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Multi-variable Poincaré series associated with

Newton diagrams

W. Ebeling and S. M. Gusein-Zade ∗

Abstract

We define a multi-index filtration on the ring of germs of functions on a
hypersurface singularity associated with its Newton diagram and compute
the multivariable Poincaré series of this filtration in some cases.

Introduction

Poincaré series of filtrations (including multi-index ones) on the ring of germs of
functions on a complex analytic variety are of interest for some problems (see,
e.g., [2], [4], [7], . . . ). In a number of cases they look like the A’Campo formula
for the monodromy zeta function (being products/ratios of binomials of the
form (1 − tm)). Moreover, in some cases they are connected with monodromy
zeta functions corresponding to the singularity (see, e.g., [6, 5]).

For quasi-homogeneous singularities one has the classical Poincaré series in
one variable. A Poincaré series of one variable also corresponds to the semi-
group of values of an irreducible curve singularity. The initial motivation to
consider multi-variable Poincaré series stems from the study of reducible curve
singularities [2]. Recently they were found to be connected with the study of
Seiberg-Witten invariants for surface singularities [7].

We define a multi-index filtration on the ring of germs of functions on a
hypersurface singularity associated with its Newton diagram. One can say that
this filtration is a multi-index generalization of the quasi-homogeneous one. We
compute the Poincaré series of this filtration for curve singularities and for some
singularities of more variables. In the computed cases, they turn out to be of
A’Campo type.

∗Partially supported by the DFG-programme ”Representation Theory” (Eb 102/6–1),
RFBR–10–01–00678, NSh-709.2008.1. Keywords: Newton diagram, filtration, Poincaré se-
ries. AMS Math. Subject Classification: 32S05, 14M25, 16W70.

60

http://dx.doi.org/10.5427/jsing.2010.1d


1 Multi-index filtrations and their Poincaré se-
ries

A function v on the ring OX,0 of germs of functions on the germ (X, 0) of an
analytic space with values in Z≥0 ∪ {∞} is called a valuation if

(1) v(g1 + g2) ≥ min {v(g1), v(g2)},

(2) v(g1g2) = v(g1) + v(g2),

(3) v(c) = 0 for a non-zero constant c ∈ OX,0.

If a function v : OX,0 → Z≥0 ∪ {∞} possesses the properties (1) and (3) but in
general not the property (2), it is called an order function.

A family {v1, . . . , vs} of order functions on the ring OX,0 defines a multi-
index filtration of the ring OX,0. For g ∈ OX,0, let

v(g) := (v1(g), . . . , vs(g)) ∈ (Z≥0 ∪ {∞})s.

For v = (v1, . . . , vs) ∈ Zs the corresponding subspace is defined by

J(v) = {g ∈ OX,0 : v(g) ≥ v}.

(Here v(g) ≥ v means that vi(g) ≥ vi for all i = 1, . . . , s.)
The notion of the Poincaré series of the multi-index filtration {J(v)} defined

by a family {vi} of order functions was given in [3]. For v ∈ Zs, let d(v) =
dimJ(v)/J(v + 1) where 1 = (1, 1, . . . , 1). Let

L(t) =
∑
v∈Zs

d(v) t v ,

where t = (t1, . . . , ts), t
v = tv11 · . . . · tvs

s . (Pay attention that the sum is over all
v from Zs, not from Zs

≥0. For s > 1, the series L(t) contains monomials with
negative exponents.) The Poincaré series of the multi-index filtration {J(v)} is
the power series in t = (t1, . . . , ts) defined by

P{vi}(t) =

L(t) ·
s∏

i=1

(ti − 1)

t1 · . . . · ts − 1
. (1)

(This makes sense if all the dimensions d(v) are finite.)
Equation (1) implies that the coefficient at t v in the Poincaré series P{vi}(t)

is equal to ∑
I⊂I0

(−1)#I dim J(v + 1I)/J(v + 1) , (2)

where I0 = {1, 2, . . . , s}, 1I is the s-tuple in which the i-th component is equal
to 0 for i /∈ I and is equal to 1 otherwise.
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Remark. One can easily see that, if all the subspaces J(v+1{i}) (and therefore
all the subspaces J(v + 1I) for I ̸= ∅) are contained in one of them, say, in
J(v+1{1}), then the coefficient in equation (2) is equal to dim J(v)/J(v+1{1}).

