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SYMMETRIES AND STABILIZATION FOR SHEAVES
OF VANISHING CYCLES

C. BRAV, V. BUSSI, D. DUPONT, D. JOYCE, AND B. SZENDROI,
WITH AN APPENDIX BY JORG SCHURMANN

ABSTRACT. We study symmetries and stabilization properties of perverse sheaves of vanishing
cycles PV{,J of a regular function f : U — C on a smooth C-scheme U, with critical locus
X = Crit(f). We prove four main results:

(a) If ® : U — U is an isomorphism fixing X and compatible with f, then the action of ®.
on PV, ; is multiplication by det(d®|yrea) = £1.

(b) PV.U,f depends up to canonical isomorphism only on (X(3>, f(3))7 for X3) the third-order
thickening of X in U, and f®) = f|) : X&) - C.

(c) If U,V are smooth C-schemes, f : U — C, g : V — C are regular, X = Crit(f), Y = Crit(g),
and ® : U — V is an embedding with f = go ® and ®|x : X — Y an isomorphism, there is
a natural isomorphism Og¢ : PV, ; = @|% (PVY, ) ®z/27 Pa, for Py a principal Z/2Z-bundle
on X.

(d) If (X, s) is an oriented d-critical locus in the sense of Joyce [23], there is a natural perverse
sheaf P).(,s on X, such that if (X, s) is locally modelled on Crit(f : U — C) then P)'(,S is locally
modelled on PVy ..

We also generalize our results to replace U, X by complex analytic spaces, and PV;]’f by
2-modules or mixed Hodge modules.

We discuss applications of (d) to categorifying Donaldson—Thomas invariants of Calabi—
Yau 3-folds, and to defining a ‘Fukaya category’ of Lagrangians in a complex symplectic
manifold using perverse sheaves.
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1. INTRODUCTION

Let U be a smooth C-scheme and f : U — C a regular function, and write X = Crit(f), as
a C-subscheme of U. Then one can define the perverse sheaf of vanishing cycles PVZ,J on X.
Formally, X =[], £(x) Xes where X, C X is the open and closed C-subscheme of points x € X
with f(z) = ¢, and
PV slx. = % (Av[dim U])|x,
for each ¢ € f(X), where Ay[dim U] is the constant perverse sheaf on U over a base ring A, and
o Perv(U) — Perv(f~!(c))

is the vanishing cycle functor for f —c: U — C. See §2 for an introduction to perverse sheaves,
and an explanation of this notation.

This paper will prove four main results, Theorems 3.1, 4.2, 5.4 and 6.9. The first three give
properties of the PVy; #» which we may summarize as follows:

(a) Let U, f, X be as above, and write X™9 for the reduced C-subscheme of X. Suppose
® : U — U is an isomorphism with fo® = f and ®|x = idx. Then ® induces a natural
isomorphism @, : PV, — PV ;.

Theorem 3.1 implies that d<I)|TU|Xred : TU| xvea — TU]| xrea has determinant

det(d®|xrea) : X — C\ {0},

which is a locally constant map X4 — {£1}, and @, : PV — PV, ; is multiplication
by det(d<I>|de).

In fact Theorem 3.1 proves a more complicated statement, which only requires @ to
be defined étale locally on U.

(b) Let U, f, X be as above, and write Ix C Oy for the sheaf of ideals of regular functions
U — C vanishing on X. For each k = 1,2, ..., write X*) for the k*" order thickening
of X in U, that is, X(*) is the closed C-subscheme of U defined by the vanishing of the
sheaf of ideals I% in Op. Write f) := f|xw : X®) — C.
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Theorem 4.2 says that the perverse sheaf PV{]’ s depends only on the third-order
thickenings (X®), f®)) up to canonical isomorphism.

As in Remark 4.5, étale locally, PV, ; depends only on (X @), £2) up to non-
canonical isomorphism, with isomorphisms natural up to sign.

(¢) Let U,V be smooth C-schemes, f : U — C, g : V — C be regular, and X = Crit(f),
Y = Crit(g) as C-subschemes of U, V. Let ® : U — V be a closed embedding of C-
schemes with f = go ® : U — C, and suppose ®|x : X — Y is an isomorphism. Then
Theorem 5.4 constructs a natural isomorphism of perverse sheaves on X:

Oo : PV — % (PVV,,) ®2/22 Po, (1.1)

where g : Pp — X is a certain principal Z/2Z-bundle on X. Writing Ny, for the
normal bundle of U in V, then the Hessian Hess g induces a nondegenerate quadratic
form g, on Ny |x, and Py parametrizes square roots of det(gyv) : K& |x — @|% (K%).

Theorem 5.4 also shows that the O4 in (1.1) are functorial in a suitable sense under
compositions of embeddings ® : U — V, U :V — W.

Here (c) is proved by showing that étale locally there exist equivalences V ~ U x C" identifying
®(U) with U x {0} and g : V — C with fB2z? +---+22 : U x C" — C, and applying étale local
isomorphisms of perverse sheaves

L
PV 2PV RPVE 2 r E PV cn mars. g 2PV,

using PV(E,-L’Z% fota? = Ayoy in the first step, and the Thom-Sebastiani Theorem for perverse
sheaves in the second.

Passing from f : U - Ctog= fH2?+---+ 22 : U x C" — C is an important idea in
singularity theory, as in Arnold et al. [1] for instance. It is known as stabilization, and f and
g are called stably equivalent. So, Theorem 5.4 concerns the behaviour of perverse sheaves of
vanishing cycles under stabilization.

Our fourth main result, Theorem 6.9, concerns a new class of geometric objects called d-critical
loci, introduced in Joyce [23], and explained in §6.1. An (algebraic) d-critical locus (X, s) over
C is a C-scheme X with a section s of a certain natural sheaf S% on X. A d-critical locus (X, s)
may be written Zariski locally as a critical locus Crit(f : U — C) of a regular function f on a
smooth C-scheme U, and s records some information about U, f (in the notation of (b) above,
s remembers f(?)). There is also a complex analytic version.

Algebraic d-critical loci are classical truncations of the derived critical loci (more precisely,
—1-shifted symplectic derived schemes) introduced in derived algebraic geometry by Pantev,
Toén, Vaquié and Vezzosi [42]. Theorem 6.9 roughly says that if (X, s) is an algebraic d-critical
locus over C with an ‘orientation’, then we may define a natural perverse sheaf P% , on X, such
that if (X, s) is locally modelled on Crit(f : U — C) then Py , is locally modelled on PV, ;.
The proof uses Theorem 5.4.

These results have exciting applications in the categorification of Donaldson—Thomas theory
on Calabi—Yau 3-folds, and in defining a new kind of ‘Fukaya category’ of complex Lagrangians
in complex symplectic manifold, which we will discuss at length in Remarks 6.14 and 6.15.

Although we have explained our results only for C-schemes and perverse sheaves upon them,
the proofs are quite general and work in several contexts:

(i) Perverse sheaves on C-schemes or complex analytic spaces with coefficients in any well-
behaved commutative ring A, such as Z,Q or C.
(ii) Z-modules on C-schemes or complex analytic spaces.
(iii) Saito’s mixed Hodge modules on C-schemes or complex analytic spaces.
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We discuss all these in §2, before proving our four main results in §3-§6. Appendix A, by
Jorg Schiirmann, proves two compatibility results between duality and Thom—Sebastiani type
isomorphisms needed in the main text.

This is one of six linked papers [6,9-11, 23], with more to come. The best logical order is
that the first is Joyce [23] defining d-critical loci, and the second Bussi, Brav and Joyce [9],
which proves Darboux-type theorems for the k-shifted symplectic derived schemes of Pantev et
al. [42], and defines a truncation functor from —1-shifted symplectic derived schemes to algebraic
d-critical loci.

This paper is the third in the sequence. Combining our results with [23,42] gives new results
on categorifying Donaldson-Thomas invariants of Calabi—Yau 3-folds, as in Remark 6.14. In the
fourth paper Bussi, Joyce and Meinhardt [11] will generalize the ideas of this paper to motivic
Milnor fibres (we explain the relationship between the motivic and cohomological approaches
below in Remark 6.10), and deduce new results on motivic Donaldson-Thomas invariants using
[23,42]. In the fifth, Ben-Bassat, Brav, Bussi and Joyce [6] generalize [9,11] and this paper from
(derived) schemes to (derived) Artin stacks.

Sixthly, Bussi [10] will show that if (S,w) is a complex symplectic manifold, and L, M are
complex Lagrangians in .S, then the intersection X = L N M, as a complex analytic subspace
of S, extends naturally to a complex analytic d-critical locus (X, s). If the canonical bundles
K, Ky have square roots K}Jm, Kjl\f then (X s) is oriented, and so Theorem 6.9 below defines
a perverse sheaf P7 ;, on X, which Bussi also constructs directly.

As in Remark 6.15, we hope in future work to define a ‘Fukaya category’ of complex La-
grangians in (X, w) in which Hom(L, M) = H " (P} /).

Conventions. All C-schemes are assumed separated and of finite type. All complex analytic
spaces are Hausdorff and locally of finite type.

Acknowledgements. We would like to thank Oren Ben-Bassat, Alexandru Dimca,
Young-Hoon Kiem, Jun Li, Kevin McGerty, Sven Meinhardt, Pierre Schapira, and especially
Morihiko Saito and Jorg Schiirmann for useful conversations and correspondence, and
Jorg Schiirmann for a very careful reading of our manuscript, leading to many improvements,
as well as providing the Appendix. This research was supported by EPSRC Programme Grant
EP/1033343/1.

2. BACKGROUND ON PERVERSE SHEAVES

Perverse sheaves, and the related theories of Z-modules and mixed Hodge modules, make
sense in several contexts, both algebraic and complex analytic:

(a) Perverse sheaves on C-schemes with coefficients in a ring A (usually Z,Q or C), as in
Beilinson, Bernstein and Deligne [5] and Dimca [14].

(b) Perverse sheaves on complex analytic spaces with coefficients in a ring A (usually Z,Q
or C), as in Dimca [14].

(¢) Z-modules on C-schemes, as in Borel [8] in the smooth case, and Saito [48] in general.

(d) Z-modules on complex manifolds as in Bjork [7], and on complex analytic spaces as in
Saito [48].

(e) Mixed Hodge modules on C-schemes, as in Saito [45,47].

(f) Mixed Hodge modules on complex analytic spaces, as in Saito [45,47].

All our main results and proofs work, with minor modifications, in all six settings (a)—(f).
As (a) is arguably the simplest and most complete theory, we begin in §2.1-§2.4 with a general
introduction to constructible complexes and perverse sheaves on C-schemes, the nearby and
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vanishing cycle functors, and perverse sheaves of vanishing cycles PV{} ; on C-schemes, following
Dimca [14].

Several important properties of perverse sheaves in (a) either do not work, or become more
complicated, in settings (b)—(f). Section 2.5 lists the parts of §2.1-§2.4 that we will use in proofs
in this paper, so the reader can check that they do work in (b)—(f). Then §2.6-§2.10 give brief
discussions of settings (b)—(f), focussing on the differences with (a) in §2.1-§2.4.

A good introductory reference on perverse sheaves on C-schemes and complex analytic spaces
is Dimca [14]. Three other books are Kashiwara and Schapira [27], Schiirmann [50], and Hotta,
Tanisaki and Takeuchi [21]. Massey [36] and Rietsch [43] are surveys on perverse sheaves, and
Beilinson, Bernstein and Deligne [5] is an important primary source, who cover both Q-perverse
sheaves on C-schemes as in (a), and Q;-perverse sheaves on K-schemes as in (g) below.

Remark 2.1. Two further possible settings, in which not all the results we need are available
in the literature, are the following.

(g) Perverse sheaves on K-schemes with coefficients in Z/I"Z, 7Z;, Q;, or Q, for
I # charK # 2 a prime, as in Beilinson et al. [5].
(h) Z-modules on K-schemes for K an algebraically closed field, as in Borel [8].

The issue is that the Thom—Sebastiani theorem is not available in these contexts in the
generality we need it. Once an appropriate form of this result becomes available, our main
theorems will hold also in these two contexts, sometimes under the further assumption that
char K = 0, needed for the results quoted from [9,42]. We leave the details to the interested
reader.

2.1. Constructible complexes on C-schemes. We begin by discussing constructible com-
plexes, following Dimca [14, §2-§4].

Definition 2.2. Fix a well-behaved commutative base ring A (where ‘well-behaved’ means
that we need assumptions on A such as A is regular noetherian, of finite global dimension or
finite Krull dimension, a principal ideal domain, or a Dedekind domain, at various points in the
theory), to study sheaves of A-modules. For some results A must be a field. Usually we take
A=7Z,QorC.

Let X be a C-scheme, always assumed of finite type. Write X?" for the set of C-points of
X with the complex analytic topology. Consider sheaves of A-modules § on X2". A sheaf S
is called (algebraically) constructible if all the stalks S, for € X" are finite type A-modules,
and there is a finite stratification X?2* = HjeJ X;‘“ of X**, where X; C X for j € J are C-
subschemes of X and X7™ C X" the corresponding subsets of C-points, such that S | X3 is an
A-local system for all j € J.

Write D(X) for the derived category of complexes C* of sheaves of A-modules on X*. Write
D?(X) for the full subcategory of bounded complexes C* in D(X) whose cohomology sheaves
H™(C®) are constructible for all m € Z. Then D(X), D%(X) are triangulated categories. An
example of a constructible complex on X is the constant sheaf Ax on X with fibre A at each
point. .

Grothendieck’s “six operations on sheaves” f*, f', Rf., Rfi, RHom, ® act on D(X) preserving
the subcategory DY(X). That is, if f : X — Y is a morphism of C-schemes, then we have two
different pullback functors f*, f' : D(Y') — D(X), which also map D%(Y) — DY(X). Here f* is
called the inverse image [14, §2.3], and f' the exceptional inverse image [14, §3.2].

We also have two different pushforward functors

Rf.,Rfi: D(X) — D(Y)
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mapping D%(X) — D2(Y), where Rf, is called the direct image [14, §2.3] and is right adjoint to
f*:D(Y)— D(X), and Rf is called the direct image with proper supports [14, §2.3] and is left
adjoint to f': D(Y) — D(X). We need the assumptions from §1 that X,Y are separated and
of finite type for Rf., Rfi : D%(X) — DY(Y) to be defined for arbitrary morphisms f : X — Y.

For B*,C* in D%(X), we may form their derived Hom RHom(B*,C*) [14, §2.1], and left
derived tensor product B*&C® in DY%(X), [14, §2.2]. Given B* € D%(X) and C* € D:(Y), we

L

define B* K C*® = W}(B')éﬂ}(C') in DY(X xY), where mx : X xY — X, 7y : X xY =Y are
the projections.

If X is a C-scheme, there is a functor Dx : D2(X) — D%(X)°P with

Dy o Dx =id : D’(X) — Db(X),

called Verdier duality. It reverses shifts, that is, Dx (C*[k]) = (Dx(C®))[—k] for C* in D%(X)
and k € Z.

Remark 2.3. Note how Definition 2.2 mixes the complex analytic and the complex algebraic:
we consider sheaves on X?" in the analytic topology, which are constructible with respect to an
algebraic stratification X = ]_[j X;.

Here are some properties of all these:
Theorem 2.4. In the following, X,Y,Z are C-schemes, and f,g are morphisms, and all iso-

morphisms ‘= of functors or objects are canonical.
(i) For f: X =Y and g:Y — Z, there are natural isomorphisms of functors

R(go f)s = Rg.o Rf., R(go f) = Rgro Rfi,

(gof) = frog", (gof)=fog

(ii) If f: X =Y is proper then Rf. = Rf.
(iii) If f: X — Y is étale then f* = f'. More generally, if f: X — Y is smooth of relative
(complex) dimension d, then f*[d] = f'|—d], where f*[d], f'[~d] are the functors f*, f* shifted
by +d.
(iv) If f: X =Y then Rfi =Dy o Rf.oDx and f' =2 Dx o f* o Dy.
(v) If U is a smooth C-scheme then Dy (Ay) = Ay[2dim U].

If X is a C-scheme and C* € D%(X), the hypercohomology H*(C*) and compactly-supported
hypercohomology H(C*), both graded A-modules, are

H*(C*) = H*(Rx.(C*)) and HF(C*) = H*(Rm(C®)) for k € Z, (2.1)
where 7 : X — % is projection to a point.

If X is proper then H*(C®*) = H(C®) by Theorem 2.4(ii). They are related to usual coho-
mology by HF(Ax) = H*(X;A) and HF(Ax) = H¥(X;A). If A is a field then under Verdier
duality we have H*(C®) = H_*(Dx (C*))*.

2.2. Perverse sheaves on C-schemes. Next we review perverse sheaves, following Dimca [14,
§5].
Definition 2.5. Let X be a C-scheme, and for each xz € X?", let i, : * — X map i, : x — zx. If
C*® € D’(X), then the support supp™ C* and cosupport cosupp™ C* of H™(C®) for m € Z are
supp™ C* = {z € X2» : H™(i%(C*)) # 0},
cosupp™ C* = {x € Xan : H™ (i (C%)) # O}7
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where {---} means the closure in X?". If A is a field then cosupp™ C® = supp~ " Dx (C*). We
call C* perverse, or a perverse sheaf, if dimgsupp™™ C* < m and dim. cosupp™ C* < m for all
m € Z, where by convention dim. ) = —oo. Write Perv(X) for the full subcategory of perverse
sheaves in D%(X). Then Perv(X) is an abelian category, the heart of a t-structure on D?(X).

Perverse sheaves have the following properties:

Theorem 2.6. (a) If A is a field then Perv(X) is noetherian and artinian.
(b) If A is a field then Dx : DY(X) — D%(X) maps Perv(X) to Perv(X).
(¢) If i : X <= Y is inclusion of a closed C-subscheme, then Ri., Riy (which are naturally
isomorphic) map Perv(X) to Perv(Y).

Write Perv(Y) x for the full subcategory of objects in Perv(Y') supported on X. Then Ri, = Ri
are equivalences of categories Perv(X) —= Perv(Y)x. The restrictions i [Perv(Y) x » i!|perv(y)x
which map Perv(Y)x to Perv(X), are naturally isomorphic, and are quasi-inverses for

Ri., Riy : Perv(X) — Perv(Y)x.

(d) If f: X — Y is étale then f* and f' (which are naturally isomorphic) map Perv(Y) to
Perv(X). More generally, if f: X — Y is smooth of relative dimension d, then f*[d] = f'[—d]
map Perv(Y') to Perv(X).

L
(e) X : DY(X)xD5(Y)— DX xY) maps Perv(X)xPerv(Y) to Perv(X xY).
(f) Let U be a smooth C-scheme. Then Ay[dim U] is perverse, where Ay is the constant sheaf
on U with fibre A, and [dim U] means shift by dim U in the triangulated category D%(X). Note
that Theorem 2.4(v) gives a canonical isomorphism Dy (Ay[dimU]) & Ay[dim U].

When A = Q, so that Perv(X) is noetherian and artinian by Theorem 2.6(a), the simple
objects in Perv(X) admit a complete description: they are all isomorphic to intersection co-
homology complexes ICy (L) for V' C X a smooth locally closed C-subscheme and £ — V an
irreducible Q-local system, [14, §5.4]. Furthermore, if f : X — Y is a proper morphism of
C-schemes, then the Decomposition Theorem [5, 6.2.5], [14, Th. 5.4.10], [45, Cor. 3] says that,
in case ICy (L) is of geometric origin, Rf,.(ICy (L)) is isomorphic to a finite direct sum of shifts
of simple objects ICy (L") in Perv(Y).

The next theorem is proved by Beilinson et al. [5, Cor. 2.1.23, §2.2.19, & Th. 3.2.4]. The
analogue for D%(X) or D(X) rather than Perv(X) is false. One moral is that perverse sheaves
behave like sheaves, rather than like complexes.

Theorem 2.7(i) will be used throughout §3-§6. Theorem 2.7(ii) will be used only once, in the
proof of Theorem 6.9 in §6.3, and we only need Theorem 2.7(ii) to hold in the Zariski topology,
rather than the étale topology.

Theorem 2.7. Let X be a C-scheme. Then perverse sheaves on X form a stack (a kind of
sheaf of categories) on X in the étale topology.

Ezplicitly, this means the following. Let {u; : U; — X}ier be an étale open cover for X,
so that u; : U; — X is an étale morphism of C-schemes for i € I with [[, u; surjective. Write
Uij = Ui Xu; xu; Uj fori,j € I with projections

i . J .77 . . {
Ty Uij — Ui, Tij Uyj — Uj, uj=uy o

.. J .77
=u; oM, ¢ U — X.
Similarly, write Uyj, = Ui xx U x x Uy, for 1,7,k € I with projections
i, ik . jk .
Tk P Uije — Uiy w55 2 Uije —> Ui, w5+ Uil — Ui,

i Jj . k. .
7T71,:jk} : Uijk — Ui, Trijk : Uijk) — Uj, Tk * Uijk — Uk, Uik : Uijk — X,
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so that mi, = ;o H?M Uijk = Wij O T, = u; o Wey, and so on. All these morphisms

, ©J 1 ijk ijk>
Uiy T, - -+, Uijk are €Etale, so by Theorem 2.6(d) uj = ui maps Perv(X) — Perv(U;), and simi-
larly for ij, ..o, Uijk. With this notation:

(1) Suppose P*, Q% € Perv(X), and we are given a; : ul (P*) — ul(Q®) in Perv(U;) for all i € I
such that for all i,5 € I we have
(mi;) (i) = (73;) " () = ufy (P*) — ui;(Q°).
Then there is a unique o : P* — Q° in Perv(X) with a; = uf(a) for all i € I.
(ii) Suppose we are given objects P € Perv(U;) for all i € I and isomorphisms
i+ (mf;)"(PY) — (wl,)"(P5)

in Perv(U;) for all 4,5 € I with oy;; =1id and

(i)™ (o) © (mi)" (@) = (wif)" (0an) = (m)" (Pr) — (i) (Py)

in Perv(Ui;i) for all i,j,k € I. Then there exists P* in Perv(X), unique up to canonical

isomorphism, with isomorphisms B; : uf(P*) — P; for each i € I, satisfying

g o (m)" (B) = (=) (B)) : iy (P*) — ()" (PY),
forall i,j € 1.

We will need the following proposition in §3.3 to prove Theorem 3.1(b). Most of it is setting
up notation, only the last part a|x, = §|x/ is nontrivial.

Proposition 2.8. Let W, X be C-schemes, x € X, and ¢ : W - C, nx : W - X, 1 : C—-W
morphisms, such that mc x7mx : W — Cx X is étale, and ncor =id¢ : C — C, and wxou(t) =z
for all t € C. Write Wy = ’/T(El(t) C W for each t € C, and j, : Wy — W for the inclusion.
Then x|w, = 7x o ji : Wy — X is étale, and (t) € Wy with wx|w, (t(t)) = z, so we may think
of Wy fort € C as a 1-parameter family of étale open neighbourhoods of x in X.

Let P*, Q% € Perv(X), so that by Theorem 2.6(d) as wx is smooth of relative dimension 1
and mx|w, is étale, we have w5 [1](P*) € Perv(W) and

mxliv, (P*) = 5t [=1(7X [1](P*)) € Perv(Wy),

and similarly for Q°.

Suppose a, B : P* — Q° in Perv(X) and v : wk[1](P*) — 7% [1](Q°) in Perv(W) are mor-
phisms such that mx |y, (@) = jo[=1](v) in Perv(Wy) and mx iy, (8) = ji[-1](7) in Perv(Wy).
Then there exists a Zariski open neighbourhood X' of = in X such that

a|X/ = ﬂ|X/ 5P.|X’ — Q.|X/.

Here we should think of j;[—1](y) for t € C as a family of perverse sheaf morphisms P* — Q°,
defined near = in X locally in the étale topology. But morphisms of perverse sheaves are discrete
(to see this, note that we can take A = Z), so as j;[—1](y) depends continuously on ¢, it should
be locally constant in ¢ near x, in a suitable sense. The conclusion «|x: = §|x+ essentially says
that j3[~1](v) = j1[~1]() near .

If P — X is a principal Z/2Z-bundle on a C-scheme X, and Q° € Perv(X), we will define a
perverse sheaf Q° ®z /57 P, which will be important in §5-§6.

Definition 2.9. Let X be a C-scheme. A principal Z/2Z-bundle P — X is a proper, surjective,
étale morphism of C-schemes 7w : P — X together with a free involution ¢ : P — P, such that
the orbits of Z/27Z = {1, 0} are the fibres of 7. We will use the ideas of isomorphism of principal
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bundles ¢ : P — P', section s : X — P, tensor product P ®z/57 P’, and pullback f*(P) — W
under a C-scheme morphism f : W — X, all of which are defined in the obvious ways.

Let P — X be a principal Z/2Z-bundle. Write Lp € D%(X) for the rank one A-local system
on X induced from P by the nontrivial representation of Z/27 = {£+1} on A. It is characterized

by m.(Ap) = Ax @ Lp. For each Q° € DY(X), write Q° ®7/27 P € DY(X) for Q'é}ﬁp, and call
it Q° twisted by P. If Q° is perverse then Q° ®7/97 P is perverse.

Perverse sheaves and complexes twisted by principal Z/2Z-bundles have the obvious functorial
behaviour. For example, if P — X, P’ — X are principal Z/2Z-bundles and Q°* € D%(X) there
is a canonical isomorphism (Q°* ®z/97 P) ®z/22 P' = Q° ®yz/27 (P ®7/22 P'), and if f: W — X
is a C-scheme morphism there is a canonical isomorphism

[(Q° ®z)2z P) = f*(Q°) ®z/2z 1™ (P).

