼= Hk(X;A) and Hkc (AX) ∼= Hk
c (X;A). If A is a field then under Verdier

duality we have Hk(C•) ∼= H−kc (DX(C•))∗.

2.2. Perverse sheaves on C-schemes. Next we review perverse sheaves, following Dimca [14,
§5].

Definition 2.5. Let X be a C-scheme, and for each x ∈ Xan, let ix : ∗ → X map ix : ∗ 7→ x. If
C• ∈ Db

c(X), then the support suppm C• and cosupport cosuppm C• of Hm(C•) for m ∈ Z are

suppm C• =
{
x ∈ Xan : Hm(i∗x(C•)) 6= 0

}
,

cosuppm C• =
{
x ∈ Xan : Hm(i!x(C•)) 6= 0

}
,
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where {· · · } means the closure in Xan. If A is a field then cosuppm C• = supp−m DX(C•). We
call C• perverse, or a perverse sheaf, if dimC supp−m C• 6m and dimC cosuppm C• 6m for all
m ∈ Z, where by convention dimC ∅ = −∞. Write Perv(X) for the full subcategory of perverse
sheaves in Db

c(X). Then Perv(X) is an abelian category, the heart of a t-structure on Db
c(X).

Perverse sheaves have the following properties:

Theorem 2.6. (a) If A is a field then Perv(X) is noetherian and artinian.

(b) If A is a field then DX : Db
c(X)→ Db

c(X) maps Perv(X) to Perv(X).

(c) If i : X ↪→ Y is inclusion of a closed C-subscheme, then Ri∗, Ri! (which are naturally
isomorphic) map Perv(X) to Perv(Y ).

Write Perv(Y )X for the full subcategory of objects in Perv(Y ) supported on X. Then Ri∗ ∼= Ri!
are equivalences of categories Perv(X)

∼−→ Perv(Y )X . The restrictions i∗|Perv(Y )X , i!|Perv(Y )X

which map Perv(Y )X to Perv(X), are naturally isomorphic, and are quasi-inverses for

Ri∗, Ri! : Perv(X)→ Perv(Y )X .

(d) If f : X → Y is étale then f∗ and f ! (which are naturally isomorphic) map Perv(Y ) to
Perv(X). More generally, if f : X → Y is smooth of relative dimension d, then f∗[d] ∼= f ![−d]
map Perv(Y ) to Perv(X).

(e)
L

� : Db
c(X)×Db

c(Y )→Db
c(X×Y ) maps Perv(X)×Perv(Y ) to Perv(X×Y ).

(f) Let U be a smooth C-scheme. Then AU [dimU ] is perverse, where AU is the constant sheaf
on U with fibre A, and [dimU ] means shift by dimU in the triangulated category Db

c(X). Note
that Theorem 2.4(v) gives a canonical isomorphism DU

(
AU [dimU ]

) ∼= AU [dimU ].

When A = Q, so that Perv(X) is noetherian and artinian by Theorem 2.6(a), the simple
objects in Perv(X) admit a complete description: they are all isomorphic to intersection co-
homology complexes ICV̄ (L) for V ⊆ X a smooth locally closed C-subscheme and L → V an
irreducible Q-local system, [14, §5.4]. Furthermore, if f : X → Y is a proper morphism of
C-schemes, then the Decomposition Theorem [5, 6.2.5], [14, Th. 5.4.10], [45, Cor. 3] says that,
in case ICV̄ (L) is of geometric origin, Rf∗(ICV̄ (L)) is isomorphic to a finite direct sum of shifts
of simple objects ICV̄ ′(L′) in Perv(Y ).

The next theorem is proved by Beilinson et al. [5, Cor. 2.1.23, §2.2.19, & Th. 3.2.4]. The
analogue for Db

c(X) or D(X) rather than Perv(X) is false. One moral is that perverse sheaves
behave like sheaves, rather than like complexes.

Theorem 2.7(i) will be used throughout §3–§6. Theorem 2.7(ii) will be used only once, in the
proof of Theorem 6.9 in §6.3, and we only need Theorem 2.7(ii) to hold in the Zariski topology,
rather than the étale topology.

Theorem 2.7. Let X be a C-scheme. Then perverse sheaves on X form a stack (a kind of
sheaf of categories) on X in the étale topology.

Explicitly, this means the following. Let {ui : Ui → X}i∈I be an étale open cover for X,
so that ui : Ui → X is an étale morphism of C-schemes for i ∈ I with

∐
i ui surjective. Write

Uij = Ui ×ui,X,uj Uj for i, j ∈ I with projections

πiij : Uij −→ Ui, πjij : Uij −→ Uj , uij=ui ◦ πiij=uj ◦ πjij : Uij−→X.

Similarly, write Uijk = Ui×XUj×XUk for i, j, k ∈ I with projections

πijijk : Uijk −→ Uij , πikijk : Uijk −→ Uik, πjkijk : Uijk −→ Ujk,

πiijk : Uijk −→ Ui, π
j
ijk : Uijk −→ Uj , π

k
ijk : Uijk −→ Uk, uijk : Uijk −→ X,
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so that πiijk = πiij ◦ π
ij
ijk, uijk = uij ◦ πijijk = ui ◦ πiijk, and so on. All these morphisms

ui, π
i
ij , . . . , uijk are étale, so by Theorem 2.6(d) u∗i

∼= u!
i maps Perv(X) → Perv(Ui), and simi-

larly for πiij , . . . , uijk. With this notation:

(i) Suppose P•,Q• ∈ Perv(X), and we are given αi : u∗i (P
•)→ u∗i (Q

•) in Perv(Ui) for all i ∈ I
such that for all i, j ∈ I we have

(πiij)
∗(αi) = (πiij)

∗(αj) : u∗ij(P
•) −→ u∗ij(Q

•).

Then there is a unique α : P• → Q• in Perv(X) with αi = u∗i (α) for all i ∈ I.

(ii) Suppose we are given objects P•i ∈ Perv(Ui) for all i ∈ I and isomorphisms

αij : (πiij)
∗(P•i ) −→ (πjij)

∗(P•j )

in Perv(Uij) for all i, j ∈ I with αii = id and

(πjkijk)∗(αjk) ◦ (πijijk)∗(αij) = (πikijk)∗(αik) : (πiijk)∗(Pi) −→ (πkijk)∗(Pk)

in Perv(Uijk) for all i, j, k ∈ I. Then there exists P• in Perv(X), unique up to canonical
isomorphism, with isomorphisms βi : u∗i (P

•)→ P•i for each i ∈ I, satisfying

αij ◦ (πiij)
∗(βi) = (πjij)

∗(βj) : u∗ij(P
•) −→ (πjij)

∗(P•j ),
for all i, j ∈ I.

We will need the following proposition in §3.3 to prove Theorem 3.1(b). Most of it is setting
up notation, only the last part α|X′ = β|X′ is nontrivial.

Proposition 2.8. Let W,X be C-schemes, x ∈ X, and πC : W → C, πX : W → X, ι : C→ W
morphisms, such that πC×πX : W → C×X is étale, and πC◦ι = idC : C→ C, and πX ◦ι(t) = x
for all t ∈ C. Write Wt = π−1

C (t) ⊂ W for each t ∈ C, and jt : Wt ↪→ W for the inclusion.
Then πX |Wt

= πX ◦ jt : Wt → X is étale, and ι(t) ∈Wt with πX |Wt
(ι(t)) = x, so we may think

of Wt for t ∈ C as a 1-parameter family of étale open neighbourhoods of x in X.
Let P•,Q• ∈ Perv(X), so that by Theorem 2.6(d) as πX is smooth of relative dimension 1

and πX |Wt is étale, we have π∗X [1](P•) ∈ Perv(W ) and

πX |∗Wt
(P•) = j∗t [−1]

(
π∗X [1](P•)

)
∈ Perv(Wt),

and similarly for Q•.
Suppose α, β : P• → Q• in Perv(X) and γ : π∗X [1](P•) → π∗X [1](Q•) in Perv(W ) are mor-

phisms such that πX |∗W0
(α) = j∗0 [−1](γ) in Perv(W0) and πX |∗W1

(β) = j∗1 [−1](γ) in Perv(W1).
Then there exists a Zariski open neighbourhood X ′ of x in X such that

α|X′ = β|X′ : P•|X′ −→ Q•|X′ .

Here we should think of j∗t [−1](γ) for t ∈ C as a family of perverse sheaf morphisms P• → Q•,
defined near x in X locally in the étale topology. But morphisms of perverse sheaves are discrete
(to see this, note that we can take A = Z), so as j∗t [−1](γ) depends continuously on t, it should
be locally constant in t near x, in a suitable sense. The conclusion α|X′ = β|X′ essentially says
that j∗0 [−1](γ) = j∗1 [−1](γ) near x.

If P → X is a principal Z/2Z-bundle on a C-scheme X, and Q• ∈ Perv(X), we will define a
perverse sheaf Q• ⊗Z/2Z P , which will be important in §5–§6.

Definition 2.9. Let X be a C-scheme. A principal Z/2Z-bundle P → X is a proper, surjective,
étale morphism of C-schemes π : P → X together with a free involution σ : P → P , such that
the orbits of Z/2Z = {1, σ} are the fibres of π. We will use the ideas of isomorphism of principal
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bundles ι : P → P ′, section s : X → P , tensor product P ⊗Z/2Z P
′, and pullback f∗(P ) → W

under a C-scheme morphism f : W → X, all of which are defined in the obvious ways.
Let P → X be a principal Z/2Z-bundle. Write LP ∈ Db

c(X) for the rank one A-local system
on X induced from P by the nontrivial representation of Z/2Z ∼= {±1} on A. It is characterized

by π∗(AP ) ∼= AX ⊕LP . For each Q• ∈ Db
c(X), write Q•⊗Z/2Z P ∈ Db

c(X) for Q•
L

⊗LP , and call
it Q• twisted by P . If Q• is perverse then Q• ⊗Z/2Z P is perverse.

Perverse sheaves and complexes twisted by principal Z/2Z-bundles have the obvious functorial
behaviour. For example, if P → X, P ′ → X are principal Z/2Z-bundles and Q• ∈ Db

c(X) there
is a canonical isomorphism (Q• ⊗Z/2Z P )⊗Z/2Z P

′ ∼= Q• ⊗Z/2Z (P ⊗Z/2Z P
′), and if f : W → X

is a C-scheme morphism there is a canonical isomorphism

f∗(Q• ⊗Z/2Z P ) ∼= f∗(Q•)⊗Z/2Z f
∗(P ).

2.3. Nearby cycles and vanishing cycles on C-schemes. We explain nearby cycles and

vanishing cycles, as in Dimca [14, §4.2]. The definition is complex analytic, X̃an
∗ , C̃

∗ in (2.2) do
not come from C-schemes.

Definition 2.10. Let X be a C-scheme, and let f : X → C be a regular function. Define
X0 = f−1(0), as a C-subscheme of X, and X∗ = X \X0. Consider the commutative diagram of
complex analytic spaces:

Xan
0 i

//

f

��

Xan

f

��

Xan
∗j

oo

f
��

X̃an
∗p

oo
π

ss

f̃��

{0} // C C∗oo C̃∗.
ρoo

(2.2)

Here Xan, Xan
0 , Xan

∗ are the complex analytic spaces associated to the C-schemes X0, X,X∗, and

i : Xan
0 ↪→ Xan, j : Xan

∗ ↪→ Xan are the inclusions, ρ : C̃∗ → C∗ is the universal cover of

C∗ = C \ {0}, and X̃an
∗ = Xan

∗ ×f,C∗,ρ C̃
∗ the corresponding cover of Xan

∗ , with covering map

p : X̃an
∗ → Xan

∗ , and π = j ◦ p.
As in §2.6, the triangulated categories D(X), Db

c(X) and six operations f∗, f !, Rf∗, Rf!,

RHom,
L

⊗ also make sense for complex analytic spaces. So we can define the nearby cycle

functor ψf : Db
c(X)→ Db

c(X0) to be ψf = i∗ ◦Rπ∗ ◦π∗. Since this definition goes via X̃an
∗ which

is not a C-scheme, it is not obvious that ψf maps to (algebraically) constructible complexes
Db
c(X0) rather than just to D(X0), but it does [14, p. 103], [27, p. 352].
There is a natural transformation Ξ : i∗ ⇒ ψf between the functors

i∗, ψf : Db
c(X) −→ Db

c(X0).

The vanishing cycle functor φf : Db
c(X)→ Db

c(X0) is a functor such that for every C• in Db
c(X)

we have a distinguished triangle

i∗(C•)
Ξ(C•) // ψf (C•) // φf (C•)

[+1] // i∗(C•)

in Db
c(X0). Following Dimca [14, p. 108], we write ψpf , φ

p
f for the shifted functors ψf [−1],

φf [−1] : Db
c(X)→ Db

c(X0).

The generator of Z = π1(C∗) on C̃∗ induces a deck transformation δC∗ : C̃∗ → C̃∗ which lifts

to a deck transformation δX∗ : X̃∗ → X̃∗ with p◦δX∗ = p and f̃ ◦δX∗ = δC∗ ◦ f̃ . As in [14, p. 103,
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p. 105], we can use δX∗ to define natural transformations MX,f : ψpf ⇒ ψpf and MX,f : φpf ⇒ φpf ,
called monodromy.

Alternative definitions of ψf , φf in terms of specialization and microlocalization functors are
given by Kashiwara and Schapira [27, Prop. 8.6.3]. Here are some properties of nearby and
vanishing cycles. Parts (i),(ii) can be found in Dimca [14, Th. 5.2.21 & Prop. 4.2.11]. Part (iv)
is proved by Massey [37]; compare also Proposition A.1 in the Appendix.

Theorem 2.11. (i) If X is a C-scheme and f : X → C is regular, then the functors ψpf , φ
p
f :

Db
c(X)→ Db

c(X0) both map Perv(X) to Perv(X0).

(ii) Let Φ : X → Y be a proper morphism of C-schemes, and g : Y → C be regular. Write
f = g ◦ Φ : X → C, X0 = f−1(0) ⊆ X, Y0 = g−1(0) ⊆ Y, and Φ0 = Φ|X0 : X0 → Y0. Then we
have natural isomorphisms

R(Φ0)∗ ◦ ψpf ∼= ψpg ◦RΦ∗ and R(Φ0)∗ ◦ φpf ∼= φpg ◦RΦ∗. (2.3)

Note too that RΦ∗ ∼= RΦ! and R(Φ0)∗ ∼= R(Φ0)!, as Φ,Φ0 are proper.

(iii) Let Φ : X → Y be an étale morphism of C-schemes, and g : Y → C be regular. Write
f = g ◦ Φ : X → C, X0 = f−1(0) ⊆ X, Y0 = g−1(0) ⊆ Y, and Φ0 = Φ|X0

: X0 → Y0. Then we
have natural isomorphisms

Φ∗0 ◦ ψ
p
f
∼= ψpg ◦ Φ∗ and Φ∗0 ◦ φ

p
f
∼= φpg ◦ Φ∗. (2.4)

Note too that Φ∗ ∼= Φ! and Φ∗0
∼= Φ!

0, as Φ,Φ0 are étale.
More generally, if Φ : X → Y is smooth of relative (complex) dimension d and g, f , X0, Y0,

Φ0 are as above, then we have natural isomorphisms

Φ∗0[d] ◦ ψpf ∼= ψpg ◦ Φ∗[d] and Φ∗0[d] ◦ φpf ∼= φpg ◦ Φ∗[d]. (2.5)

Note too that Φ∗[d] ∼= Φ![−d] and Φ∗0[d] ∼= Φ!
0[−d].

(iv) If X is a C-scheme and f : X → C is regular, then there are natural isomorphisms
ψpf ◦ DX ∼= DX0

◦ ψpf and φpf ◦ DX ∼= DX0
◦ φpf .

2.4. Perverse sheaves of vanishing cycles on C-schemes. We can now define the main
subject of this paper, the perverse sheaf of vanishing cycles PV•U,f for a regular function
f : U → C.

Definition 2.12. Let U be a smooth C-scheme, and f : U → C a regular function. Write
X = Crit(f), as a closed C-subscheme of U .

Then as a map of topological spaces, f |X : X → C is locally constant, with finite image f(X),
so we have a decomposition X =

∐
c∈f(X)Xc, for Xc ⊆ X the open and closed C-subscheme

with f(x) = c for each C-point x ∈ Xc.
(Note that if X is non-reduced, then f |X : X → C need not be locally constant as a morphism

of C-schemes, but f |Xred : Xred → C is locally constant, where Xred is the reduced C-subscheme
of X. Since X,Xred have the same topological space, f |X : X → C is locally constant on
topological spaces.)

For each c ∈ C, write Uc = f−1(c) ⊆ U . Then as in §2.3, we have a vanishing cycle
functor φpf−c : Perv(U) → Perv(Uc). So we may form φpf−c(AU [dimU ]) in Perv(Uc), since

AU [dimU ] ∈ Perv(U) by Theorem 2.6(f). One can show φpf−c(AU [dimU ]) is supported on the

closed subset Xc = Crit(f)∩Uc in Uc, where Xc = ∅ unless c ∈ f(X). That is, φpf−c(AU [dimU ])

lies in Perv(Uc)Xc .
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But Theorem 2.6(c) says Perv(Uc)Xc and Perv(Xc) are equivalent categories, so we may regard
φpf−c(AU [dimU ]) as a perverse sheaf on Xc. That is, we can consider

φpf−c(AU [dimU ])|Xc = i∗Xc,Uc
(
φpf−c(AU [dimU ])

)
in Perv(Xc), where iXc,Uc : Xc → Uc is the inclusion morphism.

As X =
∐
c∈f(X)Xc with each Xc open and closed in X, we have

Perv(X) =
⊕

c∈f(X)

Perv(Xc).

Define the perverse sheaf of vanishing cycles PV•U,f of U, f in Perv(X) to be

PV•U,f =
⊕

c∈f(X)

φpf−c(AU [dimU ])|Xc .

That is, PV•U,f is the unique perverse sheaf on X = Crit(f) with

PV•U,f |Xc = φpf−c(AU [dimU ])|Xc
for all c ∈ f(X).

Under Verdier duality, we have AU [dimU ] ∼= DU (AU [dimU ]) by Theorem 2.6(f), so

φpf−c(AU [dimU ]) ∼= DUc
(
φpf−c(AU [dimU ])

)
by Theorem 2.11(iv). Applying i∗Xc,Uc and using DXc ◦ i∗Xc,Uc ∼= i!Xc,Uc ◦DUc by Theorem 2.4(iv)

and i!Xc,Uc
∼= i∗Xc,Uc on Perv(Uc)Xc by Theorem 2.6(c) also gives

φpf−c(AU [dimU ])|Xc ∼= DXc
(
φpf−c(AU [dimU ])|Xc

)
.

Summing over all c ∈ f(X) yields a canonical isomorphism

σU,f : PV•U,f
∼=−→DX(PV•U,f ). (2.6)

For c ∈ f(X), we have a monodromy operator

MU,f−c : φpf−c(AU [dimU ]) −→ φpf−c(AU [dimU ]),

which restricts to φpf−c(AU [dimU ])|Xc . Define the twisted monodromy operator

τU,f : PV•U,f −→ PV
•
U,f

by

τU,f |Xc = (−1)dimUMU,f−c|Xc : φpf−c(AU [dimU ])|Xc −→ φpf−c(AU [dimU ])|Xc , (2.7)

for each c ∈ f(X).
Here ‘twisted’ refers to the sign (−1)dimU in (2.7). We include this sign change as it makes

monodromy act naturally under transformations which change dimension — without it, equation
(5.15) below would only commute up to a sign (−1)dimV−dimU , not commute — and it normalizes
the monodromy of any nondegenerate quadratic form to be the identity, as in (2.13). The sign
(−1)dimU also corresponds to the twist ‘( 1

2 dimU)’ in the definition (2.24) of the mixed Hodge
module of vanishing cycles HV•U,f in §2.10.

The (compactly-supported) hypercohomology H∗(PV•U,f ),H∗c(PV•U,f ) from (2.1) is an im-
portant invariant of U, f . If A is a field then the isomorphism σU,f in (2.6) implies that

Hk(PV•U,f ) ∼= H−kc (PV•U,f )∗, a form of Poincaré duality.
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We defined PV•U,f in perverse sheaves over a base ring A. Writing PV•U,f (A) to denote the
base ring, one can show that

PV•U,f (A) ∼= PV•U,f (Z)
L

⊗ZA.

Thus, we may as well take A = Z, or A = Q if we want A to be a field, since the case of general
A contains no more information.

There is a Thom–Sebastiani Theorem for perverse sheaves, due to Massey [35] and Schürmann
[50, Cor. 1.3.4]. Applied to PV•U,f , it yields:

Theorem 2.13. Let U, V be smooth C-schemes and f : U → C, g : V → C be regular, so that
f�g : U×V → C is regular with (f�g)(u, v) := f(u)+g(v). Set X = Crit(f) and Y = Crit(g)
as C-subschemes of U, V, so that Crit(f � g) = X × Y . Then there is a natural isomorphism

T SU,f,V,g : PV•U×V,f�g −→ PV
•
U,f

L

�PV•V,g (2.8)

in Perv(X × Y ), such that the following diagrams commute:

PV•U×V,f�g σU×V,f�g
//

T SU,f,V,g��

DX×Y (PV•U×V,f�g)

PV•U,f
L

�
PV•V,g

σU,f
L

� σV,g //
DX(PV•U,f )

L

�
DY (PV•V,g)

∼= // DX×Y
(
PV•U,f

L

�PV•V,g
)
,

DX×Y (T SU,f,V,g)

OO

(2.9)

PV•U×V,f�g τU×V,f�g
//

T SU,f,V,g
��

PV•U×V,f�g
T SU,f,V,g

��

PV•U,f
L

�PV•V,g
τU,f

L

� τV,g // PV•U,f
L

�PV•V,g.

(2.10)

The next example will be important later.

Example 2.14. Define f : Cn → C by

f(z1, . . . , zn) = z2
1 + · · ·+ z2

n

for n > 1. Then Crit(f) = {0}, so PV•Cn,z2
1+···+z2

n
= φpf (ACn [n])|{0} is a perverse sheaf on the

point {0}. Following Dimca [14, Prop. 4.2.2, Ex. 4.2.3 & Ex. 4.2.6], we find that there is a
canonical isomorphism

PV•Cn,z2
1+···+z2

n

∼= Hn−1
(
MFf (0);A

)
⊗A A{0}, (2.11)

where MFf (0) is the Milnor fibre of f at 0, as in [14, p. 103]. Since f(z) = z2
1 + · · · + z2

n is
homogeneous, we see that

MFf (0) ∼=
{

(z1, . . . , zn) ∈ Cn : f(z1, . . . , zn) = 1
} ∼= T ∗Sn−1,

so that Hn−1
(
MFf (0);A

) ∼= Hn−1
(
Sn−1;A

) ∼= A. Therefore we have

PV•Cn,z2
1+···+z2

n

∼= A{0}. (2.12)

This isomorphism (2.12) is natural up to sign (unless the base ring A has characteristic 2, in
which case (2.12) is natural), as it depends on the choice of isomorphism Hn−1(Sn−1, A) ∼= A,
which corresponds to an orientation for Sn−1. This uncertainty of signs will be important
in §5–§6.

We can also use Milnor fibres to compute the monodromy operator on PV•Cn,z2
1+···+z2

n
. There

is a monodromy map µf : MFf (0) → MFf (0), natural up to isotopy, which is the monodromy
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in the Milnor fibration of f at 0. Under the identification MFf (0) ∼= T ∗Sn−1 we may take µf
to be the map d(−1) : T ∗Sn−1 → T ∗Sn−1 induced by −1 : Sn−1 → Sn−1 mapping

−1 : (x1, . . . , xn) 7→ (−x1, . . . ,−xn).

This multiplies orientations on Sn−1 by (−1)n. Thus, µf∗ : Hn−1(Sn−1, A) → Hn−1(Sn−1, A)
multiplies by (−1)n.

By [14, Prop. 4.2.2], equation (2.11) identifies the action of the monodromy operator MCn,f |{0}
on PV•Cn,z2

1+···+z2
n

with the action of µf∗ on Hn−1(Sn−1, A). So MCn,f |{0} is multiplication by

(−1)n. Combining this with the sign change (−1)dimU in (2.7) for U = Cn shows that the
twisted monodromy is

τCn,z2
1+···+z2

n
= id : PV•Cn,z2

1+···+z2
n
−→ PV•Cn,z2

1+···+z2
n
. (2.13)

Equations (2.12)–(2.13) also hold for n = 0, 1, though (2.11) does not.
Note also that these results are compatible with the Thom–Sebastiani Theorem 2.13, and can

be deduced from it and the case n = 1.

We introduce some notation for pullbacks of PV•V,g by étale morphisms.

Definition 2.15. Let U, V be smooth C-schemes, Φ : U → V an étale morphism, and g : V → C
a regular function. Write f = g ◦Φ : U → C, and X = Crit(f), Y = Crit(g) as C-subschemes of
U, V . Then Φ|X : X → Y is étale. Define an isomorphism

PVΦ : PV•U,f −→ Φ|∗X
(
PV•V,g

)
in Perv(X) (2.14)

by the commutative diagram for each c ∈ f(X) ⊆ g(Y ):

PV•U,f |Xc =φpf−c(AU [dimU ])|Xc α
//

PVΦ|Xc��

φpf−c ◦ Φ∗(AV [dimV ]))|Xc
β
��

Φ|∗Xc
(
PV•V,g

)
Φ∗0 ◦ φ

p
g−c ◦ (AV [dimV ]))|Xc .

(2.15)

Here α is φpf−c applied to the canonical isomorphism AU → Φ∗(AV ), noting that, as Φ is étale,

dimU = dimV and β is induced by (2.4).
By naturality of the isomorphisms α, β in (2.15) we find the following commute, where

σU,f , τU,f are as in (2.6)–(2.7):

PV•U,f σU,f
//

PVΦ
��

DX(PV•U,f )

Φ|∗X
(
PV•V,g

) Φ|∗X(σV,g) // Φ|∗X
(
DY (PV•V,g)

) ∼= // DX
(
Φ|∗X(PV•V,g)

)
,

DX(PVΦ)

OO
(2.16)

PV•U,f τU,f
//

PVΦ
��

PV•U,f
PVΦ

��
Φ|∗X(PV•V,g)

Φ|∗X(τV,g) // Φ|∗X(PV•V,g).
(2.17)

If U = V , f = g and Φ = idU then PV idU = idPV•U,f .

If W is another smooth C-scheme, Ψ : V → W is étale, and h : W → C is regular with
g = h ◦Ψ : V → C, then composing (2.15) for Φ with Φ|∗Xc of (2.15) for Ψ shows that

PVΨ◦Φ = Φ|∗X(PVΨ) ◦ PVΦ : PV•U,f −→ (Ψ ◦ Φ)|∗X
(
PV•W,h

)
. (2.18)

That is, the isomorphisms PVΦ are functorial.
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Example 2.16. In Definition 2.15, set U = V = Cn and

f(z1, . . . , zn) = g(z1, . . . , zn) = z2
1 + · · ·+ z2

n,

so that Y = Z = {0} ⊂ Cn. Let M ∈ O(n,C) be an orthogonal matrix, so that M : Cn → Cn is
an isomorphism with f = g ◦M and M |{0} = id{0}. As M |Y = idY , Definition 2.15 defines an
isomorphism

PVM : PV•Cn,z2
1+···+z2

n
−→ PV•Cn,z2

1+···+z2
n
. (2.19)

Equation (2.11) describes PV•Cn,z2
1+···+z2

n
in terms of MFf (0) ∼= T ∗Sn−1. Now

M |MFf (0) : MFf (0) −→MFf (0)

multiplies orientations on Sn−1 by detM , so

(M |MFf (0))∗ : Hn−1
(
MFf (0);A

)
−→ Hn−1

(
MFf (0);A

)
is multiplication by detM . Thus (2.11) implies that PVM in (2.19) is multiplication by
detM = ±1.

2.5. Summary of the properties we use in this paper. Since parts of §2.1–§2.4 do not work
for the other kinds of perverse sheaves, D-modules and mixed Hodge modules in §2.6–§2.10, we
list what we will need for §3–§6, to make it easy to check they are also valid in the settings
of §2.6–§2.10.

(i) There should be an A-linear abelian category P(X) of P-objects defined for each scheme
or complex analytic space X, over a fixed, well-behaved base ring A. We do not require
A to be a field.

(ii) There should be a Verdier duality functor DX with DX ◦DX ∼= id, defined on a suitable
subcategory of P-objects on X which includes the objects we are interested in. We do
not need DX to be defined on all objects in P(X).

(iii) If U is a smooth scheme or complex manifold, then there should be a canonical object
AU [dimU ] ∈ P(U), with a canonical isomorphism

DU (AU [dimU ]) ∼= AU [dimU ].

(iv) Let f : X ↪→ Y be a closed embedding of schemes or complex analytic spaces; this
implies f is proper. Then f∗, f! : P(X)→ P(Y ) should exist, inducing an equivalence of

categories P(X)
∼−→PX(Y ) as in Theorem 2.6(c), where PX(Y ) is the full subcategory

of objects in P(Y ) supported on X.
(v) Let f : X → Y be an étale morphism. Then the pullbacks f∗, f ! : P(Y )→ P(X) should

exist. More generally, if f : X → Y is smooth of relative dimension d, then there should
be pullbacks f∗[d], f ![−d] mapping P(Y )→ P(X). If X,Y are smooth, there should be
a canonical isomorphism f∗[d](AY [dimY ]) ∼= AX [dimX]. We do not need pullbacks to
exist for general morphisms f : X → Y , though see (xi) below.