Equation (2) (together with the inclusion-exclusion formula) implies that
the coefficient at t v in the Poincaré series is equal to the Euler characteristic
χ(PFv) of the projectivisation PFv = Fv/C∗ of the space

Fv = (J(v)/J(v + 1)) \
s∪

i=1

(
J(v + 1{i})/J(v + 1)

)
(see [2]).

To compute the Euler characteristic χ(PFv), it can be convenient to define
a C∗-action on the space PFv (or on elements of a constructible partitioning of
it). In this case the Euler characteristic of the total space coincides with the
Euler characteristic of the set of fixed points. In particular, if the C∗-action is
free, the Euler characteristic χ(PFv) is equal to zero.

One says that a multi-index filtration {J(v)} on the ring OX,0 is induced
by a (multi-)grading if there exist subspaces A v ⊂ OX,0, v ∈ Zs

≥0, such that
the ring OX,0 is a completion of the graded algebra

⊕
v∈Zs

≥0

A v and J(v) is the

corresponding completion of
⊕
v′≥v

A v′ . One can easily see that, if a filtration

{J(v)} is induced by a grading {A v} with finite-dimensional subspaces A v, the
Poincaré series of the filtration {J(v)} is given by the equation

P (t) =
∑

v∈Zs
≥0

dimA v · t v .

This is not the case in general. Coefficients of the Poincaré series are not,
generally speaking, dimensions of some spaces. They may be negative (see, e.g.,
Example 1 at the end of the paper).

2 Multi-index filtration corresponding to a New-
ton diagram

Let f : (Cn, 0) → (C, 0) be the germ of a holomorphic function with an isolated
critical point at the origin, non-degenerate with respect to its Newton diagram
Γ = Γ(f) [1]. Let V = {f = 0} be the corresponding hypersurface singular-
ity. Here we shall define a multi-index filtration on the ring OV,0 of germs of
functions on the hypersurface (V, 0). This filtration is a generalization of the
quasi-homogeneous filtrations defined by the equations of the (n−1)-dimensional
faces of the Newton diagram.

Suppose that the Newton diagram Γ has s faces γ1, . . . , γs of dimension n−1
(facets), and let γi lie in the hyperplane given by the equation

ℓi(k1, . . . , kn) = a
(i)
1 k1 + · · ·+ a(i)n kn = d(i)
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where a
(i)
1 , . . . , a

(i)
n and d(i) are positive integers with greatest common divisor

equal to 1.
For a monomial x k = xk1

1 · . . . · xkn
n , let

ui(x
k) := ℓi(k1, . . . , kn) =

n∑
j=1

a
(i)
j kj .

For a germ g(x1, · · · , xn) =
∑

k∈Zn
≥0

ck x
k ∈ OCn,0, let ui(g) := min

k:ck ̸=0
ui(x

k). The

function ui is a valuation on the ring OCn,0.

Proposition 1 The Poincaré series P{ui}(t) of the family {ui} of valuations is
given by the equation

P{ui}(t) =

n∏
j=1

(1− tu(xj))−1

(xj is the j-th coordinate function on the space Cn).

The proof easily follows from the fact that, in this case, the filtration {J(u)}
is induced by a grading. The corresponding subspace Au, u = (u1, . . . , us) ∈
Zs
≥0, is generated by the monomials x k with ℓi(k) = ui, i = 1, . . . , s.
For a function g ∈ OV,0 = OCn,0/(f), let

vi(g) := max
g′:g′≡g mod f

ui(g
′) .

The function vi on the ring OV,0 is not, generally speaking, a valuation. For
example, for f(x, y) = x5 + x2y2 + y5 and for the face of the Newton diagram
given by the equation ℓ(kx, ky) = 2kx+3ky = 10, one has u(x2) = 4, u(x3+y2) =
6, but u(x5+x2y2) = 15. However, it is an order function. In this way one gets
a family {v1, . . . , vs} of order functions and the corresponding s-index filtration
on the ring OV,0. We shall call it the Newton filtration.