2.3. Nearby cycles and vanishing cycles on C-schemes. We explain nearby cycles and

vanishing cycles, as in Dimca [14, §4.2]. The definition is complex analytic, 5(}/“, C* in (2.2) do
not come from C-schemes.

Definition 2.10. Let X be a C-scheme, and let f : X — C be a regular function. Define
Xo = f~40), as a C-subscheme of X, and X, = X \ Xy. Consider the commutative diagram of
complex analytic spaces:

X(E)in ’L Xan J X:,Il - Xf,n
lf lf lf | (2.2)
{0} C cr <2 .

Here X", X§", X2" are the complex analytic spaces associated to the C-schemes X, X, X,, and
i X§" — X", j 0 X2 < X" are the inclusions, p : C* — C* is the universal cover of
C* = C\ {0}, and Xan = xan X f.c*,p C* the corresponding cover of X", with covering map
p:)f(g;lﬁXf“, and m = jop.

As in §2.6, the triangulated categories D(X), D%(X) and six operations f*, f', Rf., Rfi,
RHom, é) also make sense for complex analytic spaces. So we can define the nearby cycle
functor 1y : DY(X) — D2(X,) to be ¢y = i* o Rm, om*. Since this definition goes via X2 which
is not a C-scheme, it is not obvious that ¢y maps to (algebraically) constructible complexes
D?(Xy) rather than just to D(Xy), but it does [14, p. 103], [27, p. 352).

There is a natural transformation = : 7* = 1)y between the functors

i*,4p : DY(X) — Db(Xy).

The vanishing cycle functor ¢y : DY(X) — DY%(X,) is a functor such that for every C* in D%(X)
we have a distinguished triangle

Z(C*) [+1]

*(C%) Ur(C*) ——= ¢4 (C") ———=i"(C?)
in D%X,). Following Dimca [14, p. 108], we write V%, ¢ for the shifted functors ¢ ;[—1],
o[-1): DUX) —» DY(Xo). -

The generator of Z = 71 (C*) on C* induces a deck transformation dc+ : C* — C* which lifts
to a deck transformation dx+ : X* — X* with podx+ = p and fodx+ = dc=of. Asin [14, p. 103,
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p. 105], we can use dx+ to define natural transformations Mx y : ¢ = ¢ and My : ¢} = %,
called monodromy.

Alternative definitions of ¢, ¢; in terms of specialization and microlocalization functors are
given by Kashiwara and Schapira [27, Prop. 8.6.3]. Here are some properties of nearby and
vanishing cycles. Parts (i),(ii) can be found in Dimca [14, Th. 5.2.21 & Prop. 4.2.11]. Part (iv)
is proved by Massey [37]; compare also Proposition A.1 in the Appendix.

Theorem 2.11. (i) If X is a C-scheme and f : X — C is regular, then the functors w?,gé? :
D(X) — D%(Xy) both map Perv(X) to Perv(Xy).

(ii) Let ® : X — Y be a proper morphism of C-schemes, and g : Y — C be regular. Write
f=go®:X -C,Xo=f"10)CX,Yy=9g"10) CY, and &9 = ®|x, : Xo = Yo. Then we
have natural isomorphisms

R(®g)« 0 1/)? =P o RP. and R(Pp).o qS’]Z = ¢b o RO.. (2.3)

Note too that R®, = R®y and R(Pg). = R(Po)1, as ®, Py are proper.

(iii) Let ® : X — Y be an étale morphism of C-schemes, and g :' Y — C be regular. Write
f=go®: X —-C, Xo=f10)C X, Yy=9"10) CY, and &g = ®|x, : Xo — Y. Then we
have natural isomorphisms

Pyopf 2PPod” and Pfo Pl =)o d”. (2.4)

Note too that ®* = &' and D = @6, as ®,®q are étale.
More generally, if ® : X —Y is smooth of relative (complex) dimension d and g, f, Xo, Yo,
Dy are as above, then we have natural isomorphisms

O] o} 2P o ®*[d] and  ®j[d] o ¢ = ¢F o T*[d]. (2.5)

Note too that ®*[d] = ®'[—d] and ®j[d] = ®y[—d].
(iv) If X is a C-scheme and f : X — C is reqular, then there are natural isomorphisms
P oDx = Dy, o9} and ¢} o Dy = Dx, o ¢

2.4. Perverse sheaves of vanishing cycles on C-schemes. We can now define the main
subject of this paper, the perverse sheaf of vanishing cycles PV;], ¢ for a regular function
f:U—C.

Definition 2.12. Let U be a smooth C-scheme, and f : U — C a regular function. Write
X = Crit(f), as a closed C-subscheme of U.

Then as a map of topological spaces, f|x : X — C is locally constant, with finite image f(X),
so we have a decomposition X = Hcef(x) X, for X, C X the open and closed C-subscheme
with f(z) = ¢ for each C-point = € X..

(Note that if X is non-reduced, then f|x : X — C need not be locally constant as a morphism
of C-schemes, but f|yrea : X*¢ — C is locally constant, where X**? is the reduced C-subscheme
of X. Since X, X" have the same topological space, f|x : X — C is locally constant on
topological spaces.)

For each ¢ € C, write U, = f~!(c) € U. Then as in §2.3, we have a vanishing cycle
functor ¢f _ : Perv(U) — Perv(Uc). So we may form ¢%  (Ay[dimU]) in Perv(U,), since
Ay[dim U] € Perv(U) by Theorem 2.6(f). One can show ¢ _(Ay[dim U]) is supported on the
closed subset X, = Crit(f)NU, in U,, where X, = () unless ¢ € f(X). That is, ¢%__(Ay[dim U])
lies in Perv(U.)x, . '
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But Theorem 2.6(c) says Perv(U,) x, and Perv(X,) are equivalent categories, so we may regard
’}_C(AU[dim U]) as a perverse sheaf on X.. That is, we can consider

b (AuldimU)lx, = ik, 0, () (Auldim U))

in Perv(X,), where ix, v, : X. — U, is the inclusion morphism.
As X = Hcef(X) X. with each X, open and closed in X, we have

Perv(X) = @ Perv(X,).
cef(X)
Define the perverse sheaf of vanishing cycles PV'U’f of U, f in Perv(X) to be
PVis= D ¢ (AvldimU))x..
cef(X)
That is, PVy;, # is the unique perverse sheaf on X = Crit(f) with
PV flx. = ¢ _o(Auldim U)|x,

for all ¢ € f(X).
Under Verdier duality, we have Ay[dim U] = Dy (Ay[dim U]) by Theorem 2.6(f), so

- o(AuldimU]) = Dy, (¢} _,(Aufdim U]))
by Theorem 2.11(iv). Applying i%_ ;. and using Dx, oi% ; = i!)(C,UC oDy, by Theorem 2.4(iv)
and i!)(c,Uc = i%. p, on Perv(Uc)x. by Theorem 2.6(c) also gives
i (Au[dim U])|x, = Dx, (¢} _.(Au[dim U))|x,).
Summing over all ¢ € f(X) yields a canonical isomorphism
ovy: PVY — Dx(PVy ). (2.6)
For ¢ € f(X), we have a monodromy operator
My,p-c: ¢}_(Au[dimU]) — ¢}_ (Au[dim U]),
which restricts to ¢ (Ay[dim U])|x,. Define the twisted monodromy operator
Tu.p PV — PV
by
0,7lx. = (=) My p—clx, : ¢}_.(Au[dimU])

for each ¢ € f(X).

Here ‘twisted’ refers to the sign (—1)4mU in (2.7). We include this sign change as it makes
monodromy act naturally under transformations which change dimension — without it, equation
(5.15) below would only commute up to a sign (—1)4mV=dimU 1ot commute — and it normalizes
the monodromy of any nondegenerate quadratic form to be the identity, as in (2.13). The sign
(—=1)4mU also corresponds to the twist ‘(3 dimU)’ in the definition (2.24) of the mixed Hodge
module of vanishing cycles HV7; ¢ in §2.10.

x. — ¢4 _ (Ap[dimU])|x,, (2.7)

The (compactly-supported) hypercohomology H*(PVy; ¢), HZ(PVy, ;) from (2.1) is an im-
portant invariant of U, f. If A is a field then the isomorphism oy s in (2.6) implies that
H* (PVig) = ]HIC_k(PVZ,’f)*7 a form of Poincaré duality.
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We defined PV‘U,f in perverse sheaves over a base ring A. Writing PV{,’f(A) to denote the
base ring, one can show that

L
Thus, we may as well take A = Z, or A = Q if we want A to be a field, since the case of general
A contains no more information.

There is a Thom—Sebastiani Theorem for perverse sheaves, due to Massey [35] and Schiirmann
50, Cor. 1.3.4]. Applied to PVy ¢, it yields:

Theorem 2.13. Let U,V be smooth C-schemes and f:U — C, g:V — C be regular, so that
fBg :UxV — C is regular with (fBg)(u,v) := f(u)+g(v). Set X = Crit(f) and Y = Crit(g)
as C-subschemes of U, V, so that Crit(f Hg) = X x Y. Then there is a natural isomorphism

TSu,tv.g : PVUxv,smg — PYU RPVY, (2.8)

in Perv(X x Y), such that the following diagrams commute:

PVUxv,i8g . Dxxy (PVcv, rag)

\LTSU'f’V’g Dxxy(TSu,z.v.g)

[ ] L L ° L (29)
va’f ‘Z ou,f X ov,g DX (va’f) & ~ . L .
PVy., > Dy ('PVV’g) “Dxxy ('PVUJ X 'PVvyg),
’PV?]XV,fEEg UV, t8g PV;JXV,fBHg

lTSUhf‘v,g 5 TSU,f,v,gl (2.10)

U, M Ty,g

PVy  BPVY, PVy  BPVY,.

The next example will be important later.
Example 2.14. Define f : C" — C by
flz, . zn) =284+ 22
for n > 1. Then Crit(f) = {0}, so ’PV('CH,ZHM“% = qS?(A(cn [n])|0y is a perverse sheaf on the

point {0}. Following Dimca [14, Prop. 4.2.2, Ex. 4.2.3 & Ex. 4.2.6], we find that there is a
canonical isomorphism

PV 2 4izz = H'7H(MFf(0); A) @4 Aoy, (2.11)

where M F(0) is the Milnor fibre of f at 0, as in [14, p. 103]. Since f(z) = 2 4+ -+ + 22 is
homogeneous, we see that
MF(0) 2 {(21,...,20) €C" ¢ flz1,...,2y) =1} 2 T*S" 1,
so that H" ™1 (MFy(0); A) =2 H"~1(8"~1; A) = A. Therefore we have
PV('CTL’Z%_F,”JFZ% = Aoy (2.12)

This isomorphism (2.12) is natural up to sign (unless the base ring A has characteristic 2, in
which case (2.12) is natural), as it depends on the choice of isomorphism H"~1(S"~1 A) = A,
which corresponds to an orientation for S"~!. This uncertainty of signs will be important
in §5-86.

We can also use Milnor fibres to compute the monodromy operator on PV&L,Z% a2 There
is a monodromy map pf : MFy(0) — MF¢(0), natural up to isotopy, which is the monodromy
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in the Milnor fibration of f at 0. Under the identification M Fy(0) = T*S"~! we may take yus

to be the map d(—1) : T*S"~1 — T*S"~! induced by —1 : S"~1 — 8"~! mapping
—1:(z1,...,xn) = (—21,...,—Ty).

This multiplies orientations on S"~! by (—1)". Thus, ps. : H" (8", A) — H"1(S"~1 A)

multiplies by (—1)".

By [14, Prop. 4.2.2], equation (2.11) identifies the action of the monodromy operator Mc~ |{0}
on PVén7Z%+m+z2 with the action of pg, on H" 1(S"', A). So Mcn f|{oy is multiplication by
(—1)". Combining this with the sign change (—1)4mU in (2.7) for U = C" shows that the
twisted monodromy is

c1. . °
TCn 22 4fz2 = id : PVC",Z%-‘,—-"-‘rZ% — Pvcn72%+...+zﬁ- (2.13)

Equations (2.12)—-(2.13) also hold for n = 0,1, though (2.11) does not.
Note also that these results are compatible with the Thom—Sebastiani Theorem 2.13, and can
be deduced from it and the case n = 1.

We introduce some notation for pullbacks of ’PV{,’ 4 by étale morphisms.

Definition 2.15. Let U, V' be smooth C-schemes, ® : U — V an étale morphism, and g: V' — C
a regular function. Write f = go® : U — C, and X = Crit(f), Y = Crit(g) as C-subschemes of
U,V. Then ®|x : X — Y is étale. Define an isomorphism

PV : PVY, — ®f5 (PV},) in Perv(X) (2.14)
by the commutative diagram for each ¢ € f(X) C g(Y):
PV slx. =85 (Av[dim U])|x, — o0 @ (Ay[dim V]))|x,
[Py, ﬂj/ (2.15)
o[k, (PV,) ®f 0 ¢y o (Av[dim V]))|x, .

Here o is ¢ __ applied to the canonical isomorphism Ay — ®*(Ay ), noting that, as ® is étale,
dimU = dimV and § is induced by (2.4).

By naturality of the isomorphisms «,$ in (2.15) we find the following commute, where
ou,f,Tu,f are as in (2.6)—(2.7):

PV;]vf ous DX (PV;]vf)
ipwp DX(P\)@)T (2.16)
” . 2[5 (ov,g) N o e~ . N
D% (PVV,g) o[% (DY(PVV,g)) — Dx ((I)|X(PVV,g))’
PV ¢ _ PVt
ipv(p PV@\L (2.17)
2% (Tv,q9)

% (PVY,) O[x (PVY,)-

U=V, f=g9gand ® =idy then PViq, = ide’u.f‘
If W is another smooth C-scheme, ¥ : V — W is étale, and h : W — C is regular with
g=hoW¥:V — C, then composing (2.15) for & with ®|5 of (2.15) for ¥ shows that

PVyos = @[ (PVy) o PVe : PV — (Vo <I>)|}(PV{,V’h). (2.18)

That is, the isomorphisms PVgs are functorial.
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Example 2.16. In Definition 2.15, set U =V = C" and
flzi, o zn) =g(z1, . zn) = 28+ -+ 22,

sothat Y = Z = {0} C C". Let M € O(n,C) be an orthogonal matrix, so that M : C" — C" is
an isomorphism with f = go M and M|y = id{o}. As M|y = idy, Definition 2.15 defines an
isomorphism

PV i PVen oy oz — PVen 2 g2 (2.19)
Equation (2.11) describes PV('CH7Z%+.,,+Z% in terms of M Fy(0) = T*S"~!. Now
M‘Mpf(o) : MF;(0) — MFy(0)
multiplies orientations on S™~! by det M, so
(Mlasgy o) : B (MEF;(0)s A) —» H™(MFy(0); A)

is multiplication by det M. Thus (2.11) implies that PVj; in (2.19) is multiplication by
det M = £1.

2.5. Summary of the properties we use in this paper. Since parts of §2.1-§2.4 do not work
for the other kinds of perverse sheaves, Z-modules and mixed Hodge modules in §2.6-§2.10, we

list what we will need for §3—86, to make it easy to check they are also valid in the settings
of §2.6-§2.10.

(i) There should be an A-linear abelian category P(X) of P-objects defined for each scheme
or complex analytic space X, over a fixed, well-behaved base ring A. We do not require
A to be a field.
(ii) There should be a Verdier duality functor Dx with Dy o Dx = id, defined on a suitable
subcategory of P-objects on X which includes the objects we are interested in. We do
not need Dx to be defined on all objects in P(X).
(iii) If U is a smooth scheme or complex manifold, then there should be a canonical object
Ayldim U] € P(U), with a canonical isomorphism

(iv) Let f : X — Y be a closed embedding of schemes or complex analytic spaces; this
implies f is proper. Then f,, fi : P(X) — P(Y) should exist, inducing an equivalence of
categories P(X) — Px(Y) as in Theorem 2.6(c), where Px (Y) is the full subcategory
of objects in P(Y) supported on X.

(v) Let f: X — Y be an étale morphism. Then the pullbacks f*, f' : P(Y) — P(X) should
exist. More generally, if f : X — Y is smooth of relative dimension d, then there should
be pullbacks f*[d], f'[~d] mapping P(Y) — P(X). If X, Y are smooth, there should be
a canonical isomorphism f*[d](Ay[dimY]) = Ax[dim X]. We do not need pullbacks to
exist for general morphisms f : X — Y, though see (xi) below.

(vi) An external tensor product X : P(X) x P(Y) = P(X x Y) should exist for all X,Y.

(vii) If X is a scheme or complex analytic space, P — X a principal Z/2Z-bundle, and
Q* € P(X), the twisted perverse sheaf Q°® ®7/97 P € P(X) should make sense as in
Definition 2.9, and have the obvious functorial properties.

(viii) A vanishing cycle functor ¢% : P(U) — P(Up) and a monodromy transformation

Muy,f = ¢ = ¢

in §2.4 should exist for all smooth U and regular/holomorphic f : U — Al
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(ix) The functors Dx, f*, f', f«, fis (;5’;0 should satisfy the natural isomorphisms in Theorems
2.4 and 2.11, provided they exist. They should have the obvious compatibilities with

X , and restriction to (Zariski) open sets.

(x) There should be suitable subcategories of P-objects which form a stack in the étale or
complex analytic topologies, as in Theorem 2.7. In the algebraic case we only need
Theorem 2.7(ii) to hold for Zariski open covers, not étale open covers.

(xi) Proposition 2.8 must hold. This involves pullbacks j; by a morphism j; : Wy < W which
is not étale or smooth, as in (v) above. But on objects we only consider

gt (7% (P*)) = mx i, (P*)
which exists in P(W;) by (v) as mx|w, is étale, so j; is defined on the objects we need.

(xii) There should be a Thom—-Sebastiani Theorem for P-objects, so that the analogue of
Theorem 2.13 holds.

Remark 2.17. The existence of a (bounded) derived category of P-objects will not be assumed,
or used, in this paper. On the other hand, in all the cases we consider, there will be a realization
functor from the category of P-objects to an appropriate category of constructible complexes,
and the notation used above reflects this. So in (iii),(v) above, [1] does not stand for a shift
in any derived category; the notation means a P-object or morphism whose realization is the
appropriate constructible object or morphism. See Remark 2.20 below.

2.6. Perverse sheaves on complex analytic spaces. Next we discuss perverse sheaves on
complex analytic spaces, as in Dimca [14]. The theory follows §2.1-§2.4, replacing (smooth) C-
schemes by complex analytic spaces (complex manifolds), and regular functions by holomorphic
functions.

Let X be a complex analytic space, always assumed locally of finite type (that is, locally
embeddable in C™). In the analogue of Definition 2.2, we fix a well-behaved commutative ring
A, and consider sheaves of A-modules S on X in the complex analytic topology. A sheaf S is
called (analytically) constructible if all the stalks S, for x € X are finite type A-modules, and
there is a locally finite stratification X = ]_[je, X; of X, where now X; C X for j € J are
complex analytic subspaces of X, such that S|, is an A-local system for all j € J.

Write D(X) for the derived category of complexes C* of sheaves of A-modules on X, exactly as
in §2.1, and D%(X) for the full subcategory of bounded complexes C* in D(X) whose cohomology
sheaves H™™(C®) are analytically constructible for all m € Z. Then D(X), D%(X) are triangulated
categories.

When we wish to distinguish the complex algebraic and complex analytic theories, we will
write Db(X)22 Perv(X)3® for the algebraic versions in §2.1-§2.2 with X a C-scheme, and
DY(X)2* Perv(X)2" for the analytic versions.

Here are the main differences between the material of §2.1-§2.4 for perverse sheaves on C-
schemes and on complex analytic spaces:

(a) If f: X — Y is an arbitrary morphism of C-schemes, then as in §2.1 the pushforwards
Rf.,Rfi: D(X) — D(Y) also map D2(X)& — Db(Y)ale,
However, if f: X — Y is a morphism of complex analytic spaces, then
Rf.,Rfi: D(X) — D(Y)
need not map Db(X)®" — Db(Y)2" without extra assumptions on f, for example, if
f: X — Y is proper.

(b) The analogue of Theorem 2.7 says that perverse sheaves on a complex analytic space X
form a stack in the complex analytic topology. This is proved in the subanalytic context
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in [27, Th. 10.2.9]; the analytic case follows upon noting that a sheaf is complex analyt-
ically constructible if and only if is locally at all points, as proved in [14, Prop. 4.1.13].
See also [21, Prop. 8.1.26].

The analogues of (i)—(xii) in §2.5 work for complex analytic perverse sheaves, and so our main
results hold in this context.

If X is a C-scheme, and X" the corresponding complex analytic space, then D(X) in §2.1
for X a C-scheme coincides with D(X?") for X®* a complex analytic space, and

Db(X)¥e ¢ DY(Xam)an - Pery(X)™& ¢ Perv(X®)an

are full subcategories, and the six functors f*, f', Rf., Rfi, RHom, é for C-scheme morphisms
f: X — Y agree in the algebraic and analytic cases.

2.7. Z-modules on C-schemes and complex analytic spaces. Z-modules on a smooth
C-scheme or smooth complex analytic space X are sheaves of modules over a certain sheaf of
rings of differential operators Zx on X. Some books on them are Borel et al. [8], Coutinho [12],
and Hotta, Takeuchi and Tanisaki [21] in the C-scheme case, and Bjork [7] and Kashiwara [26]
in the complex analytic case. For a singular complex C-scheme or complex analytic space X, the
definition of a well-behaved category of Z-modules is given by Saito [48], via locally embedding
X into a smooth scheme or space.

The analogue of perverse sheaves on X are called regular holonomic 2-modules, which form
an abelian category Mod,,(Zx), the heart in the derived category DY (Mod(Zx)) of bounded
complexes of & x-modules with regular holonomic cohomology modules. The whole package of
§2.1-§2.4 works for Z-modules. Our next theorem is known as the Riemann—Hilbert correspon-
dence [7, §V.5], [21, Th. 7.2.1], see Borel [8, §14.4] for C-schemes, Kashiwara [25] for complex
manifolds, and Saito [48, §6] for complex analytic spaces, and also Maisonobe and Mekhbout [34].

Theorem 2.18. Let X be a C-scheme or complex analytic space. Then there is a de Rham
functor DR : D% (Mod(Zx)) — D%(X,C), which is an equivalence of categories, restricts to

an equivalence Mod,, (2 x) — Perv(X, C), and commutes with f*, f', Rf., Rfi, RHom, é, and
also with wp,qﬁ? for X smooth. Here DY(X,C),Perv(X,C) are constructible complexes and
perverse sheaves over the base ring A = C.

Because of the Riemann—Hilbert correspondence, all our results on perverse sheaves of van-
ishing cycles on C-schemes and complex analytic spaces in §3—86 over a well-behaved base ring
A, translate immediately when A = C to the corresponding results for Z-modules of vanishing
cycles, with no extra work.

2.8. Mixed Hodge modules: basics. We write this section in the minimal generality needed
for our applications. The statements made work equally well in the category of (algebraic) C-
schemes and the category of complex analytic spaces. By space, we will mean an object in either
of these categories. The theory of mixed Hodge modules works with reduced spaces; should a
space X be non-reduced, the following constructions are taken by definition on its reduction.
For a space X, let HM(X) denote Saito’s category [45] of polarizable pure Hodge modules,
(locally) a direct sum of subcategories HM(X )™ of pure Hodge modules of fixed weight w. On a
smooth X, a pure Hodge module M*® consists of a triple of data: a filtered holonomic Z-module
(M, F), a Q-perverse sheaf, and a comparison map identifying the former with the complexifica-
tion of the latter under the Riemann—Hilbert correspondence; see [45, §5.1.1, p. 952] and [47, §4].
This triple has to satisfy many other properties; in particular, the underlying holonomic Z-
module is automatically regular, and algebraic Hodge modules are asked to be extendable to an
algebraic compactification. Thus there is a forgetful functor HM(X) — Mod,,(Z2x) from Hodge
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modules to regular holonomic (algebraic) Z-modules. Hodge modules on singular spaces are
defined, similarly to Z2-modules, via embeddings into smooth varieties; see Saito [47] and also
Maxim, Saito and Schiirmann [39, §1.8].

There is a duality functor DY : HM(X) — HM(X). Pure Hodge modules also admit a
Tate twist functor M® — M*(1), see [45, §5.1.3, p. 952]. This functor shifts the filtration
and rotates the rational structure on the underlying perverse sheaf: the Z-module filtration
(M, F) is shifted to (M, F[n]) with (F[n]); = F;_,; the underlying perverse sheaf is tensored by
Z(n) = (2mi)"Z C C, as in [45, (2.0.2), p. 876].

A polarization of weight w on a pure Hodge module M* € HM(X)" is a morphism of pure
Hodge modules

o M® — DE(M®*)(~w),
satisfying the extra conditions using vanishing cycles described on [45, (5.1.6.2) on p. 956 and
(5.2.10.2) on p. 968], as well as the condition that on points it should correspond to the classical
notion of a polarization of a pure Hodge structure (including positive definiteness).