(vi) An external tensor product
L

� : P(X)× P(Y )→ P(X × Y ) should exist for all X,Y .
(vii) If X is a scheme or complex analytic space, P → X a principal Z/2Z-bundle, and

Q• ∈ P(X), the twisted perverse sheaf Q• ⊗Z/2Z P ∈ P(X) should make sense as in
Definition 2.9, and have the obvious functorial properties.

(viii) A vanishing cycle functor φpf : P(U)→ P(U0) and a monodromy transformation

MU,f : φpf ⇒ φpf

in §2.4 should exist for all smooth U and regular/holomorphic f : U → A1.
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(ix) The functors DX , f∗, f !, f∗, f!, φ
p
f should satisfy the natural isomorphisms in Theorems

2.4 and 2.11, provided they exist. They should have the obvious compatibilities with
L

� , and restriction to (Zariski) open sets.
(x) There should be suitable subcategories of P-objects which form a stack in the étale or

complex analytic topologies, as in Theorem 2.7. In the algebraic case we only need
Theorem 2.7(ii) to hold for Zariski open covers, not étale open covers.

(xi) Proposition 2.8 must hold. This involves pullbacks j∗t by a morphism jt : Wt ↪→W which
is not étale or smooth, as in (v) above. But on objects we only consider

j∗t
(
π∗X(P•)

)
= πX |∗Wt

(P•)

which exists in P(Wt) by (v) as πX |Wt is étale, so j∗t is defined on the objects we need.
(xii) There should be a Thom–Sebastiani Theorem for P-objects, so that the analogue of

Theorem 2.13 holds.

Remark 2.17. The existence of a (bounded) derived category of P-objects will not be assumed,
or used, in this paper. On the other hand, in all the cases we consider, there will be a realization
functor from the category of P-objects to an appropriate category of constructible complexes,
and the notation used above reflects this. So in (iii),(v) above, [1] does not stand for a shift
in any derived category; the notation means a P-object or morphism whose realization is the
appropriate constructible object or morphism. See Remark 2.20 below.

2.6. Perverse sheaves on complex analytic spaces. Next we discuss perverse sheaves on
complex analytic spaces, as in Dimca [14]. The theory follows §2.1–§2.4, replacing (smooth) C-
schemes by complex analytic spaces (complex manifolds), and regular functions by holomorphic
functions.

Let X be a complex analytic space, always assumed locally of finite type (that is, locally
embeddable in Cn). In the analogue of Definition 2.2, we fix a well-behaved commutative ring
A, and consider sheaves of A-modules S on X in the complex analytic topology. A sheaf S is
called (analytically) constructible if all the stalks Sx for x ∈ X are finite type A-modules, and
there is a locally finite stratification X =

∐
j∈J Xj of X, where now Xj ⊆ X for j ∈ J are

complex analytic subspaces of X, such that S|Xj is an A-local system for all j ∈ J .
Write D(X) for the derived category of complexes C• of sheaves of A-modules on X, exactly as

in §2.1, and Db
c(X) for the full subcategory of bounded complexes C• in D(X) whose cohomology

sheavesHm(C•) are analytically constructible for all m ∈ Z. Then D(X), Db
c(X) are triangulated

categories.
When we wish to distinguish the complex algebraic and complex analytic theories, we will

write Db
c(X)alg,Perv(X)alg for the algebraic versions in §2.1–§2.2 with X a C-scheme, and

Db
c(X)an,Perv(X)an for the analytic versions.
Here are the main differences between the material of §2.1–§2.4 for perverse sheaves on C-

schemes and on complex analytic spaces:

(a) If f : X → Y is an arbitrary morphism of C-schemes, then as in §2.1 the pushforwards
Rf∗, Rf! : D(X)→ D(Y ) also map Db

c(X)alg → Db
c(Y )alg.

However, if f : X → Y is a morphism of complex analytic spaces, then

Rf∗, Rf! : D(X) −→ D(Y )

need not map Db
c(X)an → Db

c(Y )an without extra assumptions on f , for example, if
f : X → Y is proper.

(b) The analogue of Theorem 2.7 says that perverse sheaves on a complex analytic space X
form a stack in the complex analytic topology. This is proved in the subanalytic context



100 C. BRAV, V. BUSSI, D. DUPONT, D. JOYCE, AND B. SZENDRŐI

in [27, Th. 10.2.9]; the analytic case follows upon noting that a sheaf is complex analyt-
ically constructible if and only if is locally at all points, as proved in [14, Prop. 4.1.13].
See also [21, Prop. 8.1.26].

The analogues of (i)–(xii) in §2.5 work for complex analytic perverse sheaves, and so our main
results hold in this context.

If X is a C-scheme, and Xan the corresponding complex analytic space, then D(X) in §2.1
for X a C-scheme coincides with D(Xan) for Xan a complex analytic space, and

Db
c(X)alg ⊂ Db

c(X
an)an, Perv(X)alg ⊂ Perv(Xan)an

are full subcategories, and the six functors f∗, f !, Rf∗, Rf!, RHom,
L

⊗ for C-scheme morphisms
f : X → Y agree in the algebraic and analytic cases.

2.7. D-modules on C-schemes and complex analytic spaces. D-modules on a smooth
C-scheme or smooth complex analytic space X are sheaves of modules over a certain sheaf of
rings of differential operators DX on X. Some books on them are Borel et al. [8], Coutinho [12],
and Hotta, Takeuchi and Tanisaki [21] in the C-scheme case, and Björk [7] and Kashiwara [26]
in the complex analytic case. For a singular complex C-scheme or complex analytic space X, the
definition of a well-behaved category of D-modules is given by Saito [48], via locally embedding
X into a smooth scheme or space.

The analogue of perverse sheaves on X are called regular holonomic D-modules, which form
an abelian category Modrh(DX), the heart in the derived category Db

rh(Mod(DX)) of bounded
complexes of DX -modules with regular holonomic cohomology modules. The whole package of
§2.1–§2.4 works for D-modules. Our next theorem is known as the Riemann–Hilbert correspon-
dence [7, §V.5], [21, Th. 7.2.1], see Borel [8, §14.4] for C-schemes, Kashiwara [25] for complex
manifolds, and Saito [48, §6] for complex analytic spaces, and also Maisonobe and Mekhbout [34].

Theorem 2.18. Let X be a C-scheme or complex analytic space. Then there is a de Rham
functor DR : Db

rh(Mod(DX))
∼−→Db

c(X,C), which is an equivalence of categories, restricts to

an equivalence Modrh(DX)
∼−→ Perv(X,C), and commutes with f∗, f !, Rf∗, Rf!,RHom,

L

⊗ , and
also with ψpf , φ

p
f for X smooth. Here Db

c(X,C),Perv(X,C) are constructible complexes and
perverse sheaves over the base ring A = C.

Because of the Riemann–Hilbert correspondence, all our results on perverse sheaves of van-
ishing cycles on C-schemes and complex analytic spaces in §3–§6 over a well-behaved base ring
A, translate immediately when A = C to the corresponding results for D-modules of vanishing
cycles, with no extra work.

2.8. Mixed Hodge modules: basics. We write this section in the minimal generality needed
for our applications. The statements made work equally well in the category of (algebraic) C-
schemes and the category of complex analytic spaces. By space, we will mean an object in either
of these categories. The theory of mixed Hodge modules works with reduced spaces; should a
space X be non-reduced, the following constructions are taken by definition on its reduction.

For a space X, let HM(X) denote Saito’s category [45] of polarizable pure Hodge modules,
(locally) a direct sum of subcategories HM(X)w of pure Hodge modules of fixed weight w. On a
smooth X, a pure Hodge module M• consists of a triple of data: a filtered holonomic D-module
(M,F ), a Q-perverse sheaf, and a comparison map identifying the former with the complexifica-
tion of the latter under the Riemann–Hilbert correspondence; see [45, §5.1.1, p. 952] and [47, §4].
This triple has to satisfy many other properties; in particular, the underlying holonomic D-
module is automatically regular, and algebraic Hodge modules are asked to be extendable to an
algebraic compactification. Thus there is a forgetful functor HM(X)→ Modrh(DX) from Hodge
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modules to regular holonomic (algebraic) D-modules. Hodge modules on singular spaces are
defined, similarly to D-modules, via embeddings into smooth varieties; see Saito [47] and also
Maxim, Saito and Schürmann [39, §1.8].

There is a duality functor DHX : HM(X) → HM(X). Pure Hodge modules also admit a
Tate twist functor M• 7→ M•(1), see [45, §5.1.3, p. 952]. This functor shifts the filtration
and rotates the rational structure on the underlying perverse sheaf: the D-module filtration
(M,F ) is shifted to (M,F [n]) with (F [n])i = Fi−n; the underlying perverse sheaf is tensored by
Z(n) = (2πi)nZ ⊂ C, as in [45, (2.0.2), p. 876].

A polarization of weight w on a pure Hodge module M• ∈ HM(X)w is a morphism of pure
Hodge modules

σ : M• −→ DHX(M•)(−w),

satisfying the extra conditions using vanishing cycles described on [45, (5.1.6.2) on p. 956 and
(5.2.10.2) on p. 968], as well as the condition that on points it should correspond to the classical
notion of a polarization of a pure Hodge structure (including positive definiteness).

Next, let MHM(X) denote the category of graded polarizable mixed Hodge modules [45,47].
A graded polarizable mixed Hodge module carries a functorial weight filtration W , with graded
pieces being polarizable pure Hodge modules, see [45, §5.2.10, p. 967-8]. The forgetful functor
rat : MHM(X) → Perv(X) to the appropriate category of perverse Q-sheaves on X is faithful
and exact; faithfulness in particular means that a morphism in MHM(X) is uniquely determined
by the underlying morphism of perverse sheaves. The Tate twist functor extends to MHM(X);
under this functor, the weight filtration W of the mixed Hodge module is changed to W [2n]

with W [2n]i = Wi+2n as on [45, p. 855]. The duality functor DHX also extends to MHM(X) and
is compatible with Verdier duality on the perverse realization. There is also a forgetful functor
MHM(X)→ Modrh(DX) to regular holonomic D-modules, even for singular spaces.

Theorem 2.19. The categories of graded polarizable mixed Hodge modules have the following
properties:

(i) By [47, Th. 3.9, p. 288], the category of mixed Hodge modules for X a point is canonically
equivalent to Deligne’s category of graded polarizable mixed Hodge structures.

(ii) For a smooth space U, we have a canonical object of weight dimU

QHU [dimU ] ∈ HM(U) ⊂ MHM(U),

which by [45, Prop. 5.2.16, p. 971] possesses a canonical polarization

σ : QHU [dimU ] −→ DHUQHU [dimU ](−dimU).

(iii) For an open inclusion f : Y ↪→ X of spaces, there is a pullback functor

f∗ = f ! : MHM(X) −→ MHM(Y ).

More generally, by [47, Prop. 2.19, p. 258], for an arbitrary morphism f : Y → X, there
exist cohomological pullback functors Ljf∗, Ljf ! : MHM(X) → MHM(Y ) compatible
with (perverse) cohomological pullback on the perverse sheaf level.

(iv) For a closed embedding i : X ↪→ Y, there is a pushforward functor

i∗ = i! : MHM(X) −→ MHM(Y ),

whose essential image is the full subcategory MHMX(Y ) of objects in MHM(Y ) supported
on X. Its inverse is i∗= i! : MHMX(Y )→MHM(X). More generally, by [45, Th. 5.3.1,
p. 977] and [47, Th. 2.14, p. 252], for a projective map f : X → Y there are cohomo-
logical pushforward functors

Rjf∗ : MHM(X) −→ MHM(Y ).
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(v) There is an external tensor product functor
L

� : MHM(X)×MHM(Y ) −→ MHM(X × Y ),

which is compatible with duality in the sense that for all M• ∈ MHM(X) and
N• ∈ MHM(Y ), there is a natural isomorphism

DHXM•
L

�DHY N• ∼= DHX×Y (M•
L

�N•).

Remark 2.20. We will not need to use any derived category D? MHM(X) of mixed Hodge
modules in this paper, which is just as well since on singular analytic X, the appropriate bound-
edness conditions do not appear to be well understood, and the general pullback and pushforward
functors of Theorem 2.19(iii),(iv) are not known to exist as derived functors outside of the alge-
braic context of [47, §4]. Hence, in part (ii) above, [1] does not stand for a shift in the derived

category; QHU [dimU ] just denotes a mixed Hodge module whose realization is the perverse sheaf
QU [dimU ] on U . Compare Remark 2.17 above.

Using the functors above, we can now define the twist of a mixed Hodge module by a principal
Z/2Z-bundle. In the setup of Definition 2.9, given a Z/2Z-bundle π : P → X, and an object
M• ∈ MHM(X) on a space X, we have a natural map M• → π∗π

∗M•, which is an injection by
faithfulness of the realization functor and the fact that it is an injection on the perverse sheaf
level. The quotient object will be denoted, by abuse of notation, by M• ⊗Z/2Z P in MHM(X).

2.9. Monodromic mixed Hodge modules. To discuss nearby and vanishing cycle functors
in a way consistent with monodromy, we need an extension of the category of mixed Hodge
modules. For a space X, following Saito [49, §4.2] denote by MHM(X;Ts, N) the category of
mixed Hodge modules M• on X with commuting actions of a finite order operator Ts : M• →M•

and a locally nilpotent operator N : M• → M•(−1). There is an embedding of categories
MHM(X)→ MHM(X;Ts, N) defined by setting T = id and N = 0. As proved by [49, (4.6.2)],
the category MHM(X;Ts, N) is equivalent to the category MHM(X × C)mon,! of monodromic
mixed Hodge modules on X × C∗ extended by zero to X × C; compare also [33, §4.2].

Every object M• ∈ MHM(X;Ts, N) decomposes into a direct sum M• = M•1 ⊕M•6=1 of the Ts-
invariant part and its Ts-equivariant complement. The Tate twist, and appropriate cohomological
pullback and pushforward functors continue to exist. There is a duality functor

DTX : MHM(X;Ts, N) −→ MHM(X;Ts, N)

defined by

DTX(M•) = DHX(M•1 )⊕ DHT (M•6=1)(1),

equipped with the finite-order operator DX(Ts)
−1 and the nilpotent operator −DX(N). This

duality functor still satisfies DTX ◦ D
T
X = id.

Saito [49, §5.1] also defines an external tensor product

T

� : MHM(X1;Ts, N)×MHM(X2;Ts, N) −→ MHM(X1 ×X2;Ts, N).

defined on the monodromic category as follows. The addition map on fibres

π : (X1 × C)× (X2 × C) −→ (X1 ×X2)× C

induces the additive convolution

π∗(−�−) : MHM(X1 × C)mon,! ×MHM(X2 × C)mon,! −→ MHM(X1 × x2 × C)mon,!.

One can translate this external tensor product
T

� to the MHM(X;Ts, N) defined by concrete
data (M•, Ts, N). On the underlying D-modules and perverse sheaves, it is just the usual product
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�. The operators are defined by Ts = Ts � Ts and N = N � id + id�N . However, the Hodge
and weight filtrations on the underlying D-modules and perverse sheaves are shifted using the
finite order endomorphisms Ts; for details, see [49, (5.1.1)–(5.1.2)]. Note that as a consequence
of these definitions, the forgetful functors

MHM(−;Ts, N) −→ MHM(−)

do not map
T

� to
L

� . Twisted duality and the twisted tensor product commute in the sense
that given M• ∈ MHM(X;Ts, N) and N• ∈ MHM(Y ;Ts, N), we have a natural isomorphism in
MHM(X × Y ;Ts, N):

DTX(M•)
T

�DTY (N•) ∼= DTX×Y (M•
T

�N•). (2.20)

For an object M• ∈ MHM(X;Ts, N) whose weight filtration is a (suitable shifted) monodromy
filtration of the nilpotent morphism N , there is a stronger notion of polarization which will be
useful for us. A strong polarization of weight w of such an object M• is a morphism

σ : M• −→ DTX(M•)(−w)

in MHM(X), compatible with Ts and N , such that σ defines polarizations on the N -primitive
parts of M•, compatible with Hodge filtrations; for precise conditions, see [45, p. 855]. A
polarization on a pure Hodge module is a strong polarization (with N = 0); a strongly polarized

mixed Hodge module is graded polarizable. The partial twist in the definition of DTX implies
that M• is of weight w if and only if M•1 , respectively M•6=1 are of weights w,w − 1 in the sense

of [45, p. 855].
Given strongly polarized mixed Hodge modules M•i ∈ MHM(Xi;Ts, N) of weight wi for

i = 1, 2, polarized by σi : M•i → DTXi(M
•
i )(−wi), there is an induced morphism σ in a commu-

tative diagram

M•1
T

�M•2
σ

,,

// DTX1
(M•1 )(−w1)

T

�DTX2
(M•2 )(−w2)

��

DTX1×X2
(M•1

T

�M•2 )(−w1 − w2),

where the top map is σ1

T

�σ2 and the right is the isomorphism (2.20). In general, it is not clear

whether this morphism is a strong polarization of the tensor product M•1
T

�M•2 ; this result is
not available in the literature. However, in this paper we only use this construction in cases
where one of the monodromic mixed Hodge modules is essentially trivial, living on X1 = pt with
N = 0, in which case it is easy to check that the resulting σ is a strong polarization.

Note also that if M• is strongly polarized by σ : M• → DTX(M•)(−w), then its Tate twist is
also strongly polarized by the composition

M•(1)
σ(1) // DTX(M•)(−w + 1)

∼ // DTX(M•(1))(−w + 2). (2.21)

The notion of strong polarization leads to gluing, in the following way.

Theorem 2.21. Let X =
⋃
i Ui be an open cover of a space X, in any of the Zariski, étale or

complex analytic topologies. Then:

(i) Suppose we are given mixed Hodge modules M•, N• ∈ MHM(X), with morphisms
fi : M•|Ui → N•|Ui in MHM(Ui) which agree on overlaps Uij. Then there is a unique
f ∈ HomMHM(X)(M

•, N•) with f |Ui = fi.
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(ii) Suppose we are given mixed Hodge modules M•i ∈ MHM(Ui;Ts, N), each equipped with
a strong polarization σi. Suppose also that we are given isomorphisms

αij : M•i |Uij −→M•j |Uij
on intersections, commuting with the restrictions of the maps Tsi, Ni and σi, with

αjk|Uijk ◦ αij |Uijk = αik|Uijk
on triple intersections. Then there is a strongly polarized mixed Hodge module

M• ∈ MHM(X;Ts, N),

restricting to M•i on Ui.

Proof. To prove (i), it is enough to note that the fi glue on the perverse sheaf and D-module
levels, respecting filtrations.

To prove (ii), we begin with the case of pure Hodge modules of fixed weight w. The data of a
pure Hodge module consists of a pair of a filtered holonomic D-module and a Q-perverse sheaf,
with an identification of the former with the complexification of the latter under the Riemann–
Hilbert correspondence. Since both filtered holonomic D-modules and Q-perverse sheaves form
stacks (both in the algebraic and the analytic case), this data glues over X. As for the (strong)
polarization, Tsi = id and Ni = 0 glue to Ts = id and N = 0, whereas the map σ on the perverse
sheaf level glues from the maps σi once again from the stack property (now for morphisms) of
perverse sheaves.

The conditions [45, §5.1.6, p. 955] which make such a pair a pure Hodge module come from
local conditions as well as conditions on vanishing cycles; the latter glue by induction on the
dimension. So strongly polarized pure Hodge modules form a stack. The case of mixed Hodge
modules is similar: we need to glue filtrations and polarizations, as well as the maps Tsi, Ni and
σi, first on the level of perverse sheaves, and then checking the axioms, which are local or follow
by induction. �

Remark 2.22. Given a projective C-scheme X, and a polarizable mixed Hodge module M•

in MHM(X) on it, the second part of Theorem 2.19(iv) applied to f : X → pt shows that
the hypercohomology H∗(X,M•) carries a mixed Hodge structure. In particular, it carries a
weight filtration and therefore has a weight polynomial, which will be useful in refinements
of Donaldson–Thomas theory, see the discussion in Remark 6.14 below. So we need to glue
polarizable objects from local data. On the other hand, graded polarizable mixed Hodge modules
may fail to form a stack in the analytic category unless the polarizations glue. This is the reason
for using the stronger form of polarization, which allows for gluing as shown above.

2.10. Mixed Hodge modules of vanishing cycles. By Saito’s work [45–47], for a regular
function f : U → C on a smooth space U , the perverse nearby and vanishing cycle functors
ψpf , φ

p
f defined on perverse sheaves in §2.3 lift to functors

ψHf , φ
H
f : MHM(U) −→ MHM(U0;Ts, N),

where U0 = f−1(0). The actions of the finite order and nilpotent operators Ts, N are given by
the semisimple part of the monodromy operator, and the logarithm of its unipotent part. The
analogue

φHf ◦ D
T
U
∼= DTU0

◦ φHf
of Theorem 2.11(iv) is proved in [46]; to make this isomorphism work is the reason for the the

twist in the definition of DTU . Note also that [46, Th. 1.6] fits with the convention that Ts and
N are defined on dual objects as DU (Ts)

−1 and DU (N), respectively.
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By [45, §5.2], if M• ∈ HM(U) is a pure Hodge module, then a polarization of M• induces
a strong polarization on the (mixed) Hodge module of vanishing cycles φHf (M•), of the same

weight. In particular, if M• = QHU [dimU ] is the canonical object with its canonical polarization

from Theorem 2.19(ii), then φHf
(
QHU [dimU ]

)
∈ MHM(Crit(f);Ts, N) is a strongly polarized

mixed Hodge module on the critical locus of f , with polarization

σ : φHf
(
QHU [dimU ]

)
−→ DTCrit(f) ◦ φHf

(
QHU [dimU ]

)
(−dimU). (2.22)

Example 2.23. Define f : C → C by f(z) = z2. Then Crit(f) = {0}, and we obtain an

object φHf
(
QHC [1]

)
in MHM(pt;Ts, N), a one-dimensional polarized mixed Hodge structure with

monodromy acting by Ts = −id and N = 0. For g : C2 → C given by g(z1, z2) = z2
1 + z2

2 , it is
well known that

φHz2
1+z2

2

(
QHC2 [2]

) ∼= Q(−1),

with trivial monodromy action. Applying the Thom–Sebastiani formula for mixed Hodge mod-
ules [49, Th. 5.4], we see that

φHz2

(
QHC [1]

) T
�φHz2

(
QHC [1]

) ∼= Q(−1)

in the category MHM(pt;Ts, N). The objects Q(1) and Q(−1) thus admit square roots under
T

� in this category, which we will denote by Q( 1
2 ) and Q(− 1

2 ), where

φHz2

(
QHC [1]

)
= Q(− 1

2 ). (2.23)

More explicitly, we have
Q(− 1

2 ) = (Q(0),−id, 0)

and
Q( 1

2 ) = (Q(1),−id, 0).

Define an object Q(n2 ) ∈ MHM(pt;Ts, N) for each n ∈ Z by Q(n2 ) = Q( 1
2 )

T

�n

for n > 0, and

Q(n2 ) = Q(− 1
2 )

T

�−n for n < 0. For any space X with structure morphism π : X → pt, and any

M• ∈ Db MHM(X;Ts, N), we define the n
2 twist of M• to be M•(n2 ) = M•

T

�
(
Q(n2 )

)
. If M• is

strongly polarized, then this tensor product is also strongly polarized by the tensor polarization
by our comments above.

Let U be a smooth space, f : U → C a regular function, and X = Crit(f) its critical locus,
as a subspace of U . The perverse sheaf of vanishing cycles PV•U,f ∈ Perv(X) from §2.4 has a lift
to a mixed Hodge module HV•U,f in MHM(X;Ts, N), defined for each c ∈ f(X) by

HV•U,f |Xc = φHf−c
(
QHU [dimU ]

)∣∣
Xc

(
1
2 dimU

)
∈ MHM(Xc;Ts, N). (2.24)

This mixed Hodge module inherits a strong polarization of weight 0 (compare (2.21) and (2.22))

σHU,f : HV•U,f −→ DTX
(
HV•U,f

)
. (2.25)

The twist ( 1
2 dimU) in (2.24), using the notation of Example 2.23, is included for the same

reason as the (−1)dimU in the definition (2.7) of τU,f . It makes HV•U,f act naturally under
transformations which change dimension — without it, the mixed Hodge module version of
(5.15) below would have to include a twist ( 1

2n) for n = dimV − dimU . Then

HV•U,f , Ts : HV•U,f → HV
•
U,f , N : HV•U,f → HV

•
U,f (−1), and σHU,f : HV•U,f → DTX

(
HV•U,f

)
are related to

PV•U,f , τU,f : PV•U,f → PV
•
U,f , and σU,f : PV•U,f

∼=−→DX(PV•U,f )
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in §2.4 by

PV•U,f = rat
(
HV•U,f

)
, τU,f = rat(Ts) ◦ exp

(
2πi rat(N)

)
, σU,f = rat(σHU,f );

for the last statement, see Proposition A.1 in the Appendix.
The following Thom–Sebastiani type result is the analogue of Theorem 2.13.

Theorem 2.24. Let U, V be smooth spaces and f : U → C, g : V → C be regular functions, so
that f�g : U×V → C is given by (f�g)(u, v) := f(u)+g(v). Set X = Crit(f) and Y = Crit(g)
as subspaces of U, V, so that Crit(f � g) = X × Y . Then there is a natural isomorphism

T SHU,f,V,g : HV•U×V,f�g
∼=−→HV•U,f

T

�HV•V,g in MHM(X × Y ;Ts, N), (2.26)

so that the following diagram commutes:

HV•U×V,f�g σU×V,f�g
//

T SHU,f,V,g��

DTX×Y (HV•U×V,f�g)

HV•U,f
T

�
HV•V,g

σU,f
T

�σV,g //
DTX(HV•U,f )

T

�

DTY (HV•V,g)
∼= // DTX×Y

(
HV•U,f

T

�HV•V,g
)
.

DTX×Y (T SHU,f,V,g)

OO

(2.27)

Proof. The existence of the isomorphism (2.26) follows from the Thom–Sebastiani Theorem for
mixed Hodge modules due to Saito [49, Th. 5.4], applied to HV•U,f . The diagram (2.27) exists by
(2.20); its commutativity can be checked on the level of the underlying perverse sheaves which
is (2.9), in light of Propositions A.1–A.2 in the Appendix. Note that (2.26) also includes the
analogue of (2.10) in Theorem 2.13, according to which we have a matching of the monodromy
actions

τU×V,f�g ∼= τU,f
L

� τV,g,

as (2.26) holds in MHM(X × Y ;Ts, N) rather than just MHM(X × Y ). �

In this paper we will only ever apply Theorem 2.24 when V = Cn, g = z2
1 + · · · + z2

n and
Y = {0}. Combining (2.23) and (2.24) shows that

HV•C,z2 =
(
Q(− 1

2 )
)
( 1

2 ) ∼= Q(0) ∼= QH{0}.

Thus, by Theorem 2.24, QH{0}
T

�QH{0} ∼= QH{0}, and induction on n, we see that

HV•Cn,z2
1+···+z2

n

∼= QH{0}.

As for (2.12), this isomorphism is natural up to sign, depending on a choice of orientation for
the complex Euclidean space (Cn,dz2

1 + · · ·+ dz2
n).

3. Action of symmetries on vanishing cycles

Here is our first main result.

Theorem 3.1. Let U, V be smooth C-schemes, Φ,Ψ : U → V étale morphisms, and
f : U → C, g : V → C regular functions with g ◦ Φ = f = g ◦ Ψ. Write X = Crit(f) and
Y = Crit(g) as C-subschemes of U, V, so that Φ|X ,Ψ|X : X → Y are étale morphisms. Suppose
Φ|X = Ψ|X . Then:
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(a) As Φ,Ψ are étale, dΦ : TU → Φ∗(TV ), dΨ : TU → Ψ∗(TV ) are isomorphisms of vector
bundles. Restricting to the reduced C-subscheme Xred of X, and using Φ|Xred = Ψ|Xred

as Φ|X = Ψ|X , gives isomorphisms

dΦ|Xred ,dΨ|Xred : TU |Xred −→ Φ|∗Xred(TV ),

and thus dΨ|−1
Xred ◦ dΦ|Xred : TU |Xred −→ TU |Xred .

Hence

det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
: Xred −→ C \ {0}

is a regular function. Then det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
is a locally constant map

Xred −→ {±1} ⊂ C \ {0}.

(b) Definition 2.15 defines isomorphisms PVΦ,PVΨ : PV•U,f → Φ|∗X
(
PV•V,g

)
in Perv(X).

These are related by

PVΦ = det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
· PVΨ, (3.1)

regarding det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
: X → {±1} as a locally constant map of topological

spaces, where X,Xred have the same topological space.

The analogues of these results also hold for D-modules and mixed Hodge modules on C-
schemes, and (with Φ,Ψ local biholomorphisms and f, g analytic functions) for perverse sheaves,
D-modules and mixed Hodge modules on complex analytic spaces, as in §2.6–§2.10.