3 Poincaré series of the Newton filtration for
curve singularities

Let f be the germ of a holomorphic function of two variables with an isolated
critical point at the origin, non-degenerate with respect to its Newton diagram
Γ. Let v1, . . . , vs be the order functions on the ring OV,0 (V = {f = 0})
corresponding to the one-dimensional faces γ1, . . . , γs of the diagram Γ. These
order functions are induced by the valuations u1, . . . , us on the ring OC2,0.

Theorem 1 One has

P{vi}(t) =

{
(1− tu(f)) · P{ui}(t) for s = 2,

P{ui}(t) for s > 2.
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Proof . Let the Newton diagram Γ consist of two faces (i.e., s = 2), and let
m = (m1,m2) be the intersection point of them. (The coordinates m1 and m2

are integers.) To compute the coefficient at t v, v = (v1, v2) ∈ Z2
≥0, consider the

lines Li = {ℓi(k) = vi}, i = 1, 2, and let k = (k1, k2) be their intersection point.
Suppose that the intersection point of the lines L1 and L2 is either non-

integral, or one of its coordinates is negative, or it satisfies the condition k ≥ m
(i.e., ki ≥ mi for i = 1, 2). In OC2,0 the space J(v)/J(v+1) is freely generated by
the monomials x k whose exponents k are the integer points on the boundary of
the domain {ℓi(k) ≥ vi for i = 1, 2} (and thus lie on the lines L1 and L2). Using
the relation f = 0 in OV,0, one eliminates some monomials (if any) on the lines
L1 and L2 starting from the intersection point of these lines. (If the intersection
point is integral, it is eliminated.) Let pi be the number of remaining points
(monomials) on the line Li, i = 1, 2. Then, in OV,0, one has

dim J(v)/J(v + 1) = p1 + p2,

dim J(v + 1{1})/J(v + 1) = p2, dimJ(v + 1{2})/J(v + 1) = p1,

and the equation (2) implies that the coefficient at t v is equal to zero.
Suppose that the intersection point of the lines L1 and L2 is integral, non-

negative (i.e., ki ≥ 0 for i = 1, 2) and satisfies the condition k1 < m1. (The case
k2 < m2 is treated in the same way.) In this case the relation f = 0 permits one
to eliminate points (if any) only on the line L2. In particular, the intersection
point of the lines L1 and L2 is not eliminated. As above, let pi be the number
of remaining points on the line Li, i = 1, 2. (The intersection point is counted
on both of them.) Then, in OV,0, one has

dim J(v)/J(v + 1) = p1 + p2 − 1,

dim J(v + 1{1})/J(v + 1) = p2 − 1, dimJ(v + 1{2})/J(v + 1) = p1 − 1,

and the equation (2) implies that the coefficient at t v is equal to 1.
Therefore

P{vi}(t) =
∑

k∈Z2
≥0

:k ̸≥m

tu(x
k) = (1−tu(x

m))·
2∏

i=1

(1−tu(xi))−1 = (1−tu(f))·P{ui}(t) .

Let the Newton diagram consist of more than 2 faces (i.e., s > 2). For
v = (v1, . . . , vs) ∈ Zs

≥0, let Li be the line {ℓi(k) = vi}, i = 1, . . . , s. Suppose
first that all the lines Li have (one) common integral point k ≥ 0. The relation
f = 0 permits one to eliminate some points (if any) on two of the lines Li (the
extreme ones), but not the intersection point k itself. In the space J(v)/J(v+1)
each subspace J(v+ 1{i})/J(v+ 1) is contained in the subspace {ck = 0} (ck is

the coefficient at x k in the power series decomposition of a function) and some
of them (in fact all but at most two) coincide with this subspace. This implies
that the coefficient at t v (v = (ℓ1(k), . . . , ℓs(k))) in the Poincaré series is equal
to

dim J(v)/J(v + 1)− dim{ck = 0} = 1 (3)
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(see the Remark in Section 1).
Now suppose that the lines Li do not have a common point in the non-

negative orthant. We shall show that in this case the coefficient at t v in the
Poincaré series is equal to zero. We may suppose that each line Li intersects
the boundary of the domain B = {ℓi(k) ≥ vi for i = 1, . . . , s}. Otherwise
J(v + 1{i})/J(v + 1) = J(v)/J(v + 1) and the coefficient at t v is equal to zero
according to the Remark in Section 1.