Next, let MHM(X) denote the category of graded polarizable mixed Hodge modules [45,47].
A graded polarizable mixed Hodge module carries a functorial weight filtration W, with graded
pieces being polarizable pure Hodge modules, see [45, §5.2.10, p. 967-8]. The forgetful functor
rat : MHM(X) — Perv(X) to the appropriate category of perverse Q-sheaves on X is faithful
and exact; faithfulness in particular means that a morphism in MHM(X) is uniquely determined
by the underlying morphism of perverse sheaves. The Tate twist functor extends to MHM(X);
under this functor, the weight filtration W of the mixed Hodge module is changed to W[2n]
with W([2n]; = Wiia, as on [45, p. 855]. The duality functor D4 also extends to MHM(X) and
is compatible with Verdier duality on the perverse realization. There is also a forgetful functor
MHM(X) — Mod,;,(Zx) to regular holonomic Z-modules, even for singular spaces.

Theorem 2.19. The categories of graded polarizable mized Hodge modules have the following
properties:

(i) By [47, Th. 3.9, p. 288], the category of mized Hodge modules for X a point is canonically
equivalent to Deligne’s category of graded polarizable mixed Hodge structures.
(ii) For a smooth space U, we have a canonical object of weight dim U

Qf[dim U] € HM(U) ¢ MHM(U),
which by [45, Prop. 5.2.16, p. 971] possesses a canonical polarization
o : Q¥ [dim U] — DHQH [dim U](— dim U).
(iii) For an open inclusion f : Y — X of spaces, there is a pullback functor
= f" MHM(X) — MHM(Y).

More generally, by [47, Prop. 2.19, p. 258], for an arbitrary morphism f:Y — X, there
exist cohomological pullback functors L7 f*, L7 f' : MHM(X) — MHM(Y) compatible
with (perverse) cohomological pullback on the perverse sheaf level.

(iv) For a closed embedding i : X — Y, there is a pushforward functor

iy =iy : MHM(X) — MHM(Y),

whose essential image is the full subcategory MHM x (Y') of objects in MHM(Y') supported
on X. Its inverse is i* =i' : MHMx (Y) = MHM(X). More generally, by [45, Th. 5.3.1,
p. 977 and [47, Th. 2.14, p. 252], for a projective map f : X — Y there are cohomo-
logical pushforward functors

RIf, : MHM(X) — MHM(Y).
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(v) There is an external tensor product functor
L
X : MHM(X) x MHM(Y) — MHM(X xY),

which is compatible with duality in the sense that for all M* € MHM(X) and
N°* € MHM(Y), there is a natural isomorphism

L L
DEM RDEN® DI (M*RN*).

Remark 2.20. We will not need to use any derived category D* MHM(X) of mixed Hodge
modules in this paper, which is just as well since on singular analytic X, the appropriate bound-
edness conditions do not appear to be well understood, and the general pullback and pushforward
functors of Theorem 2.19(iii),(iv) are not known to exist as derived functors outside of the alge-
braic context of [47, §4]. Hence, in part (ii) above, [1] does not stand for a shift in the derived

category; QI(}{ [dim U] just denotes a mixed Hodge module whose realization is the perverse sheaf
Quldim U] on U. Compare Remark 2.17 above.

Using the functors above, we can now define the twist of a mixed Hodge module by a principal
Z/2Z-bundle. In the setup of Definition 2.9, given a Z/2Z-bundle 7 : P — X, and an object
M*® € MHM(X) on a space X, we have a natural map M® — m,.7*M*, which is an injection by
faithfulness of the realization functor and the fact that it is an injection on the perverse sheaf
level. The quotient object will be denoted, by abuse of notation, by M® ®z /97 P in MHM(X).

2.9. Monodromic mixed Hodge modules. To discuss nearby and vanishing cycle functors
in a way consistent with monodromy, we need an extension of the category of mixed Hodge
modules. For a space X, following Saito [49, §4.2] denote by MHM(X;Ts, N) the category of
mixed Hodge modules M*® on X with commuting actions of a finite order operator Ty : M®* — M*
and a locally nilpotent operator N : M® — M¢*(—1). There is an embedding of categories
MHM(X) - MHM(X;Ts, N) defined by setting "= id and N = 0. As proved by [49, (4.6.2)],
the category MHM(X;Ts, N) is equivalent to the category MHM(X x C)pon, of monodromic
mixed Hodge modules on X x C* extended by zero to X x C; compare also [33, §4.2].

Every object M* € MHM(X; Ty, N) decomposes into a direct sum M*® = M ®M?3, of the T-
invariant part and its Ts-equivariant complement. The Tate twist, and appropriate cohomological
pullback and pushforward functors continue to exist. There is a duality functor

D% : MHM(X; T,, N) — MHM(X; Ty, N)
defined by
DY (M*) = DY (M?) © DF (M2,)(1),
equipped with the finite-order operator Dx (Ts)~! and the nilpotent operator —Dx (N). This
duality functor still satisfies D% o D% = id.
Saito [49, §5.1] also defines an external tensor product
T
X : MHM(Xy; T, N) x MHM(X5; T, N) — MHM(X; x X5;Ts, N).
defined on the monodromic category as follows. The addition map on fibres
7 (X1 XxC) x (X2 xC) — (X1 x X3) xC
induces the additive convolution
e (— & =) : MHM(X1 X C)mon,1 X MHM(X3 X C)mon,t — MHM(X1 X 22 X C)mon,!-

T
One can translate this external tensor product X to the MHM(X; T, N) defined by concrete
data (M*,Ts, N). On the underlying 2-modules and perverse sheaves, it is just the usual product
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K. The operators are defined by Ts = Ts KTy and N = N Xid + id X N. However, the Hodge
and weight filtrations on the underlying Z-modules and perverse sheaves are shifted using the
finite order endomorphisms Ty; for details, see [49, (5.1.1)—(5.1.2)]. Note that as a consequence
of these definitions, the forgetful functors

MHM(—; Ty, N) — MHM(—)

L
do not map % to K. Twisted duality and the twisted tensor product commute in the sense
that given M* € MHM(X;T,, N) and N* € MHM(Y’; Ts, N), we have a natural isomorphism in
MHM(X x Y;Ts, N):

T . z T . T . z .
D% (M*)XDy (N°®) 2 Dy, y (M*KN®). (2.20)
For an object M* € MHM(X; T, N) whose weight filtration is a (suitable shifted) monodromy

filtration of the nilpotent morphism N, there is a stronger notion of polarization which will be
useful for us. A strong polarization of weight w of such an object M*® is a morphism

o M®* — DY (M®*)(—w)

in MHM(X), compatible with Ts and N, such that o defines polarizations on the N-primitive
parts of M*®, compatible with Hodge filtrations; for precise conditions, see [45, p. 855]. A
polarization on a pure Hodge module is a strong polarization (with N = 0); a strongly polarized
mixed Hodge module is graded polarizable. The partial twist in the definition of D§ implies
that M* is of weight w if and only if M7, respectively M3, are of weights w,w — 1 in the sense
of [45, p. 855].

Given strongly polarized mixed Hodge modules M? € MHM(X;;Ts, N) of weight w; for
i = 1,2, polarized by o; : M? — ]D)Q(Mi')(fwi), there is an induced morphism o in a commu-
tative diagram

D%, (Mp)(—w:) R (Mg)(—ws)

\T |

D, xx, (MTRMS) (—w1 — w2),

T
MrRMS

T
where the top map is 01 Koo and the right is the isomorphism (2.20). In general, it is not clear
T

whether this morphism is a strong polarization of the tensor product M7 XK MJ; this result is
not available in the literature. However, in this paper we only use this construction in cases
where one of the monodromic mixed Hodge modules is essentially trivial, living on X; = pt with
N =0, in which case it is easy to check that the resulting o is a strong polarization.

Note also that if M* is strongly polarized by o : M® — D% (M*)(—w), then its Tate twist is
also strongly polarized by the composition

1 ~
Mo (1) 2 DT (M) (—w + 1)~ DL (M2 (1)) (—w + 2). (2.21)
The notion of strong polarization leads to gluing, in the following way.

Theorem 2.21. Let X = |J,U; be an open cover of a space X, in any of the Zariski, étale or
complex analytic topologies. Then:

(i) Suppose we are given mized Hodge modules M®, N* € MHM(X), with morphisms
fi : M|y, = N°®|y, in MHM(U;) which agree on overlaps U;;. Then there is a unique
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ii) Suppose we are given mized Hodge modules M? € i;Ts, N), each equipped wi
ii) S ) ixed Hod, dules M € MHM(U;; Ts, N h ipped with
a strong polarization o;. Suppose also that we are given isomorphisms

. .
Qjj t Mz

Uiy — Mj.

Uq‘,j

on intersections, commuting with the restrictions of the maps Ts;, N; and o;, with

Qjk|Uijp © QijlUsj = Qik|Uj

on triple intersections. Then there is a strongly polarized mized Hodge module
M*® e MHM(X;Ts, N),

restricting to M on U;.

Proof. To prove (i), it is enough to note that the f; glue on the perverse sheaf and Z-module
levels, respecting filtrations.

To prove (ii), we begin with the case of pure Hodge modules of fixed weight w. The data of a
pure Hodge module consists of a pair of a filtered holonomic Z-module and a Q-perverse sheaf,
with an identification of the former with the complexification of the latter under the Riemann—
Hilbert correspondence. Since both filtered holonomic Z-modules and Q-perverse sheaves form
stacks (both in the algebraic and the analytic case), this data glues over X. As for the (strong)
polarization, Ty; = id and N; = 0 glue to Ts = id and N = 0, whereas the map o on the perverse
sheaf level glues from the maps o; once again from the stack property (now for morphisms) of
perverse sheaves.

The conditions [45, §5.1.6, p. 955] which make such a pair a pure Hodge module come from
local conditions as well as conditions on vanishing cycles; the latter glue by induction on the
dimension. So strongly polarized pure Hodge modules form a stack. The case of mixed Hodge
modules is similar: we need to glue filtrations and polarizations, as well as the maps T;, N; and
oj, first on the level of perverse sheaves, and then checking the axioms, which are local or follow
by induction. (I

Remark 2.22. Given a projective C-scheme X, and a polarizable mixed Hodge module M*
in MHM(X) on it, the second part of Theorem 2.19(iv) applied to f : X — pt shows that
the hypercohomology H*(X, M*®) carries a mixed Hodge structure. In particular, it carries a
weight filtration and therefore has a weight polynomial, which will be useful in refinements
of Donaldson-Thomas theory, see the discussion in Remark 6.14 below. So we need to glue
polarizable objects from local data. On the other hand, graded polarizable mixed Hodge modules
may fail to form a stack in the analytic category unless the polarizations glue. This is the reason
for using the stronger form of polarization, which allows for gluing as shown above.

2.10. Mixed Hodge modules of vanishing cycles. By Saito’s work [45-47], for a regular
function f : U — C on a smooth space U, the perverse nearby and vanishing cycle functors
%, ¢ defined on perverse sheaves in §2.3 lift to functors

¢t ¢f : MHM(U) — MHM(Up; Ts, N),

where Uy = f~1(0). The actions of the finite order and nilpotent operators Ts, N are given by
the semisimple part of the monodromy operator, and the logarithm of its unipotent part. The
analogue

of oDF 2Df, o f
of Theorem 2.11(iv) is proved in [46]; to make this isomorphism work is the reason for the the
twist in the definition of Df;. Note also that [46, Th. 1.6] fits with the convention that T, and
N are defined on dual objects as Dy (T,) ™! and Dy (), respectively.
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By [45, §5.2], if M* € HM(U) is a pure Hodge module, then a polarization of M*® induces
a strong polarization on the (mixed) Hodge module of vanishing cycles qSJIZI (M?*), of the same

weight. In particular, if M* = Qf [dim U] is the canonical object with its canonical polarization
from Theorem 2.19(ii), then QSJIZI (Qg[dim U]) € MHM(Crit(f);Ts,N) is a strongly polarized
mixed Hodge module on the critical locus of f, with polarization

o ¢F (QU [dim U]) — D) © ¢F (Qff [dim U]) (— dim U). (2.22)
Example 2.23. Define f : C — C by f(z) = 22. Then Crit(f) = {0}, and we obtain an
object qzﬁfc{ (QF[1]) in MHM(pt; T5, N), a one-dimensional polarized mixed Hodge structure with
monodromy acting by T, = —id and N = 0. For g : C* — C given by g(z1, 25) = 23 + 23, it is
well known that

2+z (Q(C2[ ]) = Q(fl)v

with trivial monodromy action. Applying the Thom—Sebastiani formula for mixed Hodge mod-
ules [49, Th. 5.4], we see that

o1% (QF (1)) ¥4 (@ 1]) = Q(-1)
in the category MHM(pt; T, N). The objects Q(1) and Q(—1) thus admit square roots under
X in this category, which we will denote by Q(3) and Q(—1), where
o2 (QE[]) = Q(-3). (2.23)
More explicitly, we have
Q(_%) = (Q(O)7 _idv())

and

T
Define an object Q(%) € MHM(pt; T, N) for each n € Z by Q(3) = Q(%)gn for n > 0, and
T
Q%) = (@(—%)&7" for n < 0. For any space X with structure morphism 7 : X — pt, and any

T
M* € D" MHM(X; Ty, N), we define the 2 twist of M*® to be M*(%) = M*K(Q(%)). If M* is
strongly polarized, then this tensor product is also strongly polarlzed by the tensor polarization
by our comments above.

Let U be a smooth space, f : U — C a regular function, and X = Crit(f) its critical locus,
as a subspace of U. The perverse sheaf of vanishing cycles PV{; ¢ € Perv(X) from §2.4 has a lift
to a mixed Hodge module HV7; ; in MHM(X; T, N), defined for each ¢ € f(X) by

HVY flx. = ¢F Q) [dim U))|x, (3 dimU) € MHM(X,; Ty, N). (2.24)
This mixed Hodge module inherits a strong polarization of weight 0 (compare (2.21) and (2.22))
off ; HVY; — DX (HV ;). (2.25)

The twist (3 dimU) in (2.24), using the notation of Example 2.23, is included for the same

reason as the (—1)"™Y in the definition (2.7) of 7;. It makes HVy, ¢ act naturally under
transformations which change dimension — without it, the mixed Hodge module version of
(5.15) below would have to include a twist (3n) for n = dim V — dim U. Then

HVy o To : HVY ;= HVY e N HVY ;= HVG (1), and off ; : HVY  — DX (HVy )
are related to

PV Tug: PV — PV, and opy: PVY — Dx(PVy ;)
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in §2.4 by
PV'ny = rat ('HV{]J), Ty,p = rat(T;) o exp(27ri rat(N)), o= rat(a{]{f);

for the last statement, see Proposition A.1 in the Appendix.
The following Thom—Sebastiani type result is the analogue of Theorem 2.13.

Theorem 2.24. Let U,V be smooth spaces and f:U — C, g: V — C be regular functions, so
that fHg : UxV — C is given by (fBg)(u,v) := f(u)+g(v). Set X = Crit(f) and Y = Crit(g)
as subspaces of U,V, so that Crit(f B g) = X x Y. Then there is a natural isomorphism

~ T
TSU fvg : Vv pmg — HVE  RHVY,, in MHM(X x V3T, N), (2.26)
so that the following diagram commutes:
HV.UXV,fEEIg UV, g D:J;(XY(HV;]XV,fEEg)
i/TSIJ’f’V’g D§XY(TSg,f,V,g)
. - T e N (2.27)
HVUsR o Ry, Dx(HVp )R

WYy, T DRV, T Dy (Vi RHVY,).

Proof. The existence of the isomorphism (2.26) follows from the Thom—Sebastiani Theorem for
mixed Hodge modules due to Saito [49, Th. 5.4], applied to HVY; ;. The diagram (2.27) exists by
(2.20); its commutativity can be checked on the level of the underlying perverse sheaves which
is (2.9), in light of Propositions A.1-A.2 in the Appendix. Note that (2.26) also includes the
analogue of (2.10) in Theorem 2.13, according to which we have a matching of the monodromy

actions
L

TUxv,fig = Tu,f W Tvg,
as (2.26) holds in MHM(X x Y; Ty, N) rather than just MHM(X x Y'). O

In this paper we will only ever apply Theorem 2.24 when V = C", g = 22 + - + 22 and
Y = {0}. Combining (2.23) and (2.24) shows that

HVE .2 = (Q(=3))(3) = Q(0) = Qfpy-
H onH ~ nH . .
Thus, by Theorem 2.24, Qo K Qg = Qfpy, and induction on n, we see that

IHV(E",Z%#»-“Jrz% = QI{L{)}

As for (2.12), this isomorphism is natural up to sign, depending on a choice of orientation for
the complex Euclidean space (C",dz? + - -- + dz2).

3. ACTION OF SYMMETRIES ON VANISHING CYCLES

Here is our first main result.

Theorem 3.1. Let U,V be smooth C-schemes, ®, ¥ : U — V ¢étale morphisms, and
f:U—=C,g:V — C regular functions with go ® = f = go W. Write X = Crit(f) and
Y = Crit(g) as C-subschemes of U,V, so that ®|x,V|x : X = Y are étale morphisms. Suppose
@‘X = ‘IJ|X Then:
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(a) As @,T are étale, d® : TU — ®*(TV), dV : TU — U*(T'V) are isomorphisms of vector
bundles. Restricting to the reduced C-subscheme X4 of X, and using ®|xrea = ¥/ yrea
as ®|x = V|x, gives isomorphisms

dq)|Xred, d\I/|Xred : TU|Xred — (I)B(md (TV),
and thus  d¥| L, 0 d®|xrea : TU|xrea — TU|xrea.

Hence

det (d\Il

Srea 0 d®|xrea) : X — C\ {0}
is a reqular function. Then det (d\ﬂ;cd o d<I’|Xred) s a locally constant map
Xxrd 5 {+1} c C\ {0}

(b) Definition 2.15 defines isomorphisms PV, PVy : PVy, ; — @[ (PVy,,) in Perv(X).
These are related by

PVg = det (d¥| ;1 © d®|xrea) - PVy, (3.1)

regarding det(d\I!|;ed 0 d®|xrea) : X — {£1} as a locally constant map of topological
spaces, where X, X' have the same topological space.
The analogues of these results also hold for Z-modules and mired Hodge modules on C-

schemes, and (with ®, ¥ local biholomorphisms and f, g analytic functions) for perverse sheaves,
P-modules and mized Hodge modules on complex analytic spaces, as in §2.6-52.10.

By taking U =V, f = g, ® an isomorphism and ¥ = idy, we deduce a result on the action
of symmetries on perverse sheaves of vanishing cycles:

Corollary 3.2. Let U be a smooth C-scheme, ® : U — U an isomorphism, and f: U — C be
regular with f o ® = f. Write X = Crit(f) as a C-subscheme of U and X™9 for its reduced
C-subscheme, and suppose ®|x = idx. Then det(d<I)|de : TU|xrea — TU chd) s a locally
constant map X™ — {x1}, and PVs : PVy; i>’PV°U’f in Perv(X) from Definition 2.15 is
multiplication by det (d<I>|de) = +1. The analogues hold in the settings of §2.6-§2.10.

Example 3.3. Let U = V = C" and f(z1,...,2n) = g(21,...,2n) = 2% + -+ + 22, so that
X =Y ={0} c C". Let ®,% € O(n,C) be orthogonal matrices, so that det ®,det ¥ € {£1}
and ®,¥ : C" — C" are isomorphisms with f = go ® = go ® and ®[;5; = ¥[{o} = id{o}. In
Theorem 3.1(a) we have

d\l";cd 0d®|yrea =¥ Lo d: C" — C",

so that det(d\11|;ed 0 d®|yrea) = det U~ det & = +£1.
For Theorem 3.1(b), Example 2.16 shows that PVe, PVy : Aoy — Aqo) are multiplication
by det ®,det ¥, so PVg = (det U1 det ®) - PVy, as in (3.1).

The proof of Theorem 3.1(b) uses the following proposition. To interpret it, pretend for
simplicity that the étale morphisms 7y |w, : Wy — U in (b) are invertible. Then

O =7y |w, O7TU|;V1t

for t € C are a l-parameter family of morphisms U — V, which satisfy f = g o ©; and
Oi|lx = P|x = VY|x for t € C, with ©g = ® and ©; = ¥. Thus, modulo taking étale covers of
U, the family {©; : t € C} interpolates between ® and .
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Proposition 3.4. Let U,V be smooth C-schemes, let ®,V : U — V be étale morphisms, and
let f:U—C,g:V — C be regular functions with go® = f = go W. Write X = Crit(f) and
Y = Crit(g) as C-subschemes of U,V, so that ®|x,¥|x : X — Y are étale. Suppose
Oy =V|x, and x € X such that dV| ! od®|, : T,U — T, U satisfies

(A¥|; ! o d®|, —idp,u)? = 0.
Then there exist a smooth C-scheme W and morphismsnc : W — C,ny: W = U, 7y . W =V
and v: C — W such that:

(a) mcou(t) =t, Ty ou(t) =z and wy o u(t) = ®(z) for all t € C;

() mcxmy : W —=>CxU and g x my : W = Cx V are étale. Thus, W; := W(El(t)
is a smooth C-scheme for each t € C, and wy|w, : We = U, wy|w, : Wy =V are étale,
and u(t) € Wy with wy = o(t) — z, Ty 2 u(t) = P(x);

(¢) h:i=fomy=gonmy: W — C. Thus,

(rexmy)lz: Z—CxX  and (rexmy)lz: Z—CxY

are étale, where Z := Crit(h);
(d) (I)|XO7TU‘Z:\I"XO7TU|Z:7T\/|Z2Z—>Y§V; and
(e) (I)OTK'U‘WO = 7TV|W0 and \I/O7TU|W1 = 7TV|W17 fOT’ Wo,Wl as in (b)

We will prove Proposition 3.4 in §3.1, and Theorem 3.1 in §3.2-§3.4.

3.1. Proof of Proposition 3.4. Let U,V,®, ¥, f g, X, Y,z be as in Proposition 3.4. Choose a
Zariski open neighbourhood V' of ®(z) = ¥(z) in V and étale coordinates (z1,...,2,) : V/ = C"
on V', with

Z71=-=2,=0

at ®(x). Let m be the rank of the symmetric matrix (%B(z))?]’:u so that m € {0,...,n}.
i J 2
By applying an element of GL(n,C) to the coordinates (z1, ..., z,) we can suppose that

02 L, i=je{l,...,
g ‘ _ i=jed mj}, (3.2)
02;0zj lo(x) 0, otherwise.
Then %g—i agrees with z; to first order at ®(z) for ¢ = 1,...,m, so replacing z; by %g—i for
i=1,...,m and making V' smaller, we can suppose (3.2) holds and z1, ...,z lie in the ideal
(%, i=1,... ,n) in Oy,. Thus we may write
n 8 X
Z7:ZA”é, Z:L...,m, (33)
j=1
where 4;; : V' — A are regular functions for i = 1,...,m and j = 1,...,n. Taking 6%)_ of (3.3)

for j =1,...,m and using (3.2) gives

PIT ER A ije{l,...,mh 54)
@ T N0 £, d g e {l,...,m). '

Set U' = &~ 1(V') N U—1(V’), so that U’ is a Zariski open neighbourhood of z in U. Define
étale coordinates (z1,...,2,) : U — C" and (y1,...,yn) : U — C" by x; = z;0® and y; = z;07,

sothat x; = =z, =y1 = -~ =y, = 0 at x. Sincef:go<I>:go\Ivaehave%Z%Oq’
J J
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and 2L — g—zgj oW. Thus (3.2) and (3.3) imply that

0% f B 0% f )1, i=je{l,...,m}, (3.5)
0z;0z; |z B 0y;0y; 1z N 0, otherwise, ’
€Ty = Zl(Az]O@)%, Yi = Zl(A”O‘IJ)%, Z=1,7m (36)
j= J=

Now d®|, : T,U — Tg(,)V maps % — C%j, as x; = zj o ®, and d¥|, : T,U — Tg(,)V maps

aiyj > 6@%. Hence d¥|;tod®|, : T, U — T,,U maps % > 8@% =3, ggj '8%1" Define B;; € C
fori,7=1,...,n by

8ij + Bij = 3ot .. (3.7)
Then (8;; + Bij);fj:l is the matrix of d¥|; ! od®|, w.r.t. the basis 8%17 RN %7 and (Bij);szl

is the matrix of d¥|; ! od®|, —idr, v, so by assumption (B;;)? = 0. Therefore the inverse matrix
of (5U + Bij) is (52J — Bij), SO (37) gives

dyi
bij — Bij = 5at |, (3.8)
More generally, (5ij + tBij) is invertible for ¢ € C, with inverse (5ij — tBij).

Now ®|x = U|x implies that d¥| ! o d®|, is the identity on T, X C T,U, and

T, X = Ker(Hess, f) = <8xi+1""’%> by (3.5), so

Bijj=0 foralli=1,...,nand j=m+1,...,n. (3.9)

o2 f . dx; 9%f 8 o f . dy; 9%f 9 .
We have z--- |x = ZMC By 0, D aiy]; o Dardm }x = ijk B Ty 00 a—g’; ,» Which by (3.5) and
(3.7)—(3.9) give equations equivalent to
n
Bl‘j + Bji = Z Bkinj =0 foralli,j=1,...,m. (310)
k=1
Define regular ¢/, 2!, ..., a0, v1, ...,y 21, ...,z :Cx U xV'— C by
t'(t,u,v) =t, z,(t,u,v) = z;(u) = 2 0 ®(u),
yi(t,u,v) = yi(u) = z; 0 ¥(u), zi(t,u,v) = zi(v).
Then (¢, y1,...,Y5,21,--.,2),) are étale coordinates on C x U’ x V'.