By taking U = V , f = g, Φ an isomorphism and Ψ = idU , we deduce a result on the action
of symmetries on perverse sheaves of vanishing cycles:

Corollary 3.2. Let U be a smooth C-scheme, Φ : U → U an isomorphism, and f : U → C be
regular with f ◦ Φ = f . Write X = Crit(f) as a C-subscheme of U and Xred for its reduced
C-subscheme, and suppose Φ|X = idX . Then det

(
dΦ|Xred : TU |Xred → TU |Xred

)
is a locally

constant map Xred → {±1}, and PVΦ : PV•U,f
∼=−→PV•U,f in Perv(X) from Definition 2.15 is

multiplication by det
(
dΦ|Xred

)
= ±1. The analogues hold in the settings of §2.6–§2.10.

Example 3.3. Let U = V = Cn and f(z1, . . . , zn) = g(z1, . . . , zn) = z2
1 + · · · + z2

n, so that
X = Y = {0} ⊂ Cn. Let Φ,Ψ ∈ O(n,C) be orthogonal matrices, so that det Φ,det Ψ ∈ {±1}
and Φ,Ψ : Cn → Cn are isomorphisms with f = g ◦ Φ = g ◦ Φ and Φ|{0} = Ψ|{0} = id{0}. In
Theorem 3.1(a) we have

dΨ|−1
Xred ◦ dΦ|Xred = Ψ−1 ◦ Φ : Cn −→ Cn,

so that det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
= det Ψ−1 det Φ = ±1.

For Theorem 3.1(b), Example 2.16 shows that PVΦ,PVΨ : A{0} → A{0} are multiplication

by det Φ,det Ψ, so PVΦ = (det Ψ−1 det Φ) · PVΨ, as in (3.1).

The proof of Theorem 3.1(b) uses the following proposition. To interpret it, pretend for
simplicity that the étale morphisms πU |Wt

: Wt → U in (b) are invertible. Then

Θt := πV |Wt ◦ πU |−1
Wt

for t ∈ C are a 1-parameter family of morphisms U → V , which satisfy f = g ◦ Θt and
Θt|X = Φ|X = Ψ|X for t ∈ C, with Θ0 = Φ and Θ1 = Ψ. Thus, modulo taking étale covers of
U , the family {Θt : t ∈ C} interpolates between Φ and Ψ.
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Proposition 3.4. Let U, V be smooth C-schemes, let Φ,Ψ : U → V be étale morphisms, and
let f : U → C, g : V → C be regular functions with g ◦ Φ = f = g ◦Ψ. Write X = Crit(f) and
Y = Crit(g) as C-subschemes of U, V, so that Φ|X ,Ψ|X : X → Y are étale. Suppose
Φ|X = Ψ|X , and x ∈ X such that dΨ|−1

x ◦ dΦ|x : TxU → TxU satisfies(
dΨ|−1

x ◦ dΦ|x − idTxU
)

2 = 0.

Then there exist a smooth C-scheme W and morphisms πC : W → C, πU : W → U, πV : W → V
and ι : C→W such that:

(a) πC ◦ ι(t) = t, πU ◦ ι(t) = x and πV ◦ ι(t) = Φ(x) for all t ∈ C;
(b) πC× πU : W → C× U and πC× πV : W → C× V are étale. Thus, Wt := π−1

C (t)
is a smooth C-scheme for each t ∈ C, and πU |Wt : Wt→U, πV |Wt : Wt→V are étale,
and ι(t) ∈Wt with πU : ι(t) 7→ x, πV : ι(t) 7→ Φ(x);

(c) h := f ◦ πU = g ◦ πV : W → C. Thus,

(πC × πU )|Z : Z −→ C×X and (πC × πV )|Z : Z −→ C× Y

are étale, where Z := Crit(h);
(d) Φ|X ◦ πU |Z = Ψ|X ◦ πU |Z = πV |Z : Z → Y ⊆ V ; and
(e) Φ ◦ πU |W0

= πV |W0
and Ψ ◦ πU |W1

= πV |W1
, for W0,W1 as in (b).

We will prove Proposition 3.4 in §3.1, and Theorem 3.1 in §3.2–§3.4.

3.1. Proof of Proposition 3.4. Let U, V,Φ,Ψ, f, g,X, Y, x be as in Proposition 3.4. Choose a
Zariski open neighbourhood V ′ of Φ(x) = Ψ(x) in V and étale coordinates (z1, . . . , zn) : V ′ → Cn
on V ′, with

z1 = · · · = zn = 0

at Φ(x). Let m be the rank of the symmetric matrix
(

∂2g
∂zi∂zj

|Φ(x)

)
n
i,j=1, so that m ∈ {0, . . . , n}.

By applying an element of GL(n,C) to the coordinates (z1, . . . , zn) we can suppose that

∂2g

∂zi∂zj

∣∣∣
Φ(x)

=

{
1, i = j ∈ {1, . . . ,m},
0, otherwise.

(3.2)

Then 1
2
∂g
∂zi

agrees with zi to first order at Φ(x) for i = 1, . . . ,m, so replacing zi by 1
2
∂g
∂zi

for

i = 1, . . . ,m and making V ′ smaller, we can suppose (3.2) holds and z1, . . . , zm lie in the ideal(
∂g
∂zi
, i = 1, . . . , n

)
in OV ′ . Thus we may write

zi =
n∑
j=1

Aij · ∂g∂zj , i = 1, . . . ,m, (3.3)

where Aij : V ′ → A1 are regular functions for i = 1, . . . ,m and j = 1, . . . , n. Taking ∂
∂zj

of (3.3)

for j = 1, . . . ,m and using (3.2) gives

Aij |Φ(x) =

{
1, i = j, i, j ∈ {1, . . . ,m},
0, i 6= j, i, j ∈ {1, . . . ,m}.

(3.4)

Set U ′ = Φ−1(V ′) ∩ Ψ−1(V ′), so that U ′ is a Zariski open neighbourhood of x in U . Define
étale coordinates (x1, . . . , xn) : U ′ → Cn and (y1, . . . , yn) : U ′ → Cn by xi = zi◦Φ and yi = zi◦Ψ,

so that x1 = · · · = xn = y1 = · · · = yn = 0 at x. Since f = g ◦ Φ = g ◦Ψ we have ∂f
∂xj

= ∂g
∂zj
◦ Φ
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and ∂f
∂yj

= ∂g
∂zj
◦Ψ. Thus (3.2) and (3.3) imply that

∂2f

∂xi∂xj

∣∣∣
x

=
∂2f

∂yi∂yj

∣∣∣
x

=

{
1, i = j ∈ {1, . . . ,m},
0, otherwise,

(3.5)

xi =
n∑
j=1

(
Aij ◦ Φ

)
· ∂f∂xj , yi =

n∑
j=1

(
Aij ◦Ψ

)
· ∂f∂yj , i = 1, . . . ,m. (3.6)

Now dΦ|x : TxU → TΦ(x)V maps ∂
∂xj
7→ ∂

∂zj
, as xj = zj ◦Φ, and dΨ|x : TxU → TΦ(x)V maps

∂
∂yj
7→ ∂

∂zj
. Hence dΨ|−1

x ◦dΦ|x : TxU → TxU maps ∂
∂xj
7→ ∂

∂yj
=
∑n
i=1

∂xi
∂yj
· ∂∂xi . Define Bij ∈ C

for i, j = 1, . . . , n by
δij +Bij = ∂xi

∂yj

∣∣
x
. (3.7)

Then
(
δij +Bij

)
n
i,j=1 is the matrix of dΨ|−1

x ◦ dΦ|x w.r.t. the basis ∂
∂x1

, . . . , ∂
∂xn

, and
(
Bij
)
n
i,j=1

is the matrix of dΨ|−1
x ◦dΦ|x− idTxU , so by assumption

(
Bij
)

2 = 0. Therefore the inverse matrix

of
(
δij +Bij

)
is
(
δij −Bij

)
, so (3.7) gives

δij −Bij = ∂yi
∂xj

∣∣
x
. (3.8)

More generally,
(
δij + tBij

)
is invertible for t ∈ C, with inverse

(
δij − tBij

)
.

Now Φ|X = Ψ|X implies that dΨ|−1
x ◦ dΦ|x is the identity on TxX ⊆ TxU , and

TxX = Ker
(
Hessx f

)
= 〈 ∂

∂xm+1
, . . . , ∂

∂xn
〉 by (3.5), so

Bij = 0 for all i = 1, . . . , n and j = m+ 1, . . . , n. (3.9)

We have ∂2f
∂yi∂yl

∣∣
x

=
∑
j,k

∂xj
∂yi

∂2f
∂xj∂xk

∂xk
∂yl

∣∣
x
, ∂2f
∂xi∂xl

∣∣
x

=
∑
j,k

∂yj
∂xi

∂2f
∂yj∂yk

∂yk
∂xl

∣∣
x
, which by (3.5) and

(3.7)–(3.9) give equations equivalent to

Bij +Bji =
n∑
k=1

BkiBkj = 0 for all i, j = 1, . . . ,m. (3.10)

Define regular t′, x′1, . . . , x
′
n, y
′
1, . . . , y

′
n, z
′
1, . . . , z

′
n : C× U ′ × V ′ → C by

t′(t, u, v) = t, x′i(t, u, v) = xi(u) = zi ◦ Φ(u),

y′i(t, u, v) = yi(u) = zi ◦Ψ(u), z′i(t, u, v) = zi(v).

Then (t′, y′1, . . . , y
′
n, z
′
1, . . . , z

′
n) are étale coordinates on C× U ′ × V ′.

Let S be an affine Zariski open neighbourhood of C × (x,Φ(x)) in C × U ′ × V ′, satisfying a
series of smallness conditions we will give during the proof. Regard (t′, y′1, . . . , y

′
n, z
′
1, . . . , z

′
n) as

étale coordinates on S, and write πC : S → C, πU : S → U , πV : S → V for the projections.
We will work with (sheaves of) ideals in OS , using notation

(
x′i− z′i, i = 1, . . . , n

)
to denote the

ideal generated by the functions x′1 − z′1, . . . , x′n − z′n, and

f ◦ πU − g ◦ πV ∈
(
x′i − z′i, i = 1, . . . , n

)
to mean that f ◦ πU − g ◦ πV ∈ H0(OS) is a section of the ideal

(
x′i − z′i, i = 1, . . . , n

)
. Write

IX ⊂ OU , IY ⊂ OV for the ideals of functions on U, V vanishing on X,Y , and

π−1
U (IX), π−1

V (IY ) ⊂ OS
for the preimage ideals.

Since xi = zi ◦ Φ, the functions x′i − z′i for i = 1, . . . , n vanish on the smooth, closed C-
subscheme

(
C× (id×Φ)(U)

)
∩S in S, and locally these functions cut out this C-subscheme. So

making S smaller we can suppose
(
C× (id×Φ)(U)

)
∩ S is the C-subscheme

x′1 − z′1 = · · · = x′n − z′n = 0
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in S. As f = g ◦ Φ, the function f ◦ πU − g ◦ πV is zero on
(
C× (id×Φ)(U)

)
∩ S. Hence

f ◦ πU − g ◦ πV ∈
(
x′i − z′i, i = 1, . . . , n

)
⊂ OS . (3.11)

Lifting (3.11) from
(
x′i − z′i, i = 1, . . . , n

)
to
(
x′i − z′i, i = 1, . . . , n

)2
, making S smaller if

necessary, we may choose regular Ci : S → C for i = 1, . . . , n with

f ◦ πU − g ◦ πV −
n∑
i=1

Ci · (x′i − z′i) ∈
(
x′i − z′i, i = 1, . . . , n

)2
. (3.12)

Apply ∂
∂z′i

to (3.12), using the étale coordinates (t′, y′1, . . . , y
′
n, z
′
1, . . . , z

′
n) on S. Since

∂

∂z′i

(
g ◦ πV

)
=

∂g

∂zi
◦ πV and

∂

∂z′i
(f ◦ πU ) = 0 =

∂x′j
∂z′i

,

this gives

Ci − ∂g
∂zi
◦ πV ∈

(
x′i − z′i, i = 1, . . . , n

)
.

Combining this with (3.12) yields

f ◦ πU − g ◦ πV −
n∑
i=1

(
∂g
∂zi
◦ πV

)
· (x′i − z′i) ∈

(
x′i − z′i, i = 1, . . . , n

)2
.

So making S smaller we can choose regular Dij : S → C for i, j = 1, . . . , n with Dij = Dji and

f ◦ πU − g ◦ πV =
n∑
i=1

(
∂g
∂zi
◦ πV

)
· (x′i − z′i) +

n∑
i,j=1

Dij · (x′i − z′i)(x′j − z′j). (3.13)

Similarly, starting from yi = zi ◦ Ψ and f = g ◦ Ψ we may choose regular Eij : S → C for
i, j = 1, . . . , n with Eij = Eji and

f ◦ πU − g ◦ πV =
n∑
i=1

(
∂g
∂zi
◦ πV

)
· (y′i − z′i) +

n∑
i,j=1

Eij · (y′i − z′i)(y′j − z′j). (3.14)

Applying ∂2

∂z′i∂z
′
j

to (3.13) and (3.14), restricting to (t, x,Φ(x)) for t ∈ C, noting that

x′i = y′i = z′i = 0 at (t, x,Φ(x)), and using (3.2), we deduce that

Dij(t, x,Φ(x)) = Eij(t, x,Φ(x)) = 1
2

∂2g
∂zi∂zj

∣∣∣
Φ(x)

=

{
1
2 , i = j ∈ {1, . . . ,m},
0, otherwise.

(3.15)

Summing 1− t′ times (3.13) with t′ times (3.14) and rearranging yields

f ◦ πU − g ◦ πV =
n∑
i=1

[
∂g
∂zi
◦ πV +2t′(1−t′)

n∑
j=1

(Dij−Eij)(x′j−y′j)
]

·
(
(1− t′)x′i + t′y′i − z′i

)
+

n∑
i,j=1

[
(1− t′)Dij+t

′Eij
]
·
(
(1−t′)x′i+t′y′i−z′i

)(
(1−t′)x′j+t′y′j−z′j

)
+

n∑
i,j=1

t′(1− t′)
[
t′Dij + (1−t′)Eij

]
· (x′i − y′i)(x′j − y′j). (3.16)

Since x′i− y′i = (xi− yi) ◦πU , and (xi− yi)|X = zi ◦Φ|X − zi ◦Ψ|X = 0 as Φ|X = Ψ|X , we see
that x′i− y′i ∈ π

−1
U (IX). Thus making S smaller if necessary, we may choose regular Fij : S → C

such that

x′i − y′i =
∑n
j=1 Fij ·

(
∂f
∂yj
◦ πU

)
for i = 1, . . . , n. (3.17)
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Furthermore, by (3.6) when i = 1, . . . ,m we may take

Fij =
( n∑
k=1

(Aik ◦ Φ) · ∂yj∂xk
−Aij ◦Ψ

)
◦ πU .

Restricting to (t, x,Φ(x)) and using (3.4), (3.8), (3.9) and Φ(x) = Ψ(x) gives

Fij(t, x,Φ(x)) = −Bji for i = 1, . . . ,m and j = 1, . . . , n. (3.18)

Applying ∂
∂x′i

to equation (3.13) shows that

∂g
∂zi
◦ πV − ∂f

∂xi
◦ πU ∈

(
x′j − z′j , j = 1, . . . , n

)
.

Thus we may write

∂g
∂zi
◦ πV =

∑n
j=1

(∂yj
∂xi
◦ πU

)
·
(
∂f
∂yj
◦ πU

)
+
∑n
j=1Gij · (x′j − z′j), (3.19)

where Gij : S → C are regular. Applying ∂
∂z′j

to (3.19), restricting to (t, x,Φ(x)) and using (3.2)

yields

Gij(t, x,Φ(x)) =

{
−1, i = j ∈ {1, . . . ,m},
0, otherwise.

(3.20)

From (3.17) and (3.19) we see that

∂g
∂zi
◦ πV =

n∑
j=1

Hij ·
(
∂f
∂yj
◦ πU

)
+
∑n
j=1Gij ·

(
(1− t′)x′j + t′y′j − z′j

)
, (3.21)

where Hij =
∂yj
∂xi
◦πU + t′

∑n
k=1GikFkj , so that from equations (3.8), (3.9), (3.18) and (3.20) we

deduce that
Hij(t, x,Φ(x)) = δij − (1− t)Bji. (3.22)

Combining (3.16), (3.17) and (3.21) gives

f ◦ πU − g ◦ πV −
n∑
i=1

Ii ·
(
(1− t′)x′i + t′y′i − z′i

)
−

n∑
i,j,k,l=1

t′(1−t′)
[
t′Dij+(1−t′)Eij

]
FikFjl ·

(
∂f
∂yk
◦ πU

)(
∂f
∂yl
◦ πU

)
∈
(
(1− t′)x′i + t′y′i − z′i, i = 1, . . . , n

)2
, (3.23)

where Ii =
n∑
j=1

[
Hij+2t′(1−t′)

n∑
k=1

(Dik−Eik)Fkj

]
·
(
∂f
∂yj
◦ πU

)
. (3.24)

Consider the matrix of functions [Hij + · · · ]ni,j=1 appearing in (3.24). Equations (3.15) and
(3.22) imply that at (t, x,Φ(x)) this reduces to (δij − (1− t)Bji), which is invertible from above.
Thus, making S smaller, we can suppose that [Hij + · · · ]ni,j=1 in (3.24) is an invertible matrix
on S. Write [Jij ]

n
i,j=1 for the inverse matrix. Then we have

n∑
i,j,k,l=1

t′(1−t′)
[
t′Dij+(1−t′)Eij

]
FikFjl ·

(
∂f
∂yk
◦ πU

)(
∂f
∂yl
◦ πU

)
= t′(1− t′)

n∑
i,j=1

Kij · IiIj , where (3.25)

Kij =
n∑

k,l,p,q=1

t′(1−t′)
[
t′Dkl+(1−t′)Ekl

]
FkpFlqJpiJqj .

Using (3.9), (3.10), (3.15) and (3.18) we find that

Kij(t, x,Φ(x)) = 0 for all t ∈ C. (3.26)
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Combining (3.23) and (3.25), making S smaller if necessary we may write

f ◦ πU−g ◦ πV =
n∑
i=1

Ii ·
(
(1−t′)x′i+t′y′i−z′i

)
+ t′(1−t′)

n∑
i,j=1

Kij · IiIj

+
n∑

i,j=1

Lij ·
(
(1− t′)x′i + t′y′i − z′i

)(
(1− t′)x′j + t′y′j − z′j

)
, (3.27)

for regular Lij : S → C for i, j = 1, . . . , n.

Write (rij)
n
i,j=1 for the coordinates on Cn

2

. Let T be a Zariski open neighbourhood of

C×
(
x,Φ(x), (0)ni,j=1

)
in S × Cn

2

to be chosen shortly, and let W be the closed C-subscheme of T defined by

W =
{(
t, u, v, (rij)

n
i,j=1

)
∈ T ⊆ S × Cn

2

⊆ C× U × V × Cn
2

:(
(1−t′)x′i+t′y′i−z′i

)
(t, u, v) =

n∑
j=1

rij · Ij(t, u, v), i=1, . . . , n, (3.28)

rij + t(1− t)Kij(t, u, v) +
n∑

k,l=1

Lkl(t, u, v) · rkirlj = 0, i, j = 1, . . . , n
}
.

Define C-scheme morphisms πC : W → C, πU : W → U , and πV : W → V to map(
t, u, v, (rij)

n
i,j=1

)
to t, u, v, respectively.

At (t, x,Φ(x)) ∈ S for t ∈ C we have x′i = y′i = z′i = 0, and Ii = 0 by (3.24) as ∂f
∂yj

∣∣
x

= 0,

and Kij = 0 by (3.26). Hence
(
t, x,Φ(x), (0)ni,j=1

)
satisfies the equations of (3.28), and lies in

W . Define ι : C→W by

ι(t) =
(
t, x,Φ(x), (0)ni,j=1

)
. (3.29)

Now T ⊆ C× U × V × Cn
2

is smooth of dimension 1 + n+ n+ n2, and in (3.28) we impose
n + n2 equations, so the expected dimension of W is (1 + 2n + n2) − (n + n2) = n + 1. The
linearizations of the n+ n2 equations in (3.28) at(

t, u, v, (rij)
n
i,j=1

)
=
(
t, x,Φ(x), (0)ni,j=1

)
= ι(t)

are

dyi|x(δu)− dzi|Φ(x)(δv) = 0, i = 1, . . . , n,

δrij + dKij |(t,x,Φ(x))(δt⊕ δu⊕ δv) = 0, i, j = 1, . . . , n,
(3.30)

for δt ∈ TtC, δu ∈ TxU , δv ∈ TΦ(x)V , and (δrij)
n
i,j=1 ∈ T(0)ni,j=1

Cn
2

, where we have used

dx′i = dy′i and Ij = Kij = 0 at (t, x,Φ(x)). As dy1|x, . . . ,dyn|x are a basis for T ∗xU , equations
(3.30) are transverse, so W is smooth of dimension n+1 near ι(t). Hence, taking T small enough,
we can suppose W is smooth.

It remains to prove Proposition 3.4(a)–(e). Part (a) is immediate from (3.29). For (b), the
vector space of solutions

(
δt, δu, δv, (δrij)

n
i,j=1

)
to (3.30) is Tι(t)W , where

d(πC × πU )|ι(t) : Tι(t)W → T(t,x)(C×U)

and d(πC×πV )|ι(t) : Tι(t)W → T(t,Φ(x))(C×V ) map
(
δt, δu, δv, (δrij)

n
i,j=1

)
to (δt, δu) and (δt, δv).

By (3.30), these are isomorphisms, so πC × πU and πC × πV are étale near ι(C). Making T,W
smaller, we can suppose πC × πU and πC × πV are étale.
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For (c), we have(
f◦πW−g ◦ πU

)(
t, u, v, (rij)

n
i,j=1

)
=f(u)−g(v)=(f ◦ πU−g ◦ πV )(t, u, v)

=
n∑
i=1

Ii ·
(
(1− t′)x′i + t′y′i − z′i

)
+ t′(1− t′)

n∑
i,j=1

KijIiIj

+
n∑

i,j=1

Lij ·
(
(1− t′)x′i + t′y′i − z′i

)(
(1− t′)x′j + t′y′j − z′j

)
=

n∑
i=1

Ii ·
( n∑
j=1

rij · Ij
)

+ t′(1− t′)
n∑

i,j=1

KijIiIj

+
n∑

i,j=1

Lij ·
( n∑
k=1

rik · Ik
)( n∑

l=1

rjl · Il
)

=
n∑

i,j=1

IiIj ·
[
rij + t′(1− t′)Kij +

n∑
k,l=1

Lkl · rkirlj
]

= 0,

using (3.27) in the third step, the first equation of (3.28) in the fourth, rearranging and ex-
changing labels i, k and j, l in the fifth, and the second equation of (3.28) in the sixth. Hence
f ◦ πU − g ◦ πV = 0 : W → C, proving (c).

For (d), from (3.28) we can show that
(
C × (id×Φ)(X) × Cn

2)
∩W is open and closed in

Z = Crit(h), and contains ι(C). So making T,W smaller we can take

Z =
(
C× (id×Φ)(X)× Cn

2)
∩W,

and then (d) follows as Φ|X = Ψ|X .
For (e), observe that when t = 0 in (3.28), the second equation reduces to rij = 0 near ι(C)

as t(1− t)Kij(t, u, v) = 0, so making T,W smaller gives

W0 =
{(

0, u, v, (0)ni,j=1

)
∈ T :

(
x′i −z′i

)
(0, u, v) = 0, i = 1, . . . , n

}
=
{(

0, u, v, (0)ni,j=1

)
∈ T : v = Φ(u)

}
.

Hence Φ ◦ πW |W0
= πU |W0

. Similarly, when t = 1 we have

W1 =
{(

1, u, v, (0)ni,j=1

)
∈ T :

(
y′i −z′i

)
(0, u, v) = 0, i = 1, . . . , n

}
=
{(

0, u, v, (0)ni,j=1

)
∈ T : v = Ψ(u)

}
,

so that Ψ ◦ πW |W1
= πU |W1

. This proves (e), and Proposition 3.4.

3.2. Part (a): det(dΨ|−1
Xred ◦ dΦ|Xred) = ±1. We work in the situation of Theorem 3.1. For

each x ∈ X ⊆ U , consider the diagram of linear maps of vector spaces:

0 // TxX

d(Φ|X)|x
��

// TxU

dΦ|x
��

Hessx f
// T ∗xU //

(dΦ|−1
x )∗

��

T ∗xX

(d(Φ|X)|−1
x )∗

��

// 0

0 // TΦ(x)Y // TΦ(x)V
HessΦ(x) g // T ∗Φ(x)V

// T ∗Φ(x)Y
// 0,

(3.31)

where TxX is the Zariski tangent space of X, and Hessx f = (∂2f)|x the Hessian of f at x.
The rows of (3.31) are exact, and the columns isomorphisms. The outer squares of (3.31) clearly
commute. We can show the central square commutes by taking second derivatives of f = g◦Φ to
get ∂2f |x = ∂2g|Φ(x)◦(dΦ|x⊗dΦ|x), and composing with id⊗dΦ|−1

x . Thus (3.31) is commutative.
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There is also an analogue of (3.31) for Ψ. Since Ψ(x) = Φ(x), we may compose the columns
of (3.31) for Φ with the inverses of the columns of (3.31) for Ψ to get a commutative diagram

0 // TxX

d(Ψ|X)|−1
x ◦

d(Φ|X)|x
=idTxX

��

// TxU

dΨ|−1
x ◦

dΦ|x

��

Hessx f
// T ∗xU //

dΨ|∗x◦
(dΦ|−1

x )∗

��

T ∗xX

(d(Ψ|X)|x)∗◦
(d(Φ|X)|−1

x )∗

=idT∗xX

��

// 0

0 // TxX // TxU
Hessx f // T ∗xU // T ∗xX // 0,

(3.32)

where the outer morphisms are identities as Φ|X = Ψ|X .
Choose a complementary vector subspace Nx to TxX in TxU , which we think of as the

normal to X in U at x, so that TxU = TxX ⊕Nx. Write Hess′x f for the restriction of Hessx f
to a symmetric bilinear form on Nx. Since TxX = Ker(Hessx f), we see that Hess′x f is a
nondegenerate symmetric bilinear form on Nx. We may write equation (3.32) as

0 // TxX

id

��

id

0


// TxX ⊕Nx

dΨ|−1
x

◦dΦ|x=

id A

0 B



��

0 0

0 Hess′x f


// T ∗xX ⊕N∗x

dΨ|∗x◦(dΦ|−1
x )∗=(

id −AB−1

0 B−1

)

��

(
id 0

) // T ∗xX

id

��

// 0

0 // TxX

id

0


// TxX ⊕Nx

0 0

0 Hess′x f


// T ∗xX ⊕N∗x

(
id 0

)
// T ∗xX // 0,

(3.33)

for some linear A : Nx → TxX and B : Nx → Nx. Then (3.33) commuting implies that
B preserves the nondegenerate symmetric bilinear form Hess′x f on Nx, and detB = ±1. So
det
(
dΨ|−1

x ◦ dΦ|x
)

=det
(

id A
0 B

)
=detB=±1 for x ∈ X.

Thus, as a map of topological spaces, det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
: Xred → C \ {0} actually maps

Xred → {±1}. Since it is continuous, it is locally constant. Now if f, g : Y → Z are morphisms of
C-schemes with Y reduced, then f = g if and only if f(y) = g(y) for each point y ∈ Y . Applying
this to compare det

(
dΨ|−1

Xred ◦dΦ|Xred

)
: Xred → C \ {0} locally with the constant maps 1 or −1

on Xred shows that det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
is a locally constant map Xred → {±1} ⊂ C \ {0} as

a C-scheme morphism. This proves Theorem 3.1(a).

3.3. Part (b): PVΦ = det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
· PVΨ. For Theorem 3.1(b), we begin with the

following proposition.

Proposition 3.5. Let U, V,Φ,Ψ, f, g,X, Y be as in Theorem 3.1, and suppose x ∈ X with(
dΨ|−1

x ◦dΦ|x− idTxU
)

2 = 0. Then there exists a Zariski open neighbourhood X ′ of x in X such
that PVΦ|X′ = PVΨ|X′ .

Proof. Apply Proposition 3.4 to get W,πC, πU , πV , ι, h, Z. Then apply Proposition 2.8 with
Z,X, x, πC|Z , πU |Z , ι,PV•U,f ,Φ|∗X

(
PV•V,g

)
,PVΦ,PVΨ in place of W , X, x, πC, πX , ι, P•, Q•, α,
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β, respectively, and with γ defined by the commuting diagram of isomorphisms:

PV•W,h
PVπC×πU��

PVπC×πV
// (πC×πV )|∗Z

(
PV•C×V,0�g

)
(πC×πV )|∗Z(T SC,0,V,g) ��

(πC × πU )|∗Z
(
PV•C×U,0�f

)
(πC×πV )|∗Z(T SC,0,U,f )��

(πC × πV )|∗Z
(
PV•C,0

L

�PV•V,g
)

δ′ ��

(πC × πU )|∗Z
(
PV•C,0

L

�PV•U,f
)

δ��

[
πC|∗Z

(
AC[1]

)] L
⊗
[
πV |∗Z

(
PV•V,g

)]
ε′
��[

πC|∗Z
(
AC[1]

)] L
⊗
[
πU |∗Z

(
PV•U,f

)]
ε
��

πV |∗Z [1]
(
PV•V,g

)
πU |∗Z [1]

(
PV•U,f

) γ // πU |∗Z [1]
(
Φ|∗X(PV•V,g)

)
.