As written above, in OC2,0, the factorspace J(v)/J(v+1) is freely generated
by the monomials x k with k from the boundary of the domain B. The rela-
tions between these generators in OV,0 = OC2,0/(f) correspond to non-negative
integer translations of the Newton diagram Γ such that the translate of the dia-
gram is contained in the domain B and intersects the boundary of the domain.
Suppose that there is a face βi = Li ∩ B of the domain B (possibly of length
zero) which cannot intersect a translate (in the described way) of the Newton
diagram. In this case the monomials corresponding to integer points on the
face βi do not participate in any relation. Multiplication of the coefficients of
all these monomials in the power series decomposition of a function by λ ∈ C∗

defines a free C∗-action on the part of the space PFv where at least one coeffi-
cient of a monomial corresponding to a point on the boundary of the domain B
outside of the face βi is different from zero. Taking into account the condition
that all the lines Li do not have a common non-negative integer point, one can
see that the complement to this part may be non-empty only if the length of
the face βi is finite, but not zero, both ends k1 and k2 of this face are integral
and the boundary of the domain B consists of βi and two rays (corresponding
to the extreme two lines among Lj). (All the other lines (if any) go through the
points k1 or k2.) Moreover, both coefficients at x k1 and at x k2 in the power
series decomposition of a function from the complement under consideration are
different from zero. Therefore a free C∗-action on this part can be defined by
multiplying the coefficient at x k1 by λ ∈ C∗.

If all faces of the domain B intersect translates of the Newton diagram, a
vertex k of it (in fact any one) lies on a translate of Γ. This means that the
coefficient at x k can be eliminated with the help of the corresponding relation.
There are no other relations which include points of the boundary ∂B from both
connected components of ∂B \ {k}. In this case a free C∗-action on the space
PFv can be defined by multiplying coefficients at all the monomials from one of
the connected components of ∂B\{k} by λ ∈ C∗. Combining with equation (3),
this implies the statement of Theorem 1 for s > 2. �

4 Poincaré series of some singularities of more
than 2 variables

It looks somewhat complicated to get the Poincaré series corresponding to an ar-
bitrary Newton diagram. However, a special property of some Newton diagrams
permits one to compute the Poincaré series for them in a uniform way.

65



Definition: We say that a Newton diagram is stellar if all its facets (faces of
maximal dimension) have a common vertex.

Example. Singularities with stellar Newton diagrams include surface singulari-
ties of type Tp,q,r, suspensions of singularities, and singularities with the Newton
diagram consisting of 2 facets, in particular, bimodal singularities.

Theorem 2 Let the Newton diagram Γ of a germ f ∈ OCn,0 be stellar. Then

P{vi}(t) = (1− tu(f)) · P{ui}(t) .

Proof . Let m be a vertex of the Newton diagram Γ on the intersection of all
facets of Γ. One can easily see that v(f) = v(xm). Therefore, for all points k
in Γ, one has ℓi(k) ≥ ℓi(m) for i = 1, . . . , s. For v = (v1, . . . , vs) ∈ Zs