Let S be an affine Zariski open neighbourhood of C x (x, ®(z)) in C x U’ x V', satisfying a
series of smallness conditions we will give during the proof. Regard (', 41, ..., Y5, 21, ---,2,) as
étale coordinates on S, and write n¢ : S = C, 7y : S — U, ny : S — V for the projections.
We will work with (sheaves of) ideals in Og, using notation (2} — 2}, i = 1,...,n) to denote the
ideal generated by the functions x} — 21,...,z], — 2/, and

fomy—gomy € (aj—2,i=1,...,n)
to mean that fomy —gomy € H°(Og) is a section of the ideal (a:; -z, i=1,... JL). Write

Ix C Oy, Iy C Oy for the ideals of functions on U, V vanishing on X,Y’, and
W&l(Ix)77T‘;1(Iy) C Og

for the preimage ideals.

Since x; = z; o @, the functions z; — 2} for ¢+ = 1,...,n vanish on the smooth, closed C-
subscheme (C x (id x®)(U)) N S in S, and locally these functions cut out this C-subscheme. So
making S smaller we can suppose (C x (id x®)(U)) N S is the C-subscheme

-2 =-=a,-2,=0
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in S. As f = go®, the function fomy — gomy is zero on (C x (id x®)(U)) N S. Hence

fomy—gomy € (af—2,i=1,...,n) C Os. (3.11)

Lifting (3.11) from (z§ — 2, i = 1,...,n) to (2} — 2}, i = 1,...,n)2, making S smaller if
necessary, we may choose regular C; : S — C for i = 1,...,n with

fomy—gomy — > C;-(z) —2}) € (xg—zz’», i:1,...7n)2. (3.12)

i=1
Apply 3%; to (3.12), using the étale coordinates (t',y],...,yh, 21,-.-,2,) on S. Since
/
oz}

0 dg 0
w(gowv):azz_owv and a—zg(fOﬂ'U):O:aZg,

%

this gives
C’i—%om/ € (2, —z,i=1,...,n).
Combining this with (3.12) yields

fomy —gomy — Z(aazl omy) - (xf — 2}) € (o} — 2, i:17...,n)2.
So making S smaller we can choose regular D;; : S — C for 4,j = 1,...,n with D;; = D;; and
fO’/TU —goTmy = Z(adzg O’/Tv) . (.’ﬁ; *Z;) + 4ZIDij . (.’ﬂ; 722)(152 - Z;) (313)
=1 1,)=

Similarly, starting from y; = 2; 0 ¥ and f = g o ¥ we may choose regular E;; : S — C for
i,j = 1,...,n with Eij :Eji and

fomy —gomy = Z(gz omy) - (yi —z) + X Eij- (v — 2)(Y; — 2}). (3.14)
i=1 ij=1

Applying %;ZJ,_ to (3.13) and (3.14), restricting to (¢,z,®(x)) for ¢ € C, noting that
=y, =z =0at (t, z,®(x)), and using (3.2), we deduce that

Dij(t,z, ®(x)) = Eyj(t, 2, ®(x)) = 1 524

2 82,82,
B i—je {1 m}, (3.15)
N otherwise.

Summing 1 — ¢ times (3.13) with ¢ times (3.14) and rearranging yields

fomy—gomy =3 [g—zgiowv-l-Zt'(l—t')Z(D” Ei) (@ —1)]

i=1 j=
(1=t + t'y; — 2)
n
* ]Zl [(1 =) Dij+t'Eyj] - (1—t")a} 'y — =) (L=t )als +t'y; — )
n
+ X t-t) [t'Dij + (1=t")Eyj] - (a7 — yi) (@) — y})- (3.16)
i,j=

Since z; —yl = (x; —y;) oy, and (z; —y;)|x = zi0®P|x — 2z, 0¥|x =0 as P|x = ¥|x, we see
that o} —y} € 7@1([ x ). Thus making S smaller if necessary, we may choose regular F;; : S — C
such that

x;_yl_zj VFy ( o7rU) fori=1,...,n. (3.17)
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Furthermore, by (3.6) when i = 1,...,m we may take
Fij = (Z(Ako(b) ai—14ij0\11) oCTy.
k=1
Restricting to (¢,z, ®(z)) and using (3.4), (3.8), (3.9) and ®(x) = ¥(z) gives
Fij(t,z,®(x)) =—-Bj; fori=1,...,mandj=1,...,n. (3.18)
Applying % to equation (3.13) shows that
%Oﬂ'v—%oﬂU € (;v;—z;-, ji=1,...,n).

Thus we may write
dg n 0 [é)
atomy =i (5 o) - (5 o) + Xjo Gy - () = #0), (319)

where Gy; : § — C are regular. Applying 2~ to (3.19), restricting to (¢, z, ®(z)) and using (3.2)

yields
-1, i=j€{l,...,m},
Gij(t, z, (x)) = 3.20
362, 2(@)) {O, otherwise. ( )
From (3.17) and (3.19) we see that
Homy = Z Hij - (55 omu) + 72, Gij - (1= )y + 1y — 24), (3.21)

where H;; = 83: Loy 4+t > _y GirFyj, so that from equations (3.8), (3.9), (3.18) and (3.20) we
deduce that
Hij(t,.’t, (I)((E)) = 52']' - (]. - t)B]Z (322)
Combining (3.16), (3.17) and (3.21) gives

fomy—gomy — 3 Ii- (1 —t')af + t'y; — 2))
i=1

— > (A=)t Dy+(1—t)Eij) FiFji - (5L o 7o) (55 o 7o)

J
e (L=t +ty,—2, i=1,...,n)° (3.23)
where ;=Y [szt'(kt') > (Dikaik)ij] (L omy). (3.24)

j=1 k=1
Consider the matrix of functions [H;; + - 1 appearing in (3.24). Equations (3.15) and
(3.22) imply that at (¢, 2, ®(z)) this reduces to — (1 —1t)Bji), which is invertible from above.

Thus, making S smaller, we can suppose that [Hm + -+ ]f ;21 in (3.24) is an invertible matrix
on S. Write [J;;]?._; for the inverse matrix. Then we have

n
i,j=
(

i,5=1
n of
i’j}%ZI t/(l—t/) [t/Dij—‘r(l—t/)Ei]‘]F F ( OWU)(ayl O7TU)
= t/(l - t/) Z Kij . Iin, where (325)

ig=1
Kij = Z t/(l—t/) [t/Dk[+(1—t/)Ekl]kaEququj.

k,l,p,q=1
Using (3.9), (3.10), (3.15) and (3.18) we find that
Kij(t,z,®(x)) =0 forallteC. (3.26)
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Combining (3.23) and (3.25), making S smaller if necessary we may write

fOWU—gOWV:;Ii . ((1—t’)x§+t’y§—zl’») +tl(1—tl) Z Kij . IZIJ

i ij=1
+ 3 Lij- (L= taz) 4+ t'y) — 2)) (1 =tz + 'y} — ), (3.27)
ij=1
for regular L;; : S =+ Cfori,j=1,...,n.

Write (r;)7';—; for the coordinates on C™. Let T be a Zariski open neighbourhood of

C x (x,@(a:), o) )

i,j=1
in S x C" to be chosen shortly, and let W be the closed C-subscheme of T" defined by

W = {(t,u,v, (ri;)}j=1) €T C S x C” CCxUxVxC":
(A=thal+t'y,—z) (tu,v) = 3 iy - Li(tu,v), i=1,...,n, (3.28)
j=1

ri; +t(1 —t) K (t,u,v) + > Ligi(t,u,v) - riry; =0, 4,5 =1,... 7n}.
k=1
Define C-scheme morphisms 7¢ : W — C, ny : W — U, and «ny : W — V to map
(t,u, v, (Tij)?,j:l) to t,u, v, respectively.
At (t,z,®(x)) € S for t € C we have ¢} =y} = 2} =0, and I; = 0 by (3.24) as (%fjh =0,
and K;; = 0 by (3.26). Hence (t,z,®(z), (0);';,) satisfies the equations of (3.28), and lies in
W. Define ¢ : C - W by

ut) = (t,z,®(x), (0)F_y). (3.29)

i,7=1

Now T C Cx U x V x C* is smooth of dimension 1+ n +n + n2, and in (3.28) we impose
n + n? equations, so the expected dimension of W is (1 + 2n + n?) — (n + n?) = n+ 1. The
linearizations of the n + n? equations in (3.28) at

(tﬂ u,v, (Tl])f:jzl) = (tv &€, (I)(‘T)7 (0)2]21) = L(t)
are
dyile(0u) — dzile@) (dv) =0, i=1,...,n,

oryj + dKij|(t7m’¢.(z))((5t Ooudov)=0, 4,j=1,...,n, (3.30)
for 6t € T,C, ou € T, U, v € TV, and (dry;)} -, € T(O)ijl(C"z, where we have used
dzf = dy} and I; = K;; = 0 at ({,z,®(z)). As dyi1|s,...,dys|s are a basis for T U, equations
(3.30) are transverse, so W is smooth of dimension n+1 near ¢(t). Hence, taking T small enough,
we can suppose W is smooth.

It remains to prove Proposition 3.4(a)-(e). Part (a) is immediate from (3.29). For (b), the
vector space of solutions (5t, ou, ov, (6%]—)%:1) to (3.30) is T, ;) W, where

d(ﬂ'(c X 7TU)|L(t) : TL(t)W — T(t,a:) ((CXU)

and d(’/T(C X7TV)|L(t) : TL(t)W — T(t@(w))((CXV) map (5t, §u, 51}, (5”]')?:]‘:1) to (5t, 5’(,&) and (5t, 5’0)
By (3.30), these are isomorphisms, so m¢ X 7wy and m¢c X my are étale near +(C). Making T, W
smaller, we can suppose m¢ X 7y and w¢ X 7y are étale.
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For (c), we have
(foﬂ—ng © 7TU) (ta u,v, (rij)?,jzl) :f(u)fg(v) = (f oTmy—go WV)(tv u, ”U)

I (L=t +t'y; — 2) + (1= 1) 3 Kyl

ij=1

L;;- ((1 -tz +t'y) — z;) ((1 — t’)x; + t’y; — zg)

|

&
Il
-

_|_

I, (Zr” )+t’( ) S KL

i,j=1

&
Il
-

~.+
M= ?Ms

Lij; - (En: Tik - Ik) (z; 1 'Il)

1 k=1

Iin s Tyt tl(]. — t/)Kij + Z Ly - rki'rlj} =0,
k=1

1

-
&,
Il

using (3.27) in the third step, the first equation of (3.28) in the fourth, rearranging and ex-
changing labels i,k and 7,1 in the fifth, and the second equation of (3.28) in the sixth. Hence
fomy—gomy =0: W — C, proving (c).

For (d), from (3.28) we can show that (C x (id x®)(X) x (C"2) N W is open and closed in
Z = Crit(h), and contains ¢(C). So making T', W smaller we can take

Z = (C x (id x®)(X) x C) n W,

and then (d) follows as ®|x = U|x.
For (e), observe that when ¢t = 0 in (3.28), the second equation reduces to r;; = 0 near +(C)
as t(1 —t)K;j(t,u,v) = 0, so making T, W smaller gives

Wo = {(0,u,v,(0)}",=1) € T: (2} —2;)(0,u,0) =0, i =1,...,n}
={(0,u,v,(0)}'j=,) €T :v=d(u)}.
Hence ® o my|w, = mu|w,. Similarly, when ¢t = 1 we have
W, = {(1,u,v7 (O)ijl) eT: (y; —zl{)(O,um) =0,i=1,... ,n}
= {(O,U,U, (O)ijl) eT:v= \I/(u)},
so that ¥ o mw|w, = 7y|w,. This proves (e), and Proposition 3.4.

3.2. Part (a): det(dV¥|y ., o d®|xwa) = £1. We work in the situation of Theorem 3.1. For
each © € X C U, consider the diagram of linear maps of vector spaces:

0 T.X TV > TU T:X 0

d(élx)zl d«bzi l(d%l)* l(d@m;)* (3.31)
Hessg () g

where T, X is the Zariski tangent space of X, and Hess, f = (0f)|, the Hessian of f at z.
The rows of (3.31) are exact, and the columns isomorphisms. The outer squares of (3.31) clearly
commute. We can show the central square commutes by taking second derivatives of f = go® to
get 9 f|o = 0?9|a(2)0(dP|,®d®|,), and composing with id @d®|;*. Thus (3.31) is commutative.
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There is also an analogue of (3.31) for ¥. Since ¥(z) = ®(x), we may compose the columns
of (3.31) for ® with the inverses of the columns of (3.31) for ¥ to get a commutative diagram

0 T, X T,U ———TiU T:X 0

d(\ll\x)|;lo d\I/\flo dv|*o (d(‘lllx)li)l*(:

L EU R
Hess, f

0 T,X T,U U T*X 0,

where the outer morphisms are identities as ®|x = ¥|x.

Choose a complementary vector subspace N, to T,X in T,U, which we think of as the
normal to X in U at x, so that T,U = T, X & N,. Write Hess), f for the restriction of Hess, f
to a symmetric bilinear form on N,. Since T,X = Ker(Hess, f), we see that Hess! f is a
nondegenerate symmetric bilinear form on N,. We may write equation (3.32) as

0—T,X

T,X ® N, T'X N — > T'X —>0
id 0 0 id 0

0 0 Hess), f
d¥|io(de|; 1) =

-1 [id A id —AB™!
id gg'qtmx_(() B) <0 Bl) id (3.33)

2) [0 i) (0 )

0—>T,X —5>T,. XN, T:*X®Nf —— > TrX —0,

for some linear A : N, — T, X and B : N, — N,. Then (3.33) commuting implies that
B preserves the nondegenerate symmetric bilinear form Hess, f on N, and det B = +1. So
det (d¥|;t o d®|,) =det (il 4)=det B=+1 for z € X.

Thus, as a map of topological spaces, det (d\11|;(1ed o d¢|Xred) : X4 — C\ {0} actually maps
Xred 5 41}, Since it is continuous, it is locally constant. Now if f,g: Y — Z are morphisms of
C-schemes with Y reduced, then f = g if and only if f(y) = g(y) for each point y € Y. Applying
this to compare det (d\ﬂ;ed 0d®|xrea) : X™ — C\ {0} locally with the constant maps 1 or —1
on X' shows that det(d¥| . o d®|xrea) is a locally constant map X4 — {£1} C C\ {0} as
a C-scheme morphism. This proves Theorem 3.1(a).

3.3. Part (b): PVg = det(d¥|y1.q © d®|xrea) - PVy. For Theorem 3.1(b), we begin with the
following proposition.

Proposition 3.5. Let U, V.9, V¥, f g, X,Y be as in Theorem 3.1, and suppose © € X with
(d\If|;1 od®|, fideU)z = 0. Then there exists a Zariski open neighbourhood X' of x in X such
that PV¢|X/ = PV\II ‘X’ .

Proof. Apply Proposition 3.4 to get W, n¢, my,mv,t,h,Z. Then apply Proposition 2.8 with
Z,X,x,7clz, 7z, PV g, @15 (PVY,), PVae, PVy in place of W, X, x, ¢, mx, 1, P*, Q°, a,
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B, respectively, and with v defined by the commuting diagram of isomorphisms:

PVI./V,h PVrenny (e x7v)|y (PV(EXV,OBHg)
V’V"WU i (mexmy )5 (T Sc.o.v.0)|

(e x 70) % (PVesu.omy) (me x )| (PVe, BPVY,)
i(ﬂcXFv)IE(TSC,o,U,f) 5’¢

L L

(me x w5 (PVEQRPVE,)  [mcly(Acl)] @ [av]y (PVY,)] (3.34)
i’é e’i/

[rely (Ac[))] & [roly (PVE,))] mv|5[1(PVY,)

w5 [1(PVE ;) - w51 (2[% (PVY,,))-

Here TSc,0,u,7: TSc,0,v,4 are as in (2.8), 6,9’ come from PV¢, = Acl[l], and €, ¢’ come from
mc|y(Ac) 2 Az and Az @P°® = P°® for P* € Perv(Z).

Then the hypothesis x|}y, (@) = j5[—1](7) in Proposition 2.8 follows from comparing jg[—1]
applied to (3.34) with the commuting diagram

U (PYiva) < ol (re xmy )5 (PVEcviom,)

= .

v Iw,
,PV;/VO,hlwo - 7rV|*ZﬂVVg (,PV:/,g)

ipvﬂulwo ‘
™vI|Zaw, (PV.U,f) TulZow, © Pl (PV:/,_Z])7

where jo : Z N Wy — Z is the inclusion, and the bottom square commutes by Proposition
3.4(e) and (2.18). Similarly 7x [y, (8) = ji[~1](7). Hence Proposition 2.8 gives Zariski open
z € X' C X with PV@‘X/ ZPV\I/|X/. O

U }ﬂWO (PVa)

Now to prove Theorem 3.1(b), let € X be arbitrary. As in §3.2, we can choose a splitting
T,U =T,X & N, such that

(3.35)

au[= 0 da], = (ld A> LX® | TX®

0 B)' N, N,

for linear A : N, — T, X and B : N, — N,, where B preserves the nondegenerate symmetric
bilinear form Hess), f on N,.

Choose a Zariski open neighbourhood U’ of z in U and a splitting TU’' = E @ F for algebraic
vector subbundles E, F C TU with E|, = T, X and F|, = N,. Then df|ys = a ® g for unique
a € H°(E) and 8 € H°(F), and X N U’ is defined by a = 8 = 0.

Since Hess, f = 0(df)|, is nondegenerate on N,, we see that Vf|, : T,U — F|, induces an
isomorphism N, — F|., so V3|, is surjective. Therefore S := 371(0) is a smooth C-subscheme
of U’ near x, and making U’ smaller, we can suppose S is smooth.

Set ¢ = f|s : S — C. Then the isomorphism T*S & E|g identifies de € H°(T*S) with
als € H°(E|s). Hence Crit(e : S — C) = Crit(f|y : U' — C) = X NU’, as C-subschemes of U.

By [23, Prop. 2.23] quoted in Theorem 5.1(i) below, there exist a smooth C-scheme R, mor-
phisms vy : R—U’, 6 : R— S, ¢ : R— C" where n = dimU’ — dim S, and r € R, such that
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y(r)y =z, vlg =0lg, foy=eod+ (2} 4+ +22)oe: R — C, and the following commutes with
horizontal morphisms étale:

S - Q=719 - S

ic N |e ¢ ds xoi/ (3.36)
o IXe

U’ R S x C".

Taking derivatives at r € @ C R in (3.36) gives a commutative diagram

T,X =T,8 = T, = T,X =T,8
d(vl@)ln @ —Gion

e I axo),

vy d(5xe), M

T.X & Ny = T,U <— T.R - T.X & T,C".

Therefore d(& x €)|, ody|; 1 : T, X & N, — T, X ® ToC" is the identity on T, X, and induces
an isomorphism N, — ToC", which as foy =eod+ (22 + -+ + 22) o € identifies Hess), f on N,
with Hesso(22 + -+ 4+ 22) = dz; ®dz; + - - + dz, ® dz,, on ToC". Thus, the linear isomorphism
B : N, — N, above preserving Hess!, f is identified with a linear isomorphism M : C" — C"
preserving dz; ® dz; + - - - + dz, ® dz,, that is, M € O(n, C) satisfies

-1 id 0
- o<0 M). (3.37)

Define P to be the C-scheme fibre product P = R X5y (aoc),sxCn,5xe [, With projections
m, 7o : P — R. Then P is smooth and 7, 7y are étale, as R, S x C" are smooth and

<i§ g) odyly 0d(8 x )71 = dy|, o d(5 x €)

dx (Moe),d xe:R—SxC"

are étale. As r € R with (6 x (M o€))(r) = (2,0) = (6 x €)(r), we have a point p € P with
m1(p) = ma(p) =r. Defined = foyom : P— C and Z = Crit(d). Then

d=foyom =(eBzl+---+22)o(dxe)om
(B2t 22)0 (6 x (Mod)om (3.39)
=(eBzi+ - +z)o(@xeom=foyom.

Consider the étale morphisms ®oyomy, PVoyomy : P — V. Both map p — ®(x), and satisfy
go(Poyom)=d=go(Voyoms) by (3.38) and go ® = f = go ¥. Taking derivatives at p to
get linear maps T, P — Tg(,)V, we find that

d(¥ oy om)|,=d¥|, odyl, od(d x )|,  od((§ x €) om2)|,
=d¥|, ody|, od(6 x €)| o d((d x (M o€))om)l,

=d¥|, ody|, 0d(d x €)7o <i§ ]8[> od(d x €)], odmi|p

= e e ( fé) ody|, 0 d(8 x €)1 0d(d x )|, 0 dmi, (3.39)

id —AB™! id A
_d\I"Io<o id )(0 B)odv|rod7r1|p

. _ —1
—anl,o (% 7 oautoa(@oq o,

id
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using (0 x (M o€))om = (0 X €) omy in the second step, (3.37) in the fourth, and (3.35) in the
sixth. Since [(ig *A_B_l) —id]? = 0, equation (3.39) implies that

id
(d(Toyom)l,tod(®oyom)l,—idr,p)? =0,
and thus Proposition 3.5 gives a Zariski open neighbourhood P’ of p in P such that
PVaoyor: | P = PVwoyorms | P i PVbalpr — (@ 0y om)|5(PVY,) P (3.40)
Since (§ X (M o€))om = (0 x€)omy: P — S x C" are étale with
(eB22+ -4 22)o(6x (Moe)om =d=(eB2i+--+22)0(J x€) o,

we see using (2.8) and (2.18) that

L L
mily [PVs B (M35, (PVe) 0 PVar)] 0 PV, = m|3 [PVs K PVasoc] © PV,
= 117 (PVsx (Moe)) © PVa; = PV(5x(Moe))ors = PV (5xe)oms

— 7|5 (PVsxe) © PV, = | [PVs K PV] 0 PV, (3.41)

where ‘2’ are equalities after identifying both sides of (2.8). Since mi|z = w2z, and
Moy = idgoy, and Example 2.16 shows that PV in (2.19) is multiplication by det M, equation
(3.41) implies that

det M -1 [ [PVs B PV.] 0 PV, = m|} [PV BPV] 0 PV,

As m |3 [PVs X PV] is an isomorphism, this gives
det M - PV, = PVr, : PVb 4 — m1|5(PVR.)- (3.42)
Writing Z' = Z N P’, we now have
(yom)|%/ (PVa) © PVryor, | P = PVoryor: [P = PV woryoms | P!
= 2|7/ (PVwoy) 0 PVry|pr
=det M - m1|%/(PVwoy) © PV, |pr = det M - PVworyon, | P/
=det M - (y o m1)| 7 (PVw) © PVyor, | P,

using (3.40) in the second step, (3.42) and 71|z = ma|z/ in the fourth, and (2.18) in the rest.
As PV, |p is an isomorphism, (3.43) implies that

(yom)|z/(PVe) = det M - (y o m1)| 7 (PVw),
and by Theorem 2.7(i) this implies that
PV<1>|X/ =det M - PV<1>|X/, (3.44)

where X' = (yom)(Z') is a Zariski open neighbourhood of z in X, since (yom )|z : Z/ = X
is étale with v o m(p) = . Now (3.35) and (3.37) give

det(d¥[; ! o d®|,) = det(id 4) = det B = det M.

So (3.44) proves that (3.1) holds near x in X. As this is true for all € X, Theorem 3.1(b)
follows.

(3.43)

3.4. Z-modules and mixed Hodge modules. The proof of Proposition 3.4 applies verbatim
also in the analytic context. Theorem 3.1(a),(b) then follow from Proposition 3.4 and the
argument given above, using §2.5, including the Sheaf Property (x) for morphisms. Hence all
these results carry over to our other contexts §2.6-§2.10.
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4. DEPENDENCE OF PV{; ; ON f
We will use the following notation:

Definition 4.1. Let U be a smooth C-scheme, let f : U — C be a regular function, and let X
equal Crit(f) as a closed C-subscheme of U. Write Ix C Oy for the sheaf of ideals of regular
functions U — C vanishing on X, so that Ix = I¢. Foreach k =1,2,..., write X®) for the k*®
order thickening of X in U, that is, X*) is the closed C-subscheme of U defined by the sheaf
of ideals I% in Op. Also write X™ for the reduced C-subscheme of U.

Then we have a chain of inclusions of closed C-subschemes

xred CX= X(l) C X(Q) C X(3) c...CU. (41)

Write f*) .= flx® X&) 5 C, and frd = f|xra : X 5 C, so that f*), fred are
regular functions on the C-schemes X *), X4, Note that frd : X*ed — C is locally constant,
since X = Crit(f).

We also use the same notation for complex analytic spaces.

In §2.4 we defined the perverse sheaf of vanishing cycles PVy;  in Perv(X). So we can ask: how
much of the sequence (4.1) does PV{; ; depend on? That is, is PV{; ; (canonically?) determined
by (X*ed, fred) or by (X®), f*)) for some k > 1, as well as by (U, f)? Our next theorem shows
that PVy; ; is determined up to canonical isomorphism by (X ®), £3)), and hence a fortiori also
by (X®) £ for k > 3:

Theorem 4.2. Let U,V be smooth C-schemes, f : U — C, g : V. — C be regular functions,
and X = Crit(f), Y = Crit(g) as closed C-subschemes of U,V, so that §2.4 defines perverse
sheaves PV'UJ-, PV;/,g on X, Y. Define X®) | f®) and Y@, ¢®) as in Definition 4.1, and suppose
®: XO) 5 YO is an isomorphism with ¢ o ® = O, so that Py : X »Y C Y® s an
isomorphism.