(3.34)

Here T SC,0,U,f , T SC,0,V,g are as in (2.8), δ, δ′ come from PVC,0 ∼= AC[1], and ε, ε′ come from
πC|∗Z(AC) ∼= AZ and AZ

L

⊗P• ∼= P• for P• ∈ Perv(Z).
Then the hypothesis πX |∗W0

(α) = j∗0 [−1](γ) in Proposition 2.8 follows from comparing j∗0 [−1]
applied to (3.34) with the commuting diagram

j∗0 [−1]
(
PV•W,h

)
∼=
��

j∗0 [−1](PVπC×πV )
// j∗0 [−1]◦(πC×πV )|∗Z

(
PV•C×V,0�g

)
∼=
��

PV•W0,h|W0

PVπU |W0��

PVπV |W0 // πV |∗Z∩W0

(
PV•V,g

)
πV |∗Z∩W0

(
PV•U,f

) πU |∗Z∩W0
(PVΦ)

// πU |∗Z∩W0
◦ Φ|∗X

(
PV•V,g

)
,

where j0 : Z ∩ W0 ↪→ Z is the inclusion, and the bottom square commutes by Proposition
3.4(e) and (2.18). Similarly πX |∗W1

(β) = j∗1 [−1](γ). Hence Proposition 2.8 gives Zariski open
x ∈ X ′ ⊆ X with PVΦ|X′ = PVΨ|X′ . �

Now to prove Theorem 3.1(b), let x ∈ X be arbitrary. As in §3.2, we can choose a splitting
TxU = TxX ⊕Nx such that

dΨ|−1
x ◦ dΦ|x =

(
id A
0 B

)
:
TxX⊕
Nx

−→ TxX⊕
Nx

(3.35)

for linear A : Nx → TxX and B : Nx → Nx, where B preserves the nondegenerate symmetric
bilinear form Hess′x f on Nx.

Choose a Zariski open neighbourhood U ′ of x in U and a splitting TU ′ = E⊕F for algebraic
vector subbundles E,F ⊆ TU with E|x = TxX and F |x = Nx. Then df |U ′ = α ⊕ β for unique
α ∈ H0(E) and β ∈ H0(F ), and X ∩ U ′ is defined by α = β = 0.

Since Hessx f = ∂(df)|x is nondegenerate on Nx, we see that ∇β|x : TxU → F |x induces an
isomorphism Nx → F |x, so ∇β|x is surjective. Therefore S := β−1(0) is a smooth C-subscheme
of U ′ near x, and making U ′ smaller, we can suppose S is smooth.

Set e = f |S : S → C. Then the isomorphism T ∗S ∼= E|S identifies de ∈ H0(T ∗S) with
α|S ∈ H0(E|S). Hence Crit(e : S → C) = Crit(f |U ′ : U ′ → C) = X ∩ U ′, as C-subschemes of U .

By [23, Prop. 2.23] quoted in Theorem 5.1(i) below, there exist a smooth C-scheme R, mor-
phisms γ : R→ U ′, δ : R→ S, ε : R→ Cn where n = dimU ′ − dimS, and r ∈ R, such that
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γ(r) = x, γ|Q = δ|Q, f ◦ γ = e ◦ δ+ (z2
1 + · · ·+ z2

n) ◦ ε : R→ C, and the following commutes with
horizontal morphisms étale:

S

⊂
��

Q := γ−1(S)
γ|Q

oo
γ|Q

//

⊂��

S

idS ×0 ��
U ′ R

δ×ε //γoo S × Cn.
(3.36)

Taking derivatives at r ∈ Q ⊆ R in (3.36) gives a commutative diagram

TxX = TxS

⊂��

TrQ
d(γ|Q)|r

∼=oo
d(γ|Q)|r

∼= //

⊂��

TxX = TxS

id×0 ��
TxX ⊕Nx = TxU TrR

dγ|r
∼=

oo d(δ×ε)|r
∼=

// TxX ⊕ T0Cn.

Therefore d(δ × ε)|r ◦ dγ|−1
r : TxX ⊕Nx → TxX ⊕ T0Cn is the identity on TxX, and induces

an isomorphism Nx → T0Cn, which as f ◦ γ = e ◦ δ+ (z2
1 + · · ·+ z2

n) ◦ ε identifies Hess′x f on Nx
with Hess0(z2

1 + · · ·+ z2
n) = dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn on T0Cn. Thus, the linear isomorphism

B : Nx → Nx above preserving Hess′x f is identified with a linear isomorphism M : Cn → Cn
preserving dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn, that is, M ∈ O(n,C) satisfies(

id 0

0 B

)
◦ dγ|r ◦ d(δ × ε)|−1

r = dγ|r ◦ d(δ × ε)|−1
r ◦

(
id 0

0 M

)
. (3.37)

Define P to be the C-scheme fibre product P = R ×δ×(M◦ε),S×Cn,δ×ε R, with projections
π1, π2 : P → R. Then P is smooth and π1, π2 are étale, as R,S × Cn are smooth and

δ × (M ◦ ε), δ × ε : R→ S × Cn

are étale. As r ∈ R with (δ × (M ◦ ε))(r) = (x, 0) = (δ × ε)(r), we have a point p ∈ P with
π1(p) = π2(p) = r. Define d = f ◦ γ ◦ π1 : P → C and Z = Crit(d). Then

d = f ◦ γ ◦ π1 = (e� z2
1 + · · ·+ z2

n) ◦ (δ × ε) ◦ π1

= (e� z2
1 + · · ·+ z2

n) ◦ (δ × (M ◦ ε)) ◦ π1

= (e� z2
1 + · · ·+ z2

n) ◦ (δ × ε) ◦ π2 = f ◦ γ ◦ π2.

(3.38)

Consider the étale morphisms Φ ◦ γ ◦π1,Ψ ◦ γ ◦π2 : P → V . Both map p 7→ Φ(x), and satisfy
g ◦ (Φ ◦ γ ◦ π1) = d = g ◦ (Ψ ◦ γ ◦ π2) by (3.38) and g ◦Φ = f = g ◦Ψ. Taking derivatives at p to
get linear maps TpP → TΦ(x)V , we find that

d(Ψ ◦ γ ◦ π2)|p = dΨ|x ◦ dγ|r ◦ d(δ × ε)|−1
r ◦ d((δ × ε) ◦ π2)|p

= dΨ|x ◦ dγ|r ◦ d(δ × ε)|−1
r ◦ d((δ × (M ◦ ε)) ◦ π1)|p

= dΨ|x ◦ dγ|r ◦ d(δ × ε)|−1
r ◦

(
id 0

0 M

)
◦ d(δ × ε)|r ◦ dπ1|p

= dΨ|x ◦
(

id 0

0 B

)
◦ dγ|r ◦ d(δ × ε)|−1

r ◦ d(δ × ε)|r ◦ dπ1|p

= dΨ|x ◦
(

id −AB−1

0 id

)(
id A

0 B

)
◦ dγ|r ◦ dπ1|p

= dΨ|x ◦
(

id −AB−1

0 id

)
◦ dΨ|−1

x ◦ d(Φ ◦ γ ◦ π1)|p,

(3.39)
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using (δ × (M ◦ ε)) ◦ π1 = (δ × ε) ◦ π2 in the second step, (3.37) in the fourth, and (3.35) in the

sixth. Since
[(

id −AB−1

0 id

)
− id

]
2 = 0, equation (3.39) implies that(

d(Ψ ◦ γ ◦ π2)|−1
p ◦ d(Φ ◦ γ ◦ π1)|p − idTpP

)
2 = 0,

and thus Proposition 3.5 gives a Zariski open neighbourhood P ′ of p in P such that

PVΦ◦γ◦π1
|P ′ = PVΨ◦γ◦π2

|P ′ : PV•P,d|P ′ −→ (Φ ◦ γ ◦ π1)|∗Z
(
PV•V,g

)
|P ′ . (3.40)

Since (δ × (M ◦ ε)) ◦ π1 = (δ × ε) ◦ π2 : P → S × Cn are étale with

(e� z2
1 + · · ·+ z2

n) ◦ (δ × (M ◦ ε)) ◦ π1 = d = (e� z2
1 + · · ·+ z2

n) ◦ (δ × ε) ◦ π2,

we see using (2.8) and (2.18) that

π1|∗Z
[
PVδ

L

�
(
M |∗{0}(PVε) ◦ PVM

)]
◦ PVπ1

= π1|∗Z
[
PVδ

L

�PVM◦ε
]
◦ PVπ1

∼= π1|∗Z(PVδ×(M◦ε)) ◦ PVπ1 = PV(δ×(M◦ε))◦π1
= PV(δ×ε)◦π2

= π2|∗Z(PVδ×ε) ◦ PVπ2
∼= π2|∗Z

[
PVδ

L

�PVε
]
◦ PVπ2

, (3.41)

where ‘∼=’ are equalities after identifying both sides of (2.8). Since π1|Z = π2|Z , and
M |{0} = id{0}, and Example 2.16 shows that PVM in (2.19) is multiplication by detM , equation
(3.41) implies that

detM · π1|∗Z
[
PVδ

L

�PVε
]
◦ PVπ1 = π1|∗Z

[
PVδ

L

�PVε
]
◦ PVπ2 .

As π1|∗Z
[
PVδ

L

�PVε
]

is an isomorphism, this gives

detM · PVπ1 = PVπ2 : PV•P,d −→ π1|∗Z
(
PV•R,e

)
. (3.42)

Writing Z ′ = Z ∩ P ′, we now have

(γ ◦ π1)|∗Z′(PVΦ) ◦ PVγ◦π1 |P ′ = PVΦ◦γ◦π1 |P ′ = PVΨ◦γ◦π2 |P ′
= π2|∗Z′(PVΨ◦γ) ◦ PVπ2

|P ′
= detM · π1|∗Z′(PVΨ◦γ) ◦ PVπ1

|P ′ = detM · PVΨ◦γ◦π1
|P ′

= detM · (γ ◦ π1)|∗Z′(PVΨ) ◦ PVγ◦π1
|P ′ ,

(3.43)

using (3.40) in the second step, (3.42) and π1|Z′ = π2|Z′ in the fourth, and (2.18) in the rest.
As PVγ◦π1

|P ′ is an isomorphism, (3.43) implies that

(γ ◦ π1)|∗Z′(PVΦ) = detM · (γ ◦ π1)|∗Z′(PVΨ),

and by Theorem 2.7(i) this implies that

PVΦ|X′ = detM · PVΦ|X′ , (3.44)

where X ′ = (γ ◦ π1)(Z ′) is a Zariski open neighbourhood of x in X, since (γ ◦ π1)|Z′ : Z ′ → X
is étale with γ ◦ π1(p) = x. Now (3.35) and (3.37) give

det
(
dΨ|−1

x ◦ dΦ|x
)

= det
(

id A
0 B

)
= detB = detM.

So (3.44) proves that (3.1) holds near x in X. As this is true for all x ∈ X, Theorem 3.1(b)
follows.

3.4. D-modules and mixed Hodge modules. The proof of Proposition 3.4 applies verbatim
also in the analytic context. Theorem 3.1(a),(b) then follow from Proposition 3.4 and the
argument given above, using §2.5, including the Sheaf Property (x) for morphisms. Hence all
these results carry over to our other contexts §2.6–§2.10.
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4. Dependence of PV•U,f on f

We will use the following notation:

Definition 4.1. Let U be a smooth C-scheme, let f : U → C be a regular function, and let X
equal Crit(f) as a closed C-subscheme of U . Write IX ⊆ OU for the sheaf of ideals of regular
functions U → C vanishing on X, so that IX = Idf . For each k = 1, 2, . . . , write X(k) for the kth

order thickening of X in U , that is, X(k) is the closed C-subscheme of U defined by the sheaf
of ideals IkX in OU . Also write Xred for the reduced C-subscheme of U .

Then we have a chain of inclusions of closed C-subschemes

Xred ⊆ X = X(1) ⊆ X(2) ⊆ X(3) ⊆ · · · ⊆ U. (4.1)

Write f (k) := f |X(k) : X(k) → C, and f red := f |Xred : Xred → C, so that f (k), f red are
regular functions on the C-schemes X(k), Xred. Note that f red : Xred → C is locally constant,
since X = Crit(f).

We also use the same notation for complex analytic spaces.

In §2.4 we defined the perverse sheaf of vanishing cycles PV•U,f in Perv(X). So we can ask: how
much of the sequence (4.1) does PV•U,f depend on? That is, is PV•U,f (canonically?) determined

by (Xred, f red), or by (X(k), f (k)) for some k ≥ 1, as well as by (U, f)? Our next theorem shows
that PV•U,f is determined up to canonical isomorphism by (X(3), f (3)), and hence a fortiori also

by (X(k), f (k)) for k > 3:

Theorem 4.2. Let U, V be smooth C-schemes, f : U → C, g : V → C be regular functions,
and X = Crit(f), Y = Crit(g) as closed C-subschemes of U, V, so that §2.4 defines perverse
sheaves PV•U,f ,PV

•
V,g on X,Y . Define X(3), f (3) and Y (3), g(3) as in Definition 4.1, and suppose

Φ : X(3) → Y (3) is an isomorphism with g(3) ◦ Φ = f (3), so that Φ|X : X → Y ⊆ Y (3) is an
isomorphism.

Then there is a canonical isomorphism in Perv(X)

ΩΦ : PV•U,f −→ Φ|∗X(PV•V,g), (4.2)

which is characterized by the property that if T is a smooth C-scheme and πU : T → U,
πV : T → V are étale morphisms with e := f ◦ πU = g ◦ πV : T → C, so that πU |Q : Q → X,

πV |Q : Q→ Y are étale for Q := Crit(e), and Φ ◦ πU |Q(2) = πV |Q(2) : Q(2) → Y (2), then

πU |∗Q(ΩΦ) ◦ PVπU = PVπV : PV•T,e −→ πV |∗Q(PV•U,f ). (4.3)

Also the following commute, where σU,f , σV,g, τU,f , τV,g are as in (2.6)–(2.7):

PV•U,f σU,f
//

ΩΦ
��

DX(PV•U,f )

Φ|∗X(PV•V,g)
Φ|∗X(σV,g) // Φ|∗X

(
DY (PV•V,g)

) ∼= // DX
(
Φ|∗X(PV•V,g)

)
,

DX(ΩΦ)

OO
(4.4)

PV•U,f τU,f
//

ΩΦ
��

PV•U,f
ΩΦ
��

Φ|∗X(PV•V,g)
Φ|∗X(τV,g) // Φ|∗X(PV•V,g).

(4.5)

If there exists an étale morphism Ξ : U → V with

g ◦ Ξ = f : U → C and Ξ|X(3) = Φ : X(3) → Y (3),

then ΩΦ = PVΞ, for PVΞ as in (2.14).
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If W is another smooth C-scheme, h : W → C is a regular function, Z = Crit(h), and
Ψ : Y (3) → Z(3) is an isomorphism with h(3) ◦Ψ = g(3), then

ΩΨ◦Φ = Φ|∗X(ΩΨ) ◦ ΩΦ : PV•U,f −→ (Ψ ◦ Φ)|∗X(PV•W,h). (4.6)

If U = V, f = g, X = Y and Φ = idX(3) then Ωid
X(3)

= idPV•U,f .

The analogues of all the above also hold with appropriate modifications for D-modules on C-
schemes, for perverse sheaves and D-modules on complex analytic spaces, and for mixed Hodge
modules on C-schemes and complex analytic spaces, as in §2.6–§2.10.

We will prove Theorem 4.2 in §4.2–§4.3. The proof for C-schemes depends on the case k = 2
of the following proposition, proved in §4.1:

Proposition 4.3. Let U, V be smooth C-schemes, f : U → C, g : V → C be regular functions,
and X = Crit(f) ⊆ U, Y = Crit(g) ⊆ V . Using the notation of Definition 4.1, suppose
Φ : X(k+1) → Y (k+1) is an isomorphism with g(k+1) ◦Φ = f (k+1) for some k > 2. Then for each
x ∈ X we can choose a smooth C-scheme T and étale morphisms πU : T → U, πV : T → V such
that

(a) e := f ◦ πU = g ◦ πV : T → C;
(b) setting Q = Crit(e), then πU |Q(k) : Q(k) → X(k) ⊆ U is an isomorphism with a Zariski

open neighbourhood X̃(k) of x in X(k); and
(c) Φ ◦ πU |Q(k) = πV |Q(k) : Q(k) → Y (k).

The proof of Proposition 4.3 is similar to that of Proposition 3.5 in §3.1. One can also prove
an analogue of Proposition 4.3 when k = 1, but in part (b) πU |Q(1) : Q(1) → X(1) must be étale
rather than a Zariski open inclusion.

In Proposition 4.3, we start with Φ : X(k+1)
∼=−→Y (k+1), but we construct T, πU , πV with

Φ ◦ πU |Q(k) = πV |Q(k) . One might expect to find T, πU , πV with Φ ◦ πU |Q(k+1) = πV |Q(k+1) , but
the next example shows this is not possible.

Example 4.4. Let U, V be open neighbourhoods of 0 in C, and f : U → C, g : V → C be
regular functions given as power series by f(x) = xm+1 and g(y) = ym+1 + Ay(k+1)m + · · · , for
k,m > 2 and 0 6= A ∈ C, where 0 is the only critical point of g.

Then X := Crit(f) = Spec
(
C[x]/(xm)

)
and Y := Crit(g) = Spec

(
C[y]/(ym)

)
, so

X(k+1) = Spec
(
C[x]/(x(k+1)m)

)
, f (k+1) = xm+1 + (x(k+1)m), Y (k+1) = Spec

(
C[y]/(y(k+1)m)

)
,

and g(k+1) = ym+1 + (y(k+1)m).
Thus Φ : X(k+1) → Y (k+1) acting on functions by y + (y(k+1)m) 7→ x + (x(k+1)m) is an

isomorphism with f (k+1) = g(k+1) ◦ Φ.
Suppose T, πU , πV are as in Proposition 4.3, and use w = x ◦ πU as a coordinate on T . Then

e(w) = wm+1, and Q = Crit(e) = Spec
(
C[w]/(wm)

)
. We have πU (w) = w, so Φ ◦ πU (w) = w,

but wm+1 = πV (w)m+1 + AπV (w)(k+1)m + · · · , so that πV (w) = w − 1
m+1Aw

km + · · · . Thus,

Φ ◦ πU : T → V and πV : T → V differ by − 1
m+1Aw

km + · · · , which is zero on Q(k) but not on

Q(k+1). Hence in this example there do not exist T, πU , πV with Φ ◦ πU |Q(k+1) = πV |Q(k+1) .

Remark 4.5. We can also ask: can we improve (X(3), f (3)) in Theorem 4.2 to (X(2), f (2)) or
(X(1), f (1)) or (Xred, f red)? Here are some thoughts on this.

(a) The analogue of Proposition 4.3 for k = 1 mentioned above implies that étale or complex an-
alytically locally on X, (U, f) and hence PV•U,f are determined up to non-canonical isomorphism
by (X(2), f (2)). Using the ideas of §5–§6, one can show that these non-canonical isomorphisms
of PV•U,f are unique up to sign.
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(b) Consider the following example: let U = (C \ {0}) × C = V , and define f : U → C and
g : V → C by f(x, y) = y2 and g(x, y) = xy2. Then X := Crit(f) = {y = 0} = Crit(g) =: Y ,
and f (2) = g(2) = 0, so that (X(2), f (2)) = (Y (2), g(2)). However, as in Example 5.5 below,
PV•U,f 6∼= PV

•
V,g. Thus, globally, PV•U,f is not determined up to isomorphism by (X(2), f (2)).

(c) Suppose U is a complex manifold and f : U → C is holomorphic, with Crit(f) a single (not
necessarily reduced) point x. The Mather–Yau Theorem [38] shows that the germ of (U, f) at x is
determined up to non-canonical isomorphism by the complex analytic subspace f (1) = 0 in X(1),
and hence by the pair (X(1), f (1)). Therefore, for isolated singularities, PV•U,f is determined up
to non-canonical isomorphism by (X(1), f (1)).

(d) Define f : U → C by U = C and f(z) = czn for 0 6= c ∈ C and n > 2. This has an isolated
singularity at 0, and (X(1), f (1)) is independent of c. By moving c in a circle round zero, we
see that in this example PV•U,f is determined up to a Z/nZ group of automorphisms. So the
non-canonical isomorphisms of PV•U,f are not unique up to sign, in contrast to (a).

(e) Parts (a)–(d) leave open the question of whether PV•U,f is determined locally up to non-
canonical isomorphism by (X(1), f (1)) for non-isolated singularities. We do not have a coun-
terexample to this.

However, Gaffney and Hauser [19, §4] give examples of complex manifolds U and holomorphic
f : U → C with X = Crit(f) non-isolated, such that the germ of (U, f) at x ∈ X is not
determined up to non-canonical isomorphism by the germ of (X(1), f (1)) at x, in contrast to
the Mather–Yau Theorem, and continuous families of distinct germs [U, f, x] can have the same
germ [X(1), f (1), x]. It seems likely that in examples of this kind, the mixed Hodge module
HV•U,f (which contains continuous Hodge-theoretic information) is not locally determined up to

non-canonical isomorphism by (X(1), f (1)).

(f) For the example in (d), PV•U,f depends on n = 3, 4, . . . , but (Xred, f red) = ({0}, 0) is
independent of n. So PV•U,f is not determined even locally up to non-canonical isomorphism
by (Xred, f red).

4.1. Proof of Proposition 4.3. The C-subscheme X(k+1) in U is the zeroes of the ideal
Ik+1
X ⊂ OU , which vanishes to order k+1 > 2 at x ∈ X ⊆ X(k+1) ⊆ U . Hence TxX

(k+1) = TxU .

As Φ : X(k+1) → Y (k+1) is an isomorphism, it follows that

TxU = TxX
(k+1) ∼= TΦ(x)Y

(k+1) = TΦ(x)V. (4.7)

Therefore n := dimU = dimV .
Choose a Zariski open neighbourhood V ′ of Φ(x) in V and étale coordinates

(y1, . . . , yn) : V ′ → Cn

on V ′. Write g′ = g|V ′ and Y ′ = Crit(g′) = Y ∩ V ′, so that Y ′(k+1) = Y (k+1) ∩ V ′. Then ya ◦Φ
are regular functions on the open neighbourhood Φ−1(V ′) ⊆ X(k+1) of x in X(k+1), so they
extend Zariski locally from X(k+1) to U . Thus we can choose a Zariski open neighbourhood
U ′ of x in U with Φ(X(k+1) ∩ U ′) ⊆ Y (k+1) ∩ V ′, and regular functions xi : U ′ → C with
xi|X(k+1)∩U ′ = yi ◦ Φ|X(k+1)∩U ′ for i = 1, . . . , n.

Write f ′ = f |U ′ and X ′ = Crit(f ′) = X∩U ′, so that X ′(k+1) = X(k+1)∩X ′. Since (y1, . . . , yn)
are étale coordinates,

dy1|Φ(x), . . . ,dyn|Φ(x)

are a basis for T ∗Φ(x)V , so dx1|x, . . . ,dxn|x are a basis for T ∗xX by (4.7). Hence by making U ′

smaller, we can suppose (x1, . . . , xn) are étale coordinates on U ′.
Consider the C-scheme U ′ × V ′, with projections

πU ′ : U ′ × V ′ −→ U ′ and πV ′ : U ′ × V ′ −→ V ′,
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and write

x′i = xi ◦ πU ′ : U ′ × V ′ → C, y′i = yi ◦ πV ′ : U ′ × V ′ → C,
so that (x′1, . . . , x

′
n, y
′
1, . . . , y

′
n) are étale coordinates on U ′ × V ′. We have a morphism

id×Φ|X′(k+1) : X ′(k+1) −→ U ′ × V ′

which embeds X ′(k+1) as a closed C-subscheme of U ′ × V ′. The image
(
id×Φ|X′(k+1)

)
(X ′(k+1))

is locally the zeroes of the sheaf of ideals(
x′i − y′i, i = 1, . . . , n

)
+ π−1

U ′

(
Ik+1
X

)
⊂ OU ′×V ′ ,

where
(
x′i−y′i, i = 1, . . . , n

)
denotes the ideal generated by x′i−y′i : U ′×V ′ → C for i = 1, . . . , n,

and π−1
U ′

(
Ik+1
X

)
⊂ OU ′×V ′ the preimage ideal of Ik+1

X |U ′ ⊂ OU ′ .

Now
(
f ◦ πU ′ − g ◦ πV ′

)
|(id×Φ)(X′(k+1)) = 0 as f (k+1) = g(k+1) ◦ Φ. Hence

f ◦ πU ′ − g ◦ πV ′ ∈
(
x′i − y′i, i = 1, . . . , n

)
+ π−1

U ′

(
Ik+1
X

)
. (4.8)

Lifting (4.8) from
(
x′i − y′i, i = 1, . . . , n

)
to
(
x′i − y′i, i = 1, . . . , n

)2
, after making U ′, V ′

smaller if necessary, we can choose regular functions Ai : U ′× V ′ → C for i = 1, . . . , n such that

f ◦ πU ′−g ◦ πV ′−
n∑
i=1

Ai · (x′i−y′i) ∈
(
x′i−y′i, i = 1, . . . , n

)2
+π−1

U ′

(
Ik+1
X

)
. (4.9)

Apply ∂
∂x′i

to (4.9), using the étale coordinates (x′1, . . . , x
′
n, y
′
1, . . . , y

′
n) on U ′ × V ′. Since

∂

∂x′i

(
f ◦ πU ′

)
=

∂f

∂xi
◦ πU ′

and ∂
∂x′i

(
g ◦ πV ′

)
= 0, this gives

∂f
∂xi
◦ πU ′ −Ai ∈

(
x′i − y′i, i = 1, . . . , n

)
+ π−1

U ′

(
IkX
)
. (4.10)

Changing Ai by an element of
(
x′i − y′i, i = 1, . . . , n

)
can be absorbed in the ideal(

x′i − y′i, i = 1, . . . , n
)2

in (4.9), so we can suppose ∂f
∂xi
◦ πU ′ −Ai ∈ π−1

U ′

(
IkX
)
. As

IX =
( ∂f
∂xj

, j = 1, . . . , n
)
,

after making U ′, V ′ smaller we may write

Ai = ∂f
∂xi
◦ πU ′ +

n∑
j=1

Bij · ∂f∂xj ◦ πU ′ , (4.11)

with Bij ∈ π−1
U ′

(
Ik−1
X

)
for i, j = 1, . . . , n. Consider the matrix of functions

(
δij + Bij

)
n
i,j=1 on

U ′ × V ′. At the point (x,Φ(x)) in U ′ × V ′ this matrix is the identity, since Bij(x,Φ(x)) = 0 as

Bij ∈ π−1
U ′ (I

k−1
X ) with k > 2, so

(
δij + Bij

)
n
i,j=1 is invertible near (x,Φ(x)), and making U ′, V ′

smaller we can suppose
(
δij +Bij

)
n
i,j=1 is invertible on U ′×V ′. But in matrix notation we have(

Ai
)
n
i=1 =

(
δij +Bij

)
n
i,j=1

(
∂f
∂xj
◦ πU ′

)
n
j=1.

Hence in ideals in OU ′×V ′ we have(
Ai, i = 1, . . . , n

)
=
(
∂f
∂xj
◦ πU ′ , j = 1, . . . , n

)
= π−1

U ′

(
IX
)
⊂ OU ′×V ′ . (4.12)
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Now by (4.9), after making U ′, V ′ smaller if necessary, we may write

f ◦ πU ′ − g ◦ πV ′ =
n∑
i=1

Ai ·
(
x′i − y′i

)
+

n∑
i,j=1

Cij ·
(
x′i − y′i

)(
x′j − y′j

)
+

n∑
i,j=1

Dij ·AiAj ,
(4.13)

for regular functions Cij , Dij : U ′×V ′ → C with Dij ∈ H0
(
π−1
U ′ (I

k−1
X )

)
for i, j = 1, . . . , n, where

in the last term we have used (4.12) to write two factors of π−1
U ′ (IX) in terms of A1, . . . , An.

Write (zij)
n
i,j=1 for the coordinates on Cn

2

. Let W be a Zariski open neighbourhood of(
x,Φ(x), (0)ni,j=1

)
in U ′ × V ′ × Cn

2

to be chosen shortly, and let T be the C-subscheme of W
defined by

T =
{(
u, v, (zij)

n
i,j=1

)
∈W ⊆ U ′ × V ′ × Cn

2

:

xi(u)− yi(v) =
n∑
j=1

zij ·Aj(u, v), i = 1, . . . , n,

zij +
n∑

l,m=1

Clm(u, v) · zlizmj +Dij(u, v) = 0, i, j = 1, . . . , n
}
.

(4.14)

Define C-scheme morphisms πU : T → U by πU :
(
u, v, (zij)

n
i,j=1

)
7→ u and πV : T → V

by πV :
(
u, v, (zij)

n
i,j=1

)
7→ v.