≥0, let
Li = {ℓi(k) = vi}, i = 1, . . . , s, be the corresponding affine hyperplanes in Rs.
In OCn,0, the factorspace J(v)/J(v + 1) is freely generated by the monomials
x k with k from the boundary of the domain B = {ℓi(k) ≥ vi for i = 1, . . . , s}.
The relations between these generators in OV,0 = OC2,0/(f) correspond to non-
negative integer translations of the Newton diagram Γ such that the translate of
Γ is contained in B and intersects the boundary ∂B. For each such translation,
the translate m′ of the vertex m lies on ∂B as well. (If the values of all linear
functions ℓi at the point m′ are greater than vi, this holds for the translates
of other points of Γ as well.) Let λ(k) be a generic linear function such that
it has different values at different integer points (i.e., it is ”irrational”) and its
value at the vertex m is greater than at all other points of the Newton diagram
Γ. Using translates of Γ in order of decreasing values of the function λ on the
translation vectors, one eliminates all the translates of the vertex m. In this
way one eliminates all the integer points k on ∂B with k ≥ m. The monomials
corresponding to the remaining integral non-negative points on ∂B form a basis
of the factor space J(v)/J(v+1) in OV,0. Moreover the space J(v+1{i})/J(v+1)
is freely generated by the monomials corresponding to those points which do
not lie on Li. The equation (2) and the inclusion-exclusion formula imply that
the coefficient at t v in the Poincaré series is equal to the number of those non-
negative integer points k ∈ ∂B with k ̸≥ m which belong to all the hyperplanes
Li. Therefore

P{vi}(t) =
∑

k∈Zs
≥0

:k ̸≥m

tu(x
k) = (1−tu(x

m))·
s∏

i=1

(1−tu(xi))−1 = (1−t u(f))·P{ui}(t) .

�
Up to now, we have had only two types of equations, the types in Theorem 1,

for the Poincaré series of Newton filtrations. Moreover all coefficients in these
series were non-negative. This could produce a hope that Newton filtrations are
induced by gradings of the coordinate ring. The following examples show that,
in general, neither all the Poincaré series of Newton filtrations are of these types
nor all the coefficients in them are non-negative. In these examples we compute
the coefficient of the Poincaré series at t v(f).
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Examples. 1. For f(x, y, z) = x5 + y5 + z5 + x2yz + xy2z + xyz2 the Newton
diagram consists of 4 facets γ0, γ1, γ2, and γ3 lying on the hyperplanes with
the equations kx + ky + kz = 4, 2kx + ky + kz = 5, kx + 2ky + kz = 5, and
kx + ky + 2kz = 5 respectively. Besides the vertices (2, 1, 1), . . . , (0, 0, 5) of the
Newton diagram, there are 12 integral points on the diagram: 4 on each of the
facets γ1, γ2, and γ3. One integer point, say (0, 0, 5) can be eliminated using
the relation f = 0. The space J(v)/J(v + 1) (v = v(f)) is freely generated by
the 17 remaining monomials. The subspace Fv in it is the complement of the
union of the 4 subspaces given by the equations (ck is the coefficient at x k in
the power series decomposition of a function):

J(v + 1{0})/J(v + 1)

= {c211 = c121 = c112},
J(v + 1{1})/J(v + 1)

= {c050 = c041 = c032 = c023 = c014 = c121 = c112 = 0},
J(v + 1{2})/J(v + 1)

= {c500 = c401 = c302 = c203 = c104 = c211 = c112 = 0},
J(v + 1{3})/J(v + 1)

= {c500 = c410 = c320 = c230 = c140 = c050 = c211 = c121}.

From these data one can easily compute that the coefficient at t v(f) = t40t
5
1t

5
2t

5
3 in

the Poincaré series is equal to −1. Therefore, in this case, the Newton filtration
is not induced by a grading.
2. For f(x, y, z) = x20 + y20 + z16 +x8y8 +x6y6z2 +x2y2z10 +x3y8z3 +x8y3z3

the Newton diagram consists of 5 facets γ0, γ1, γ2, γ3, and γ4 lying on the
hyperplanes with the equations kx + ky + kz = 14, 2kx + 3ky + 5kz = 40, 3kx +
2ky +5kz = 40, 11kx +4ky +5kz = 80, and 4kx +11ky +5kz = 80 respectively.
Computations like in Example 1 yield the coefficient at t v(f) = t140 t401 t402 t803 t804
to be equal to 1. Since v(f) = (14, 40, 40, 80, 80) is not a linear combination of
v(x) = (1, 2, 3, 11, 4), v(y) = (1, 3, 2, 4, 11), and v(z) = (1, 5, 5, 5, 5), the Poincaré
series is not of one of the types of Theorem 1.
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