Then there is a canonical isomorphism in Perv(X)

Qg : PV — % (PVY,), (4.2)

which is characterized by the property that if T is a smooth C-scheme and ny : T — U,
my T — V are étale morphisms with e := fony =gomy : T — C, so that mylg : Q@ — X,
mvlg 1 Q@ =Y are étale for Q := Crit(e), and ® o my|ge = vige : Q® Y@ then

|5 (Qa) 0 PVr, = PVary : PVT . — 7y |o(PVE ) (4.3)
Also the following commute, where oy, f,0v,q,Tu,f,Tv,g are as in (2.6)—(2.7):
PVt . Dx(PVyy)
l% DX(Q@)T (4.4)

" . @|%(ov,g) N . = " .
‘I)|X(va,g) e ‘1>|X (DY(PVV,9>) —Dx ((I)|X(PVV,g))v

PV — PVY

iﬂ@ ‘ ( ) Q@\L (45)
° 2% (Tv,g * °
D5 (PVY,) it D5 (PVY,)-

If there exists an étale morphism Z: U — V' with
goE2=f:U—=C and Elye=0:X® 5y®),
then Qg = PVzg, for PVz as in (2.14).
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If W is another smooth C-scheme, h : W — C is a regular function, Z = Crit(h), and
U:Y®) 5 ZG) s an isomorphism with h®) o ¥ = ¢®) | then

Quoa = % (Qw) 0 N : PV p — (Vo @)% (PViy)- (4.6)

IfU=V, f=g9, X=Y and ® =idxs) then Qg <3 1dpv-

The analogues of all the above also hold with appropriate modzﬁcatwns for Z-modules on C-
schemes, for perverse sheaves and Z-modules on complex analytic spaces, and for mized Hodge
modules on C-schemes and complex analytic spaces, as in §2.6-§2.10.

We will prove Theorem 4.2 in §4.2-84.3. The proof for C-schemes depends on the case k = 2
of the following proposition, proved in §4.1:

Proposition 4.3. Let U,V be smooth C-schemes, f:U — C, g: V — C be regular functions,
and X = Crit(f) C U, Y = Crit(g) C V. Using the notation of Definition 4.1, suppose
O . X*HD 5 YD 45 an isomorphism with g*tY o ® = fE+D) for some k > 2. Then for each
x € X we can choose a smooth C-scheme T and étale morphisms my : T — U, my : T — V such
that

(a) e:=fory=gomy: T — C;

(b) setting @ = Crit(e), then my|guw : Q¥ — X*) C U is an isomorphism with a Zariski

open neighbourhood X of x in X*); and
(C) (0] O'/TU‘Q(’“) = ’/T\/|Q(k) : Q(k) — Y(k)

The proof of Proposition 4.3 is similar to that of Proposition 3.5 in §3.1. One can also prove
an analogue of Proposition 4.3 when k = 1, but in part (b) 7r|ga : QM — XM must be étale
rather than a Zariski open inclusion.

In Proposition 4.3, we start with ® : X*+1) =, y(*+D byt we construct T, 7y, 7y with
o my|om = mv|ge. One might expect to find T, 7y, my with ® o 7y |ga+) = Tv[gu+n, but
the next example shows this is not possible.

Example 4.4. Let U,V be open neighbourhoods of 0 in C, and f : U — C, g : V — C be

regular functions given as power series by f(z) = 2™+ and g(y) = y™ ! + Ayt ... for
k,m > 2 and 0 # A € C, where 0 is the only critical point of g.
Then X := Crit(f) = Spec(Clz]/(#™)) and Y := Crit(g) = Spec(C[y]/(y™)), so

X(k+1) _ Spec(((:[x]/(x(k“)m)), f(k+1) — pm+l + (x(kjtl)m)’ Y(k+1) _ Spec((C[y y(k+1)m))
and g(k+1) _ ym+1 + <y(k+1)m).

Thus & : X*+D 5 Y+ acting on functions by y + (y*+)™) s z + (2F+D™) is an
isomorphism with f#+1) = gk+1) o @,

Suppose T, my, Ty are as in Proposition 4.3, and use w = x o 7y as a coordinate on 7. Then
e(w) = w™, and Q = Crit(e) = Spec(C[w]/(w™)). We have 7y (w) = w, so ® o 7rU( ) = w,
but w™t! = 1y (w)™ ! + Amy (w)FFD™ 4o g0 that Ty (w) = w — m—ﬂAwkm —|— . Thus,
Pony : T — V and my : T — V differ by —mﬁrlAwkm + -+, which is zero on Q*) but not on

Q1) Hence in this example there do not exist T, my, my with ® o TUulgu+n = Tv g+ -

Remark 4.5. We can also ask: can we improve (X®), f3)) in Theorem 4.2 to (X®, ) or
(XM Ay or (Xred | fred)? Here are some thoughts on this.

(a) The analogue of Proposition 4.3 for kK = 1 mentioned above implies that étale or complex an-
alyt1cally locally on X, (U, f) and hence PVy; ; are determined up to non-canonical isomorphism
(2)). Using the ideas of §5-§6, one can show that these non-canonical isomorphisms
g P
of ’PVU, 5 are unique up to sign.
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(b) Consider the following example: let U = (C\ {0}) x C = V, and define f : U — C and
g:V = Chby f(z,y) = y? and g(x,y) = 2y?. Then X := Crit(f) = {y = 0} = Crit(g) =: Y,
and f@? = ¢ =0, so that (X®, f?) = (Y(® ¢®). However, as in Example 5.5 below,
PVy s % PVY,,. Thus, globally, PV{; ; is not determined up to isomorphism by (X@)| f),
(¢) Suppose U is a complex manifold and f : U — C is holomorphic, with Crit(f) a single (not
necessarily reduced) point z. The Mather—Yau Theorem [38] shows that the germ of (U, f) at x is
determined up to non-canonical isomorphism by the complex analytic subspace f(1) =0 in X1,
and hence by the pair (X, f(1)). Therefore, for isolated singularities, PV, s is determined up
to non-canonical isomorphism by (X, (1),

(d) Define f : U — C by U = C and f(z) = cz™ for 0 # ¢ € C and n > 2. This has an isolated
singularity at 0, and (X W f (1)) is independent of ¢. By moving ¢ in a circle round zero, we
see that in this example PV{; ; is determined up to a Z/nZ group of automorphisms. So the
non-canonical isomorphisms of PV{; ; are not unique up to sign, in contrast to (a).

(e) Parts (a)—(d) leave open the question of whether PV{; ; is determined locally up to non-
canonical isomorphism by (X, (1)) for non-isolated singularities. We do not have a coun-
terexample to this.

However, Gaffney and Hauser [19, §4] give examples of complex manifolds U and holomorphic
f: U — C with X = Crit(f) non-isolated, such that the germ of (U, f) at x € X is not
determined up to non-canonical isomorphism by the germ of (X @, f(l)) at x, in contrast to
the Mather—Yau Theorem, and continuous families of distinct germs [U, f, z] can have the same
germ [X(U, £ z]. Tt seems likely that in examples of this kind, the mixed Hodge module
”HV& b (which contains continuous Hodge-theoretic information) is not locally determined up to
non-canonical isomorphism by (XM, (1),

(f) For the example in (d), PV, depends on n = 3,4,..., but (X, frd) = ({0},0) is
independent of n. So PVy; ; is not determined even locally up to non-canonical isomorphism
by ()(red7 fred).
4.1. Proof of Proposition 4.3. The C-subscheme X**1 in U is the zeroes of the ideal
I%1 € Oy, which vanishes to order k+1 > 2 at z € X € X* 1) C U. Hence T, X 1) = T, U.
As @ : X*k+1) 5 y(+1) 5 an isomorphism, it follows that

T,U = T, XD = Ty ) VD = T V. (4.7)
Therefore n := dimU = dim V.

Choose a Zariski open neighbourhood V’ of ®(z) in V and étale coordinates
Y1y syn) VI = C"

on V. Write ¢ = gly» and Y’ = Crit(¢') = Y NV, so that Y/*++D = Y*+D n V7 Then y, o ®
are regular functions on the open neighbourhood &~ (V') € X*+1 of g in Xkt 5o they
extend Zariski locally from X**1 to U. Thus we can choose a Zariski open neighbourhood
U' of z in U with @(X**D ny’) € Y*+) NV’ and regular functions z; : U’ — C with
| x et~y = Yi © P xwrnyqgy for i =1,... n.

Write f' = f|yr and X’ = Crit(f’) = XNU’, so that X'*+1) = X DX’ Since (y1,...,Yn)
are étale coordinates,

dyl‘@(r)u BREE) dy’ﬂ|¢'(ib)

are a basis for TV, so d@1[q, ..., dan|s are a basis for T;X by (4.7). Hence by making U’
smaller, we can suppose (z1,...,z,) are étale coordinates on U’.

Consider the C-scheme U’ x V', with projections

g U ' x V' — U and myp U xV — V',
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and write
vy=z;omy U xV' = C, vy.=yiomy :U xV' —=C,
so that (#},...,2,91,...,y,) are étale coordinates on U’ x V’. We have a morphism
id X B yriesn) : X' EFD U7 x V!

which embeds X'**1) as a closed C-subscheme of U’ x V’. The image (id x®| x/x+1) ) (X'*FD)
is locally the zeroes of the sheaf of ideals

(= 4ty i = Looweom) + 15 (144 € Oy,

where ( L—yli=1,. .. ,n) denotes the ideal generated by =} —y, : U' x V' - Cfori=1,...,n
and 775,1 (If{“) C Oy xy’ the preimage ideal of I§+1|U/ C Oypr.

Now (fomur —gomyr)|a xa)xmn) =0 as fEF) = g*+D o & Hence

fOT['U/—gO’]TV/E(.’IJ{L-—y;, Z:].7 )+ U’ (Ik+1) (48)

Lifting (4.8) from (z} —y}, i = 1,...,n) to (2} —y}, i = 1,...,71)27 after making U’, V'
smaller if necessary, we can choose regular functions A; : U’ x V! — C for i = 1,...,n such that
fomyr—gomy — ;Ai (&= € (2=l i =1,...,n) 4y (). (4.9)

Apply 3%2 to (4.9), using the étale coordinates (z,...,2},y1,...,y,) on U x V'. Since

0 af
g em) = o
and %(g o 7TV/) = 0, this gives
Moomy — A € (af—y), i=1,...,n) + 7 (I%). (4.10)

Changing A; by an element of (x; -y, i=1,... ,n) can be absorbed in the ideal

(2} — i, i:1,...7n)2
of

n (4.9), so we can suppose g:- oy — A; € T (I%). As

0 .
Iy = (agfj J=1,..n),

after making U’, V' smaller we may write

A= omy + ZBW axfj omyr, (4.11)

with B;; € ﬂ_l(Ik 1) for i,7 = 1,...,n. Consider the matrix of functions (5ij + Bij)?,j:l on
U’ x V'. At the point (z,®(z)) in U’ x V' this matrix is the identity, since B;j(z, ®(z)) =0 as
By € mpt(I571) with k > 2, so (855 + Bij)'i—, is invertible near (z,®(z)), and making U’, V"’
smaller we can suppose (6”' + Bij)? ._4 is invertible on U’ x V’. But in matrix notation we have

(A )1 1= (6ZJ+BU)1J 1(881f OWU')

Hence in ideals in Oy« we have

(Ai7 1= 1,...,7’L) = (%OWU/, jzl,...ﬂ’L) :W(}}(Ix) COU’XV" (412)
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Now by (4.9), after making U’, V' smaller if necessary, we may write

fomyr —gomy = ;Ai (@] —yl)
. \ (4.13)
+ > Cij- (i —wi) (&) —v)) + X Dij- AiAj,
,j=1 ,j=1
172 Dij 1 U' x V' — C with D;; € HO(my; (I 1)) for i, j = 1,...,n, where
in the last term we have used (4.12) to write two factors of 7,/ (Ix) in terms of Ay, ..., A,.

for regular functions C

Write (z;;)f;—; for the coordinates on C™. Let W be a Zariski open neighbourhood of

(z,®(2), (0)2]-:1) in U’ x V' x C" to be chosen shortly, and let T' be the C-subscheme of W
defined by

T= {(U’U, (Zij)zjzl) eEWCU xV'x (C"2 .

zi(u) —y;(v) = 3 zii - Aj(u,v), i=1,....,n,

zij+ > Cin(u,v) - 21i2mj + Dij(u,v) =0, 4,57=1,... ,n}.
l,m=1
Define C-scheme morphisms nyy : T — U by 7y = (u,v, (2i5)f,=,) = wand 7y : T = V
by my : (U7U7 (Zij):ril,jzl) = .
2
Now W C U’ x V' x C" is smooth of dimension n +n + n?, and in (4.14) we impose n + n?

equations, so the expected dimension of T"is (2n +n?) — (n +n?) = n. The linearizations of the
n+n? equations in (4.14) at (u,v, (2;)7'j=1) = (2, ®(z), (0)7;_,) are

dzi|,(0u) — dyile@) (dv) =0, i=1,...,n,

4.15
5Zij —|—dDij|($7q>(w))(5uEB§v) =0, 7=1,...,n, ( )

for du € T,U', dv € Ty)V', and (62i5)7 =1 € T(O)?FIC"Z. As dz|s,...,dz,|, are a ba-
sis for TxU’, the equations (4.15) are transverse, so that T is smooth of dimension n near
(faq)(x)a(O)Zj:l)'

The vector space of solutions ((5u, ov, (5zij);fj:1) to (4.15) is Tz o(x),(0)) 1, where

A7 |(2,0(2),0)) * T, (@),0nT — ToU
maps (5u,5v, (621-3-)2]»:1) — du, and
A7y |(@,0(2),0)) * T, 0(2), 00T — To@V

maps (du, 6v, (62i5)1'5=1) + 6v. Clearly, dnv|(z,a(2),(0))> ATV |(@,0(x),(0)) are isomorphisms, so
as T' is smooth near (x, O(x), (0)?,3‘:1) and U,V are smooth, we see that my,my are étale near
(z,®(x),(0)). Thus, by choosing the open neighbourhood (z,®(z),(0)) € W C U’ x V' x c”
sufficiently small, we can suppose that T is smooth of dimension n and 7y : T — U and
my T — V are étale.
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It remains to prove Proposition 4.3(a)—(c). For (a), we have

(foﬂ'U_goﬂ'V)(uaUa(Zij)zn,jzl) = f(u) —g(v) = (fomy — gomyr)(u,v)

A;(u,v) - (fﬂi(u)—yz‘(v))fi Cij(u,v) - (xi(u)_yi(v)) (:cj(u)—yj(v))

1 ij=1

or

?

+ Xn: D;;(u,v) - Ai(u,v)A;(u,v)

i,7=1

A;i(u,v) - ( Xn: Zij -Aj(u,v)) + Zn: Cij(u,v) - (1221 zi - Ar(u, U)) (mzn::1 Zim * Am (u, v))

1 j=1 ig=1

I
M=

.
Il

+ zn: D;j(u,v) - Ai(u,v)A;(u,v)

4,J=1

> Ai(u,v)Aj(u,v) [zij—i— > Cim(u,v) - zlizmj—&—Dij(u,v)} =0,

ij=1 l,m=1

using (4.13) in the third step, the first equation of (4.14) in the fourth, rearranging and ex-
changing labels 7,1 and j,m in the fifth, and the second equation of (4.14) in the sixth. Hence
fomy—gomy =0:T — C, proving (a).

For (b), using the morphism id x®|x x (0) : X - U x V x c™ D W, define

-1

X = (idx®|x x (0)) (W),

so that X is a Zariski open neighbourhood of z in X. Then (id x®|x x (0))(X) is a closed
C-subscheme of W. We claim that:

(i) (id x®|x x (0))(X) is a closed C-subscheme of 7' C W; and

(ii) (id x®|x x (0))(X) is open and closed in Q := Crit(e) C T,
where e := fomy = gonmy : T — C. To prove (i), we have to show that the equations of
(4.14) hold on (id x®|x x (0))(X), which is true as ;| = y; o ®| g, and z; o (0) = 0, and
Djjo (idx®|g) =0 as D;; € HO(ny,/ (IX 1)) for k > 2.

For (ii), as my : T — U is étale with e = f o my, we see that mylg : @ — X is étale. But
Tulg o (id x®|x x (0))| ¢ = idg. Hence (id x®|x x (0))(X') is open in @, and is also closed in
Q as it is closed in T'. Thus, by making W, T smaller to delete other components of (), we can
suppose that @ = (id x®[x x (O))(f() Then 7y7|g : Q — X is an isomorphism with the Zariski
open neighbourhood X of z in X. Since my : T — U is étale with e = f o 7y, this extends to
the k*" order thickenings, so TUlguw : Q™ — X is an isomorphism, proving (b).

For (c), first note that @ = (id x®|x x (O))(f(), so ® omy|g = my|g is immediate. We have
to extend this to the thickening Q*). Write Ig C Or for the ideal of functions vanishing on Q.
Then I = n;; (Ix) as my identifies @ with X C X. We have

A;omyixy € IQ and Dij oTyrxv’ € 18—17
as A; € HO (ﬂ,}}([x)), D;; € H° (ﬂ,}}([f(_l)). The second equation of (4.14) then shows that
Zij O Men2 € Igfl,

since @ = (id x®|x x (O))(X) implies that z;; o 7,2 = 0 on @, so we can neglect the terms
et Cim (4, v) - 2ii2m;. Hence the first equation of (4.14) gives

SUiOWU—yiOﬂ'\/EIg.
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As I(’f? vanishes on Q*), and xi|x» = yi o D|x/, this gives

Yio (B omulom) =i o mulgmw =yio (Tv]gm)-

Thus ® o 7y |gu) = 7v|gm follows, as (y1,...,ys) are étale coordinates on V' near 7y (Q)) and
® o my|g = mv|g. This proves (c), and Proposition 4.3.

4.2. Proof of Theorem 4.2 for C-schemes. Let U,V, f, g, X,Y and ® : X®) — Y®) be as in
Theorem 4.2. Pick x € X, and apply Proposition 4.3 with & = 2. This gives a smooth C-scheme
T and étale morphisms 7y : T — U, 7wy : T — V with e := fonmy =gonmy : T — C and
Q := Crit(e), such that my|ge : Q) — X is an étale open neighbourhood of z in X(?), and

D o my|ge = Tv|ge 1 QP — Y.

Actually Proposition 4.3 proves more, that my|ge : Q® — X@ is an isomorphism with a
Zariski open set © € X2 C X but we will not use this.

Thus, we can choose {(T“,W‘f]ﬂr?/,e“,Qa) ta € A}, where A is an indexing set, such that
T gy, mir, e*, Q% satisfy the conditions above for each a € A, and {W‘lﬂQa Q% — X}aEA is an
étale open cover of X. Then for each a € A, by Definition 2.15 we have isomorphisms

PVro : PV7a ca — TirlGa (P ;)s PVro : PV0 o — 74|60 (PVY ).
Noting that 7{,|ga = ®|x o 7{;|@«, we may define an isomorphism
Q% =PV o Pv;g 7G5 (PVE ) — Thl5e (2% (PVY)). (4.16)

For a,b € A, define T% = T° Xra Ut T® to be the C-scheme fibre product, so that 7% is
a smooth C-scheme and the projections Hpa : T — T Tl : T — T® are étale. Define
e® = % o lga : T — C. Then
eab:eaoHTa:goﬁ’/oHTQ:fow(a]oHTQ (4.17)
:fOﬂ'l[)]OHTb:gOﬂ'l‘)/OHTb:ebOHTb. .
Write Q% = Crit(e??). Then ra|gas Q% — Q° and e |gab Q% — QP are étale. Now
7& o llpa = 7% o s and ® o T4l ge@ = T |ge imply that

(7T€/ o HTa) |Qab(2) = W?/‘Qa 2) 0 Il7a |Qab @)
= ®|x@ o|ge@ o llra|gas @ = P|x@ o (7f o Ilza)|gas )
= @[y o (nh o Hpe)|gav 2 = @[ x@ o Tr|ge@ o ps|gab (4.18)
=y lgr@ o lpb|gab @) = (WQ/ o Ilye )| gas 2 -
Hence (7 o Iya)|gar = (7% o pe)|ges. Moreover, as TQ® ) |gu = T(T)|ger, we see that
d(7f o Iya)|gas = d(wh o Ipe)|gas, so that

d(my; 0 Tpe)| gy 0 (s 0 Thipa) | guv = id s T(T*)| gar — T(T)| e

So det (d(w%’/ oIlzs) éib od(ny o HTa)|Qn,b) = 1. Thus, applying Theorem 3.1 with 7%, V', Q2,
78 o Upa, w8 o g, €2, f in place of V, W, X, ®, U, f, g gives

PVt ettre = PVapattyy - PV r — (5 0 Tl [ (PVY,,). (119)
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Now
I7e | 5ar (%) = e |§ar (PVra ) © e [y (PVra ) ™
= [Hze|far (PVig ) © PVi1ga ]| © [Tz [un (PVag ) 0 PViipa ]|

—1 -1
= PV,H.%/OHTG ¢} PVW%OHT& = PV‘“’{)/OHTI'J o} PVTFZZJJOHTb (420)

* * -1
= [Hze[Gur (PVrg ) 0 PV, | © [Tgo|Gus (PV oy ) 0 PV, |
= o[ Qar (PVy, ) 0 Mo an (PV ) ™1 = Tl [ (2°),
using (4.16) in the first and seventh steps, (2.18) in the third and fifth, and (4.19) and
ﬂ'laj O HTa = Wg e} HTb

in the fourth. Therefore Theorem 2.7(i) applied to the étale open cover {WICHQa QY — X}aeA
of X shows that there is a unique isomorphism Qg in (4.2) with 7[5 (Qe) = Q7 for all a € A.

Suppose {(T“, Q%) a € A} and {(T’a, Q%) a € A’} are alternative choices above,
yielding morphisms ¢ and Qf in (4.2). By running the same construction using the family
{(Te,...,Q%) :ac A} L {(T",...,Q") : a € A'}, we get a third morphism Qf in (4.2), such
that 7{[5e (Qe) = Q¢ = 7[5 (Qg) for a € A, giving Qg = Qg, and

T |G () = Q" = 77510 ()

for a € A’, which forces Qf = Qf. Thus Q¢ = Qf, so Q¢ is independent of the choice of
{(T“, Q% ac A} above.

Let T, 7y, myv,e,@Q be as in Theorem 4.2. Applying the argument above using the family
{(T“, Q% ac A} I {(T, U, TV, €, Q)} shows that Q¢ satisfies

T0]5(Qe) = PVr, o PV,

Ty
by (4.16). Thus (4.3) holds.

To show that (4.4)—(4.5) commute, we can combine equations (2.16)—(2.17), (4.16) and
T15He (Re) = Q¢ to show that nf;|. applied to (4.4)-(4.5) commute in Perv(Q®) for each
a € A, so (4.4)—(4.5) commute by Theorem 2.7(3i).

Suppose there exists an étale morphism =Z: U — V with f =goZ:U — C and

Elxe =0: X 576G,
Then as we have to prove, we have
PVz =id% (Qs) o PVia, = Qo © idpvﬂuwf = Qg,

where in the first step we use (4.3) with T =U, ny = idy, ny = E, e = f, and Q = X, and in
the second we use PViq, = id'py{/)f from Definition 2.15.

Suppose W is another smooth C-scheme, h:W — C is regular, Z = Crit(h), and
U :Y®) - ZG) is an isomorphism with 2(3)o¥ = ¢, Let 2 € X, and set y = ®(x) € Y. Propo-
sition 4.3 for z, ® gives a smooth T  and étale 7y : T = U, my : T — V with e := fony = gonmy
and @ := Crit(e), such that 7my|ge : Q® — X®@ is an étale open neighbourhood of z,
and ® o my|ge = my|ge. Proposition 4.3 for y, ¥ gives smooth T and étale 7y : T — V,
Fw T — W with é := go Ty = hofy and Q= Crit(€), such that 7y |g® : Q(Q) —Y®@ igan
étale open neighbourhood of y, and ¥ o Ty |g@ = Ty |5®@.

Define ' = T Xy Vi T with projections Ilp : T — T, 17 : T — T. Then T is smooth
and I, II§ are étale, as T, T, V' are smooth and my, 7y étale. Define 7y = wy o Il7 - T U
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and 1w = mw o 7 : T — W. Then #y,#w are étale. Set é = fory : T — C, and write
Q@ = Crit(é). Then
é=fory=formyollp=gomyolly =gomy ollf =homy ollf =homyy .
Also 7y|g®@ - Q(Q) — X @ is an étale open neighbourhood of z, and
(Vod)ody|lo® =Vodonmy|ge ollr|g® = ¥ony|ge olr[g®
=VoTy|g® ollf|p® = Tw|g® oll7|p@ = 7w |o@.