Now W ⊆ U ′ × V ′ ×Cn
2

is smooth of dimension n+ n+ n2, and in (4.14) we impose n+ n2

equations, so the expected dimension of T is (2n+n2)− (n+n2) = n. The linearizations of the
n+ n2 equations in (4.14) at

(
u, v, (zij)

n
i,j=1

)
=
(
x,Φ(x), (0)ni,j=1

)
are

dxi|x(δu)− dyi|Φ(x)(δv) = 0, i = 1, . . . , n,

δzij + dDij |(x,Φ(x))(δu⊕ δv) = 0, i, j = 1, . . . , n,
(4.15)

for δu ∈ TxU
′, δv ∈ TΦ(x)V

′, and (δzij)
n
i,j=1 ∈ T(0)ni,j=1

Cn
2

. As dx1|x, . . . ,dxn|x are a ba-

sis for T ∗xU
′, the equations (4.15) are transverse, so that T is smooth of dimension n near(

x,Φ(x), (0)ni,j=1

)
.

The vector space of solutions
(
δu, δv, (δzij)

n
i,j=1

)
to (4.15) is T(x,Φ(x),(0))T , where

dπU |(x,Φ(x),(0)) : T(x,Φ(x),(0))T −→ TxU

maps
(
δu, δv, (δzij)

n
i,j=1

)
7→ δu, and

dπV |(x,Φ(x),(0)) : T(x,Φ(x),(0))T −→ TΦ(x)V

maps
(
δu, δv, (δzij)

n
i,j=1

)
7→ δv. Clearly, dπU |(x,Φ(x),(0)),dπV |(x,Φ(x),(0)) are isomorphisms, so

as T is smooth near
(
x,Φ(x), (0)ni,j=1

)
and U, V are smooth, we see that πU , πV are étale near(

x,Φ(x), (0)
)
. Thus, by choosing the open neighbourhood

(
x,Φ(x), (0)

)
∈ W ⊆ U ′ × V ′ × Cn

2

sufficiently small, we can suppose that T is smooth of dimension n and πU : T → U and
πV : T → V are étale.
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It remains to prove Proposition 4.3(a)–(c). For (a), we have(
f ◦ πU−g ◦ πV

)(
u, v, (zij)

n
i,j=1

)
= f(u) −g(v) = (f ◦ πU ′ − g ◦ πV ′)(u, v)

=
n∑
i=1

Ai(u, v) ·
(
xi(u)−yi(v)

)
+

n∑
i,j=1

Cij(u, v) ·
(
xi(u)−yi(v)

)(
xj(u)−yj(v)

)
+

n∑
i,j=1

Dij(u, v) ·Ai(u, v)Aj(u, v)

=
n∑
i=1

Ai(u, v) ·
( n∑
j=1

zij ·Aj(u, v)
)

+
n∑

i,j=1

Cij(u, v) ·
( n∑
l=1

zil ·Al(u, v)
)( n∑

m=1
zjm ·Am(u, v)

)
+

n∑
i,j=1

Dij(u, v) ·Ai(u, v)Aj(u, v)

=
n∑

i,j=1

Ai(u, v)Aj(u, v)
[
zij+

n∑
l,m=1

Clm(u, v) · zlizmj+Dij(u, v)
]

= 0,

using (4.13) in the third step, the first equation of (4.14) in the fourth, rearranging and ex-
changing labels i, l and j,m in the fifth, and the second equation of (4.14) in the sixth. Hence
f ◦ πU − g ◦ πV = 0 : T → C, proving (a).

For (b), using the morphism id×Φ|X × (0) : X → U × V × Cn
2

⊇W , define

X̃ =
(
id×Φ|X × (0)

)−1
(W ),

so that X̃ is a Zariski open neighbourhood of x in X. Then
(
id×Φ|X × (0)

)
(X̃) is a closed

C-subscheme of W . We claim that:

(i)
(
id×Φ|X × (0)

)
(X̃) is a closed C-subscheme of T ⊆W ; and

(ii)
(
id×Φ|X × (0)

)
(X̃) is open and closed in Q := Crit(e) ⊆ T ,

where e := f ◦ πU = g ◦ πV : T → C. To prove (i), we have to show that the equations of

(4.14) hold on
(
id×Φ|X × (0)

)
(X̃), which is true as xi|X̃ = yi ◦ Φ|X̃ , and zij ◦ (0) = 0, and

Dij ◦ (id×Φ|X̃) = 0 as Dij ∈ H0
(
π−1
U ′ (I

k−1
X )

)
for k > 2.

For (ii), as πU : T → U is étale with e = f ◦ πU , we see that πU |Q : Q → X is étale. But

πU |Q ◦
(
id×Φ|X × (0)

)
|X̃ = idX̃ . Hence

(
id×Φ|X × (0)

)
(X̃) is open in Q, and is also closed in

Q as it is closed in T . Thus, by making W,T smaller to delete other components of Q, we can
suppose that Q =

(
id×Φ|X × (0)

)
(X̃). Then πU |Q : Q→ X̃ is an isomorphism with the Zariski

open neighbourhood X̃ of x in X. Since πU : T → U is étale with e = f ◦ πU , this extends to
the kth order thickenings, so πU |Q(k) : Q(k) → X̃(k) is an isomorphism, proving (b).

For (c), first note that Q =
(
id×Φ|X × (0)

)
(X̃), so Φ ◦ πU |Q = πV |Q is immediate. We have

to extend this to the thickening Q(k). Write IQ ⊂ OT for the ideal of functions vanishing on Q.

Then IQ = π−1
U (IX) as πU identifies Q with X̃ ⊆ X. We have

Ai ◦ πU ′×V ′ ∈ IQ and Dij ◦ πU ′×V ′ ∈ Ik−1
Q ,

as Ai ∈ H0
(
π−1
U ′ (IX)

)
, Dij ∈ H0

(
π−1
U ′ (I

k−1
X )

)
. The second equation of (4.14) then shows that

zij ◦ πCn2 ∈ Ik−1
Q ,

since Q =
(
id×Φ|X × (0)

)
(X̃) implies that zij ◦ πCn2 = 0 on Q, so we can neglect the terms∑n

l,m=1 Clm(u, v) · zlizmj . Hence the first equation of (4.14) gives

xi ◦ πU − yi ◦ πV ∈ IkQ.
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As IkQ vanishes on Q(k), and xi|X′ = yi ◦ Φ|X′ , this gives

yi ◦
(
Φ ◦ πU |Q(k)

)
= xi ◦ πU |Q(k) = yi ◦

(
πV |Q(k)

)
.

Thus Φ ◦ πU |Q(k) = πV |Q(k) follows, as (y1, . . . , yn) are étale coordinates on V near πV (Q) and
Φ ◦ πU |Q = πV |Q. This proves (c), and Proposition 4.3.

4.2. Proof of Theorem 4.2 for C-schemes. Let U, V, f, g,X, Y and Φ : X(3) → Y (3) be as in
Theorem 4.2. Pick x ∈ X, and apply Proposition 4.3 with k = 2. This gives a smooth C-scheme
T and étale morphisms πU : T → U , πV : T → V with e := f ◦ πU = g ◦ πV : T → C and
Q := Crit(e), such that πU |Q(2) : Q(2) → X(2) is an étale open neighbourhood of x in X(2), and

Φ ◦ πU |Q(2) = πV |Q(2) : Q(2) −→ Y (2).

Actually Proposition 4.3 proves more, that πU |Q(2) : Q(2) → X(2) is an isomorphism with a

Zariski open set x ∈ X̃(2) ⊆ X(2), but we will not use this.
Thus, we can choose

{
(T a, πaU , π

a
V , e

a, Qa) : a ∈ A
}

, where A is an indexing set, such that

T a, πaU , π
a
V , e

a, Qa satisfy the conditions above for each a ∈ A, and
{
πaU |Qa : Qa → X

}
a∈A is an

étale open cover of X. Then for each a ∈ A, by Definition 2.15 we have isomorphisms

PVπaU : PV•Ta,ea −→ πaU |∗Qa
(
PV•U,f

)
, PVπaV : PV•Ta,ea −→ πaV |∗Qa

(
PV•V,f

)
.

Noting that πaV |Qa = Φ|X ◦ πaU |Qa , we may define an isomorphism

Ωa = PVπaV ◦ PV
−1
πaU

: πaU |∗Qa
(
PV•U,f

)
−→ πaU |∗Qa

(
Φ|∗X

(
PV•V,f

))
. (4.16)

For a, b ∈ A, define T ab = T a ×πaU ,U,πbU T
b to be the C-scheme fibre product, so that T ab is

a smooth C-scheme and the projections ΠTa : T ab → T a, ΠT b : T ab → T b are étale. Define
eab = ea ◦ΠTa : T a → C. Then

eab = ea ◦ΠTa = g ◦ πaV ◦ΠTa = f ◦ πaU ◦ΠTa

= f ◦ πbU ◦ΠT b = g ◦ πbV ◦ΠT b = eb ◦ΠT b .
(4.17)

Write Qab = Crit(eab). Then ΠTa |Qab : Qab → Qa and ΠT b |Qab : Qab → Qb are étale. Now

πaU ◦ΠTa = πbU ◦ΠT b and Φ ◦ πaU |Qa (2) = πaV |Qa (2) imply that(
πaV ◦ΠTa

)
|Qab (2) = πaV |Qa (2) ◦ΠTa |Qab (2)

= Φ|X(2) ◦ πaU |Qa (2) ◦ΠTa |Qab (2) = Φ|X(2) ◦ (πaU ◦ΠTa)|Qab (2)

= Φ|X(2) ◦ (πbU ◦ΠT b)|Qab (2) = Φ|X(2) ◦ πaU |Qb (2) ◦ΠT b |Qab (2)

= πaV |Qb (2) ◦ΠT b |Qab (2) =
(
πbV ◦ΠT b

)
|Qab (2) .

(4.18)

Hence (πaV ◦ ΠTa)|Qab = (πbV ◦ ΠT b)|Qab . Moreover, as TQab (2)|Qab = T (T ab)|Qab , we see that

d(πaV ◦ΠTa)|Qab = d(πbV ◦ΠT b)|Qab , so that

d(πbV ◦ΠT b)|−1
Qab
◦ d(πaV ◦ΠTa)|Qab = id : T (T ab)|Qab −→ T (T ab)|Qab .

So det
(
d(πbV ◦ΠT b)|−1

Qab
◦ d(πaV ◦ΠTa)|Qab

)
= 1. Thus, applying Theorem 3.1 with T ab, V , Qab,

πaV ◦ΠTa , πbV ◦ΠT b , e
ab, f in place of V , W , X, Φ, Ψ, f , g gives

PVπaV ◦ΠTa = PVπbV ◦ΠTb : PV•Tab,eab −→ (πaV ◦ΠTa)|∗Qab
(
PV•V,g

)
. (4.19)
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Now

ΠTa |∗Qab(Ω
a) = ΠTa |∗Qab(PVπaV ) ◦ΠTa |∗Qab(PVπaU )−1

=
[
ΠTa |∗Qab(PVπaV ) ◦ PVΠTa

]
◦
[
ΠTa |∗Qab(PVπaU ) ◦ PVΠTa

]−1

= PVπaV ◦ΠTa ◦ PV
−1
πaU◦ΠTa

= PVπbV ◦ΠTb ◦ PV
−1
πbU◦ΠTb

=
[
ΠT b |∗Qab(PVπaV ) ◦ PVΠ

Tb

]
◦
[
ΠT b |∗Qab(PVπbU ) ◦ PVΠ

Tb

]−1

= ΠT b |∗Qab(PVπbV ) ◦ΠT b |∗Qab(PVπbU )−1 = ΠT b |∗Qab(Ω
b),

(4.20)

using (4.16) in the first and seventh steps, (2.18) in the third and fifth, and (4.19) and

πaU ◦ΠTa = πbU ◦ΠT b

in the fourth. Therefore Theorem 2.7(i) applied to the étale open cover
{
πaU |Qa : Qa → X

}
a∈A

of X shows that there is a unique isomorphism ΩΦ in (4.2) with πaU |∗Qa(ΩΦ) = Ωa for all a ∈ A.

Suppose
{

(T a, . . . , Qa) : a ∈ A
}

and
{

(T ′a, . . . , Q′a) : a ∈ A′
}

are alternative choices above,
yielding morphisms ΩΦ and Ω′Φ in (4.2). By running the same construction using the family{

(T a, . . . , Qa) : a ∈ A
}
q
{

(T ′a, . . . , Q′a) : a ∈ A′
}

, we get a third morphism Ω′′Φ in (4.2), such
that πaU |∗Qa(ΩΦ) = Ωa = πaU |∗Qa(Ω′′Φ) for a ∈ A, giving ΩΦ = Ω′′Φ, and

π′aU |∗Q′a(Ω′Φ) = Ω′a = π′aU |∗Q′a(Ω′′Φ)

for a ∈ A′, which forces Ω′Φ = Ω′′Φ. Thus ΩΦ = Ω′Φ, so ΩΦ is independent of the choice of{
(T a, . . . , Qa) : a ∈ A

}
above.

Let T, πU , πV , e,Q be as in Theorem 4.2. Applying the argument above using the family{
(T a, . . . , Qa) : a ∈ A

}
q
{

(T, πU , πV , e,Q)
}

shows that ΩΦ satisfies

πU |∗Q(ΩΦ) = PVπV ◦ PV
−1
πU ,

by (4.16). Thus (4.3) holds.
To show that (4.4)–(4.5) commute, we can combine equations (2.16)–(2.17), (4.16) and

πaU |∗Qa(ΩΦ) = Ωa to show that πaU |∗Qa applied to (4.4)–(4.5) commute in Perv(Qa) for each

a ∈ A, so (4.4)–(4.5) commute by Theorem 2.7(i).
Suppose there exists an étale morphism Ξ : U → V with f = g ◦ Ξ : U → C and

Ξ|X(3) = Φ : X(3) → Y (3).

Then as we have to prove, we have

PVΞ = id∗X(ΩΦ) ◦ PV idU = ΩΦ ◦ idPV•U,f = ΩΦ,

where in the first step we use (4.3) with T = U , πU = idU , πV = Ξ, e = f , and Q = X, and in
the second we use PV idU = idPV•U,f from Definition 2.15.

Suppose W is another smooth C-scheme, h : W → C is regular, Z = Crit(h), and
Ψ : Y (3) → Z(3) is an isomorphism with h(3)◦Ψ = g(3). Let x ∈ X, and set y = Φ(x) ∈ Y . Propo-
sition 4.3 for x,Φ gives a smooth T and étale πU : T → U , πV : T → V with e := f ◦πU = g ◦πV
and Q := Crit(e), such that πU |Q(2) : Q(2) → X(2) is an étale open neighbourhood of x,

and Φ ◦ πU |Q(2) = πV |Q(2) . Proposition 4.3 for y,Ψ gives smooth T̃ and étale π̃V : T̃ → V ,

π̃W : T̃ →W with ẽ := g ◦ π̃V = h ◦ π̃W and Q̃ := Crit(ẽ), such that π̃V |Q̃(2) : Q̃(2) → Y (2) is an
étale open neighbourhood of y, and Ψ ◦ π̃V |Q̃(2) = π̃W |Q̃(2) .

Define T̂ = T ×πV ,V,π̃V T̃ with projections ΠT : T̂ → T , ΠT̃ : T̂ → T̃ . Then T̂ is smooth

and ΠT ,ΠT̃ are étale, as T, T̃ , V are smooth and πV , π̃V étale. Define π̂U = πU ◦ ΠT : T̂ → U



126 C. BRAV, V. BUSSI, D. DUPONT, D. JOYCE, AND B. SZENDRŐI

and π̂W = π̃W ◦ ΠT̃ : T̂ → W . Then π̂U , π̂W are étale. Set ê = f ◦ π̂U : T̂ → C, and write
Q̂ = Crit(ê). Then

ê=f ◦π̂U =f ◦πU ◦ΠT =g◦πV ◦ΠT =g◦π̃V ◦ΠT̃ =h◦π̃W ◦ΠT̃ =h◦π̂W .

Also π̂U |Q̂(2) : Q̂(2) → X(2) is an étale open neighbourhood of x, and

(Ψ ◦ Φ) ◦ π̂U |Q̂(2) = Ψ ◦ Φ ◦ πU |Q(2) ◦ΠT |Q̂(2) = Ψ ◦ πV |Q(2) ◦ΠT |Q̂(2)

= Ψ ◦ π̃V |Q̃(2) ◦ΠT̃ |Q̂(2) = π̃W |Q̃(2) ◦ΠT̃ |Q̂(2) = π̂W |Q̂(2) .

Thus we may apply (4.3) for ΩΦ with T, πU , πV , . . . , Q, and for ΩΨ with T̃ , π̃V , π̃W , . . . , Q̃,

and for ΩΨ◦Φ with T̂ , π̂U , π̂W , . . . , Q̂. This yields

πU |∗Q(ΩΦ) = PVπV ◦ PV
−1
πU , π̃V |∗Q̃(ΩΨ) = PV π̃W ◦ PV

−1
π̃V
,

π̂U |∗Q̂(ΩΨ◦Φ) = PV π̂W ◦ PV
−1
π̂U
.

(4.21)

Now

π̂U |∗Q̂
(
ΩΨ◦Φ

)
= PV π̂W ◦ PV

−1
π̂U

= PV π̃W ◦ΠT̃ ◦ PV
−1
πU◦ΠT

=
[
ΠT̃ |∗Q̂(PV π̃W ) ◦ PVΠT̃

]
◦
[
ΠT |∗Q̂(PVπU ) ◦ PVΠT

]−1

= ΠT̃ |∗Q̂
(
PV π̃W ◦PV

−1
π̃V

)
◦ΠT̃ |∗Q̂(PV π̃V )◦PVΠT̃ ◦ PV

−1
ΠT
◦ΠT |∗Q̂(PV−1

πU )

= ΠT̃ |∗Q̂
(
π̃V |∗Q̃(ΩΨ)

)
◦ PV π̃V ◦ΠT̃ ◦ PV

−1
ΠT
◦ΠT |∗Q̂(PV−1

πU )

=
[
π̃V |Q̃ ◦ΠT̃ |Q̂

]∗
(ΩΨ) ◦ PVπV ◦ΠT ◦ PV

−1
ΠT
◦ΠT |∗Q̂(PV−1

πU )

=
[
πV |Q◦ΠT |Q̂

]∗
(ΩΨ)◦ΠT |∗Q̂(PVπV )◦PVΠT ◦PV

−1
ΠT
◦ΠT |∗Q̂(PV−1

πU )

=
[
Φ|X ◦ πU |Q ◦ΠT |Q̂

]∗
(ΩΨ) ◦ΠT |∗Q̂(PVπV ◦ PV

−1
πU )

= (πU ◦ΠT )|∗
Q̂

(Φ|∗X(ΩΨ)) ◦ΠT |∗Q̂(πU |∗Q(ΩΦ)) = π̂U |∗Q̂
(
Φ|∗X(ΩΨ) ◦ ΩΦ

)
,

using (4.21) in the first, fifth and ninth steps, (2.18) in the third, fifth and seventh steps,
πV ◦ΠT = π̃V ◦ΠT̃ in the sixth and seventh, and Φ ◦ πU |Q = πV |Q in the eighth. Thus, for each

x ∈ X, we have constructed an étale open neighbourhood π̂U |Q̂ : Q̂→ X such that π̂U |∗̂Q applied

to (4.6) holds. Equation (4.6) follows by Theorem 2.7(i). Finally, if U = V , f = g, X = Y and
Φ = idX(3) then ΩidX(3) = idPV•U,f follows by taking Ξ = idU in the fourth paragraph of the

theorem. This proves Theorem 4.2 for perverse sheaves on C-schemes.

4.3. D-modules and mixed Hodge modules. Once again, the proof of Proposition 4.3 is
completely algebraic, so applies in the other contexts of §2.6–§2.10. Theorem 4.2 then follows
for our other contexts from that and the general framework of §2.5.

5. Stabilizing vanishing cycles

To set up notation for our main result, which is Theorem 5.4 below, we need the following
theorem, which is proved in Joyce [23, Prop.s 2.22, 2.23 & 2.25].

Theorem 5.1 (Joyce [23]). Let U, V be smooth C-schemes, f : U → C, g : V → C be regular,
and X = Crit(f), Y = Crit(g) as C-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding
of C-schemes with f = g ◦ Φ : U → C, and suppose Φ|X : X → V ⊇ Y is an isomorphism
Φ|X : X → Y . Then:

(i) For each x ∈ X ⊆ U there exist smooth C-schemes U ′, V ′, a point x′ ∈ U ′ and morphisms
ι : U ′ → U,  : V ′ → V, Φ′ : U ′ → V ′, α : V ′ → U and β : V ′ → Cn, where n = dimV − dimU,
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such that ι(x′) = x, and ι,  and α × β : V → U × Cn are étale, and the following diagram
commutes

U

Φ
��

U ′
ι

oo
ι

//

Φ′��

U

idU ×0 ��
V V ′

oo α×β // U × Cn,
(5.1)

and g ◦  = f ◦ α + (z2
1 + · · · + z2

n) ◦ β : V ′ → C. Thus, setting f ′ := f ◦ ι : U ′ → C,
g′ := g ◦  : V ′ → C, X ′ := Crit(f ′) ⊆ U ′, and Y ′ := Crit(g′) ⊆ V ′, then f ′ = g′ ◦ Φ′ : U ′ → C,
and Φ′|X′ : X ′ → Y ′, ι|X′ : X ′ → X, |Y ′ : Y ′ → Y, α|Y ′ : Y ′ → X are étale. We also require
that Φ ◦ α|Y ′ = |Y ′ : Y ′ → Y .

(ii) Write NUV for the normal bundle of Φ(U) in V, regarded as an algebraic vector bundle on
U in the exact sequence of vector bundles on U :

0 // TU
dΦ // Φ∗(TU)

ΠUV // NUV
// 0. (5.2)

Then there exists a unique qUV ∈ H0(S2N∗UV |X) which is a nondegenerate quadratic form
on NUV |X , such that whenever U ′, V ′, ι, ,Φ′, β, n,X ′ are as in (i), writing 〈dz1, . . . ,dzn〉U ′
for the trivial vector bundle on U ′ with basis dz1, . . . ,dzn, there is a natural isomorphism

β̂ : 〈dz1, . . . ,dzn〉U ′ → ι∗(N∗UV ) making the following diagram commute:

ι∗(N∗UV )
ι∗(Π∗UV )

// ι∗ ◦ Φ∗(T ∗V ) = Φ′∗ ◦ ∗(T ∗V )

Φ′∗(d∗)
��

〈dz1, . . . ,dzn〉U ′ = Φ′∗ ◦ β∗(T ∗0 C
n)

Φ′∗(dβ∗) //
β̂

OO

Φ′∗(T ∗V ′),

(5.3)

and ι|∗X′(qUV ) = (S2β̂)|X′(dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn). (5.4)

(iii) Now suppose W is another smooth C-scheme, h : W → C is regular, Z = Crit(h) as a
C-subscheme of W, and Ψ : V ↪→W is a closed embedding of C-schemes with g = h◦Ψ : V → C
and Ψ|Y : Y → Z an isomorphism. Define NVW , qVW and NUW , qUW using Ψ : V ↪→ W and
Ψ ◦Φ : U ↪→W as in (ii) above. Then there are unique morphisms γUVW , δUVW which make the
following diagram of vector bundles on U commute, with straight lines exact:

0
~~ 0ss

0

$$

TU
dΦ

ss
d(Ψ◦Φ)

zz

Φ∗(TV )
ΠUV

ss
Φ∗(dΨ)
$$0 ++

NUVss
γUVW ++

(Ψ ◦ Φ)∗(TW )

Φ∗(ΠVW )

$$

ΠUWzz
0

NUW

zz δUVW ++
0 Φ∗(NVW ) ++  0

0.

(5.5)

Restricting to X gives an exact sequence of vector bundles:

0 // NUV |X
γUVW |X // NUW |X

δUVW |X // Φ|∗X(NVW ) // 0. (5.6)
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Then there is a natural isomorphism of vector bundles on X

NUW |X ∼= NUV |X ⊕ Φ|∗X(NVW ), (5.7)

compatible with the exact sequence (5.6), which identifies

qUW ∼= qUV ⊕ Φ|∗X(qVW )⊕ 0 under the splitting

S2NUW |∗X ∼= S2NUV |∗X ⊕ Φ|∗X
(
S2N∗VW |Y

)
⊕
(
N∗UV |X ⊗ Φ|∗X(N∗VW )

)
.

(5.8)

(iv) Analogues of (i)–(iii) hold for complex analytic spaces, replacing the smooth C-schemes
U, V,W by complex manifolds, the regular functions f, g, h by holomorphic functions, the C-
schemes X,Y, Z by complex analytic spaces, the étale open sets ι : U ′ → U,  : V ′ → V by
complex analytic open sets U ′ ⊆ U, V ′ ⊆ V, and with α × β : V ′ → U × Cn a biholomorphism
with a complex analytic open neighbourhood of (x, 0) in U × Cn.

Following [23, Def.s 2.26 & 2.34], we define:

Definition 5.2. Let U, V be smooth C-schemes, f : U → C, g : V → C be regular, and
X = Crit(f), Y = Crit(g) as C-subschemes of U, V . Suppose Φ : U ↪→ V is a closed embedding
of C-schemes with f = g ◦Φ : U → C and Φ|X : X → Y an isomorphism. Then Theorem 5.1(ii)
defines the normal bundle NUV of U in V , a vector bundle on U of rank n = dimV −dimU , and
a nondegenerate quadratic form qUV ∈ H0(S2N∗UV |X). Taking top exterior powers in the dual
of (5.2) gives an isomorphism of line bundles on U

ρUV : KU ⊗ ΛnN∗UV
∼=−→Φ∗(KV ),

where KU ,KV are the canonical bundles of U, V .
Write Xred for the reduced C-subscheme of X. As qUV is a nondegenerate quadratic form on

NVW |X , its determinant det(qVW ) is a nonzero section of (ΛnN∗VW )|⊗
2

X . Define an isomorphism
of line bundles on Xred:

JΦ = ρ⊗
2

UV ◦
(
idK2

U |Xred
⊗det(qUV )|Xred

)
: K⊗

2

U

∣∣
Xred

∼=−→Φ|∗Xred

(
K⊗

2

V

)
. (5.9)

Since principal Z/2Z-bundles π : P → X in the sense of Definition 2.9 are an (étale or complex
analytic) topological notion, and Xred and X have the same topological space (even in the étale
or complex analytic topology), principal Z/2Z-bundles on Xred and on X are equivalent. Define
πΦ : PΦ → X to be the principal Z/2Z-bundle which parametrizes square roots of JΦ on Xred.
That is, (étale or complex analytic) local sections sα : X → PΦ of PΦ correspond to local
isomorphisms α : KU |Xred → Φ|∗Xred(KV ) on Xred with α⊗ α = JΦ.

Now suppose W is another smooth C-scheme, h : W → C is regular, Z = Crit(h) as a C-
subscheme of W , and Ψ : V ↪→ W is a closed embedding of C-schemes with g = h ◦Ψ : V → C
and Ψ|Y : Y → Z an isomorphism. Then Theorem 5.1(iii) applies, and from (5.7)–(5.8) we can
deduce that

JΨ◦Φ = Φ|∗Xred(JΨ) ◦ JΦ : K⊗
2

U

∣∣
Xred

∼=−→ (Ψ ◦ Φ)|∗Xred

(
K⊗

2

W

)
= Φ|∗Xred

[
Ψ|∗Y red

(
K⊗

2

W

)]
.

(5.10)

For the principal Z/2Z-bundles πΦ : PΦ → X, πΨ : PΨ → Y , πΨ◦Φ : PΨ◦Φ → X, equation (5.10)
implies that there is a canonical isomorphism

ΞΨ,Φ : PΨ◦Φ
∼=−→Φ|∗X(PΨ)⊗Z/2Z PΦ. (5.11)

It is also easy to see that these ΞΨ,Φ have an associativity property under triple compositions,
that is, given another smooth C-scheme T , regular e : T → C with Q := Crit(e), and Υ : T ↪→ U
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a closed embedding with e = f ◦Υ : T → C and Υ|Q : Q→ X an isomorphism, then(
id(Φ◦Υ)|∗Q(PΨ) ⊗ ΞΦ,Υ

)
◦ ΞΨ,Φ◦Υ =

(
Υ|∗Q(ΞΨ,Φ)⊗ idPΥ

)
◦ ΞΨ◦Φ,Υ :

PΨ◦Φ◦Υ −→ (Φ ◦Υ)|∗Q(PΨ)⊗Z/2Z Υ|∗Q(PΦ)⊗Z/2Z PΥ.
(5.12)

Analogues of all the above also work for complex manifolds and complex analytic spaces, as
in Theorem 5.1(v).

The reason for restricting to Xred above is the following [23, Prop. 2.27], whose proof uses
the fact that Xred is reduced in an essential way.

Lemma 5.3. In Definition 5.2, the isomorphism JΦ in (5.9) and the principal Z/2Z-bundle
πΦ : PΦ → X depend only on U, V,X, Y, f, g and Φ|X : X → Y . That is, they do not depend on
Φ : U → V apart from Φ|X : X → Y .

Using the notation of Definition 5.2, we can state our main result:

Theorem 5.4. (a) Let U, V be smooth C-schemes, f : U → C, g : V → C be regular, and
X = Crit(f), Y = Crit(g) as C-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding
of C-schemes with f = g ◦ Φ : U → C, and suppose Φ|X : X → V ⊇ Y is an isomorphism
Φ|X : X → Y . Then there is a natural isomorphism of perverse sheaves on X :

ΘΦ : PV•U,f −→ Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ, (5.13)

where PV•U,f ,PV
•
V,g are the perverse sheaves of vanishing cycles from §2.4, and PΦ the principal

Z/2Z-bundle from Definition 5.2, and if Q• is a perverse sheaf on X then Q• ⊗Z/2Z PΦ is
as in Definition 2.9. Also the following diagrams commute, where σU,f , σV,g, τU,f , τV,g are as
in (2.6)–(2.7):

PV•U,f ΘΦ

//

σU,f
��

Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ

Φ|∗X(σV,g)⊗id
// Φ|∗X

(
DY (PV•V,g)

)
⊗Z/2ZPΦ

∼=
��

DX(PV•U,f ) DX
(
Φ|∗X(PV•V,g)⊗Z/2ZPΦ

)
,

DX(ΘΦ)oo

(5.14)

PV•U,f ΘΦ

//

τU,f
��

Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ

Φ|∗X(τV,g)⊗id
��

PV•U,f
ΘΦ // Φ|∗X

(
PV•V,g

)
⊗Z/2Z PΦ.

(5.15)

If U = V, f = g, Φ = idU then πΦ : PΦ → X is trivial, and ΘΦ corresponds to idPV•U,f under

the natural isomorphism id∗X(PV•U,f )⊗Z/2Z PΦ
∼= PV•U,f .

(b) The isomorphism ΘΦ in (5.13) depends only on U, V,X, Y, f, g and Φ|X : X → Y . That is,

if Φ̃ : U → V is an alternative choice for Φ with Φ|X = Φ̃|X : X → Y, then ΘΦ = ΘΦ̃, noting
that PΦ = PΦ̃ by Lemma 5.3.

(c) Now suppose W is another smooth C-scheme, h : W → C is a regular function,
Z = Crit(h), and Ψ : V ↪→ W is a closed embedding with g = h ◦Ψ : V → C and Ψ|Y : Y → Z
an isomorphism. Then Definition 5.2 defines principal Z/2Z-bundles

πΦ : PΦ −→ X, πΨ : PΨ −→ Y, πΨ◦Φ : PΨ◦Φ −→ X
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and an isomorphism ΞΨ,Φ in (5.11), and part (a) defines isomorphisms of perverse sheaves
ΘΦ,ΘΨ◦Φ on X and ΘΨ on Y . Then the following commutes in Perv(X) :

PV•U,f ΘΨ◦Φ

//

ΘΦ
��

(Ψ ◦ Φ)|∗X
(
PV•W,h

)
⊗Z/2Z PΨ◦Φ

id⊗ΞΨ,Φ
��

Φ|∗X
(
PV•V,g

)
⊗Z/2ZPΦ

Φ|∗X(ΘΨ)⊗id // Φ|∗X ◦Ψ|∗Y
(
PV•W,h

)
⊗Z/2ZΦ|∗X(PΨ)⊗Z/2ZPΦ.

(5.16)

(d) The analogues of (a)–(c) also hold for D-modules on C-schemes, for perverse sheaves and
D-modules on complex analytic spaces, and for mixed Hodge modules on C-schemes and complex
analytic spaces, as in §2.6–§2.10.

Example 5.5. Let U = C \ {0} and V = (C \ {0}) × C as smooth C-schemes, define regular
f : U → C and g : V → C by f(x) = 0 and g(x, y) = xky2 for fixed k ∈ Z, and define
Φ : U → V by Φ : x 7→ (x, 0), so that f = g ◦ Φ : U → C. Then X := Crit(f) = U , and
Y := Crit(g) =

{
(x, y) ∈ V : kxk−1y2 = 2xky = 0

}
=
{

(x, y) ∈ V : y = 0
}

, as x 6= 0. Thus
Φ|X : X → Y is an isomorphism.

In Theorem 5.1(ii), N∗UV is the trivial line bundle on U with basis dy, and qUV = xkdy ⊗ dy.
In Definition 5.2, KU |X and Φ|∗X(KV ) are the trivial line bundles on X = Xred = U with bases
dx and dx ∧ dy, and JΦ in (5.9) maps

JΦ : dx⊗ dx 7−→ xk (dx ∧ dy)⊗ (dx ∧ dy).

The principal Z/2Z-bundle πΦ : PΦ → X in Definition 5.2 parametrizes α : KU |X → Φ|∗X(KV )
with α⊗ α = JΦ. Writing α : dx 7→ p dx∧ dy for p a local function on X = C \ {0}, α⊗ α = JΦ

reduces to p2 = xk. Thus, PΦ parametrizes (étale local) square roots p of xk : C\{0} → C\{0}.
If k is even then xk has a global square root p = xk/2, so the principal Z/2Z-bundle PΦ has

a global section, and is trivial. If k is odd then xk has no global square root on X = C \ {0}, so
PΦ has no global section, and is nontrivial.

Thus, Theorem 5.4 implies that if k is even then PV•V,g ∼= AY [1] is the constant perverse
sheaf on Y , but if k is odd then PV•V,g is the twist of AY [1] by the unique nontrivial principal
Z/2Z-bundle on Y ∼= C \ {0}.

5.1. Theorem 5.4(a): the isomorphism ΘΦ. Let U, V, f, g,X, Y,Φ be as in Theorem 5.4(a),
and use the notation NUV , qUV from Theorem 5.1(ii) and JΦ, PΦ from Definition 5.2. We will
show that there exists a unique perverse sheaf morphism ΘΦ in (5.13) which is characterized by
the property that whenever U ′, V ′, ι, ,Φ′, α, β,X ′, Y ′, f ′, g′ are as in Theorem 5.1(i) then the
following diagram of isomorphisms in Perv(X ′) commutes:

ι|∗X′
(
PV•U,f

)
ι|∗
X′ (γ)

//

ι|∗
X′ (ΘΦ)

��

ι|∗X′ ◦ (idX ×0)∗
(
PV•U,f

L

�PV•Cn,z2
1+···+z2

n

)
ι|∗
X′◦(idX ×0)∗(T S−1

U,f,Cn,z21+···+z2n
)

��

ι|∗X′ ◦ Φ|∗X
(
PV•V,g

)
⊗Z/2Z ι|∗X′(PΦ)

δ

��

ι|∗X′ ◦(idX×0)∗
(
PV•U×Cn,f�z2

1+···+z2
n

)
=

Φ′|∗X′ ◦(α×β)|∗Y ′
(
PV•U×Cn,f�z2

1+···+z2
n

)
Φ′|∗

X′ (PV
−1
α×β)

��ι|∗X′ ◦ Φ|∗X
(
PV•V,g

)
=

Φ′|∗X′ ◦ |∗Y ′
(
PV•V,g

) Φ′|∗X′
(
PV•V ′,g′

)
,

Φ′|∗
X′ (PV)oo

(5.17)

where T SU,f,Cn,z2
1+···+z2

n
is as in (2.8), and γ, δ are defined as follows:
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(A) γ : PV•U,f → (idX ×0)∗
(
PV•U,f

L

�PV•Cn,z2
1+···+z2

n

)
in Perv(X) comes from the isomor-

phism PV•Cn,z2
1+···+z2

n

∼= A{0} in (2.12).

(B) The principal Z/2Z-bundle PΦ → X comes from (NUV |Xred , qUV |Xred), as the bun-
dle of square roots of det(qUV |Xred). Thus, the pullback ι|∗X′(PΦ) → X ′ comes from(
ι|∗X′red(NUV ), ι|∗X′red(qUV )

)
. Now Theorem 5.1(ii) defines

β̂|X′red : 〈dz1, . . . ,dzn〉X′red

∼=−→ ι|∗X′red(N∗UV )

identifying
∑n
j=1 dz2

j with ι|∗X′red(qUV ). Thus, β̂|X′red induces a trivialization of

ι|∗X′(PΦ) −→ X ′.

Then δ : ι|∗X′ ◦ Φ|∗X
(
PV•V,g

)
⊗Z/2Z ι|∗X′(PΦ) → ι|∗X′ ◦ Φ|∗X

(
PV•V,g

)
in Perv(X ′) comes

from this trivialization of the principal Z/2Z-bundle ι|∗X′(PΦ)→ X ′.

Since Theorem 5.1(i) holds for each x ∈ X, we may choose a family{
(U ′a, V

′
a, ιa, a,Φ

′
a, αa, βa, f

′
a, g
′
a, X

′
a, Y

′
a) : a ∈ A

}
such that U ′a, V

′
a, . . . , Y

′
a satisfy Theorem 5.1(i) for each a ∈ A, and

{
ι′a|X′a : X ′a → X

}
a∈A is an

étale open cover of X. For each a ∈ A, define an isomorphism

Θa : ιa|∗X′a
(
PV•U,f

)
−→ ιa|∗X′a ◦ Φ|∗X

(
PV•V,g

)
to make the following diagram of isomorphisms commute:

ιa|∗X′a
(
PV•U,f

)
ιa|∗X′a (γ)

//

Θa

��

ιa|∗X′a ◦ (idX ×0)∗
(
PV•U,f

L

�PV•Cn,z2
1+···+z2

n

)
ιa|∗X′a◦(idX ×0)∗(T S−1

U,f,Cn,z21+···+z2n
)

��
ιa|∗X′a ◦ Φ|∗X

(
PV•V,g

)
⊗Z/2Zιa|∗X′a(PΦ)

δa

��

ιa|∗X′a ◦(idX×0)∗
(
PV•U×Cn,f�z2

1+···+z2
n

)
=

Φ′a|∗X′a ◦(αa×βa)|∗Y ′a
(
PV•U×Cn,f�z2

1+···+z2
n

)
Φ′a|
∗
X′a

(PV−1
αa×βa

)

��ιa|∗X′a ◦ Φ|∗X
(
PV•V,g

)
=

Φ′a|∗X′a ◦ a|
∗
Y ′a

(
PV•V,g

) Φ′a|∗X′a
(
PV•V ′a,g′a

)
,

Φ′a|
∗
X′a

(PVa )
oo

(5.18)

where γ is as in (A), and δa defined as in (B) above.
For a, b ∈ A, define

U ′ab = U ′a ×ιa,U,ιb U ′b and V ′ab = V ′a ×a,V,b V ′b ,

with projections ΠU ′a
: U ′ab → U ′a, ΠU ′b

: U ′ab → U ′b, ΠV ′a
: V ′ab → V ′a, ΠV ′b

: V ′ab → V ′b . Then
U ′ab, V

′
ab are smooth and ΠU ′a

,ΠU ′b
,ΠV ′a

,ΠV ′b
étale. The universal property of V ′a ×a,V,b V ′b gives

a unique morphism Φ′ab : U ′ab → V ′ab with

ΠV ′a
◦ Φ′ab = Φ′a ◦ΠU ′a

and ΠV ′b
◦ Φ′ab = Φ′b ◦ΠU ′b

. (5.19)
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Set f ′ab = f ′a ◦ ΠU ′a
: U ′ab → C, g′ab = g′a ◦ ΠV ′a

: V ′ab → C and X ′ab = Crit(f ′ab) ⊆ U ′ab,
Y ′ab = Crit(g′ab) ⊆ V ′ab. As for (4.17) we have

f ′ab = f ′a ◦ΠU ′a
= f ◦ ιa ◦ΠU ′a

= f ◦ ιb ◦ΠU ′b
= f ′b ◦ΠU ′b

,

g′ab = g′a ◦ΠV ′a
= g ◦ a ◦ΠV ′a

= g ◦ b ◦ΠV ′b
= g′b ◦ΠV ′b

= (f � z2
1 + · · ·+ z2

n) ◦ (αa × βa) ◦ΠV ′a

= (f � z2
1 + · · ·+ z2

n) ◦ (αb × βb) ◦ΠV ′b
.

Apply Theorem 3.1 with V ′ab, U×Cn, (αa×βa)◦ΠV ′a
, (αb×βb)◦ΠV ′b

, g′ab, and f�z2
1 + · · ·+z2

n

in place of V,W,Φ,Ψ, f, g. The analogue of Φ|X = Ψ|X is

(αa × βa) ◦ΠV ′a
|Y ′ab = ((Φ|−1

X ◦ Φ|X ◦ αa)|Y ′a × 0) ◦ΠV ′a
|Y ′ab

= (Φ|−1
X ◦ a ◦ΠV ′a

|Y ′ab)× 0 = (Φ|−1
X ◦ b ◦ΠV ′b

|Y ′ab)× 0

= ((Φ|−1
X ◦ Φ|X ◦ αb)|Y ′b × 0) ◦ΠV ′b

|Y ′ab = (αb × βb) ◦ΠV ′b
|Y ′ab ,

(5.20)

using Φ|X : X → Y an isomorphism and βa|Y ′a = 0 in the first step, a|Y ′a = Φ|X ◦ αa|Y ′a in the
second, a ◦ ΠV ′a

= b ◦ ΠV ′b
in the third, b|Y ′b = Φ|X ◦ αb|Y ′b in the fourth, and βb|Y ′b = 0 in the

fifth. Thus Theorem 3.1 gives

PV(αa×βa)◦ΠV ′a
=det

[
d
(
(αb×βb)◦ΠV ′b

)
|−1
Y ′red
ab

◦d
(
(αa×βa)◦ΠV ′a

)
|Y ′red
ab

]
·

PV(αb×βb)◦ΠV ′b
: PVV ′ab,g′ab−→(αa×βa)◦ΠV ′a

|∗Y ′ab
(
PV•U×Cn,f�z2

1+···+z2
n

) (5.21)

in Perv(Y ′ab), where det[· · · ] maps Y ′red
ab → {±1}.

Consider the morphisms

ΠU ′a
|∗X′ab(δa),ΠU ′b

|∗X′ab(δb) : (Φ◦ιa◦ΠU ′a
)|∗X′ab

(
PV•V,g

)
⊗Z/2Z(ιa◦ΠU ′a

)|∗X′ab(PΦ)

−→ (Φ ◦ ιa ◦ΠU ′a
)|∗X′ab

(
PV•V,g

)
. (5.22)

As in (B) above, these are defined using two different trivializations of the principal Z/2Z-bundle
(ιa ◦ΠU ′a

)|∗X′ab(PΦ)→ X ′ab, defined using

ΠU ′a
|∗X′red

ab
(β̂a),ΠU ′b

|∗X′red
ab

(β̂b) : 〈dz1, . . . ,dzn〉X′red
ab
−→ (ιa ◦ΠU ′a

)|∗X′red
ab

(
N∗UV

)
,

which are isomorphisms of vector bundles on X ′red
ab identifying the nondegenerate quadratic forms∑n

j=1 dz2
j on 〈dz1, . . . ,dzn〉X′red

ab
and (ιa ◦ΠU ′a

)|∗
X′red
ab

(qUV ) on (ιa ◦ΠU ′a
)|∗
X′red
ab

(
N∗UV

)
, for β̂a, β̂b as

in (5.3). Thus we see that

ΠU ′a
|∗X′ab(δa) = det

[
ΠU ′a
|∗X′red

ab
(β̂a) ◦ΠU ′b

|∗X′red
ab

(β̂b)
−1
]
·ΠU ′b

|∗X′ab(δb), (5.23)

where det[· · · ] maps X ′red
ab → {±1} since both isomorphisms in (5.22) identify the same nonde-

generate quadratic forms.
We have an exact sequence of vector bundles on X ′red

ab :

0 // TU ′ab|X′red
ab

// Φ′ab|∗X′red
ab

(TV ′ab)
// (ιa◦ΠU ′a

)|∗
X′red
ab

(NUV ) // 0.

Choosing a local splitting of this sequence, we may identify

Φ′ab|∗X′red
ab

[
d
(
(αb × βb) ◦ΠV ′b

)
|−1
Y ′red
ab

◦ d
(
(αa × βa) ◦ΠV ′a

)
|Y ′red
ab

]
∼=

(
idTU ′ab|X′red

ab

∗
0

(
ΠU ′a
|∗
X′red
ab

(β̂a) ◦ΠU ′b
|∗
X′red
ab

(β̂b)
−1
)∗
)
.
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Therefore

Φ′ab|∗X′red
ab

(
det
[
d
(
(αb × βb) ◦ΠV ′b

)
|−1
Y ′red
ab

◦ d
(
(αa × βa) ◦ΠV ′a

)
|Y ′red
ab

])
= det

[
ΠU ′a
|∗X′red

ab
(β̂a) ◦ΠU ′b

|∗X′red
ab

(β̂b)
−1
]

: X ′red
ab −→ {±1}.

(5.24)

Now

ΠU ′a
|∗X′ab(Θa) = ΠU ′a

|∗X′ab(δ
−1
a ) ◦ (Φ′a ◦ΠU ′a

)|∗X′ab(PVa) ◦ (Φ′a ◦ΠU ′a
)|∗X′ab(PV

−1
αa×βa)

◦ ((idX ×0) ◦ ιa ◦ΠU ′a
)|∗X′ab(T S

−1
U,f,Cn,Σjz2

j
) ◦ (ιa ◦ΠU ′a

)|∗X′ab(γ)

= ΠU ′a
|∗X′ab(δ

−1
a ) ◦ (ΠV ′a

◦ Φ′ab)|∗X′ab(PVa) ◦ Φ′ab|∗X′ab(PVΠV ′a
) ◦ Φ′ab|∗X′ab(PV

−1
ΠV ′a

)

◦(ΠV ′a
◦Φ′ab)|∗X′ab(PV

−1
αa×βa)◦((idX×0)◦ιa◦ΠU ′a

)|∗X′ab(T S
−1
U,f,Cn,Σjz2

j
)◦(ιa◦ΠU ′a

)|∗X′ab(γ)

= ΠU ′a
|∗X′ab(δ

−1
a ) ◦ Φ′ab|∗X′ab(PVa◦ΠV ′a ) ◦ Φ′ab|∗X′ab(PV

−1
(αa×βa)◦ΠV ′a

)

◦ ((idX ×0) ◦ ιa ◦ΠU ′a
)|∗X′ab(T S

−1
U,f,Cn,Σjz2

j
) ◦ (ιa ◦ΠU ′a

)|∗X′ab(γ)

= det
[
ΠU ′a |

∗
X′red
ab

(β̂a) ◦ΠU ′b
|∗X′red

ab
(β̂b)

−1
]−1 ·

Φ′ab|∗X′red
ab

(
det
[
d
(
(αb × βb) ◦ΠV ′b

)
|−1
Y ′red
ab

◦ d
(
(αa × βa) ◦ΠV ′a

)
|Y ′red
ab

])
·

ΠU ′b
|∗X′ab(δ

−1
b ) ◦ Φ′ab|∗X′ab(PVb◦ΠV ′b ) ◦ Φ′ab|∗X′ab(PV

−1
(αb×βb)◦ΠV ′b

)

◦ ((idX ×0) ◦ ιb ◦ΠU ′b
)|∗X′ab(T S

−1
U,f,Cn,Σjz2

j
) ◦ (ιb ◦ΠU ′b

)|∗X′ab(γ)

= ΠU ′b
|∗X′ab(δ

−1
b ) ◦ (ΠV ′b

◦ Φ′ab)|∗X′ab(PVb) ◦ Φ′ab|∗X′ab(PVΠV ′b
) ◦ Φ′ab|∗X′ab(PV

−1
ΠV ′b

)

◦(ΠV ′b
◦Φ′ab)|∗X′ab(PV

−1
αb×βb)◦((idX×0)◦ιb◦ΠU ′b

)|∗X′ab(T S
−1
U,f,Cn,Σjz2

j
)◦(ιb◦ΠU ′b

)|∗X′ab(γ)

= ΠU ′b
|∗X′ab(δ

−1
b ) ◦ (Φ′b ◦ΠU ′b

)|∗X′ab(PVb) ◦ (Φ′b ◦ΠU ′b
)|∗X′ab(PV

−1
αb×βb)

◦ ((idX ×0) ◦ ιb ◦ΠU ′b
)|∗X′ab(T S

−1
U,f,Cn,Σjz2

j
) ◦ (ιb ◦ΠU ′b

)|∗X′ab(γ) = ΠU ′b
|∗X′ab(Θb),

(5.25)

using (5.18) in the first and seventh steps, (5.19) in the second and sixth, (2.18) in the third,
(5.21), (5.23), ιa ◦ ΠU ′a

= ιb ◦ ΠU ′b
and a ◦ ΠV ′a

= b ◦ ΠV ′b
in the fourth, and (2.18) and (5.24)

in the fifth. Therefore Theorem 2.7(i) applied to the étale open cover
{
ιa|X′a : X ′a → X

}
a∈A of

X shows that there is a unique isomorphism ΘΦ in (5.13) with ιa|∗X′a(ΘΦ) = Θa for all a ∈ A.

Suppose
{

(U ′a, . . . , Y
′
a) : a ∈ A

}
and

{
(Ũ ′a, . . . , Ỹ

′
a) : a ∈ Ã

}
are alternative choices above,

yielding morphisms ΘΦ and Θ̃Φ in (5.13). By running the same construction using the family{
(U ′a, . . . , Y

′
a) : a ∈ A

}
q
{

(Ũ ′a, . . . , Ỹ
′
a) : a ∈ Ã

}
, we can show that ΘΦ = Θ̃Φ, so ΘΦ is

independent of the choice of
{

(U ′a, . . . , Y
′
a) : a ∈ A

}
above. Let U ′, V ′, ι, ,Φ′, α, β,X ′, Y ′, f ′, g′

be as in Theorem 5.1(i). Constructing ΘΦ using
{

(U ′a, . . . , Y
′
a) : a ∈ A

}
q
{

(U ′, . . . , Y ′)
}

, we see
from (5.18) that (5.17) commutes. This completes the construction of ΘΦ.

To see that (5.14)–(5.15) commute, in the situation of (5.17) we show that Verdier duality and
monodromy operators commute with each morphism in (5.17). Going clockwise from the top left
corner, ι|∗X′(γ) is compatible with Verdier duality and monodromy because of the commutative
diagrams

A{0}

Γ��

∼=
// D{0}

(
A{0}

)
PV•Cn,Σjz2

j

σCn,Σjz2j // D{0}
(
PV•Cn,Σjz2

j

)
,

D(Γ)
OO

A{0}

Γ��
id

// A{0}
Γ ��

PV•Cn,Σjz2
j

τCn,Σjz2j // PV•Cn,Σjz2
j
,
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where Γ : A{0} → PV•Cn,Σjz2
j

is the isomorphism used to define γ in (A) above. Equations

(2.9)–(2.10) imply that ι|∗X′ ◦ (idX ×0)∗(T S−1
U,f,Cn,Σjz2

j
) is compatible with Verdier duality and

monodromy, and (2.16)–(2.17) imply that Φ′|∗X′(PV),Φ′|∗X′(PV
−1
α×β) are. Also δ is compatible

with Verdier duality and monodromy, since these do not affect the trivialization of ι|∗X′(PΦ)→ X ′

used to define δ in (B) above.
Thus by (5.17) we see that ι|∗X′(ΘΦ) is compatible with Verdier duality and monodromy, that

is, ι|∗X′ applied to (5.14)–(5.15) commute. Since we can form an étale open cover of X by such
ι|X′ : X ′ → X, Theorem 2.7(i) implies that (5.14)–(5.15) commute.

Finally, if U = V , f = g and Φ = idU then JΦ = id : K2
U |Xred → K2

U |Xred in (5.9), which has a
natural square root α = id : KU |Xred → KU |Xred , so πΦ : PΦ → X is trivial in Definition 5.2. In
(5.17) we may put U ′ = V ′ = U , ι =  = α = idU , n = 0, β = 0, X ′ = Y ′ = X, f ′ = g′ = f , and
then each morphism in (5.17) is essentially the identity on PV•U,f , so ΘΦ = id∗X(ΘΦ) = idPV•U,f .

This proves Theorem 5.4(a).

5.2. Theorem 5.4(b): ΘΦ depends only on Φ|X : X → Y . Suppose Φ, Φ̃ : U → V are
alternative choices in Theorem 5.4(a) with

Φ|X = Φ̃|X : X −→ Y,

so that PΦ = PΦ̃ by Lemma 5.3. Fix x ∈ X, let a 6= b be labels, and let U ′a, V ′a, ιa, a, Φ′a, αa,
βa, X ′a, Y ′a, f ′a, g′a be as in Theorem 5.1(i) for x,Φ and U ′b, V

′
b , . . . , g

′
b as in Theorem 5.1(i) for

x, Φ̃. As in §5.1, define Θa,Θb and U ′ab, V
′
ab, ΠU ′a

, ΠU ′b
, ΠV ′a

, ΠV ′b
, Φ′ab, f

′
ab, g

′
ab, X

′
ab, Y

′
ab, and

follow the proof in §5.1 from (5.19) as far as (5.25).
This proof does not actually need U ′a, . . . , ga,Θa and U ′b, . . . , gb,Θb to be defined using the

same Φ : U → V , it only uses in (5.20)–(5.22) that Φ|X : X → Y is the same for U ′a, . . . ,Θa and
U ′b, . . . ,Θb. Thus we can apply it with U ′a, . . . ,Θa defined using Φ, and U ′b, . . . ,Θb defined using

Φ̃. Hence

(ιa ◦ΠU ′a
)|∗X′ab(ΘΦ) = ΠU ′a

|∗X′ab(Θa) = ΠU ′b
|∗X′ab(Θb)

= (ιb ◦ΠU ′b
)|∗X′ab(ΘΦ̃) = (ιa ◦ΠU ′a

)|∗X′ab(ΘΦ̃),

using ιa|∗X′a(ΘΦ) = Θa in the first step, (5.25) in the second, ιb|∗X′b(ΘΦ̃) = Θb in the third, and

ιa ◦ ΠU ′a
= ιb ◦ ΠU ′b

in the fourth. As such ιa ◦ ΠU ′a
|X′ab : X ′ab → X form an étale open cover of

X, this implies that ΘΦ = ΘΦ̃ by Theorem 2.7(i).

5.3. Theorem 5.4(c): composition of the ΘΦ. Let U , V , W , f , g, h, X, Y , Z, Φ, Ψ be as in
Theorem 5.4(c). Let x ∈ X, and set y = Φ(x) ∈ Y . Apply Theorem 5.1(i) to U, V, f, g,X, Y,Φ, x
to get C-schemes U ′, V ′, a point x′ ∈ U ′, morphisms ι : U ′ → U,  : V ′ → V, Φ′ : U ′ → V ′,
α : V ′ → U and β : V ′ → Cm where m = dimV − dimU , and f ′ := f ◦ ι : U ′ → C,
g′ := g ◦  : V ′ → C, X ′ := Crit(f ′) ⊆ U ′, Y ′ := Crit(g′) ⊆ V ′, satisfying conditions including
ι, , α× β étale, (5.1) commutes, and ι(x′) = x.

Similarly, apply Theorem 5.1(i) to V,W, g, h, Y, Z,Ψ, y to get C-schemes Ṽ , W̃ , a point ỹ ∈ Ṽ ,

morphisms ι̃ : Ṽ → V, ̃ : W̃ → W, Ψ̃ : Ṽ → W̃ , α̃ : W̃ → V and β̃ : W̃ → Cn where
n = dimW − dimV , and g̃ := g ◦ ι̃ : Ṽ → C, h̃ := h ◦ ̃ : W̃ → C, Ỹ := Crit(g̃) ⊆ Ṽ ,

Z̃ := Crit(h̃) ⊆ W̃ , satisfying conditions.

Define Û = U ′×Φ◦ι,V,ι̃ Ṽ and Ŵ = V ′×,V,α̃ W̃ , with projections ΠU ′ : Û → U ′, ΠṼ : Û → Ṽ ,

ΠV ′ : Ŵ → V ′, ΠW̃ : Ŵ → W̃ . As x′ ∈ U ′ and ỹ ∈ Ṽ with Φ ◦ ι(x′) = y = ι̃(ỹ), there exists

x̂ ∈ Û with ΠU ′(x̂) = x′ and ΠṼ (x̂) = ỹ. Set f̂ := f ′ ◦ΠU ′ : Û → C and ĥ := h̃ ◦ΠW̃ : Ŵ → C,
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and X̂ := Crit(f̂) ⊆ Û , Ẑ := Crit(ĥ) ⊆ Ŵ . The morphisms Φ′ ◦ΠU ′ : Û → V ′, Ψ̃ ◦ΠṼ : Û → W̃
satisfy

 ◦ (Φ′ ◦ΠU ′) = Φ ◦ ι ◦ΠU ′ = ι̃ ◦ΠṼ = α̃ ◦ (Ψ̃ ◦ΠṼ ).

Hence there exists a unique morphism ̂Ψ ◦ Φ : Û → Ŵ such that ΠV ′ ◦ ̂Ψ ◦ Φ = Φ′ ◦ΠU ′ and

ΠW̃ ◦ ̂Ψ ◦ Φ = Ψ̃ ◦ΠṼ . Then the following diagram

U

Ψ◦Φ
��

Û
ι̂=ι◦ΠU′

oo
ι̂=ι◦ΠU′

//

̂Ψ◦Φ ��

U

idU ×0×0
��

W Ŵ
̂=̃◦ΠW̃oo α̂×β̂=(α◦ΠV ′ )×(β◦ΠV ′ )×(β̃◦ΠW̃ ) // U×(Cm×Cn)

is the analogue of (5.1) for U,W, f, h,X,Z,Ψ ◦Φ, x, and the conclusions of Theorem 5.1(i) hold.