Thus we may apply (4.3) for Q¢ with T, 7y, 7y,...,Q, and for Qy with T, 7v, 7w, ..., Q,
and for Qgoe with T, 7y, Aw, ..., Q. This yields

m015(Qa) = PVr, 0 PV, Fv5(Qw) = PVay, 0 PV,
vl (Quoa) = PVay, 0 PV
Now
myollr
= [0z [5(PVay) 0 PViis] o [z (PVay) 0 PV, |
= 7[5 (PVay 0PVz, ) oLl |5 (PVay )oP Vg 0 PV oIl |5 (PV))
=T[5 (7v[5(Qu)) © PVryoriz 0 PV o Tlr| 5 (PVL))
= [#vlg o 7lg] " (Qw) © PVryon, o PVyL o HT%(W;})
= [mvlgollrle] (Qw)ollr |5 (PVay ) 0PV, o PV ollr 5 (PV,))
= [@|x omvlq o Hrly] " (Qw) o Lr[5(PVry, 0 PV))
= (myo HT)%((I)B((Q\I/)) o HT|Z)(7TU|*Q(Q<1>)) = fTU\g(‘bﬁc(Q\p) 00s),

using (4.21) in the first, fifth and ninth steps, (2.18) in the third, fifth and seventh steps,
my ollp = @y oIl7 in the sixth and seventh, and ® o 77| = 7y |g in the eighth. Thus, for each

vl (Quos) = PVay 0 PVZ) = PViyonz 0 PV

x € X, we have constructed an étale open neighbourhood 7| o: @ — X such that 7y o applied
to (4.6) holds. Equation (4.6) follows by Theorem 2.7(i). Finally, f U =V, f=¢, X =Y and
® = idx® then Qg e = idpv:j’f follows by taking Z = idy in the fourth paragraph of the
theorem. This proves Theorem 4.2 for perverse sheaves on C-schemes.

4.3. Z-modules and mixed Hodge modules. Once again, the proof of Proposition 4.3 is
completely algebraic, so applies in the other contexts of §2.6-§2.10. Theorem 4.2 then follows
for our other contexts from that and the general framework of §2.5.

5. STABILIZING VANISHING CYCLES

To set up notation for our main result, which is Theorem 5.4 below, we need the following
theorem, which is proved in Joyce [23, Prop.s 2.22, 2.23 & 2.25].

Theorem 5.1 (Joyce [23]). Let U,V be smooth C-schemes, f:U — C, g : V — C be regular,
and X = Crit(f), Y = Crit(g) as C-subschemes of U, V. Let ® : U — V be a closed embedding
of C-schemes with f = go® : U — C, and suppose ®|x : X — V DY is an isomorphism
Q|x: X =Y. Then:

(i) For each x € X C U there exist smooth C-schemes U', V', a point ' € U’ and morphisms
U = U, 3: V' =2V, .U -V, a: V' -UandB:V' —C", where n =dimV — dim U,
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such that «(z') = x, and 1,7 and a x B : V — U x C" are étale, and the following diagram
commutes

U - U - U
I

and gojy = foa+ (22 +---+22)0B3 : V' — C. Thus, setting f' == for: U — C,
g :=go0y: V' = C, X' :=Crit(f) CU’, and Y’ := Crit(¢’) C V', then f' =g o ®" : U’ — C,
and ¥ |x : X' =Y ux X = X, gly Y =Y, aly : Y — X are étale. We also require
that Poalyr =gy : Y =Y.

(ii) Write Ny for the normal bundle of ®(U) in V, regarded as an algebraic vector bundle on
U in the exact sequence of vector bundles on U :

0—=7TU —** o~ 10) —"% ~ N,, —>0. (5.2)
Then there exists a unique qu, € HC°(S?N},|x) which is a nondegenerate quadratic form
on Nyv|x, such that whenever U, V' 1,7,® 8,n, X' are as in (i), writing (dz1,...,dz,)0r
]ior the trivial vector bundle on U’ with basis dzy,...,dz,, there is a natural isomorphism
B:{(dzy,...,dzn)u — L (N5,) making the following diagram commute:
v (Ngy) py— o @ (TMV) = @ o g (T7V)
A S y)
B o q>’*(dg*)¢ (5.3)
(dz, ... dzn)pr = B 0 B*(THCY) W (v,
and 1[5 (quy) = (S2B)]x (A1 @ day + -+ dzp @ dz). (54)

(iii) Now suppose W is another smooth C-scheme, h : W — C is regular, Z = Crit(h) as a
C-subscheme of W, and W : V — W is a closed embedding of C-schemes with g = hoW :V — C
and Uly : Y — Z an isomorphism. Define Nyw,quw and Nyw,quw using ¥ : V. — W and
Uod:U < W as in (ii) above. Then there are unique morphisms Yuvw, dpvw which make the
following diagram of vector bundles on U commute, with straight lines exact:

0
¥ 0
0 TU =<
\ /
A(Tod)
dw)
/ \ “(
0 / UV . \I/ o (D (TW) (55)
VOV N AUW
Nyw
0/

Restricting to X gives an exact sequence of vector bundles:

Yovw|x Suvwlx

0— Nyvlx Nyw|x ———— ®|% (Nyw) —0. (5.6)
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Then there is a natural isomorphism of vector bundles on X
Now|x = Nyv|x @ @[% (Nvw), (5.7)
compatible with the exact sequence (5.6), which identifies
Qow = quv ® | (qvw) ®0 under the splitting

SZNUW|X = SQNUV|X @(I)|X(S2NVW|Y) D (NUV|X ® (I)|X(NVW))'

(iv) Analogues of (i)—(iii) hold for complex analytic spaces, replacing the smooth C-schemes
U, VW by complex manifolds, the regular functions f,g,h by holomorphic functions, the C-
schemes X,Y,Z by complex analytic spaces, the étale open sets v : U' — U, 7: V' — V by
complex analytic open sets U' C U, V' CV, and with a x 8 : V' — U x C" a biholomorphism
with a complex analytic open neighbourhood of (x,0) in U x C".

Following [23, Def.s 2.26 & 2.34], we define:

Definition 5.2. Let U,V be smooth C-schemes, f : U — C, g : V — C be regular, and
X = Crit(f), Y = Crit(g) as C-subschemes of U, V. Suppose ® : U < V is a closed embedding
of C-schemes with f = go®:U — C and ®|x : X — Y an isomorphism. Then Theorem 5.1(ii)
defines the normal bundle N, of U in V, a vector bundle on U of rank n = dim V' — dim U, and
a nondegenerate quadratic form q,, € H°(S?N},|x). Taking top exterior powers in the dual
of (5.2) gives an isomorphism of line bundles on U

pov : Ky @ A"NF, = &*(Ky),

where Ky, Ky are the canonical bundles of U, V.

Write X*d for the reduced C-subscheme of X. As ¢, is a nondegenerate quadratic form on
Nyw|x, its determinant det(gyy ) is a nonzero section of (A"N;W)@?. Define an isomorphism
of line bundles on X ed:

2 . 2 o « 2
Jq> = pgv [e] (ldK?;|Xred ®det(qUV)|Xred) . K% lxred —>¢|ch(1 ([(‘g> ) (59)

Since principal Z/2Z-bundles w : P — X in the sense of Definition 2.9 are an (étale or complex
analytic) topological notion, and X" and X have the same topological space (even in the étale
or complex analytic topology), principal Z/2Z-bundles on X and on X are equivalent. Define
7g : Ps — X to be the principal Z/2Z-bundle which parametrizes square roots of Jg on X,
That is, (étale or complex analytic) local sections s, : X — Pg of Pg correspond to local
isomorphisms o : Ky|xrea — ®[%ea (Kv) on X with a @ a = Jp.

Now suppose W is another smooth C-scheme, h : W — C is regular, Z = Crit(h) as a C-
subscheme of W, and ¥ : V — W is a closed embedding of C-schemes with g =hoW¥ :V — C
and Uly : Y — Z an isomorphism. Then Theorem 5.1(iii) applies, and from (5.7)—(5.8) we can
deduce that

Jaos = O3nea (Ju) 0 Jo : KE| oo — (W 0 ®)rea (KT )
* * ®2
B [ (5]

For the principal Z/2Z-bundles 7¢ : Pp — X, 7y : Py = Y, Tyos : Pyos — X, equation (5.10)
implies that there is a canonical isomorphism

(5.10)

E\p@ : Pyoo i)CIDB((P\p) ®Z/QZ Ps. (511)

It is also easy to see that these 2y ¢ have an associativity property under triple compositions,
that is, given another smooth C-scheme T, regular e : T' — C with @ := Crit(e), and T : T'— U
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a closed embedding with e = fo Y : T'— C and T|g : @ — X an isomorphism, then

(id(éoT)\"Q(P\p) ® Eo,7) 0 Zu,00r = (T|5(Ew,0) ®idp,) 0 Evos,

) . (5.12)
Pyogor — (® o 1)|5(Py) ®@z/22 Y| (Pa) ®z/2z Pr-

Analogues of all the above also work for complex manifolds and complex analytic spaces, as
in Theorem 5.1(v).

The reason for restricting to X**4 above is the following [23, Prop. 2.27], whose proof uses
the fact that X™4 is reduced in an essential way.

Lemma 5.3. In Definition 5.2, the isomorphism Jg in (5.9) and the principal Z/2Z-bundle
7o : Pp — X depend only on U, V, XY, f,g and ®|x : X = Y. That is, they do not depend on
®:U —V apart from @|x : X = Y.

Using the notation of Definition 5.2, we can state our main result:

Theorem 5.4. (a) Let U,V be smooth C-schemes, f : U — C, g : V. — C be regular, and
X = Crit(f), Y = Crit(g) as C-subschemes of U, V. Let ® : U < V be a closed embedding
of C-schemes with f = go® : U — C, and suppose ®|x : X — V DY is an isomorphism
D|x : X =Y. Then there is a natural isomorphism of perverse sheaves on X :

O : PVy s — ®% (PVY.,) ®z/22 Po, (5.13)

where ’PV'U,f, ’PV"/,g are the perverse sheaves of vanishing cycles from §2.4, and Pg the principal
7./2Z-bundle from Definition 5.2, and if Q° is a perverse sheaf on X then Q° ®z,/22 Po is
as in Definition 2.9. Also the following diagrams commute, where oy f,0v.q,Tu f,Tv,g Gr€ as
in (2.6)—(2.7):

PVU.s T e. ®[% (PVY,,) ©z/2z P

o

Dx(PViry)

D% (DY(pV;Ag)) ®z/27 Po

_—
q>|;((0'V‘g)®id \L ( )

5.14
&

IR

Dx (Oa)

Dx (% (PVY.,)©®z/22Ps),

)

PV ¢ o D% (PVY.,) ©z/2z P

iTU,f ‘?l;((Tv,g)Q?id\L (5.15)
. (C] « °

PVu.s . D% (PVY,,) ©z/22 Pa.

If U=V, f=g, ®=idy then e : Pp — X is trivial, and Og corresponds to id’pV'U‘f under
the natural isomorphism idx (PV{; ;) ®z/2z Ps = PV{ 4.
(b) The isomorphism Og in (5.13) depends only on U, V, XY, f, g and ®|x : X — Y. That is,

if ®:U — V is an alternative choice for ® with ®|x = ®|x : X — Y, then O = O, noting
that Py = P§ by Lemma 5.3.

(¢) Now suppose W is another smooth C-scheme, h : W — C is a regular function,
Z = Crit(h), and U : V — W is a closed embedding with g =hoW¥:V — C and ¥|y : Y = Z
an isomorphism. Then Definition 5.2 defines principal Z/2Z-bundles

7T<I>:P<I>—>X7 7T\pZP\1/—>K 7T\1/oq>2P\poq>—>X
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and an isomorphism Zg g in (5.11), and part (a) defines isomorphisms of perverse sheaves
O3,0900 on X and Og on'Y. Then the following commutes in Perv(X):

PVi.g Guon (Vo d)[% (PV;/V,h) ®z/2z Pyoa
l@q, id ®Emi (5.16)
« o 2% (Ov)®id « " o «

O[5 (PVYV,y) @272z Po B5 oW} (PViy1) ©2/22 1% (Py) @727 P

(d) The analogues of (a)—(c) also hold for P-modules on C-schemes, for perverse sheaves and
P-modules on complex analytic spaces, and for mized Hodge modules on C-schemes and complex
analytic spaces, as in §2.6-§2.10.

Example 5.5. Let U = C\ {0} and V = (C\ {0}) x C as smooth C-schemes, define regular
f:U—=Candg:V — Chby f(z) = 0 and g(z,y) = 2*y? for fixed k € Z, and define
®:U —-Vby®:azw— (2,0),s0that f =go®:U — C. Then X := Crit(f) = U, and
Y = Crit(g) = {(z,y) € V : ka*"1y? = 22Fy = 0} = {(z,y) € V : y = 0}, as & # 0. Thus
®|x : X — Y is an isomorphism.

In Theorem 5.1(ii), N}, is the trivial line bundle on U with basis dy, and ¢, = z¥dy ® dy.
In Definition 5.2, Ky|x and ®|% (Ky) are the trivial line bundles on X = X™4 = U with bases
dz and dz A dy, and Jg in (5.9) maps

Jp : dz @ dz — ¥ (dz A dy) ® (dz A dy).

The principal Z/2Z-bundle 7g : Py — X in Definition 5.2 parametrizes o : Ky|x — ®|% (Kv)
with a ® o = Jg. Writing « : do +— pdx A dy for p a local function on X = C\ {0}, a®@ a = Js
reduces to p? = z*. Thus, Pp parametrizes (étale local) square roots p of z* : C\ {0} — C\ {0}.

If k is even then z* has a global square root p = z*/2, so the principal Z/2Z-bundle Pp has
a global section, and is trivial. If k is odd then x* has no global square root on X = C\ {0}, so
Ps has no global section, and is nontrivial.

Thus, Theorem 5.4 implies that if k is even then PVY, = Ay[l] is the constant perverse
sheaf on Y, but if k is odd then PVY,  is the twist of Ay [l] by the unique nontrivial principal
Z/2Z-bundle on Y = C\ {0}.

5.1. Theorem 5.4(a): the isomorphism O4. Let U,V, f, g, X, Y, ® be as in Theorem 5.4(a),
and use the notation Ny, gy from Theorem 5.1(ii) and Jg, Py from Definition 5.2. We will
show that there exists a unique perverse sheaf morphism g in (5.13) which is characterized by
the property that whenever U’ V' 1,3, ®' o, B, X', Y, f', ¢’ are as in Theorem 5.1(i) then the
following diagram of isomorphisms in Perv(X') commutes:

L|i§</ (PV.U,f)

%/ (O2) el xro(idx XO)*(TSE,lf,cn,z%+-»-+z%)i

L
i 0 (idx x0)* (PVE ; BPVEn 2,y .a)

L‘*X/('Y)

U0 (idx X0)* (PVYcen smaz s i2)

o (I)B((PV:/"Q) ®z/22 5 (Fa) O[5 o(ax By (vaxcn fHz2 4+
SSfHBzi 4+ 2

7 (5.17)

0

¢';,<Pvgi,3)i
i o @5 (PVY,) = @[3/ (PV))
'[% o9l (PVY,)

)% (PVY ),

where TSy g cn 224...4.2 is as in (2.8), and 7, § are defined as follows:
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L
(A) v : PV — (idx x0)*(PVy &PV{W’Z%_“JM%) in Perv(X) comes from the isomor-
phism PV&,L7Zf+_,,+Z72L = Aoy in (2.12).
(B) The principal Z/2Z-bundle Py — X comes from (Nyy|xred, quv|xrea), as the bun-

dle of square roots of det(qyy|xrea). Thus, the pullback ¢|%, (Ps) — X’ comes from
(¢[5mea (Nuv ), t|%smea (quv)). Now Theorem 5.1(ii) defines

B|X/red : <d21, ceny dZn>X/red ; L|i§<‘/rcd (N;V)
identifying -7, dzF with ¢[%ea (quv). Thus, fB|xrea induces a trivialization of
% (Po) — X'.

Then 6§ : |}, o ®|% (PVY,,) ®z/22 tx/ (Po) — %, 0 ®% (PVY,,) in Perv(X’) comes
from this trivialization of the principal Z/2Z-bundle ¢|%,(Pgs) — X'.

Since Theorem 5.1(i) holds for each € X, we may choose a family
{(U(/u Valv Las Jas q):zv Qgq, Bav f(lzv g;a X(Iu Ya/) HUAS A}

such that U, V,,..., Y, satisfy Theorem 5.1(i) for each a € A, and {i}|x’ : X, = X }4ea is an
étale open cover of X. For each a € A, define an isomorphism

Ou : talx: (PV{]J) — taly, © @\}(’PV{/’Q)

to make the following diagram of isomorphisms commute:

La|§(é (’Pvzjvf) Lal;{é © (ldX XO)* (PV.U,f é ,PV(E",Z%+W+,Z$L)

tal: (7)
0., La|;((,lo(idx XO)*(TSU,lf,Cn,z%ﬁ»"‘*z%)l
talk; © % (PVY,,) tal, 0 (i X0)" (PViren mazy..i23) = 5.18
®Z/2ZLa|§(;(P<I>) ‘I)H;(;Lo(aaxﬁa”*y(; (PV;JXC”,fHHZf+~~+z%) (5.18)
Sa -
l @ 1%r (Pvrxixﬁa,)l
tal, © ®lx (PVY,) = el PVe)

® @:l*’ PV./ r )y
(%, © gali (PVY,) %, (PVVg)

where 7 is as in (A), and ¢, defined as in (B) above.
For a,b € A, define

! ! ! ! ! !
ab = Ua X000, U and w =V, X 3a:Vian Vi,
3 3 3 . ! A . I I . I A . A U
with projections Uy’ : Uy, — U,, Wy, : Uy, — Uy, Uy 2 Vi — Vi, Hyy 2 Vi, — V. Then
Uy, V., are smooth and Iy, Iy, IIy, Ilyy étale. The universal property of V, x,, v, V, gives

a unique morphism &/, : U/, — V., with

Iy’ o o, = o My:  and Iy o ® =P, 0 My, . (5.19)
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Set fl, = foolly, : Uy — C, gl = gy oy, : VI — C and X, = Crit(f,) € U},

a

Y/, = Crit(g.,) Va’b.a As for (4.17) we have
fap = foolly: = fougolly: = fouolly; = fyollyy,
gop = gp oy = gogaollyy = go gy ollyy = g, o Iy
=(fB2+-+20) 0 (aa x Ba) o 1lyy
=(fB2+ - +2z2)0(mx B) oIy,

Apply Theorem 3.1 with V), U x C", (aq X Ba) oIy, (ap x B) oIy, gly, and fH27+- -+ 22
in place of V, W, ®, ¥, f, g. The analogue of ®|x = V¥|x is

(g X Ba) © Hval\yafb = ((é&l od|x o aa)lYa’ x 0) o HVa'|ya/b
= (<I>|;(1 040 Hvaf|yc:b) x 0= ((I>|;(1 o0 Hvb/|ya/b) x 0 (5.20)
= (3" o ®|x o ap)lyy x 0) o Ilyylyy, = (ap x Bp) o vy lyy,,

using ®|x : X — Y an isomorphism and f,]y; = 0 in the first step, jq|y; = ®|x o a,|y; in the
second, j, o Ilyz = g o Iy in the third, |y, = ®|x o aplyy in the fourth, and Byly; = 0 in the
fifth. Thus Theorem 3.1 gives

PV (0ot =det[d((an x By) 0Tl )| nea 0d (et X Ba) o Ty ) [y pea ]

) . (5.21)
PV(angb)oHVb, : 'PVVa/b)g;b — (Oza X ﬁa)OHVL: |Ya/b (PVUXC7L7I)(‘EZ%+,“+Z%)
in Perv(Y},), where det[ - -] maps Y/i*d — {£1}.
Consider the morphisms
I, %:, (8a), Muy ks, (8) 2 (RoraoIly) [k, (PVY,g) @272z (taolluy) %/ (Pe)
— (Pog oIy 3 (PVY,)- (5.22)

As in (B) above, these are defined using two different trivializations of the principal Z/2Z-bundle
(tg © HU(;)B(/b(Pq)) — X!, defined using

Mo [xmea (Ba)s o [icmea (By) = (- dzn) serea — (ta © Ty gmea (N7 ),

which are isomorphisms of vector bundles on X C’L‘fd identifying the nondegenerate quadratic forms
2?21 dzjz on (dzy,..., dzn>X;x-bed and (¢4 0 HU;)B([;bed (quv) on (g0 HUA”};;GI (N;jv)7 for B,, By as
in (5.3). Thus we see that

My, %, (8a) = det [Ty [Senea (Ba) © Moy [Senea (B6) 7] - Ty 5, (50), (5.23)

where det[- - -] maps X% — {41} since both isomorphisms in (5.22) identify the same nonde-
generate quadratic forms.
We have an exact sequence of vector bundles on X L’fbed:

0 > TUrlzb‘X;f;d > (bizb|§((/szcd (TVa) > (taollyy) |§(;rbcd (Nyv) —=0.

Choosing a local splitting of this sequence, we may identify

(pgb';(,’lrbcd [d((ab X ﬂb) © HVJ)';jzed © d((aa X Ba) o HVQ/)|ya/zcd]

~ idTU(/Lle(/lrbed *
0" (Tola(Ba) o Ty s (B) )7 )
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Therefore
Pz (det (e X By) 0 Tlvg ) e 0 (@ X Ba) © ) lyzpea] )

. A (5.24)
= det [HU(/J};rbed (Ba) © HUP’)|;((/1rbed (ﬂb)il} X,md — {£1}.

Now
oy %, (©a) = Muylxr (651) © (P 0 My ) [5r, (PV,,) 0 (@, o Ly [s: (PVLl,5.)
o ((idx x0) 0 tq oy )| (TSEan 22) © (ta o uy)[X: (7)
=Tu, %, (6:1) o (yy 0 D) [5r (PV,,) 0 Dy lsr (PViy,) © ‘I’fzb&;b(PVﬁi;)
o(Myro®, o)k, (PV‘ w . )0 ((idx x0)orqolly, )[X (TSI;fC”E 22 2)o(taolluy )57, ()
=1y, |X’ (60 )O CI),b|X’ (PV]aOHV )o ‘I’;b&; (’Pv_aaxﬁa)onvé)
o ((idx x0)otq 0 HU[L)|X; (TSL_rfC" 5,22 2) © (ta© HUé)|Xéb ()
= det [y [nea(Ba) © Moy Sepea (B) 7] -
P e (det[d((an X B) 0 Ty )| s © (0t X Ba) 0 Ty ) ygpea])
HU;B(;b(fsz?l) ° ‘I’;b&;b (PVjyomy; ) © (I)/b|X’ (PV abxﬁb)ol'[vl)
o ((idx x0) o 1y o Iy s (TS con. 5,22) © (o )5, ()
=Ty %, (0, 1) o (Ty; 0 @4y) %, (PVy,) 0 Dy [%r, (PViy) © (I):sz(;b(,PVﬁ‘l/b/)
o(Tlyyo®l,) % (PV, ) 5, )0 ((idx x0)or, 0Tl )% (TSI;JCC,LE 22)o(wollyy)lx, ()
=[x, (85 1) 0 (@4 0 Ty [%r, (PV,,) 0 (@ 0 ey Ik, (PVg,'s,)
o ((idx x0) oy o Iy )[ X/ (73(},1]3@72].25_) (eo o Iy )% (v) = Iyl x: (©),

(5.25)

using (5.18) in the first and seventh steps, (5.19) in the second and sixth, (2.18) in the third,
(5.21), (5.23), tq o lyy = 1 o yy and j, o Ilyy = g o lyy in the fourth, and (2.18) and (5.24)
in the fifth. Therefore Theorem 2.7(i) applied to the étale open cover {La|X/ X! — X}aeA of
X shows that there is a unique isomorphism Og in (5.13) with e[, (Os) = ©q for all a € A.

Suppose {(U.,...,Y)) : a € A} and {(U[l,j/a’) ta € fl} are alternative choices above,
yielding morphisms ¢ and O in (5.13). By running the same construction using the family
{(Ué,...,Ya’) ca € A} I {(U(;,,Ya’) ta € ;1}, we can show that O = Og, so Og is
independent of the choice of {(U('l, oY) a€ A} above. Let U, V', 1,7,9", 0,8, X",Y', f', ¢
be as in Theorem 5.1(i). Constructing O¢ using {(U},...,Y)):a € A} IL{(U’,...,Y")}, we see
from (5.18) that (5.17) commutes. This completes the construction of Og.

To see that (5.14)—(5.15) commute, in the situation of (5.17) we show that Verdier duality and
monodromy operators commute with each morphism in (5.17). Going clockwise from the top left
corner, ¢|%. () is compatible with Verdier duality and monodromy because of the commutative
diagrams

Aoy = Dioy (Agoy) Aoy ” Aoy
yr . p(r)} yr e ry
o cnx; 22 PY° Cm,3; 25 PV
Pvcn,&z? Dyoy (Pvcn ;22 2), Cn3;28 SUREE
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where I' : Ay — ’PV:Cn)EjZQ_ is the isomorphism used to define v in (A) above. Equations

(2.9)—(2.10) imply that ¢|%, o (idx x0)* (TSUlf Cn 3,22

monodromy, and (2.16)—(2.17) imply that ®'|%, (PV, ) <I>’|X/(77Vaxﬁ) are. Also § is compatible
with Verdier duality and monodromy, since these do not affect the trivialization of ¢|%, (Pp) — X’
used to define § in (B) above.

Thus by (5.17) we see that ¢|%,(04) is compatible with Verdier duality and monodromy, that
is, ¢|%, applied to (5.14)—(5.15) commute. Since we can form an étale open cover of X by such
t|x: X’ = X, Theorem 2.7(i) implies that (5.14)—(5.15) commute.