Thus (5.17) holds for ΘΦ using U ′, V ′, X ′, Y ′ι, ,Φ′, α, β,m, and for ΘΨ using Ṽ , W̃ , Ỹ , Z̃, ι̃, ̃,

Ψ̃, α̃, β̃, n, and for ΘΨ◦Φ using Û , Ŵ , X̂, Ẑ, ι̂, ̂, ̂Ψ ◦ Φ, α̂, β̂,m+ n.
We have a commutative diagram in Perv(X̂):

ι̂|∗
X̂
◦(Ψ◦Φ)|∗X

(
PV•W,h

)
ι̂|∗
X̂
◦(idX×0)∗

(
PV•U×Cm+n,f�Σjy2

j+Σjz2
j

)
̂Ψ◦Φ|∗

X̂
(PV ̂◦PV−1

α̂×β̂
)

oo

ι̂|∗
X̂
◦Φ|∗X ◦(idY×0)∗

(
PV•V×Cn,g�Σjz2

j

)
(Ψ′◦ΠṼ )|∗

X̂
(PV ̃◦PV−1

α̃×β̃
)

OO

ι̂|∗
X̂
◦ (idX ×0)∗

(
PV•U,f

L

�PV•Cm+n,Σjy2
j+Σjz2

j

)

ι̂|∗
X̂
◦(idX ×0)∗

(T S−1

U,f,Cm+n,Σjy
2
j

+Σjz
2
j

)

OO

ι̂|∗
X̂
◦ (idX×0× 0)∗(

PV•U×Cm,f�Σjy2
jL

�PV•Cn,Σjz2
j

)(Φ′◦ΠU′ )|
∗
X̂

(PV◦PV−1
α×β)

L

� id

xx

ι̂|∗
X̂
◦(idX ×0)∗

(T S−1

U×Cm,f�Σjy
2
j
,Cn,Σjz2j

)

AA

ι̂|∗
X̂
◦ (idX×0× 0)∗(

PV•U,f
L

�PV•Cm,Σjy2
jL

�PV•Cn,Σjz2
j

)ι̂|∗
X̂
◦(idX ×0)∗

(T S−1

U,f,Cm,Σjy2
j

)

L

� id

oo

ι̂|∗
X̂
◦(idX ×0)∗

(id
L

�
T S−1

Cm,Σjy2
j ,

Cn,Σjz2
j

)

88

ι̂|∗
X̂
◦Φ|∗X ◦(idY×0)∗(
PV•V,g

L

�PV•Cn,Σjz2
j

)

ι̂|∗
X̂
◦Φ|∗X◦(idY ×0)∗(T S−1

V,g,Cn,Σjz2j
)

OO

ι̂|∗
X̂

(
PV•U,f

)
ι̂|∗
X̂

(γ̂)

OO

ff

ι̂|∗
X̂

(γ)

��

ι̂|∗
X̂
◦Φ|∗X

(
PV•V,g

)
ι̂|∗
X̂
◦Φ|∗X(γ̃)

OO

ι̂|∗
X̂
◦(idX×0)∗(

PV•U×Cm,f�Σjy2
j

)(Φ′◦ΠU′ )|
∗
X̂

(PV◦PV−1
α×β)

oo

VV

ι̂|∗
X̂
◦ (idX×0)∗(

PV•U,f
L

�PV•Cm,Σjy2
j

)
,

ι̂|∗
X̂
◦(idX ×0)∗

(T S−1

U,f,Cm,Σjy2
j

)

oo

(5.26)

where the top right quadrilateral commutes because of associativity in the Thom–Sebastiani
Theorem for PV•V,f , Theorem 2.13.
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Also we have

(Ψ◦Φ◦ ι̂)|∗
X̂

(
PV•W,h

)
(Ψ◦Φ◦ ι̂)|∗

X̂

(
PV•W,h

)
⊗Z/2Z ι̂|∗X̂(PΨ◦Φ)

δ̂

oo

id⊗ι̂|∗
X̂

(ΞΨ,Φ)
��

(Ψ◦Φ◦ ι̂)|∗
X̂

(
PV•W,h

)
⊗Z/2Z(ι̃◦ΠṼ )|∗

X̂
(PΨ)

ΠṼ |∗X̂(δ̃)

OO

(Ψ◦Φ◦ ι̂)|∗
X̂

(
PV•W,h

)
⊗Z/2Z(ι̃◦ΠṼ )|∗

X̂
(PΨ)⊗Z/2Z ι̂|∗X̂(PΦ)

(Φ◦ι̂)|∗
X̂

(Θ−1
Ψ )⊗id

��
(Φ◦ ι̂)|∗

X̂

(
PV•V,g

)(Φ◦ι̂)|∗
X̂

(ΘΨ)

OO

(Φ◦ ι̂)|∗
X̂

(
PV•V,g

)
⊗Z/2Z ι̂|∗X̂(PΦ),

ΠU′ |
∗
X̂

(δ)
oo

(5.27)

which commutes because the trivializations of ι|X′(PΦ), ι̃|X̃(PΨ), ι̂|X̂(PΨ◦Φ) used to define δ, δ̃, δ̂
are compatible with ΞΨ,Φ.

Combining (5.26) and (5.27) with ΠU ′ |∗X̂ applied to (5.17) for ΘΦ, and ΠṼ |∗X̂ applied to (5.17)

for ΘΨ, and (5.17) for ΘΨ◦Φ, we can show that the following diagram commutes in Perv(X̂):

ι̂|∗
X̂

(
PV•U,f

)
ι̂|∗
X̂

(ΘΨ◦Φ)
//

ι̂|∗
X̂

(ΘΦ)

��

(Ψ◦Φ◦ ι̂)|∗
X̂

(
PV•W,h

)
⊗Z/2Z ι̂|∗X̂(PΨ◦Φ)

id⊗ι̂|∗
X̂

(ΞΨ,Φ)

��

(Φ◦ ι̂)|∗
X̂

(
PV•V,g

)
⊗Z/2Z ι̂|∗X̂(PΦ)

(Φ◦ι̂)|∗
X̂

(ΘΨ)⊗id
// (Ψ◦Φ◦ ι̂)|∗

X̂

(
PV•W,h

)
⊗Z/2Z(ι̃◦ΠṼ )|∗

X̂
(PΨ)⊗Z/2Z ι̂|∗X̂(PΦ),

which is ι̂|∗
X̂

applied to (5.16). Since such ι̂|X̂ : X̂ → X form an étale cover of X, equation (5.16)

commutes by Theorem 2.7(i). This proves Theorem 5.4(c).

5.4. D-modules and mixed Hodge modules. By Theorem 5.1(iv),(v), the earlier parts of
that result hold for our other contexts in §2.6–§2.10. Once again, the proofs of Theorem 5.4(a)–
(c) then carry over to the other contexts using the general framework of §2.5, now also making
use of property (vii).

6. Perverse sheaves on oriented d-critical loci

6.1. Background material on d-critical loci. Here are some of the main definitions and
results on d-critical loci, from Joyce [23, Th.s 2.1, 2.20, 2.28 & Def.s 2.5, 2.18, 2.31]. For the
algebraic case we work with C-schemes.

Theorem 6.1. Let X be a C-scheme. Then there exists a sheaf SX of C-vector spaces on
X, unique up to canonical isomorphism, which is uniquely characterized by the following two
properties:

(i) Suppose R ⊆ X is Zariski open, U is a smooth C-scheme, and i : R ↪→ U is a closed
embedding. Then we have an exact sequence of sheaves of C-vector spaces on R :

0 // IR,U // i−1(OU )
i] // OX |R // 0,

where OX ,OU are the sheaves of regular functions on X,U, and i] is the morphism of
sheaves of C-algebras on R induced by i.

There is an exact sequence of sheaves of C-vector spaces on R :

0 // SX |R
ιR,U // i

−1(OU )

I2
R,U

d // i−1(T ∗U)

IR,U · i−1(T ∗U)
,
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where d maps f + I2
R,U 7→ df + IR,U · i−1(T ∗U).

(ii) Let R ⊆ S ⊆ X be Zariski open, U, V be smooth C-schemes, i : R ↪→ U, j : S ↪→ V
closed embeddings, and Φ : U → V a morphism with Φ ◦ i = j|R : R → V . Then the
following diagram of sheaves on R commutes:

0 // SX |R

id

��

ιS,V |R // j
−1(OV )

I2
S,V

∣∣∣
R

i−1(Φ])

��

d // j−1(T ∗V )

IS,V · j−1(T ∗V )

∣∣∣
R

i−1(dΦ)

��

0 // SX |R
ιR,U // i

−1(OU )

I2
R,U

d // i−1(T ∗U)

IR,U · i−1(T ∗U)
.

(6.1)

Here Φ : U → V induces Φ] : Φ−1(OV )→ OU on U, so we have

i−1(Φ]) : j−1(OV )|R = i−1 ◦ Φ−1(OV ) −→ i−1(OU ), (6.2)

a morphism of sheaves of C-algebras on R.
As Φ ◦ i = j|R, equation (6.2) maps IS,V |R → IR,U , and so maps I2

S,V |R → I2
R,U .

Thus (6.2) induces the morphism in the second column of (6.1).
Similarly, dΦ : Φ−1(T ∗V )→ T ∗U induces the third column of (6.1).

There is a natural decomposition SX = S0
X ⊕CX , where CX is the constant sheaf on X with

fibre C, and S0
X ⊂ SX is the kernel of the composition

SX
βX // OX

i]X // OXred ,

with Xred the reduced C-subscheme of X, and iX : Xred ↪→ X the inclusion.
The analogue of all the above also holds for complex analytic spaces.

Definition 6.2. An algebraic d-critical locus over C is a pair (X, s), where X is a C-scheme,
and s ∈ H0(S0

X) for S0
X as in Theorem 6.1, satisfying the condition that for each x ∈ X, there

exists a Zariski open neighbourhood R of x in X, a smooth C-scheme U , a regular function
f : U → A1 = C, and a closed embedding i : R ↪→ U , such that i(R) = Crit(f) as C-subschemes
of U , and ιR,U (s|R) = i−1(f) + I2

R,U .

Similarly, a complex analytic d-critical locus is a pair (X, s), where X is a complex analytic
space, and s ∈ H0(S0

X) for SX as in Theorem 6.1, such that each x ∈ X has an open neighbour-
hood R ⊂ X with a closed embedding i : R ↪→ U into a complex manifold U and a holomorphic
function f : U → C, such that i(R) = Crit(f), and ιR,U (s|R) = i−1(f) + I2

R,U .

In both cases we call the quadruple (R,U, f, i) a critical chart on (X, s).
Let (X, s) be a d-critical locus (either algebraic or complex analytic), and (R,U, f, i) be a

critical chart on (X, s). Let U ′ ⊆ U be (Zariski) open, and set

R′ = i−1(U ′) ⊆ R, i′ = i|R′ : R′ ↪→ U ′, and f ′ = f |U ′ .

Then (R′, U ′, f ′, i′) is also a critical chart on (X, s), and we call it a subchart of (R,U, f, i). As
a shorthand we write (R′, U ′, f ′, i′) ⊆ (R,U, f, i).

Let (R,U, f, i), (S, V, g, j) be critical charts on (X, s), with R ⊆ S ⊆ X. An embedding of
(R,U, f, i) in (S, V, g, j) is a locally closed embedding Φ : U ↪→ V such that Φ ◦ i = j|R and
f = g ◦ Φ. As a shorthand we write Φ : (R,U, f, i) ↪→ (S, V, g, j).

If Φ : (R,U, f, i) ↪→ (S, V, g, j) and Ψ : (S, V, g, j) ↪→ (T,W, h, k) are embeddings, then
Ψ ◦ Φ : (R,U, f, i) ↪→ (T,W, h, k) is also an embedding.
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Theorem 6.3. Let (X, s) be a d-critical locus (either algebraic or complex analytic), and let
(R,U, f, i), (S, V, g, j) be critical charts on (X, s).

Then, for each x ∈ R ∩ S ⊆ X, there exist subcharts (R′, U ′, f ′, i′) ⊆ (R,U, f, i), and
(S′, V ′, g′, j′) ⊆ (S, V, g, j) with x ∈ R′ ∩ S′ ⊆ X, a critical chart (T,W, h, k) on (X, s), and
embeddings Φ : (R′, U ′, f ′, i′) ↪→ (T,W, h, k), and Ψ : (S′, V ′, g′, j′) ↪→ (T,W, h, k).

Theorem 6.4. Let (X, s) be a d-critical locus (either algebraic or complex analytic), and
Xred ⊆ X the associated reduced C-scheme or reduced complex analytic space. Then there exists
an (algebraic or holomorphic) line bundle KX,s on Xred which we call the canonical bundle
of (X, s), which is natural up to canonical isomorphism, and is characterized by the following
properties:

(i) If (R,U, f, i) is a critical chart on (X, s), there is a natural isomorphism

ιR,U,f,i : KX,s|Rred −→ i∗
(
K⊗

2

U

)
|Rred , (6.3)

where KU = ΛdimUT ∗U is the canonical bundle of U in the usual sense.
(ii) Let Φ : (R,U, f, i) ↪→ (S, V, g, j) be an embedding of critical charts on (X, s). Then (5.9)

defines an isomorphism of line bundles on Crit(f)red :

JΦ : K⊗
2

U |Crit(f)red

∼=−→Φ|∗Crit(f)red

(
K⊗

2

V

)
.

Since i : R→ Crit(f) is an isomorphism with Φ ◦ i = j|R, this gives

i|∗Rred(JΦ) : i|∗Rred

(
K⊗

2

U

) ∼=−→ j|∗Rred

(
K⊗

2

V

)
,

and we must have

ιS,V,g,j |Rred = i|∗Rred(JΦ) ◦ ιR,U,f,i : KX,s|Rred −→ j∗
(
K⊗

2

V

)∣∣
Rred . (6.4)

Definition 6.5. Let (X, s) be a d-critical locus (either algebraic or complex analytic), and KX,s

its canonical bundle from Theorem 6.4. An orientation on (X, s) is a choice of square root line

bundle K
1/2
X,s for KX,s on Xred. That is, an orientation is an (algebraic or holomorphic) line

bundle L on Xred, together with an isomorphism L⊗
2

= L⊗ L ∼= KX,s. A d-critical locus with
an orientation will be called an oriented d-critical locus.

In [9, Th. 6.6] we show that algebraic d-critical loci are classical truncations of objects in de-
rived algebraic geometry known as −1-shifted symplectic derived schemes, introduced by Pantev,
Toën, Vaquié and Vezzosi [42].

Theorem 6.6 (Bussi, Brav and Joyce [9]). Suppose (X, ω) is a −1-shifted symplectic derived
scheme in the sense of Pantev et al. [42] over C, and let X = t0(X) be the associated clas-
sical C-scheme of X. Then X extends naturally to an algebraic d-critical locus (X, s). The
canonical bundle KX,s from Theorem 6.4 is naturally isomorphic to the determinant line bundle
det(LX)|Xred of the cotangent complex LX of X.

Now Pantev et al. [42] show that derived moduli schemes of coherent sheaves, or complexes of
coherent sheaves, on a Calabi–Yau 3-fold Y have −1-shifted symplectic structures. Using this,
in [9, Cor. 6.7] we deduce:

Corollary 6.7. Suppose Y is a Calabi–Yau 3-fold over C, and M is a classical moduli C-scheme
of simple coherent sheaves in coh(Y ), or simple complexes of coherent sheaves in Db coh(Y ), with
(symmetric) obstruction theory φ : E• → LM as in Behrend [2], Thomas [52], or Huybrechts and
Thomas [22]. Then M extends naturally to an algebraic d-critical locus (M, s). The canonical
bundle KM,s from Theorem 6.4 is naturally isomorphic to det(E•)|Mred .
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Here we call F ∈ coh(Y ) simple if Hom(F, F ) = C, and we call F • ∈ Db coh(Y ) simple
if Hom(F •, F •) = C and Ext<0(F •, F •) = 0. Thus, d-critical loci will have applications in
Donaldson–Thomas theory for Calabi–Yau 3-folds [24, 32, 33, 52]. Orientations on (M, s) are
closely related to orientation data in the work of Kontsevich and Soibelman [32,33].

Pantev et al. [42] also show that derived intersections L∩M of algebraic Lagrangians L,M in
an algebraic symplectic manifold (S, ω) have −1-shifted symplectic structures, so that Theorem
6.6 gives them the structure of algebraic d-critical loci. Bussi [10, §3] will prove a complex
analytic version of this:

Theorem 6.8 (Bussi [10]). Suppose (S, ω) is a complex symplectic manifold, and L,M are
complex Lagrangian submanifolds in S. Then the intersection X = L∩M, as a complex analytic
subspace of S, extends naturally to a complex analytic d-critical locus (X, s). The canonical
bundle KX,s from Theorem 6.4 is naturally isomorphic to KL|Xred ⊗KM |Xred .

6.2. The main result, and applications. Here is our main result, which will be proved
in §6.3–§6.4.

Theorem 6.9. Let (X, s) be an oriented algebraic d-critical locus over C, with orientation K
1/2
X,s.

Then for any well-behaved base ring A, such as Z,Q or C, there exists a perverse sheaf P •X,s
in Perv(X) over A, which is natural up to canonical isomorphism, and Verdier duality and
monodromy isomorphisms

ΣX,s : P •X,s −→ DX
(
P •X,s

)
, TX,s : P •X,s −→ P •X,s, (6.5)

which are characterized by the following properties:

(i) If (R,U, f, i) is a critical chart on (X, s), there is a natural isomorphism

ωR,U,f,i : P •X,s|R −→ i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i, (6.6)

where πR,U,f,i : QR,U,f,i → R is the principal Z/2Z-bundle parametrizing local isomor-

phisms α : K
1/2
X,s → i∗(KU )|Rred with α⊗α = ιR,U,f,i, for ιR,U,f,i as in (6.3). Furthermore

the following commute in Perv(R) :

P •X,s|R

ΣX,s|R

��

ωR,U,f,i
// i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i

i∗(σU,f )⊗idQR,U,f,i

��

DR
(
P •X,s|R

) i∗
(
DCrit(f)(PV•U,f )

)
⊗Z/2Z QR,U,f,i

∼= DR
(
i∗(PV•U,f )⊗Z/2Z QR,U,f,i

)
,

DR(ωR,U,f,i)oo

(6.7)

P •X,s|R

TX,s|R
��

ωR,U,f,i
// i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i

i∗(τU,f )⊗idQR,U,f,i

��
P •X,s|R

ωR,U,f,i // i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i.

(6.8)

(ii) Let Φ : (R,U, f, i) ↪→ (S, V, g, j) be an embedding of critical charts on (X, s). Then there
is a natural isomorphism of principal Z/2Z-bundles

ΛΦ : QS,V,g,j |R
∼=−→ i∗(PΦ)⊗Z/2Z QR,U,f,i (6.9)

on R, for PΦ as in Definition 5.2, defined as follows: local isomorphisms

α : K
1/2
X,s|Rred −→ i∗(KU )|Rred , β : K

1/2
X,s|Rred −→ j∗(KV )|Rred ,

and γ : i∗(KU )|Rred −→ j∗(KV )|Rred
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with α ⊗ α = ιR,U,f,i, β ⊗ β = ιS,V,g,j |Rred , γ ⊗ γ = i|∗Rred(JΦ) correspond to local
sections sα : R → QR,U,f,i, sβ : R → QS,V,g,j |R, sγ : R → i∗(PΦ). Equation (6.4)
shows that β = γ ◦ α is a possible solution for β, and we define ΛΦ in (6.9) such that
ΛΦ(sβ) = sγ ⊗Z/2Z sα if and only if β = γ ◦ α.

Then the following diagram commutes in Perv(R), for ΘΦ as in (5.13):

P •X,s|R ωR,U,f,i
//

ωS,V,g,j |R
��

i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i

i∗(ΘΦ)⊗idQR,U,f,i

��
j∗
(
PV•V,g

)
|R

⊗Z/2ZQS,V,g,j |R

idj∗(PV•
V,g

)⊗ΛΦ

// i
∗(Φ∗(PV•V,g)⊗Z/2Z PΦ

)
⊗Z/2ZQR,U,f,i.

(6.10)

The analogues of all the above also hold for D-modules on oriented algebraic d-critical loci
over C, for perverse sheaves and D-modules on oriented complex analytic d-critical loci, and for
mixed Hodge modules on oriented algebraic d-critical loci over C and oriented complex analytic
d-critical loci, as in §2.6–§2.10.

Remark 6.10. This sheaf-theoretic result is compatible with the motivic result of Bussi, Joyce
and Meinhardt in [11]. Given (X, s) an oriented algebraic d-critical locus over C, [11] proves the

existence of a natural motivic element MFX,s ∈ M
µ̂

X in a version of the relative Grothendieck
ring of varieties over X, equivariant with respect to suitable actions of the group µ̂ of all roots
of unity (for detailed definitions, see [11]). Since the mixed Hodge module realization factorizes

over the additional relation one has to impose in [11] on the Grothendieck group, the ring Mµ̂
X

has a map to K0(MHM(X;Ts)), the K-group of algebraic mixed Hodge modules on X with
a finite order automorphism (note that the Grothendieck group only sees the semisimple part
Ts of the monodromy and not the nilpotent part N). By a Čech-type argument using the
corresponding comparison result of [20, Prop. 3.17], the image of MFX,s in K0(MHM(X;Ts))
agrees with the image of the mixed Hodge module realization of P •X,s, since both sides are Zariski
locally modelled by the same vanishing cycles. Thus, for example, they give the same weight
polynomial for global cohomology with compact support.

From Theorem 6.6, Corollary 6.7 and Theorem 6.8 we deduce:

Corollary 6.11. Let (X, ω) be a −1-shifted symplectic derived scheme over C in the sense of
Pantev et al. [42], and X = t0(X) the associated classical C-scheme. Suppose we are given a
square root det(LX)|1/2X for det(LX)|X . Then we may define P •X,ω ∈ Perv(X), uniquely up to

canonical isomorphism, and isomorphisms ΣX,ω : P •X,ω → DX(P •X,ω), TX,ω : P •X,ω → P •X,ω.
The same applies for D-modules and mixed Hodge modules on X.

Corollary 6.12. Let Y be a Calabi–Yau 3-fold over C, and M a classical moduli C-scheme
of simple coherent sheaves in coh(Y ), or simple complexes of coherent sheaves in Db coh(Y ),
with natural (symmetric) obstruction theory φ : E• → LM as in Behrend [2], Thomas [52],
or Huybrechts and Thomas [22]. Suppose we are given a square root det(E•)1/2 for det(E•).
Then we may define P •M ∈ Perv(M), uniquely up to canonical isomorphism, and isomorphisms
ΣM : P •M → DM(P •M), TM : P •M → P •M.

The same applies for D-modules and mixed Hodge modules on M.

Corollary 6.13. Let (S, ω) be a complex symplectic manifold and L,M complex Lagrangian
submanifolds in S, and write X = L ∩ M, as a complex analytic subspace of S. Suppose

we are given square roots K
1/2
L ,K

1/2
M for KL,KM . Then we may define P •L,M ∈ Perv(X),
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uniquely up to canonical isomorphism, and isomorphisms ΣL,M : P •L,M → DX(P •L,M ), and
TL,M : P •L,M → P •L,M .

The same applies for D-modules and mixed Hodge modules on X.

The next two remarks discuss applications of Corollaries 6.12 and 6.13 to Donaldson–Thomas
theory, and to Lagrangian Floer cohomology.

Remark 6.14. If Y is a Calabi–Yau 3-fold over C and τ a suitable stability condition on coherent
sheaves on Y , the Donaldson–Thomas invariants DTα(τ) are integers which ‘count’ the moduli
schemes Mα

st(τ) of τ -stable coherent sheaves on Y with Chern character α ∈ Heven(Y ;Q),
provided there are no strictly τ -semistable sheaves in class α on Y . They were defined by
Thomas [52], who showed they are unchanged under deformations of Y , following a suggestion
of Donaldson and Thomas [16].

Behrend [2] showed that DTα(τ) may be written as a weighted Euler characteristic
χ(Mα

st(τ), ν), where ν :Mα
st(τ)→ Z is a certain constructible function called the Behrend func-

tion. Joyce and Song [24] extended the definition of DTα(τ) to classes α including τ -semistable
sheaves (with DTα(τ) ∈ Q), and proved a wall-crossing formula for DTα(τ) under change of
stability condition τ . Kontsevich and Soibelman [32] gave a (partly conjectural) motivic gener-
alization of Donaldson–Thomas invariants, also with a wall-crossing formula.

Corollary 6.12 is relevant to the categorification of Donaldson–Thomas theory. As in [2,
§1.2], the perverse sheaf P •Mα

st(τ) has pointwise Euler characteristic χ
(
P •Mα

st(τ)

)
= ν. This

implies that when A is a field, say A = Q, the (compactly-supported) hypercohomologies
H∗
(
P •Mα

st(τ)

)
,H∗c

(
P •Mα

st(τ)

)
from (2.1) satisfy∑

k∈Z
(−1)k dimHk

(
P •Mα

st(τ)

)
=
∑
k∈Z

(−1)k dimHkc
(
P •Mα

st(τ)

)
= χ

(
Mα

st(τ), ν
)

= DTα(τ),

where Hk
(
P •Mα

st(τ)

) ∼= H−kc

(
P •Mα

st(τ)

)∗ by Verdier duality. That is, we have produced a natu-

ral graded Q-vector space H∗
(
P •Mα

st(τ)

)
, thought of as some kind of generalized cohomology of

Mα
st(τ), whose graded dimension is DTα(τ). This gives a new interpretation of the Donaldson–

Thomas invariant DTα(τ).
In fact, as discussed at length in [51, §3], the first natural “refinement” or “quantization”

direction of a Donaldson–Thomas invariant DTα(τ) ∈ Z is not the Poincaré polynomial of this
cohomology, but its weight polynomial

w
(
H∗(P •Mα

st(τ)), t
)
∈ Z

[
t±

1
2

]
,

defined using the mixed Hodge structure on the cohomology of the mixed Hodge module version
of P •Mα

st(τ) (which exists assuming that Mα
st(τ) is projective, for example, see Remark 2.22).

The material above is related to work by other authors. The idea of categorifying Donaldson–
Thomas invariants using perverse sheaves or D-modules is probably first due to Behrend [2], and
for Hilbert schemes Hilbn(Y ) of a Calabi–Yau 3-fold Y is discussed by Dimca and Szendrői [15]
and Behrend, Bryan and Szendrői [3, §3.4], using mixed Hodge modules. Corollary 6.12 answers
a question of Joyce and Song [24, Question 5.7(a)].

As in [24,32] representations of quivers with superpotentials (Q,W ) give 3-Calabi–Yau trian-
gulated categories, and one can define Donaldson–Thomas type invariants DTαQ,W (τ) ‘counting’
such representations, which are simple algebraic ‘toy models’ for Donaldson–Thomas invariants
of Calabi–Yau 3-folds. Kontsevich and Soibelman [33] explain how to categorify these quiver
invariants DTαQ,W (τ), and define an associative multiplication on the categorification to make a

Cohomological Hall Algebra. This paper was motivated by the aim of extending [33] to define
Cohomological Hall Algebras for Calabi–Yau 3-folds.
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The square root det(E•)1/2 required in Corollary 6.12 corresponds roughly to orientation data
in the work of Kontsevich and Soibelman [32, §5], [33].

In a paper written independently of our programme [9,11,23], Kiem and Li [31] have recently
proved an analogue of Corollary 6.12 by complex analytic methods, beginning from Joyce and
Song’s result [24, Th. 5.4], proved using gauge theory, that Mα

st(τ) is locally isomorphic to
Crit(f) as a complex analytic space, for V a complex manifold and f : V → C holomorphic.

Remark 6.15. In the situation of Corollary 6.13, with dimC S = 2n, we claim that there ought
morally to be some kind of approximate comparison

Hk(P •L,M ) ≈ HF k+n(L,M), (6.11)

where HF ∗(L,M) is the Lagrangian Floer cohomology of Fukaya, Oh, Ohta and Ono [18]. We
can compare and contrast the two sides of (6.11) as follows:

(a) H∗(P •L,M ) is defined over any well-behaved base ring A, e.g. A = Z or Q, but HF ∗(L,M)
is defined over a Novikov ring of power series Λnov.

(b) H∗(P •L,M ) has extra structure not visible in HF ∗(L,M), from Verdier duality and mon-
odromy operators ΣL,M ,TL,M , plus the mixed Hodge module version has a mixed Hodge
structure.

(c) H∗(P •L,M ) is defined for arbitrary complex Lagrangians L,M , not necessarily compact

or closed in S, but HF ∗(L,M) is only defined for L,M compact, or at least for L,M
closed and well-behaved at infinity.

(d) To define HF ∗(L,M) one generally assumes L,M intersect transversely, or at least
cleanly. But H∗(P •L,M ) is defined when L∩M is arbitrarily singular, and the construction
is only really interesting for singular L ∩M .

(e) To define HF ∗(L,M) we need L,M to be oriented and spin, to orient moduli spaces
of J-holomorphic curves. When L,M are complex Lagrangians they are automatically

oriented, and spin structures on L,M correspond to choices of square roots K
1/2
L ,K

1/2
M ,

as used in Corollary 6.13.

Some of the authors are working on defining a ‘Fukaya category’ of complex Lagrangians in
a complex symplectic manifold, using H∗(P •L,M ) as morphisms.

We now discuss related work. Nadler and Zaslow [40, 41] show that if X is a real analytic
manifold (for instance, a complex manifold), then the derived category Db

c(X) of constructible
sheaves on X is equivalent to a certain derived Fukaya category DbF(T ∗X) of exact Lagrangians
in T ∗X.

Let L,M be complex Lagrangians in a complex symplectic manifold (S, ω). Regarding
OL,OM as coherent sheaves on S, Behrend and Fantechi [4, Th.s 4.3 & 5.2] claim to construct
canonical C-linear (not OS-linear) differentials

d : ExtiOS (OL,OM ) −→ Exti+1
OS (OL,OM )

with d2 = 0, such that
(
Ext∗OS (OL,OM ),d

)
is a constructible complex. There is a mistake in the

proof of [4, Th. 4.3]. To fix this one should instead work with Ext∗OS (K
1/2
L ,K

1/2
M ) for square roots

K
1/2
L ,K

1/2
M as in Corollary 6.13. Also the proof of the constructibility of

(
Ext∗OS (K

1/2
L ,K

1/2
M ),d

)
in [4, Th. 5.2] depended on a result of Kapranov, which later turned out to be false.

Our P •L,M over A = C should be the natural perverse sheaf on L ∩ M conjectured by

Behrend and Fantechi [4, Conj. 5.16], who also suggest there should be a spectral sequence from(
Ext∗OS (K

1/2
L ,K

1/2
M ),d

)
[n] to P •L,M . (See Sabbah [44, Th. 1.1] for a related result.) In [4, §5.3],

Behrend and Fantechi discuss how to define a ‘Fukaya category’ using their ideas.
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Kashiwara and Schapira [29] develop a theory of deformation quantization modules, or DQ-
modules, on a complex symplectic manifold (S, ω), which roughly may be regarded as symplectic
versions of D-modules. Holonomic DQ-modules D• are supported on (possibly singular) complex

Lagrangians L in S. If L is a smooth, closed, complex Lagrangian in S and K
1/2
L a square root

of KL, D’Agnolo and Schapira [13] show that there exists a simple holonomic DQ-module D•
supported on L.

If D•, E• are simple holonomic DQ-modules on S supported on smooth Lagrangians L,M ,
then Kashiwara and Schapira [28] show that RH om(D•, E•)[n] is a perverse sheaf on S over the
field C((~)), supported on X = L ∩M . Pierre Schapira explained to the authors how to prove
that RH om(D•, E•)[n] ∼= P •L,M , when P •L,M is defined over the base ring A = C((~)).

Now let L,M,N be Lagrangians in S, with square roots K
1/2
L ,K

1/2
M ,K

1/2
N . We have a product

HF k(L,M)×HF l(M,N)→ HF k+l(L,N) from composition of morphisms in DbF(S). So (6.11)
suggests there should be a product

Hk(P •L,M )×Hl(P •M,N ) −→ Hk+l+n(P •L,N ), (6.12)

which would naturally be induced by a morphism in Db
c(S)

µL,M,N : P •L,M
L

⊗P •M,N −→ P •L,N [n]. (6.13)

Observe that the work of Behrend–Fantechi and Kashiwara–Schapira cited above supports
the existence of (6.12)–(6.13): there are natural products

ExtkOS (K
1/2
L ,K

1/2
M )⊗OS ExtlOS (K

1/2
M ,K

1/2
N ) −→ Extk+l

OS (K
1/2
L ,K

1/2
N ),

RH om(D•, E•)
L

⊗RH om(E•,F•) −→ RH om(D•,F•).

But since (6.13) is a morphism of complexes, not of perverse sheaves, Theorem 2.7(i) does not
apply, so we cannot construct µL,M,N by näıvely gluing data on an open cover, as we have been
doing in §3–§6.

6.3. Proof of Theorem 6.9 for C-schemes. Let (X, s) be an oriented algebraic d-critical

locus over C, with orientation K
1/2
X,s. By Definition 6.2 we may choose a family{

(Ra, Ua, fa, ia) : a ∈ A
}

of critical charts (Ra, Ua, fa, ia) on (X, s) such that {Ra : a ∈ A} is a Zariski open cover of the
C-scheme X. Then for each a ∈ A we have a perverse sheaf

i∗a
(
PV•Ua,fa

)
⊗Z/2Z QRa,Ua,fa,ia ∈ Perv(Ra), (6.14)

for QRa,Ua,fa,ia as in Theorem 6.9(i). The idea of the proof is to use Theorem 2.7(ii) to glue the
perverse sheaves (6.14) on the Zariski open cover {Ra : a ∈ A} to get a global perverse sheaf
P •X,s on X. Note that Theorem 2.7(ii) is written for étale open covers, but this immediately
implies the simpler Zariski version.

To do this, for all a, b ∈ A we have to construct isomorphisms

αab :
[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z QRa,Ua,fa,ia

]∣∣
Ra∩Rb

−→[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z QRb,Ub,fb,ib

]∣∣
Ra∩Rb

∈ Perv(Ra ∩Rb),
(6.15)

satisfying αaa = id for all a ∈ A and

αbc|Ra∩Rb∩Rc ◦ αab|Ra∩Rb∩Rc = αac|Ra∩Rb∩Rc for all a, b, c ∈ A. (6.16)

Fix a, b ∈ A. By applying Theorem 6.3 to the critical charts (Ra, Ua, fa, ia), (Rb, Ub, fb, ib)
at each x ∈ Ra ∩ Rb, we can choose an indexing set Dab and for each d ∈ Dab subcharts
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(R′da , U
′d
a , f

′d
a , i
′d
a ) ⊆ (Ra, Ua, fa, ia) and (R′db , U

′d
b , f

′d
b , i
′d
b ) ⊆ (Rb, Ub, fb, ib), a critical chart

(Sd, V d, gd, jd) on (X, s), and embeddings

Φd : (R′da , U
′d
a , f

′d
a , i
′d
a ) ↪→ (Sd, V d, gd, jd) and Ψd : (R′db , U

′d
b , f

′d
b , i
′d
b ) ↪→ (Sd, V d, gd, jd)

such that
{
R′da ∩R′db : d ∈ Dab

}
is a Zariski open cover of Ra ∩Rb.

For each d ∈ Dab, define an isomorphism

αdab :
[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z QRa,Ua,fa,ia

]∣∣
R′da ∩R′db

−→
[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z QRb,Ub,fb,ib

]∣∣
R′da ∩R′db

by the commutative diagram

[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z

QRa,Ua,fa,ia
]∣∣
R′da ∩R′db

αdab

��

ia|∗
R′da ∩R

′d
b

(Θ
Φd

)

⊗ idQRa,Ua,fa,ia

//
jd|∗

R′da ∩R′db

(
PV•V d,gd

)
⊗Z/2Z ia|∗R′da ∩R′db

(
PΦd

)
⊗Z/2Z QRa,Ua,fa,ia |R′da ∩R′db

id⊗Λ
Φd
|−1

R′da ∩R
′d
b

��[
(jd)∗

(
PV•V d,gd

)
⊗Z/2Z QSd,V d,gd,jd

]
|R′da ∩R′db

id⊗Λ
Ψd
|
R′da ∩R

′d
b

��[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z

QRb,Ub,fb,ib
]∣∣
R′da ∩R′db

jd|∗
R′da ∩R′db

(
PV•V d,gd

)
⊗Z/2Z

ib|∗R′da ∩R′db
(
PΨd

)
⊗Z/2ZQRb,Ub,fb,ib |R′da ∩R′db ,

ib|∗R′da ∩R′db
(Θ−1

Ψd
)

⊗ idQRb,Ub,fb,iboo

(6.17)

where ΘΦd ,ΘΨd are as in Theorem 5.4, and ΛΦd ,ΛΨd as in (6.9).
We claim that for all d, e ∈ Dab we have

αdab|R′da ∩R′db ∩R′ea ∩R′eb = αeab|R′da ∩R′db ∩R′ea ∩R′eb . (6.18)

To see this, let x ∈ R′da ∩ R′db ∩ R′ea ∩ R′eb , and apply Theorem 6.3 to the critical charts
(Sd, V d, gd, jd), (Se, V e, ge, je) and point x ∈ Sd ∩ Se. This gives subcharts

(S′d, V ′d, g′d, j′d) ⊆ (Sd, V d, gd, jd) and (S′e, V ′e, g′e, j′e) ⊆ (Se, V e, ge, je)

with x ∈ S′d ∩ S′e, a critical chart (T,W, h, k) on (X, s), and embeddings

Ω : (S′d, V ′d, g′d, j′d) ↪→ (T,W, h, k) and Υ : (S′e, V ′e, g′e, j′e) ↪→ (T,W, h, k).
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Set Rde = R′da ∩R′db ∩R′ea ∩R′eb ∩ S′d ∩ S′e, and consider the diagram:[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z

QRa,Ua,fa,ia
]∣∣
Rde

(id ◦Λ−1

Ω◦Φd
)◦

(i∗a(Θ
Ω◦Φd )⊗id)|

Rde
=(id ◦Λ−1

Υ◦Φe )◦
(i∗a(ΘΥ◦Φe )⊗id)|

Rde

''

(id⊗Λ−1

Φd
)◦(i∗a(Θ

Φd
)⊗id)|

Rde

//

(id⊗Λ−1
Φe

)◦
(i∗a(ΘΦe )⊗id)|

Rde

��

[
(jd)∗

(
PV•V d,gd

)
⊗Z/2Z

QSd,V d,gd,jd
]
|Rde

(i∗b (Θ−1

Ψd
)⊗id)◦

(id⊗Λ
Ψd

)|
Rde

��

(id⊗Λ−1
Ω )◦

((jd)∗(ΘΩ)⊗id)|
Rde

ww[
k∗
(
PV•W,h

)
⊗Z/2Z

QT,W,h,k
]
|Rde

(i∗b (Θ−1

Ω◦Ψd
)⊗id)◦

(id⊗Λ
Ω◦Ψd )|

Rde
=(i∗b (Θ−1

Υ◦Ψe )⊗id)◦
(id⊗ΛΥ◦Ψe )|

Rde

''[
(je)∗

(
PV•V e,ge

)
⊗Z/2Z

QSe,V e,ge,je
]
|Rde

(i∗b (Θ−1
Ψe

)⊗id)◦(id⊗ΛΨe )|
Rde //

(id⊗Λ−1
Υ )◦

((je)∗(ΘΥ)⊗id)|
Rde

77

[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z

QRb,Ub,fb,ib
]∣∣
Rde

.

(6.19)

Here we have given two expressions for the top left diagonal morphism in (6.19). To see these
are equal, set R′dea = R′da ∩ R′ea ∩ S′d ∩ S′e, U ′dea = (Φd)−1(V ′d) ∩ (Φe)−1(V ′e), f ′dea = fa|U ′dea ,

and i′dea = ia|R′dea . Then (R′dea , U ′dea , f ′dea , i′dea ) ⊆ (Ra, Ua, fa, ia) is a subchart and

Ω ◦ Φd|U ′dea ,Υ ◦ Φe|U ′dea : (R′dea , U ′dea , f ′dea , i′dea ) −→ (T,W, h, k)

are embeddings.
As Ω ◦Φd ◦ i′dea = k|R′dea = Υ ◦Φe ◦ i′dea , Theorem 5.4(b) gives ΘΩ◦Φd |ia(R′dea ) = ΘΥ◦Φe |ia(R′dea ),

so that ia|∗Rde(ΘΩ◦Φd) = ia|∗Rde(ΘΥ◦Φe) as Rde ⊆ R′dea . Also ΛΩ◦Φd = ΛΥ◦Φe as these are defined
in Theorem 6.9(ii) using JΩ◦Φd , JΥ◦Φe , which are equal by Lemma 5.3. So the two expressions
are equal, and similarly for the bottom right diagonal morphism.

The upper triangle in (6.19) commutes because (5.16) gives

(id⊗ΞΩ,Φd) ◦ΘΩ◦Φd |ia(Rde) = (Φd|∗ia(Rde)(ΘΩ)⊗ id) ◦ΘΦd |ia(Rde),

and the definitions of ΞΩ,Φd in (5.11) and ΛΩ,ΛΦd ,ΛΩ◦Φd in (6.9) imply that(
ia|∗Rde(ΞΩ,Φd)⊗ id

)
◦ ΛΩ◦Φd |Rde = (id⊗ΛΦd) ◦ ΛΩ|Rde :

QT,W,h,k|Rde −→ jd|∗Rde(PΩ)⊗Z/2Z ia|∗Rde(PΦd)⊗Z/2Z QRa,Ua,fa,ia |Rde .

Similarly, the other three triangles in (6.19) commute, so (6.19) commutes.
By (6.17), the two routes round the outside of (6.19) are αdab|Rde and αeab|Rde , which are equal

as (6.19) commutes. As we can cover R′da ∩ R′db ∩ R′ea ∩ R′eb by such Zariski open Rde, equation
(6.18) follows. Therefore by the Zariski open cover version of Theorem 2.7(i), there is a unique
isomorphism αab in (6.15) such that αab|R′da ∩R′db = αdab for all d ∈ Dab.

If Dab, R
′d
a , . . . ,Φ

d,Ψd are used to define αab and D̃ab, R̃
′d
a , . . . , Φ̃

d, Ψ̃d are alternative choices

yielding α̃ab, then by our usual argument using Dab q D̃ab and both sets of data we see that
αab = α̃ab, so αab is independent of choices.

Because the ΘΦd ,ΘΨd used to define αab are compatible with Verdier duality and monodromy
by (5.14)–(5.15), and the ΛΦd ,ΛΨd affect only the principal Z/2Z-bundles rather than the per-
verse sheaves, we can show αab is compatible with Verdier duality and monodromy, in that the



146 C. BRAV, V. BUSSI, D. DUPONT, D. JOYCE, AND B. SZENDRŐI

following commute:[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z

QRa,Ua,fa,ia
]∣∣
Ra∩Rb

i∗a(σUa,fa )⊗idQRa,Ua,fa,ia
|Ra∩Rb

��

αab
//
[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z

QRb,Ub,fb,ib
]∣∣
Ra∩Rb

i∗b (σUb,fb )⊗idQRb,Ub,fb,ib
|Ra∩Rb

��[
i∗a(DCrit(fa)(PV•Ua,fa))

⊗Z/2ZQRa,Ua,fa,ia
]∣∣
Ra∩Rb

)
∼= DRa∩Rb

(
[i∗a(PV•Ua,fa)

⊗Z/2ZQRa,Ua,fa,ia ]|Ra∩Rb
)

[
i∗b(DCrit(fb)(PV

•
Ub,fb

))

⊗Z/2ZQRb,Ub,fb,ib
]∣∣
Ra∩Rb

)
∼= DRa∩Rb

(
[i∗b(PV

•
Ub,fb

)

⊗Z/2ZQRb,Ub,fb,ib ]|Ra∩Rb
)
,

DRa∩Rb (αab)oo

(6.20)

[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z

QRa,Ua,fa,ia
]∣∣
Ra∩Rb

i∗a(τUa,fa )⊗idQRa,Ua,fa,ia
|Ra∩Rb

��

αab
//
[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z

QRb,Ub,fb,ib
]∣∣
Ra∩Rb

i∗b (τUb,fb )⊗idQRb,Ub,fb,ib
|Ra∩Rb

��[
i∗a
(
PV•Ua,fa

)
⊗Z/2Z

QRa,Ua,fa,ia
]∣∣
Ra∩Rb

αab //
[
i∗b
(
PV•Ub,fb

)
⊗Z/2Z

QRb,Ub,fb,ib
]∣∣
Ra∩Rb

.

(6.21)

When a = b we can take Ψd = Φd, so (6.17) gives αdaa = id, and αaa = id.

To prove (6.16), let a, b, c ∈ A, and x ∈ Ra ∩ Rb ∩ Rc. Applying Theorem 6.3 twice
and composing the embeddings, we can construct subcharts (R′a, U

′
a, f
′
a, i
′
a) ⊆ (Ra, Ua, fa, ia),

(R′b, U
′
b, f
′
b, i
′
b) ⊆ (Rb, Ub, fb, ib), and (R′c, U

′
c, f
′
c, i
′
c) ⊆ (Rc, Uc, fc, ic) with x ∈ R′a ∩ R′b ∩ R′c,

a critical chart (S, V, g, j) on (X, s), and embeddings Φ : (R′a, U
′
a, f
′
a, i
′
a) ↪→ (S, V, g, j),

Ψ : (R′b, U
′
b, f
′
b, i
′
b) ↪→ (S, V, g, j), Υ : (R′c, U

′
c, f
′
c, i
′
c) ↪→ (S, V, g, j). Then the construction of αab

above yields

αab|R′a∩R′b∩R′c =
(
(i∗b(Θ

−1
Ψ )⊗id)◦(id⊗ΛΨ)◦(id⊗Λ−1

Φ )◦(i∗a(ΘΦ)⊗id)
)
|R′a∩R′b∩R′c ,

αbc|R′a∩R′b∩R′c =
(
(i∗c(Θ

−1
Υ )⊗id)◦(id⊗ΛΥ)◦(id⊗Λ−1

Ψ )◦(i∗b(ΘΨ)⊗id)
)
|R′a∩R′b∩R′c ,

αac|R′a∩R′b∩R′c =
(
(i∗c(Θ

−1
Υ )⊗id)◦(id⊗ΛΥ)◦(id⊗Λ−1

Φ )◦(i∗a(ΘΦ)⊗id)
)
|R′a∩R′b∩R′c ,

so that αbc|R′a∩R′b∩R′c ◦ αab|R′a∩R′b∩R′c = αac|R′a∩R′b∩R′c . As we can cover Ra ∩ Rb ∩ Rc by such

Zariski open R′a ∩R′b ∩R′c, equation (6.16) follows by Theorem 2.7(i).
The Zariski open cover version of Theorem 2.7(ii) now implies that there exists P •X,s in

Perv(X), unique up to canonical isomorphism, with isomorphisms

ωRa,Ua,fa,ia : P •X,s|Ra −→ i∗a
(
PV•Ua,fa

)
⊗Z/2Z QRa,Ua,fa,ia

as in (6.6) for each a ∈ A, with αab◦ωRa,Ua,fa,ia |Ra∩Rb = ωRb,Ub,fb,ib |Ra∩Rb for all a, b ∈ A. Also,
(6.7)–(6.8) with (Ra, Ua, fa, ia) in place of (R,U, f, i) define isomorphisms ΣX,s|Ra , TX,s|Ra for
each a ∈ A. Equations (6.20)–(6.21) imply that the prescribed values for ΣX,s|Ra ,TX,s|Ra and
ΣX,s|Rb ,TX,s|Rb agree when restricted to Ra ∩ Rb for all a, b ∈ A. Hence, Theorem 2.7(i) gives
unique isomorphisms ΣX,s,TX,s in (6.5) such that (6.7)–(6.8) commute with (Ra, Ua, fa, ia) in
place of (R,U, f, i) for all a ∈ A.

Suppose
{

(Ra, Ua, fa, ia) : a ∈ A
}

and
{

(R̃a, Ũa, f̃a, ı̃a) : a ∈ Ã
}

are alternative choices

above, yielding P •X,s,ΣX,s,TX,s and P̃ •X,s, Σ̃X,s, T̃X,s. Then applying the same construction

to the family
{

(Ra, Ua, fa, ia) : a ∈ A
}
q
{

(R̃a, Ũa, f̃a, ı̃a) : a ∈ Ã
}

to get P̂ •X,s, we have
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canonical isomorphisms P •X,s
∼= P̂ •X,s

∼= P̃ •X,s, which identify ΣX,s,TX,s with Σ̃X,s, T̃X,s. Thus
P •X,s,ΣX,s,TX,s are independent of choices up to canonical isomorphism.

Now fix
{

(Ra, Ua, fa, ia) : a ∈ A
}

, P •X,s,ΣX,s,TX,s and ωRa,Ua,fa,ia for a ∈ A above for the

rest of the proof. Suppose (R,U, f, i) is a critical chart on (X, s). Running the construction
above with the family

{
(Ra, Ua, fa, ia) : a ∈ A

}
q
{

(R,U, f, i)
}

, we can suppose it yields the
same (not just isomorphic) P •X,s,ΣX,s,TX,s and ωRa,Ua,fa,ia , but it also yields a unique ωR,U,f,i
in (6.6) which makes (6.7)–(6.8) commute. This proves Theorem 6.9(i).

Let Φ : (R,U, f, i) ↪→ (S, V, g, j) be an embedding of critical charts on (X, s). The def-
inition of ΛΦ in Theorem 6.9(ii) is immediate. Run the construction above using the fam-
ily
{

(Ra, Ua, fa, ia) : a ∈ A
}
q
{

(R,U, f, i), (S, V, g, j)
}

, and follow the definition of αab with
(R,U, f, i), (S, V, g, j) in place of (Ra, Ua, fa, ia), (Rb, Ub, fb, ib). We can take

Dab = {d}, (R′da , U
′d
a , f

′d
a , i
′d
a ) = (R,U, f, i), (R′db , U

′d
b , f

′d
b , i
′d
b ) = (Sd, V d, gd, jd) = (S, V, g, j),

Φd = Φ and Ψd = idV . Then (6.17) gives αab = αdab = (id⊗Λ−1
Φ ) ◦ (i∗(ΘΦ)⊗ id). Thus,

αab ◦ ωRa,Ua,fa,ia |Ra∩Rb = ωRb,Ub,fb,ib |Ra∩Rb
implies that (6.10) commutes, proving Theorem 6.9(ii).

6.4. D-modules and mixed Hodge modules. Once again, the proof of Theorem 6.9 carries
over to our other contexts in §2.6–§2.10 using the general framework of §2.5, now also making
use of the Stack Property (x) for objects. For the case of mixed Hodge modules, we use Theorem
2.21(ii) to glue the i∗a

(
HV•Ua,fa

)
⊗Z/2ZQRa,Ua,fa,ia on Ra ⊆ X for a ∈ A with their natural strong

polarizations (2.25), which are preserved by the isomorphisms αab in §6.3 on overlaps Ra ∩Rb.

Appendix A. Compatibility results, by Jörg Schürmann

In the main body of the paper, when comparing results for mixed Hodge modules to those
involving perverse sheaves, we rely on the compatibility between duality and Thom–Sebastiani
type isomorphisms of perverse sheaves and mixed Hodge modules. These compatibility state-
ments cannot easily be read off from the existing literature, so we provide proofs here.

Proposition A.1. If X is a C-scheme and f : X → C is regular, then Massey’s natural
isomorphisms from [37] quoted as Theorem 2.11(iv) coincide with the image under the realization
functor of Saito’s analogous isomorphisms [45] between functors on mixed Hodge modules. There
is also an analogous compatibility result for X a complex analytic space equipped with an analytic
function f .

Proof. Massey’s construction in [37] of the duality isomorphisms uses the definition of the vanish-
ing cycle functor in terms of the local cohomology of suitable real half-spaces, compare also [50].
Using their notation, the compatibility comes down to compatibility of the diagram

φpf ◦ DX ∼
//

∼=��

DX0 ◦ φ
p
f

(RΓ{Re(f)≥0}(−)|X0
) ◦ DX ∼ // DX0

◦ (RΓ{Re(f)≤0}(−)|X0
).

∼=
OO

(A.1)

Here the upper, respectively lower horizontal isomorphisms are the ones of Saito, respectively
Massey, and the vertical isomorphisms follow for example from [50, Lem. 1.3.2, p. 69]. Saito
deduces his duality isomorphism in [45, Lem. 5.2.4, p. 965] from a pairing on nearby cycles
induced by a pairing F ⊗G→ a!

XA for F,G ∈ Db
c(X), with aX : X → pt the constant map and
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A ⊂ C a coefficient field. But Massey’s duality isomorphism can be also be induced from such
a pairing fitting into a commutative diagram, with

L0 = {Re(f) = 0} and j : {Re(f) = 0, f 6= 0} → L0

the open inclusion:

(RΓ{Re(f)<0}(F )|X0
)⊗ (RΓ{Re(f)>0}(G)|X0

)

��

ψf (F )⊗ ψf (G)

��

∼
oo

(Rj∗j
∗(a!

L0
A|L0

))|X0

∼=��

ψf (a!
XA)oo

��
(Rj∗j

∗(a!
L0
A))|X0

[1] // a!
X0
A[2].

(A.2)

Here the isomorphism j∗(a!
XA|L0) ∼= j∗(a!

L0
A)[1] comes from the fact that Re(f) has no critical

points (in a stratified sense) in X \X0, locally near X0. But then the commutativity of (A.2)
implies by [45, Lem. 5.2.4, p. 965] the commutativity of (A.1), concluding the proof. �

A similar compatibility question arises for the Thom–Sebastiani isomorphism. Here the precise
statement is the following.

Proposition A.2. Let fi : Yi → C be regular functions on smooth C-schemes, for i = 1, 2. Let
f = f1�f2 : Y1×Y2 → C be as in Theorem 2.13. Then the isomorphism (2.8) of Massey [35,50]
coincides with the image under the realization functor of Saito’s analogous isomorphism (2.26)
of [49] for mixed Hodge modules.

Proof. The Thom–Sebastiani isomorphism (2.26) is constructed by Saito [49, Th. 2.6] based on
the Verdier specialization [53]. First, let f : Y → C be a regular function, with X = f−1(0)
of codimension one, so that the normal cone CXY = X × C becomes a trivial line bundle with
f ′ : CXY → C given by the projection. Let p : DXY → C be the deformation to the normal
cone with CXY = p−1(0) ⊂ DXY , with q : DXY → Y the natural map. Then f ′ extends to a
function g : DXY → C, with g = f/s on p 6= 0 = Y × C for s the usual coordinate on C. For
F ∈ Db

c(Y ), we get a commutative diagram

φpf ′(spXF )

∼=��

φpf (F )∼
oo

∼= ��
RΓ{Re(f ′)≥0}(spXF )|X RΓ{Re(f)≥0}(F )|X .oo

Here the monodromical sheaf complex spXF ∈ Db
c(CXY )mon is the Verdier specialization of F

as in [49,53]. The upper horizontal isomorphism is the one of [49, Lem. 2.2], whereas the vertical
isomorphisms are those of [50, Lem. 1.3.2, p. 69]. The lower horizontal map is defined by the
natural base change morphism

RΓ{Re(f ′)≥0}(spXF )|X ←− ψp(RΓ{Re(g)≥0}(q
∗F ))|X ∼= RΓ{Re(f)≥0}(F )|X ,

where the last isomorphism follows as in [50, Lem. 1.3.3, p. 70-71].
Consider now the situation in the proposition, with

f = f1 � f2 : Y = Y1 × Y2 → C,

also Xi = f−1
i (0) and X = f−1(0); finally let µfi = RΓ{Re(fi)≥0} to shorten the notation. Let

π : CX1Y1 × CX2(Y2) = (X1 ×X2)× C2 → (X1 ×X2)× C ⊂ CX(Y )
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be the map induced by addition in the fibres. Then, for Fi ∈ Db
c(Yi), one gets a commutative

diagram

φpf (F1 � F2)|X1×X2

∼=
��

φpfi(F1)⊗ φpf2
(F2)∼

oo

∼= ��
µf ′(π∗(spX1

F1 � spX2
F2))|X1×X2

µf ′1(spX1
F1)|X1

⊗ µf ′2(spX2
F2)|X2

oo

µf (F1 � F2)|X1×X2

OO

µf1(F1)|X1 ⊗ µf2(F2)|X2 .
∼oo

∼=
OO

The upper horizontal and left vertical isomorphisms form the Thom–Sebastiani isomorphism
(2.26) of [49], whereas the lower horizontal isomorphism is the Thom–Sebastiani isomorphism
(2.8) of [35,50]. This concludes the proof. �
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[15] A. Dimca and B. Szendrői, The Milnor fibre of the Pfaffian and the Hilbert scheme of four points on C3,

Math. Res. Lett. 16 (2009), 1037–1055. DOI: 10.4310/MRL.2009.v16.n6.a12

[16] S.K. Donaldson and R.P. Thomas, Gauge Theory in Higher Dimensions, Chapter 3 in S.A. Huggett, L.J.
Mason, K.P. Tod, S.T. Tsou and N.M.J. Woodhouse, editors, The Geometric Universe, Oxford University

Press, Oxford, 1998.

[17] E. Freitag and R. Kiehl, Etale cohomology and the Weil Conjecture, Ergeb. der Math. und ihrer Grenzgebiete
13, Springer-Verlag, 1988. DOI: 10.1007/978-3-662-02541-3

[18] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian intersection Floer theory — anomaly and obstruction,

Parts I & II. AMS/IP Studies in Advanced Mathematics, 46.1 & 46.2, A.M.S./International Press, 2009.
[19] T. Gaffney and H. Hauser, Characterizing singularities of varieties and of mappings, Invent. math. 81 (1985),

427–447. DOI: 10.1007/BF01388580

[20] G. Guibert, F. Loeser and M. Merle, Iterated vanishing cycles, convolution, and a motivic analogue of a
conjecture of Steenbrink, Duke Math. J. 132 (2006), 409–457. DOI: 10.1215/S0012-7094-06-13232-5

[21] R. Hotta, T. Tanisaki and K. Takeuchi, D-modules, perverse sheaves, and representation theory, Progr.
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