Finally, if U =V, f = g and ® = idy then Jp = id : K7|xrea — K#|xrea in (5.9), which has a
natural square root a =id : Kyy|xrea — Ky |xrea, 80 mp : Pg — X is trivial in Definition 5.2. In
(5.17) wemayput U' =V' =U,1=3=a=idy,n=0,=0,X"=Y' =X, f/=¢ = f, and
then each morphism in (5.17) is essentially the identity on PV{ f, so O¢ = idx (Op) = idpyy |
This proves Theorem 5.4(a).

») is compatible with Verdier duality and

5.2. Theorem 5.4(b): Og depends only on ®|x : X — Y. Suppose ®,& : U — V are
alternative choices in Theorem 5.4(a) with

Blx =Px: X — Y,
SO that Py = Ps by Lemma 5.3. Fix z € X, let a # b be labels, and let U,

a’

/ /
Va, lay Jas ‘I)a, Qg

Bas XL, Y., i, gi be as in Theorem 5.1(i) for z,® and U;,V{,..., g, as in Theorem 5.1(i) for
xz, D. As in §5.1, define ©,,0y and U}, V,,, Uy, Ty, Ty, Ty, @, foy, 9oy Xops Yoy, and

follow the proof in §5.1 from (5.19) as far as (5. 25)

This proof does not actually need U}, ..., gq, 0, and U],..., gy, Op to be defined using the
same ® : U — V, it only uses in (5.20)—(5.22) that ®|x : X — Y is the same for U], ..., 0, and
Uy, ...,0yp. Thus we can apply it with U], ..., 0, defined using ®, and Uy, ..., O} defined using
®. Hence

(ta o Muy ) x7, (O0) = Hu X7, (©a) = My [, (O0)
= (o M)y (©3) = (ta o Iy )% (O3),

using ¢, |%: (©a) = O, in the first step, (5.25) in the second, Lb\}{)(@@) = Oy in the third, and
ta o Ily; = vy o Iy in the fourth. As such ¢, o Il ‘Xéb : X!, — X form an étale open cover of
X, this implies that O = ©4 by Theorem 2.7(i).

5.3. Theorem 5.4(c): composition of the ©¢. Let U, V, W, f, g, h, X, Y, Z, ®, ¥ be as in
Theorem 5.4(c). Let € X, and set y = ®(x) € Y. Apply Theorem 5.1(i) to U,V, f,9, X,Y, @,z
to get C-schemes U’,V’, a point 2’ € U’, morphisms + : U’ — U, 3: V' =V, ®" : U — V',
a:V — Uand B : V' — C"™ where m = dimV — dimU, and f' := fo.: U — C,
g =goy: V' = C, X' :=Crit(f') CU’, Y := Crit(g’) C V’, satisfying conditions including
Ly, X (B étale, (5.1) commutes, and ¢(z') = x.

Similarly, app~1y Theorem 5;1( i)toV, Wg,h Y, Z~\I/ y to get C-schemes V, W a point § € V
morphismsZ:V%V,j:W%W\I/ V%W&:W%Vandﬂ W — C" where
n:dimW—dimV and § == gol:V - C, h:=hoj: W = C, —Crlt()CV

7 = Crit(N) cw, satisfying conditions.
Deﬁne U=U' X ®o, VLV and W =V’ XJVQW, with projections Iy : U — U’ Iy : U = V,
vi W SV Iy W — W. As o/ EU/andgEVWithq)OL( )—y—L( ), there exists
;%erith Iy () = ' and I (&) = §. Set f:= f' oIy : U — C and h:= holly : W — C,
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and X := Crit(f) C U, Z := Crit(h) C W. The morphisms & oIl : U — V', Wolly : U — W

satisfy
go(® olly) =Porollyr =iolly =ao

Hence there exists a unique morphism Uod: U — W such that Iy o Tod =200 IIy and
Iy o W o ® = W olly. Then the following diagram

u i=tolly;/ v t=tolly/ U
\L\PO(I) ° \L . B idy ><O><0\L
W j=jollw W G x B=(aolly /)X (Bolly/) X (Bolly) UX((CmX(Cn>

is the analogue of (5.1) for U,W, f, h, X, Z, ¥ o @, z, and the conclusions of Theorem 5.1(i) hold
,B,m and for Oy using V, W, Y, Z, [, j,

Thus (5. 17) holds for ©¢ using U, V', X' Y. j,(I)/
U, &, B, n, and for Oyoq using U, W, X, Z,i j,\Ilocb a,B,m-i—n

We have a commutative diagram in Perv(X):

[|}o(idx XO)* (,PV;JXC’”*”JEEEW?"‘ZJZ?)
L|X (idx x0)*

(TSU f.emtn s 3 2435 22)

% o(Wod®)|% (PVy
3o (Wo)x (PVivs) Vo (PV,oPV] )

(B'olly)| % (PV;oPV ] ;)
¢

% o (idx x0)* (PV}

L
°
MXPVenin s, y§+2jz§)

>

505 0 (idy X0)* PV} cn o, 2)

il o(idx x0)*

1
TSUX"W fBD; y2 cn,5; 22)

i o®|% o(idy x0)* (Tsv1 oz, 22)
ol% o(1d x0)*
o (idx x0x 0)* . s
(Pve . i[% o (idx x0x 0)*  (d E :
, . UxC™, fBS;y2 o os,yl (5.26)
® oIl )|% 7 =< J ]7
e é'PV:cn 5.2) Cxeldx x0) (PVUfgpv(C’” Sy Cny,El

(PV,oPV 5 s) 22

“ I TS

éid ( U.f,C™m,5; y2) &PVCHE z )
L NESS
X id \z(v)

Z|}O@‘§(O(idy><0)*
. L . Z|§((’PV.U,JC)
(PVYy MPVEn s .2)
. - % ()
0% 0®% (%) (@ o) L\Xogldx x0)* '
(PV,oPV L) % o(idx x0)* (TSy om s, 2 2) o (idx x0)*

i|% o®|% (PV},,) ~—— . -
L|XO |X( V,g) (PVUXcm,faﬂz:jy]?) (’PV.U,fIXPVEny7zjy]2_),

where the top right quadrilateral commutes because of associativity in the Thom—Sebastiani

Theorem for PVY, ¢, Theorem 2.13.
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Also we have

(Wodoi)|% (PViy,)

(\PoCI>OZ)|§((73V§V,h) ®z/22, U (Pwoa)

5
My |% (3) id ®il% (Bv,0)
(Wodoi)|% (PViy,) (Wodoi)[% (PViy,) (5.27)
®z,/22(0011y )% (Pw) ®z,/22(00117 )% (Py) ®z/27 il % (Po) '
(Poi)| % (Ow) (@od)|% (03" ®id
N o Uy % (8) 1 . s
(®oi) X(PV‘CQ) (Poi) X'(vavg) ®z/22 1% (Ps),

which commutes because the trivializations of | x/(Ps), | 3 (Pw), I| ¢ (Pyos) used to define 4, 5,6
are compatible with Sy o.
Combining (5.26) and (5.27) with Iy |% applied to (5.17) for ©¢, and Iy | applied to (5.17)

for ©g, and (5.17) for Ogoe, we can show that the following diagram commutes in Perv(X):

1PV e (Wi (PVE) @2z T (Pac)
i1%(©e) id®il% (Ev,e)
(®0d)[% (Ou)@id (Wodol)[% (PViy)

(®od)|% (PVVg) ®2/22, 1% (Pa)

®z,/22 (L0117 )| % (Po) @722, 1% (Po),

which is i|%, applied to (5.16). Since such i|¢ : X — X form an étale cover of X, equation (5.16)
commutes by Theorem 2.7(i). This proves Theorem 5.4(c).

5.4. Z-modules and mixed Hodge modules. By Theorem 5.1(iv),(v), the earlier parts of
that result hold for our other contexts in §2.6-§2.10. Once again, the proofs of Theorem 5.4(a)—
(c) then carry over to the other contexts using the general framework of §2.5, now also making
use of property (vii).

6. PERVERSE SHEAVES ON ORIENTED D-CRITICAL LOCI

6.1. Background material on d-critical loci. Here are some of the main definitions and
results on d-critical loci, from Joyce [23, Th.s 2.1, 2.20, 2.28 & Def.s 2.5, 2.18, 2.31]. For the
algebraic case we work with C-schemes.

Theorem 6.1. Let X be a C-scheme. Then there exists a sheaf Sx of C-vector spaces on
X, unique up to canonical isomorphism, which is uniquely characterized by the following two
properties:

(i) Suppose R C X is Zariski open, U is a smooth C-scheme, and i : R — U is a closed
embedding. Then we have an exact sequence of sheaves of C-vector spaces on R:
it
0 IR,U i_l(OU) : OX|R 0,

where Ox, Oy are the sheaves of reqular functions on X,U, and i* is the morphism of
sheaves of C-algebras on R induced by i.
There is an exact sequence of sheaves of C-vector spaces on R:

LR,U i_l(OU) d i_l(T*U)
IJQQ’U IR,U 'ifl(T*U) ’
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where d maps f + I%%’U —df + gy - i H(T*U).

(i) Let R C S C X be Zariski open, U,V be smooth C-schemes, i : R > U, j: S <V
closed embeddings, and ® : U — V a morphism with ® o1 = jlg : R — V. Then the
following diagram of sheaves on R commutes:

¢ i~1(O N (T*V
0‘>SX|R svin J g V)’ d J .(71 1 ‘
Igy IR Isy -j=YT*V) IR
id \Lil(dﬂ’) \Lil(dé) (6.1)
0—> Syl LR,U i_l(OU) d i_l(T*U)
xR 2y Ipy i Y(T*U) "

Here ® : U — V induces ®* : @~ 1(Oy) — Oy on U, so we have
i@ TN OV) R =it 0 @ (Oy) — i (O0), (6.2)

a morphism of sheaves of C-algebras on R.

As ® oi = j|gr, equation (6.2) maps Isyv|r — Iru, and so maps I?g’V|R — 11237(]-
Thus (6.2) induces the morphism in the second column of (6.1).

Similarly, d® : ®~Y(T*V) — T*U induces the third column of (6.1).

There is a natural decomposition Sx = 89( @ Cx, where Cx is the constant sheaf on X with
fibre C, and 89( C Sx is the kernel of the composition
Bx i

SX OX Oxrcd,

with X4 the reduced C-subscheme of X, and ix : X**d < X the inclusion.
The analogue of all the above also holds for complex analytic spaces.

Definition 6.2. An algebraic d-critical locus over C is a pair (X, s), where X is a C-scheme,
and s € HY(SY) for 8% as in Theorem 6.1, satisfying the condition that for each z € X, there
exists a Zariski open neighbourhood R of z in X, a smooth C-scheme U, a regular function
f:U — A' =C, and a closed embedding i : R < U, such that i(R) = Crit(f) as C-subschemes
of U, and 1ru(s|r) = i7" (f) + I3 u-

Similarly, a complex analytic d-critical locus is a pair (X, s), where X is a complex analytic
space, and s € HY (Sg() for Sx as in Theorem 6.1, such that each z € X has an open neighbour-
hood R C X with a closed embedding i : R < U into a complex manifold U and a holomorphic
function f: U — C, such that i(R) = Crit(f), and trv(s|r) = i7" (f) + [

In both cases we call the quadruple (R, U, f,4) a critical chart on (X, s).

Let (X,s) be a d-critical locus (either algebraic or complex analytic), and (R, U, f,i) be a
critical chart on (X, s). Let U’ C U be (Zariski) open, and set

R =i""(U)YCR, 4 =ilg:R —=U, ad f=Ffly.

Then (R',U’, f',4') is also a critical chart on (X, s), and we call it a subchart of (R,U, f,i). As
a shorthand we write (R',U’, f',i") C (R, U, f,1).

Let (R,U, f,4),(S,V,g,7) be critical charts on (X,s), with R C S C X. An embedding of
(R,U, f,i) in (S,V,g,7) is a locally closed embedding ® : U < V such that ® o i = j|gr and
f=go®. As a shorthand we write ® : (R, U, f,i) < (S,V,g,J).

If®: (RU,f,i) <= (SV,g9,5) and ¥ : (S,V,g,j) — (T,W,h,k) are embeddings, then
Uod:(R,U,f,i)— (T,W,h,k) is also an embedding.



138 C. BRAV, V. BUSSI, D. DUPONT, D. JOYCE, AND B. SZENDROI

Theorem 6.3. Let (X,s) be a d-critical locus (either algebraic or complex analytic), and let
(R,U, f,1),(S,V,g,7) be critical charts on (X, s).

Then, for each x € RN S C X, there exist subcharts (R, U',f',i') C (R,U,f,i), and
(8", V',¢',7) C (S,V,g,7) with x € R'NS" C X, a critical chart (T,W,h, k) on (X,s), and
embeddings @ : (R, U’ f',i") — (T, W,h,k), and U : (S", V', ¢, j") — (T,W, h, k).

Theorem 6.4. Let (X,s) be a d-critical locus (either algebraic or compler analytic), and
Xred C X the associated reduced C-scheme or reduced complex analytic space. Then there exists
an (algebraic or holomorphic) line bundle Kx s on X' which we call the canonical bundle
of (X,s), which is natural up to canonical isomorphism, and is characterized by the following
properties:

(i) If (R,U, f,i) is a critical chart on (X, s), there is a natural isomorphism
% 2
LR,U,f,i - KX’S|Rre<1 — 1 (K%’ >|Rred, (6.3)

where Ky = AY™UT*U s the canonical bundle of U in the usual sense.
(ii) Let @ : (R, U, f,i) < (S,V,g,j) be an embedding of critical charts on (X,s). Then (5.9)
defines an isomorphism of line bundles on Crit(f)™? :
2 o * 2
Jo KE? |crit(f)red — ‘I’|cm(f)red (K\Q? )
Since i : R — Crit(f) is an isomorphism with ® o = j|g, this gives

}}red(J¢‘> ) }k:ared (K[Q]Z)Q) i)] }k:ared (K§2)7

1

and we must have

frea — 5 (KE)

LS V,g,j| Rred = 1 Ercd (J@) OLRU,f,i - KX,s Rred (6.4)

Definition 6.5. Let (X, s) be a d-critical locus (either algebraic or complex analytic), and Kx
its canonical bundle from Theorem 6.4. An orientation on (X, s) is a choice of square root line

bundle K;(/ i for Ky, on X*. That is, an orientation is an (algebraic or holomorphic) line

bundle L on X4, together with an isomorphism ¥ = Lo L~2K x,s- A d-critical locus with
an orientation will be called an oriented d-critical locus.

In [9, Th. 6.6] we show that algebraic d-critical loci are classical truncations of objects in de-
rived algebraic geometry known as —1-shifted symplectic derived schemes, introduced by Pantev,
Toén, Vaquié and Vezzosi [42].

Theorem 6.6 (Bussi, Brav and Joyce [9]). Suppose (X,w) is a —1-shifted symplectic derived
scheme in the sense of Pantev et al. [42] over C, and let X = to(X) be the associated clas-
sical C-scheme of X. Then X extends naturally to an algebraic d-critical locus (X,s). The
canonical bundle Kx s from Theorem 6.4 is naturally isomorphic to the determinant line bundle
det(Lx)|xrea of the cotangent compler Lx of X.

Now Pantev et al. [42] show that derived moduli schemes of coherent sheaves, or complexes of
coherent sheaves, on a Calabi—Yau 3-fold Y have —1-shifted symplectic structures. Using this,
in [9, Cor. 6.7] we deduce:

Corollary 6.7. Suppose Y is a Calabi—Yau 3-fold over C, and M 1is a classical moduli C-scheme
of simple coherent sheaves in coh(Y'), or simple complexes of coherent sheaves in D® coh(Y), with
(symmetric) obstruction theory ¢ : £* — Ly as in Behrend [2], Thomas [52], or Huybrechts and
Thomas [22]. Then M extends naturally to an algebraic d-critical locus (M, s). The canonical
bundle Kpq,s from Theorem 6.4 is naturally isomorphic to det(E®)| pqrea.
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Here we call F' € coh(Y) simple if Hom(F,F) = C, and we call F'* € D’coh(Y) simple
if Hom(F*,F*) = C and Ext<°(F*,F*) = 0. Thus, d-critical loci will have applications in
Donaldson—Thomas theory for Calabi—Yau 3-folds [24, 32,33, 52]. Orientations on (M, s) are
closely related to orientation data in the work of Kontsevich and Soibelman [32, 33].

Pantev et al. [42] also show that derived intersections LN M of algebraic Lagrangians L, M in
an algebraic symplectic manifold (S,w) have —1-shifted symplectic structures, so that Theorem
6.6 gives them the structure of algebraic d-critical loci. Bussi [10, §3] will prove a complex
analytic version of this:

Theorem 6.8 (Bussi [10]). Suppose (S,w) is a complex symplectic manifold, and L, M are
complex Lagrangian submanifolds in S. Then the intersection X = LN M, as a complex analytic
subspace of S, extends naturally to a complex analytic d-critical locus (X,s). The canonical
bundle Kx s from Theorem 6.4 is naturally isomorphic to Kp|xrea ® K| xrea.

6.2. The main result, and applications. Here is our main result, which will be proved
in §6.3-56.4.

Theorem 6.9. Let (X, s) be an oriented algebraic d-critical locus over C, with orientation K;(/i,

Then for any well-behaved base ring A, such as Z,Q or C, there exists a perverse sheaf P%
in Perv(X) over A, which is natural up to canonical isomorphism, and Verdier duality and
monodromy isomorphisms

Yxs: Py s — Dx (P)'(vs), Txs:Pys— Py (6.5)

which are characterized by the following properties:

(1) If (R,U, f,i) is a critical chart on (X, s), there is a natural isomorphism

WrU.fi 0 PYslr — 1" (PVY 5) ©2/22 QRU.1 i (6.6)
where TRy i : Qru,fi — R is the principal Z/2Z-bundle parametrizing local isomor-
phisms a : K)l(/i — i*(Ky)
the following commute in Perv(R):

Rred With a®a = tr y .4, for tru 5. as in (6.3). Furthermore

P% slr T i*(PVY 1) @22z QRU i
Sl o San g (6.7)
Da(Py.|x) Dr(wr,v,7.i) i* (Deri( ) (PVT.1)) @z/22 QRU£.i
R\t X,sIR ~ . .
’ = Dg(i*(PVy.) @222 QRU 1)
P% slr P *(PVU,y) ®z/0 QR 1.
lTX,sR i*(TUYf)®idQR’U’f’ii (68)
P% lr kA i*(PVY ;) @222 QRU 1.4

(ii) Let @: (R,U, f,i) < (S,V,g,j) be an embedding of critical charts on (X, s). Then there
is a natural isomorphism of principal Z/27Z-bundles

Ao Qsviglrn — 1" (Po) 202 Qrou, 1. (6.9)
on R, for P as in Definition 5.2, defined as follows: local isomorphisms
«: K)l(/i prea, [ K)l(/i

and v : " (Ky)|grea — 3 (Kvy)|grea

Rred — Z*(KU)

prea — J7(Ky)

Rred,
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with « @ a = Lrufi, B OB = Lsv,gjlrred;, VO Y = i|jpea(Ja) correspond to local
sections s : R = QRru,fi, 58 : R = Qsvyg,jlr, Sy : R = i"(Ps). Equation (6.4)
shows that B = v o« is a possible solution for f, and we define Ag in (6.9) such that
Ao (s5) = 5y @z/27 5a if and only if B =ryoa.

Then the following diagram commutes in Perv(R), for O as in (5.13):

P% slr P i*(PVE.) @222 Qrou. 1.0
iws’v’” : F(On)®dap l (6.10)
7 (PVY,)Ir e pvy, ) Ohe *(*(PVY,,) ®2/22 Po)
®z/22Q5,v.,9.5|R ®z,/22QR,U.fi-

The analogues of all the above also hold for P-modules on oriented algebraic d-critical loci
over C, for perverse sheaves and Z-modules on oriented complex analytic d-critical loci, and for
mized Hodge modules on oriented algebraic d-critical loci over C and oriented complex analytic
d-critical loci, as in §2.6-§2.10.

Remark 6.10. This sheaf-theoretic result is compatible with the motivic result of Bussi, Joyce
and Meinhardt in [11]. Given (X, s) an oriented algebraic d-critical locus over C, [11] proves the

existence of a natural motivic element M Fy . € M’y in a version of the relative Grothendieck
ring of varieties over X, equivariant with respect to suitable actions of the group f of all roots
of unity (for detailed definitions, see [11]). Since the mixed Hodge module realization factorizes
over the additional relation one has to impose in [11] on the Grothendieck group, the ring ./\/l’;(
has a map to Ko(MHM(X;Ty)), the K-group of algebraic mixed Hodge modules on X with
a finite order automorphism (note that the Grothendieck group only sees the semisimple part
T, of the monodromy and not the nilpotent part N). By a Cech-type argument using the
corresponding comparison result of [20, Prop. 3.17], the image of M Fx ; in Ko(MHM(X;T}))
agrees with the image of the mixed Hodge module realization of P% 4, since both sides are Zariski
locally modelled by the same vanishing cycles. Thus, for example, they give the same weight
polynomial for global cohomology with compact support.

From Theorem 6.6, Corollary 6.7 and Theorem 6.8 we deduce:

Corollary 6.11. Let (X,w) be a —1-shifted symplectic derived scheme over C in the sense of

Pantev et al. [42], and X = to(X) the associated classical C-scheme. Suppose we are given a

square Toot det(LX)|§(/2 for det(Lx)|x. Then we may define Py , € Perv(X), uniquely up to

canonical isomorphism, and isomorphisms ¥x . : Px , = Dx(Px ), Tx.w: Px., = Px .-
The same applies for P-modules and mized Hodge modules on X.

Corollary 6.12. Let Y be a Calabi-Yau 3-fold over C, and M a classical moduli C-scheme
of simple coherent sheaves in coh(Y), or simple complexes of coherent sheaves in DPcoh(Y),
with natural (symmetric) obstruction theory ¢ : £* — Laq as in Behrend [2], Thomas [52],
or Huybrechts and Thomas [22]. Suppose we are given a square root det(£°)'/2 for det(E°).
Then we may define Py, € Perv(M), uniquely up to canonical isomorphism, and isomorphisms
YXm Py = Dm(Pry), Tag s Prg— Pay.

The same applies for P-modules and mized Hodge modules on M.

Corollary 6.13. Let (S,w) be a complex symplectic manifold and L, M complex Lagrangian

submanifolds in S, and write X = L N M, as a complex analytic subspace of S. Suppose

we are given square Toots Ké/Q,K}wm for Kp, K. Then we may define Pp € Perv(X),
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uniquely up to canonical isomorphism, and isomorphisms X v : PPy — ]D)X(PLM), and
TL,M : PE,M — PLM
The same applies for P-modules and mized Hodge modules on X.

The next two remarks discuss applications of Corollaries 6.12 and 6.13 to Donaldson—Thomas
theory, and to Lagrangian Floer cohomology.

Remark 6.14. If Y is a Calabi—Yau 3-fold over C and 7 a suitable stability condition on coherent
sheaves on Y, the Donaldson—Thomas invariants DT*(7) are integers which ‘count’ the moduli
schemes M (7) of 7-stable coherent sheaves on Y with Chern character a € H®"(Y;Q),
provided there are no strictly 7-semistable sheaves in class a on Y. They were defined by
Thomas [52], who showed they are unchanged under deformations of Y, following a suggestion
of Donaldson and Thomas [16].

Behrend [2] showed that DT<(7) may be written as a weighted Euler characteristic
X(MZ(7),v), where v : M3 (7) — Z is a certain constructible function called the Behrend func-
tion. Joyce and Song [24] extended the definition of DT*(7) to classes « including 7-semistable
sheaves (with DT*(7) € Q), and proved a wall-crossing formula for DT*(7) under change of
stability condition 7. Kontsevich and Soibelman [32] gave a (partly conjectural) motivic gener-
alization of Donaldson—Thomas invariants, also with a wall-crossing formula.

Corollary 6.12 is relevant to the categorification of Donaldson-Thomas theory. As in [2,
§1.2], the perverse sheaf P o () has pointwise Euler characteristic X(P./:/l;"t(r)) = v. This
implies that when A is a field, say A = Q, the (compactly-supported) hypercohomologies

H* (P/.\4€;(T))7H: (P/'V[%(T)) from (2.1) satisfy
kgz(—l)kdim]}]lk (Phie(r) = kgz(—l)kdim]}]lf (Phge () = X(M&(7),v) = DT*(7),

where H” (PM&(T)) = H;k (PXA;(T))* by Verdier duality. That is, we have produced a natu-
ral graded Q-vector space H* (P/:/l"‘t (T)), thought of as some kind of generalized cohomology of
M (1), whose graded dimension is DT*(7). This gives a new interpretation of the Donaldson—
Thomas invariant DT(7).

In fact, as discussed at length in [51, §3], the first natural “refinement” or “quantization”
direction of a Donaldson-Thomas invariant DT%(7) € Z is not the Poincaré polynomial of this
cohomology, but its weight polynomial

w(H (Phya ). 1) € Z[t52],

defined using the mixed Hodge structure on the cohomology of the mixed Hodge module version
of P/.\/lgt(r) (which exists assuming that M (7) is projective, for example, see Remark 2.22).

The material above is related to work by other authors. The idea of categorifying Donaldson—
Thomas invariants using perverse sheaves or Z-modules is probably first due to Behrend [2], and
for Hilbert schemes Hilb"(Y') of a Calabi-Yau 3-fold Y is discussed by Dimca and Szendr6i [15]
and Behrend, Bryan and Szendréi [3, §3.4], using mixed Hodge modules. Corollary 6.12 answers
a question of Joyce and Song [24, Question 5.7(a)].

As in [24,32] representations of quivers with superpotentials (Q, W) give 3-Calabi—Yau trian-
gulated categories, and one can define Donaldson—Thomas type invariants DT&W(T) ‘counting’
such representations, which are simple algebraic ‘toy models’ for Donaldson—Thomas invariants
of Calabi—Yau 3-folds. Kontsevich and Soibelman [33] explain how to categorify these quiver
invariants DT§ y(7), and define an associative multiplication on the categorification to make a
Cohomological Hall Algebra. This paper was motivated by the aim of extending [33] to define
Cohomological Hall Algebras for Calabi—Yau 3-folds.
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The square root det(€ ')1/ 2 required in Corollary 6.12 corresponds roughly to orientation data
in the work of Kontsevich and Soibelman [32, §5], [33].

In a paper written independently of our programme [9,11,23], Kiem and Li [31] have recently
proved an analogue of Corollary 6.12 by complex analytic methods, beginning from Joyce and
Song’s result [24, Th. 5.4], proved using gauge theory, that MS (7) is locally isomorphic to
Crit(f) as a complex analytic space, for V' a complex manifold and f : V' — C holomorphic.

Remark 6.15. In the situation of Corollary 6.13, with dim¢ S = 2n, we claim that there ought
morally to be some kind of approximate comparison

H* (PP ) ~ HFF™ (L, M), (6.11)

where HF*(L, M) is the Lagrangian Floer cohomology of Fukaya, Oh, Ohta and Ono [18]. We
can compare and contrast the two sides of (6.11) as follows:

(a) H*(P} 5,) is defined over any well-behaved base ring 4, e.g. A =Z or Q, but HF*(L, M)
is defined over a Novikov ring of power series Apqy.

(b) H*(P} j) has extra structure not visible in HF*(L, M), from Verdier duality and mon-
odromy operators X1, ar, T ar, plus the mixed Hodge module version has a mixed Hodge
structure.

(c) H* (PL.ar) is defined for arbitrary complex Lagrangians L, M, not necessarily compact
or closed in S, but HF*(L, M) is only defined for L, M compact, or at least for L, M
closed and well-behaved at infinity.

(d) To define HF*(L, M) one generally assumes L, M intersect transversely, or at least
cleanly. But H* (Pz ) s defined when LN M is arbitrarily singular, and the construction
is only really interesting for singular L N M.

(e) To define HF*(L, M) we need L, M to be oriented and spin, to orient moduli spaces
of J-holomorphic curves. When L, M are complex Lagrangians they are automatically
oriented, and spin structures on L, M correspond to choices of square roots K i/ 2, K 11\/;2’
as used in Corollary 6.13.

Some of the authors are working on defining a ‘Fukaya category’ of complex Lagrangians in
a complex symplectic manifold, using H*(Pz’ ) as morphisms.

We now discuss related work. Nadler and Zaslow [40,41] show that if X is a real analytic
manifold (for instance, a complex manifold), then the derived category D%(X) of constructible
sheaves on X is equivalent to a certain derived Fukaya category D®F(T*X) of exact Lagrangians
in T*X.

Let L,M be complex Lagrangians in a complex symplectic manifold (S,w). Regarding
Or, Oy as coherent sheaves on S, Behrend and Fantechi [4, Th.s 4.3 & 5.2] claim to construct
canonical C-linear (not Og-linear) differentials

d: Eatly (O, On) — Exty (O, Onr)

with d2 = 0, such that (Sxt’(‘gs (Or,0wn), d) is a constructible complex. There is a mistake in the
proof of [4, Th. 4.3]. To fix this one should instead work with Ext7, (Ki/z, K}\f) for square roots
K}/Q, K}\f as in Corollary 6.13. Also the proof of the constructibility of (Extgs (Ki/z7 K;f), d)
in [4, Th. 5.2] depended on a result of Kapranov, which later turned out to be false.

Our Pp ), over A = C should be the natural perverse sheaf on L N M conjectured by
Behrend and Fantechi [4, Conj. 5.16], who also suggest there should be a spectral sequence from

(Exty, (K1* Ky)%),d)[n] to PP . (See Sabbah [44, Th. 1.1] for a related result.) In [4, §5.3],
Behrend and Fantechi discuss how to define a ‘Fukaya category’ using their ideas.
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Kashiwara and Schapira [29] develop a theory of deformation quantization modules, or DQ-
modules, on a complex symplectic manifold (S, w), which roughly may be regarded as symplectic
versions of Z-modules. Holonomic DQ-modules D* are supported on (possibly singular) complex
Lagrangians L in S. If L is a smooth, closed, complex Lagrangian in .S and Ki/ 2a square root
of K1, D’Agnolo and Schapira [13] show that there exists a simple holonomic DQ-module D*®
supported on L.

If D*,E* are simple holonomic DQ-modules on S supported on smooth Lagrangians L, M,
then Kashiwara and Schapira [28] show that RZom/(D®, £%)[n] is a perverse sheaf on .S over the
field C((h)), supported on X = L N M. Pierre Schapira explained to the authors how to prove

that RoZom(D*,£%)[n] = P} ), when P}, is defined over the base ring A = C((h)).

Now let L, M, N be Lagrangians in S, with square roots Ki/27 Kjl\f, K}V/Q. We have a product

HF*(L,M)xHF'(M,N) — HF**(L, N) from composition of morphisms in D*F(S). So (6.11)
suggests there should be a product

HE(PF o) x H' (Pyy ) — HMR(P ), (6.12)
which would naturally be induced by a morphism in D%(S)

L
prmN Pl @Py v — P y[n]. (6.13)
Observe that the work of Behrend-Fantechi and Kashiwara—Schapira cited above supports
the existence of (6.12)—(6.13): there are natural products
Exty, (K* Kyp*) @0, Exto (Kyp* KN*) — Ext&! (K% Ky),
RAom(D*,E%) & RA om(E®, F*) —> RAom(D*, F*).
But since (6.13) is a morphism of complexes, not of perverse sheaves, Theorem 2.7(i) does not
apply, so we cannot construct py, ar,n by naively gluing data on an open cover, as we have been
doing in §3-§6.
6.3. Proof of Theorem 6.9 for C-schemes. Let (X,s) be an oriented algebraic d-critical
locus over C, with orientation K ;(/ i By Definition 6.2 we may choose a family

{(Raan,fa,ia) la € A}

of critical charts (Rq, Uy, fa,%q) on (X, s) such that {R, : a € A} is a Zariski open cover of the
C-scheme X. Then for each a € A we have a perverse sheaf

in(PVU,.1.) ©2/22 @Ry U faria € Perv(Ra), (6.14)

for Qr,.v..f. i, asin Theorem 6.9(i). The idea of the proof is to use Theorem 2.7(ii) to glue the
perverse sheaves (6.14) on the Zariski open cover {R, : a € A} to get a global perverse sheaf
P% ; on X. Note that Theorem 2.7(ii) is written for étale open covers, but this immediately
implies the simpler Zariski version.

To do this, for all a,b € A we have to construct isomorphisms

oap ¢ [in (PV?JQJQ) ®2/92 QRa,Ua. fasia) |RaﬁRh -

9 . (6.15)
(35 (PVY,.1,) ®@2/22 QR Uy fovin) |RamRb € Perv(R, N Ry),
satisfying a,, = id for all a € A and
Qbe|R,NRyNR. © Cab|R.NRyNR. = Qac|R.nNRy,nR. for all a,b,c € A. (6.16)

Fix a,b € A. By applying Theorem 6.3 to the critical charts (Rq, Uq, fa,%a), (Rb,Us, fo,1b)
at each x € R, N Ry, we can choose an indexing set Dy, and for each d € D,; subcharts
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/d 1d prd ;rd - /d 1d prd ;rd . fps
(RI&, U, f12,4%) € (Ra,Ua, fasta) and (R, UL, fi¢,07) € (Rp, Us, f,0), a critical chart
(84, V4 g %) on (X,s), and embeddings

o (R, UM, 10, 418) — (S, V g%, 5% and W (R, UL, 4, 010) — (81, VY g%, 5%

a ’’a

such that {R;d NRe:de Dab} is a Zariski open cover of R, N Ry.
For each d € D, define an isomorphism

agb : [Z;: (PV.UG,,fa) ®Z/QZ QR{L-,U(l:fayia,] RfflﬁR’bd — [ZZ (,PVZ]b,fb) ®Z/QZ QRb,Ub,fb,ib] }R’adﬂRi‘i

by the commutative diagram

[i: (pv.Ua,fa)@ZﬂZ jdrf%;an;)d (PV;/%gd) ®Z/2zia|*R;an;,d (Péd)
QRQ,Ua,fa,ia] szan;;d ia‘;gijgi(®q)d) ®Z/QZ QRn,yU{lyf{lyi{L|R£1dngd
®idor, U4, faia
id®A‘I)d‘I;2dﬂRi)d
: [G)* (PVVa ga) ®2/22 Q ja] |
ap J v gi) 87/27 &sd v gd ji||RianRa (6.17)

id ®A‘I,d ‘R{ldﬁRgd

ib‘;admR/bd(G;}i)
. . -d .
[ZZ (PV.Umfb) ®z/22 ®idor, v, 1.1 J ‘j{jﬁﬁR{ﬁ (vadagd)@)Z/zZ
QRb,Ubvfbaib} ’Rgile’;i ib‘*R;dﬁRLd (P\I/d) ®Z/2ZQR,,,U5,f;,,ib |Rgdm3;)d7

where Oga, Oga are as in Theorem 5.4, and Aga, Aga as in (6.9).
We claim that for all d,e € D, we have

d _ e
aab|R;dngdmR;engﬂ = aab|R§ldﬂRg‘iﬁR{fﬂR{f' (6.18)

To see this, let z € R4 N R N RN R, and apply Theorem 6.3 to the critical charts
(84, v g ), (8¢, Ve, g¢ j¢) and point z € S% N S¢. This gives subcharts

(S/d, V’d,g/d,j/d) c (Sd,vd,gd,jd) and (S/e’ V/e“gle’j/e) C (Se’ Ve’ge7je)
with x € §'4 N .S’ a critical chart (T, W, h, k) on (X, s), and embeddings

Q: (8" Ve gt 'y (T, W,h,k)  and Y : (8¢ V' ¢ ') — (T,W,h, k).
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Set R = RN RN RN RN S'eN S, and consider the diagram:
a b a b ) g

(i (PV.Ua,fa)®Z/QZ [(jd)*(,]jv;/d7gd)®z/22
QR Uafusia )| pa (id @A 3)0(i; (O 5a)®id)| gae

QSd,V‘i,g‘l,jd] |Rde

(idoA;iq)d)o (idd®A51)o
(doA=l ) o (Oqoga)®id)| gae (39" (@a)@id)]
= ° YTode ©
(i3 (Orose)®id)| gae (i3(©, 4)®id)o

[k* (PV;/V,h)@)Z/QZ (id ®@Aga)lgde

(6.19)
(id®AZd)o QT,W,hyk] |Rdﬁ
(i (Oge )®id)| pde (iZ(@;;\I]d)t@id)o
id ®A .
deny')o METCEAT ) N
((5°)" (©r)®id)| gde (id ®Avowe)| pae
(G (PVVe e ) @2y (i; (O3 4)®id)o(id ®Awe )| pae (i3 (PVU,.1,)®2/22
QSS’Ve,ge,jeMRde Qv o] | -

Here we have given two expressions for the top left diagonal morphism in (6.19). To see these
are equal, set R/4¢ = RN RIe N S'4nSe Ude = (d)=1(V'd) N (®¢)~L(V'e), flde = falurae,
and i/ = iy| grac. Then (R, U, f19°,i/%) C (R, Ua, fa,ia) is a subchart and

Qo ®ypae, T o O°[yyrae 1 (R, UL, f10°,00¢) — (T, W, h, k)

a
are embeddings.

As Qo ®?oild® = k| pue = T 0 ®° 0/, Theorem 5.4(b) gives Onoali, (rite) = Orodels, (rrde),
s0 that iq[jac (Oowd) = ialjuec (Orose) as R C R!%. Also Agopd = Ayope as these are defined
in Theorem 6.9(ii) using Joopd, Jyose, which are equal by Lemma 5.3. So the two expressions
are equal, and similarly for the bottom right diagonal morphism.

The upper triangle in (6.19) commutes because (5.16) gives

(id ©Eq,94) © Oqopeli, (rae) = (DU, (gae)(O0) @ 1d) 0 Ogal;, (rae),
and the definitions of 2 ga in (5.11) and Ag, Aga, Agoge in (6.9) imply that

(ia|*Rde (EQ@,d) X ld) (¢] AQo@d |Rdc = (ld ®A(1)d) o AQ |Rdc :

Qr.wonk|rie — §% e (Pa) ®z/22 ial frae (Poa) @222 QR, U forin | R

Similarly, the other three triangles in (6.19) commute, so (6.19) commutes.

By (6.17), the two routes round the outside of (6.19) are a?,|ga. and a¢,|gae, which are equal
as (6.19) commutes. As we can cover R/ N Ri¥ N R/ N R)¢ by such Zariski open R, equation
(6.18) follows. Therefore by the Zariski open cover version of Theorem 2.7(i), there is a unique
isomorphism «g; in (6.15) such that Oéab‘R:ldmR;)d =ad, for all d € Dy.

If Dy, Rfld, ..., @4 W are used to define oy and ﬁab, R;‘ﬂ e <‘~Pd, U are alternative choices
yielding @gp, then by our usual argument using Dy 11 D, and both sets of data we see that
Qap = Qgp, SO Qqp is independent of choices.

Because the Oga, Oga used to define oy, are compatible with Verdier duality and monodromy
by (5.14)—(5.15), and the Aga, Aga affect only the principal Z/2Z-bundles rather than the per-
verse sheaves, we can show oy, is compatible with Verdier duality and monodromy, in that the
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following commute:

[ia (PVY,,1.) @222 [i5 (PVb,.1,) 22z
QR(},’Uarwfa,yia RuNRy ab QRmUbyfbvib R.NRy
i:(UUa,fa)®idQRa‘Uayfa1iQ ‘RaﬁRb i;: (UUbvfb)®idQRb,Ub,fb,ib |RamRb
(6.20)
iz (Dexisr) (PVE, 1.) (i3 (Dcxie,) PV, 1,))
®Z/QZQRQ,UQ,fa,ia] |RaﬁRb) Dr,nR, (Cab) ®Z/QZQRb7Ubvfb7’ib] |RaﬂRb)
= Dr,nr, ([0 (PVE, 1.) = Dr,nr, ([i5(PVT,.1,)
®2,/22Q Ra Vs, furial | RaOR,) ®2,/22Q Ry, Uy i) | RanRs)
(i (PVY, 1) @222 (i (PVY, 1,) @222
QRa,Umfmia”Raan Gab QRb,Umfb,ib} |RaﬁRb
i:'(TUa*fﬂ)®idQRa,Ua,fa,ia |RaﬁRb i;(TUb’fb)®idQRb,Ub,fb,ib |RaﬂRbl (621)
[iz (’PVZ]ayfa)@Z/QZ Cab [ZZ (PV.Ubvfb)®Z/2Z
QRa,UmfmiaHRaan QRb7Ubvfb7ib]|RamRb'

When a = b we can take U? = &%, s0 (6.17) gives o, = id, and g, = id.

aa

To prove (6.16), let a,b,c € A, and x € R, N Ry N R.. Applying Theorem 6.3 twice
and composing the embeddings, we can construct subcharts (R, U., f! i) C (Ra,Uq, fa,ia)s
(ngaUlgafl;aZ;)) - (vaUbafb7ib)a and (R/caU;a évzlc) - (RchmfcaiC) with = € R; n R;) n le
a critical chart (S,V,g¢,7) on (X,s), and embeddings ®: (R,,U., .. i) <= (S,V,q,7),
U (R, UL, frh4,) = (S, V,g,7), T : (R.,UL fl,i.) = (5,V,g,7). Then the construction of aqp
above yields

aav|rrynr; = ((i5(03 ") ®id)o (id@Ay)o (id®AG ) o (i) (O) ®id) ) | nrs ARY
Qbe| Ry ARy AR, = ((ic(9§1)®id)°(id@AT)O(id®AE/1)°(i*(@\P)®id))|R;ngnR;7
Y a

*
a‘w'RLﬁRLﬂRé = ((ZZ (9 1)®1d)0 (ld®A'r) o (1d®A;1)O (l (@q:-)@ld)) |R;’0R{7QRQ7
so that abC|R&ﬁR§,ﬁR’c o O‘ab‘R{lﬁRgﬁR’c = aac|fonRng,c' As we can cover R, N R, N R, by such
Zariski open R/, N R N R,,, equation (6.16) follows by Theorem 2.7(i).

The Zariski open cover version of Theorem 2.7(ii) now implies that there exists P% s in
Perv(X), unique up to canonical isomorphism, with isomorphisms

WRo U faiia * PXslRe — 15 (PVU, 1.) ®2/22 QR Vs fu i

as in (6.6) for each a € A, with a4y OWR, U, fuia| RanRs = WRy,Up. fo.is | RanR, fOr all a,b € A. Also,
(6.7)-(6.8) with (R, Uq, fa,%q) in place of (R, U, f,4) define isomorphisms X x s|r,, Tx s|r, for
each a € A. Equations (6.20)—(6.21) imply that the prescribed values for £x s|r,, Tx,s|r, and
Yx.slr,s Tx.s|r, agree when restricted to R, N Ry for all a,b € A. Hence, Theorem 2.7(i) gives
unique isomorphisms X x 5, Tx s in (6.5) such that (6.7)—(6.8) commute with (Rq, U, fa,iq) in
place of (R,U, f,i) for all a € A.

Suppose {(Ra,Ua,fa,ia) ta € A} and {(Ra,f]a,fmia) ia € [1} are alternative choices
above, yielding P% ,¥x s, Tx s and P).(’S;EX,saTX,s- Then applying the same construction
to the family {(Rq,Ua, fa,ia) : @ € A} I {(Ra,Ua,fa,ia) ca € A} to get If’)‘(,s, we have
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canonical isomorphisms P§ ;= ]5)‘(S = ]5)'(78, which identify Yx ,, Tx.s with ¥x 5, Tx.s. Thus
P% 5, Xx,s, Tx,s are independent of choices up to canonical isomorphism.

Now fix {(Ra,Ua,fa,ia) ta € A}, P% »¥x.s, Tx s and wr, v, 1, .i, for a € A above for the
rest of the proof. Suppose (R,U, f,i) is a critical chart on (X, s). Running the construction
above with the family {(Ra, Uay fasia) 1 a € A} I {(R, U, f, z)}7 we can suppose it yields the
same (not just isomorphic) Pg . ¥x s, Tx,s and wr, v, f..i,, Dut it also yields a unique wr v, 1.
in (6.6) which makes (6.7)-(6.8) commute. This proves Theorem 6.9(i).

Let ® : (R,U, f,i) — (5,V,g,j) be an embedding of critical charts on (X,s). The def-
inition of Ag in Theorem 6.9(ii) is immediate. Run the construction above using the fam-
ily {(Ra,Ua; faria) : @ € AYIL{(R,U, f,i),(S,V,g,j)}, and follow the definition of o with
(R, U, f,1),(S,V,g,7) in place of (Ry, Uy, fasia) (R, Us, fb,1,). We can take

®? = & and ¢ = idy. Then (6.17) gives aqp = al, = (i[d®AG") o (i*(Os) ®id). Thus,

Qab © WR, Uy, furia|RaNRy = WRy Uy, fi.in |[RaORy

implies that (6.10) commutes, proving Theorem 6.9(ii).

6.4. 2-modules and mixed Hodge modules. Once again, the proof of Theorem 6.9 carries
over to our other contexts in §2.6-§2.10 using the general framework of §2.5, now also making
use of the Stack Property (x) for objects. For the case of mixed Hodge modules, we use Theorem
2.21(ii) to glue the i} (VY ;.) @2/22 QRu,Ua,fasie O Ra € X for a € A with their natural strong
polarizations (2.25), which are preserved by the isomorphisms g in §6.3 on overlaps R, N Ry.

APPENDIX A. COMPATIBILITY RESULTS, BY JORG SCHURMANN

In the main body of the paper, when comparing results for mixed Hodge modules to those
involving perverse sheaves, we rely on the compatibility between duality and Thom—Sebastiani
type isomorphisms of perverse sheaves and mixed Hodge modules. These compatibility state-
ments cannot easily be read off from the existing literature, so we provide proofs here.

Proposition A.1. If X is a C-scheme and f : X — C is reqular, then Massey’s natural
isomorphisms from [37] quoted as Theorem 2.11(iv) coincide with the image under the realization
functor of Saito’s analogous isomorphisms [45] between functors on mized Hodge modules. There
s also an analogous compatibility result for X a complex analytic space equipped with an analytic
function f.

Proof. Massey’s construction in [37] of the duality isomorphisms uses the definition of the vanish-
ing cycle functor in terms of the local cohomology of suitable real half-spaces, compare also [50].
Using their notation, the compatibility comes down to compatibility of the diagram

¢?O]D)X DXOO¢?

J{% %T (A1)
(RT {Rre()>0} (—)]xp) © Dx ——Dx,, o (R {re(5)<0} (—)|x0)-

Here the upper, respectively lower horizontal isomorphisms are the ones of Saito, respectively
Massey, and the vertical isomorphisms follow for example from [50, Lem. 1.3.2, p. 69]. Saito
deduces his duality isomorphism in [45, Lem. 5.2.4, p. 965] from a pairing on nearby cycles
induced by a pairing F ® G — a'y A for F,G € D%(X), with ax : X — pt the constant map and
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A C C a coefficient field. But Massey’s duality isomorphism can be also be induced from such
a pairing fitting into a commutative diagram, with
Lo={Re(f) =0} and j:{Re(f)=0,f#0}— Lo

the open inclusion:

(R (Re()<0} (F)|x0) @ (RT(Re()>0} (G x0) =<—=— V5 (F) @ ¥f(G)

J }

(Rj<g*(ap, Alzo))lx, vy (akA) (A.2)
- ¢
(Rjsg*(al, 4)lx, 1] a, Al2].

Here the isomorphism j*(a'y A|,) = j*(a’L0 A)[1] comes from the fact that Re(f) has no critical
points (in a stratified sense) in X \ Xy, locally near Xy. But then the commutativity of (A.2)
implies by [45, Lem. 5.2.4, p. 965] the commutativity of (A.1), concluding the proof. O

A similar compatibility question arises for the Thom—Sebastiani isomorphism. Here the precise
statement is the following.

Proposition A.2. Let f; :Y; — C be regular functions on smooth C-schemes, for i =1,2. Let
f=fBf: Y, xYy = C be as in Theorem 2.13. Then the isomorphism (2.8) of Massey [35,50]
coincides with the image under the realization functor of Saito’s analogous isomorphism (2.26)
of [49] for mized Hodge modules.

Proof. The Thom-Sebastiani isomorphism (2.26) is constructed by Saito [49, Th. 2.6] based on
the Verdier specialization [53]. First, let f : ¥ — C be a regular function, with X = f~1(0)
of codimension one, so that the normal cone C'xY = X x C becomes a trivial line bundle with
f": CxY — C given by the projection. Let p : DxY — C be the deformation to the normal
cone with CxY = p~1(0) C DxY, with ¢ : DxY — Y the natural map. Then f’ extends to a
function g : DxY — C, with g = f/son p# 0 =Y x C for s the usual coordinate on C. For
F € Db(Y), we get a commutative diagram

&% (spx F) = ¢ (F)

g .

R (re(f)>03 (sPx F)|x RI(re()>0} (F)]x-

Here the monodromical sheaf complex spx F € DQ(CXY)mon is the Verdier specialization of F'
as in [49,53]. The upper horizontal isomorphism is the one of [49, Lem. 2.2], whereas the vertical
isomorphisms are those of [50, Lem. 1.3.2, p. 69]. The lower horizontal map is defined by the
natural base change morphism

RT(Re(r1y>0} (8PX F)|x ¢— ¥p(RT (Re(g)>03 (0" F))|x = RT (re(s)>0} (F)lx,

where the last isomorphism follows as in [50, Lem. 1.3.3, p. 70-71].
Consider now the situation in the proposition, with

f=hHBf:Y=Y1xY:—C,
also X; = f;1(0) and X = f~1(0); finally let uy, = RI'(Re(f,)>0} to shorten the notation. Let
7:Cx, Y1 x Cx,(Ya) = (X1 x X3) x C* = (X; x X5) x C C Cx(Y)
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be the map induced by addition in the fibres. Then, for F; € D%(Y;), one gets a commutative
diagram

¢4 (F1 X Fy)|x, x x, — o4 (F1) @ ¢ (F2)

| -

g (i (spx, Fi B spx, Fo)) | x x xo <—— g (80, F1) | x, @ gy (spx, Fo)|x,

T 4

pp(F1 X )| x, % x, gy (F1)|x, @ g, (Fo)|x, -

1R

The upper horizontal and left vertical isomorphisms form the Thom—Sebastiani isomorphism
(2.26) of [49], whereas the lower horizontal isomorphism is the Thom-Sebastiani isomorphism

(2.8) of [35,50]. This concludes the proof. O
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